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Abstract— The increasing use of networked sensor systems and 
networked databases has led to an increased interest in 
incorporating encryption directly into sensor algorithms and 
database analytics.  MATLAB is the dominant tool for rapid 
prototyping of sensor algorithms and has extensive database 
analytics capabilities.  The advent of high level and high 
performance Galois Field mathematical environments allows 
encryption algorithms to be expressed succinctly and efficiently.  
This work leverages the Galois Field primitives found the 
MATLAB Communication Toolbox to implement a mode of the 
Advanced Encrypted Standard (AES) based on first principals 
mathematics.  The resulting implementation requires 100x less 
code than standard AES implementations and delivers speed that 
is effective for many design purposes. The parallel version 
achieves speed comparable to native OpenSSL on a single node 
and is sufficient for real-time prototyping of many sensor 
processing algorithms and database analytics. 
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I.  INTRODUCTION  
Modern buildings [Hubbell 2012] and vehicles [Gadepally 

2014] contain many networked sensors to monitor and control 
their environmental, security, and safety systems.  The 
decreasing size and increasing capability of these networked 
sensors has led to their increased usage on people [Starner 
2014].  These wearable technologies provide a wide variety of 
data that will extend and improve human lives.  This trend 
towards increased use of networked sensors is often referred to 
as the Internet-of-Things (IoT) [Atzori 2014]. 

IoT data is stored and analyzed in networked databases 
accessible to a wide range of stakeholders: users, family 
members, care providers, operators, manufacturers, and 
regulators.  Sensor algorithms and database analytics are the 
primary mechanisms for transforming raw IoT data into useful 
information. Incorporating encryption directly into sensor 
algorithms and database analytics is one method for adding 
security protections to IoT systems. 

The critical role that IoT data plays in controlling key 
aspects of society necessitates that a variety of protection 
measures be included in the design of IoT systems.  Figure 1 
depicts a common architecture for connecting IoT data sources 
with users via a range of technologies. 

 
(a) IoT Security challenges 

 
(b) IoT Security current approaches 

 
(c) IoT Security vision 

Figure 1.  Standard architecture for connecting diverse data and users. 
Shown are big data veracity challenges (a),  current approaches (b), 
and longer term vision (c). 
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There are many security challenges in such an IoT data 
processing system (see Figure 1a): external denial of service, 
credential stealing, cross virtual machine (VM) side channels, 
VM hypervisor privilege escalation, remote code injection, data 
integrity attacks, data loss/exfiltration, insider threats, internal 
network resource attacks, and supply chain attacks [Evans 
2013].  

These attacks threaten to degrade the availability of the IoT 
processing system, compromise the confidentiality of the data 
and analytics used, and violate the integrity of both the original 
data and the analytic results.  There are several approaches to 
mitigating these security challenges.  Data centric protections 
are particularly useful for preserving the confidentiality of the 
data.  Typical defenses of this type include (see Figure 1b): 
encrypting the links between users and the IoT processing 
system, encrypting the links between the data sources and the 
IoT processing system, encrypting the data in the file system, 
and encrypting data in the database when it is at rest.  These 
approaches are all significant steps forward in improving the 
security of an IoT processing system.  However, all of these 
approaches require that the data be decrypted for it to be used 
inside the IoT processing system, which requires that the keys 
to the data be available to the IoT processing system thus 
exposing the IoT processing to any attacker able to breach the 
boundaries of the system. 

One vision (Figure 1c) for an IoT processing system is to 
have data sources encrypt data prior to transmitting it to the 
system, have the IoT processing system operate on the data in 
encrypted form, and only allow authorized users the keys to 
decrypt the answer for their specific result.  Such a system 
makes the underlying IoT processing technologies oblivious to 
the details of the data and would go a long way towards 
mitigating the IoT processing security challenges described 
above.  As a result, the data and processing can be outsourced 
to an untrusted cloud while preserving the confidentiality of the 
data and results. 

There are several cryptographic tools that one could use to 
build a system like the one shown in Figure 1c. Fully 
homomorphic encryption allows for arbitrary analytic 
computations to be performed on encrypted data without 
decrypting it while preserving its semantic security (i.e., no 
information about the data is leaked other than its length).  
Fully homomorphic encryption has been an active topic of 
research since its discovery [Gentry 2009]. Nevertheless, the 
best currently available schemes [Perl 2011, Halevi 2014] have 
an overhead of 105 or more, making them too slow for use in 
many systems [Varia et al 2015a]. 

If one is willing to allow a small amount of information 
about the encrypted data to be revealed, a higher speed 
approach is to design protocols that leverage more traditional 
cryptographic techniques to carry out queries on encrypted 
data.  One example of such a protocol is CryptDB [Popa 2011], 
which constructs a practical database system capable of 
handling most types of SQL queries on encrypted data. It uses 
deterministic encryption, which always encrypts the same data 
to the same ciphertext, to enable equality queries; order-
preserving encryption, which encrypts data in a way that 
preserves the original order of the data, to enable range queries; 
and additively homomorphic encryption, which enables 
summing values directly on encrypted data, to perform basic 

analytics.  Several other protocols achieving alternative trade-
offs between leakage and efficiency have been proposed by  
[Raykova 2012, Pal 2012, Cash 2013, Varia et al 2015b].  
Additional solutions are also possible using techniques for 
secure multi-party computation [Yao 1982, Ben-Or 1988] but 
these require further improvement to achieve the required 
speed. 

Incorporation of the aforementioned cryptographic 
techniques into secure algorithms and analytics requires a co-
design with encrypted computation and encrypted query. 
Currently these areas have few common design processes or 
tools and employ different design criteria, mathematics, and 
programming.  

A typical sensor algorithm involves filtering the raw data, 
correlating with known signatures, detecting significant 
correlations, and summarizing the precise location of the 
detections in the data.  Throughout the sensor algorithm 
development process the designer seeks to balance a variety of 
system characteristics such as signal-to-noise ratio, probability 
of detection, and probability of false alarm.  The primary 
mathematics of sensor algorithms is linear algebra, and the 
most common algorithm development environment is 
MATLAB. 

A typical database analytic might first select records from a 
database, perform a database join on the records, construct a 
graph out of the records, and cluster the graph to find records 
of most interest.  During the design of a database analytic, the 
designer will simultaneously balance database system 
characteristics such as ingest rate and query latency.  The 
primary mathematics used is set theory, and SQL is the de-
facto language of database environments. 

Encrypted computation utilizes a variety of techniques such 
homomorphic computation, fully homomorphic computation, 
multi-party computation, and computing on masked data.  The 
design of encrypted computation focused on developing 
adversary models and understanding the information leakage of 
various encryption techniques with respect to different 
adversary models.  The mathematics of encryption relies on 
number theory and in particular Galois Fields.  There are a 
number of environments for developing encrypted 
computation, and Python is widely used. 

Encrypted query relies on various approaches for obscuring 
the data while still allowing some search to occur: for example, 
deterministic and order preserving encryption.  These are often 
layered in an “onion” so that the strongest encryption is on the 
outside of the data and can be “peeled” to the weaker levels as 
needed.  Furthermore, the actual patterns of query can also be 
designed in a privacy-preserving manner so that the query itself 
reveals as little information as is possible.  Encrypted query is 
similar to encrypted computation and focuses on minimizing 
information leakage with respect to specific adversary models.  
Likewise similar Galois Field mathematics are also used.  The 
dominant programming environment is the same SQL used for 
standard database analytics. 

An important step towards enabling the co-design of secure 
algorithms and analytics is to provide common environments 
where co-design can occur.  This requires both mathematical 
and technological unification of the environments.  Associative 
array provides a common mathematics for sensor algorithms 
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and database analytics [Kepner 2012, Chaidez 2014, Gadepally 
2015a, Kepner 2015, Kepner & Jansen 2016].  Computing on 
Masked Data has demonstrated encrypted computation and 
query on associative arrays using external encryption libraries 
[Kepner 2014, Gadepally 2015b]. The next step is to integrate 
encryption mathematics (Galois Fields) directly into these 
associative array environments.  The advent of high 
performance Galois Field mathematics in high level 
programming environments such as MATLAB and Magma 
[Agullo 2009] now make it feasible to incorporate encryption 
directly into sensor processing and database analytic design 
environments.  This paper demonstrates this capability with the 
Advanced Encryption Standard (AES) algorithm and shows 
that fast encryption can be performed in a co-design 
environment suitable for sensor algorithm development and 
database analytic design. 

We caution here that MATLAB is primarily an algorithm 
prototyping tool. As such, our implementation is not intended 
directly for use in practice. Any production implementation of 
AES should take into account side channel attacks that can 
exploit variations in the software's running time [Kocher 1996] 
or power consumed [Kocher 1999, Chari 2002, Peeters 2007] 
in order to learn the secret key. Such attacks are very effective 
in practice, often requiring just tens or hundreds of 
measurements to learn the key completely [DPA contest, Osvik 
2006]. Production implementations of AES require careful 
handling to provide proper defenses against side channel 
attacks [Messerges 2001]. 

The outline of the rest of this paper is as follows.  Section II 
gives a brief introduction to the mathematics of AES.  Section 
III describes the implementation of AES using the Galois Field 
primitives found in the MATLAB Communications Toolbox.   
Section IV presents the comparative results of this 
implementation versus other implementations.  Section V 
presents our conclusions and plans for future work. 

II. ADVANCED ENCRYPTION STANDARD 
AES is a specification established by U.S. National Institute 

of Standards and Technology (NIST) in 2001.  AES is based on 
on the Rijndael algorithm developed by Joan Daemen and 
Vincent Rijmen [Daemen & Rijmen 2001].  Rijndael is a 
family of ciphers with different key sizes, block sizes, and 
modes.  The standard blocksize for AES is 128 bits (8 bytes), 
which means that unencrypted data (plaintext) is transformed 
into encrypted data (ciphertext) into blocks 8 bytes at a time.  
The encryption can be performed with keys of varying lengths: 
128 bit, 192 bit, or 256 bit.  For this work, the focus will be on 
128 bit encryption.  Finally, the encryption scheme can be 
utilized in a variety of modes. Electronic Codebook (ECB) 
mode encrypts each 8 byte block of plaintext independently of 
all of the others.    Cipher Block Chaining (CBC) mode 
combines the plaintext with an Initialization Vector (IV) and 
then encrypts the data.  The ciphertext of the 8 byte block is 
then used as the IV for the next 8 byte block.  For this work, 
CBC mode is implemented. 

The core mathematics of AES encryption is a Galois Field 
arithmetic [Artin 2011], where the bits in each byte represent 
the coefficients of a polynomial.  The decimal, binary, and 
Galois Field representations of various numbers are as follows: 

 

    1 = 00000001 = 1 
    3 = 00000011 = x + 1 
    7 = 00000111 = x2 + x + 1 
  15 = 00001111 = x3 + x2 + x + 1 
  31 = 00011111 = x4 + x3 + x2 + x + 1 
  63 = 00111111 = x5 + x4 + x3 + x2 + x + 1 
127 = 01111111 = x6 + x5 + x4 + x3 + x2 + x + 1 
255 = 11111111 = x7 + x6 + x5 + x4 + x3 + x2 + x + 1 

Addition and multiplication of numbers in Galois Field are 
performed using the normal rules of polynomial addition and 
multiplication of binary coefficients 

1 + 3 = 00000001 + 00000011 
         = 1 + (x + 1) 
         = x + 2 
         = x + 0 
         = 00000010 
         = 2 

In some cases this would result in a higher order polynomial 
that cannot be represented by 8 bits 

(x7)( x5) =  x12 
To solve this problem, the results of all calculations are 
computed modulo the AES polynomial 

100011011 = x8 + x4 + x3 + x + 1 
Hence 

(x7)( x5) mod (x8 + x4 + x3 + x + 1) =  x7 + x5+ x3 + x + 1 
Letting addition, multiplication, and matrix multiplication be 
defined by the aforementioned Galois Field arithmetic, the 
AES encryption algorithm can be written succinctly as follows 
 
P, C : 8b

NxM Matrices of input/output in 8bit Galois Field 
V :  8b

Nx16 Matrix of IVs in 8bit Galois Field 
K :  8b

RxNx16 Tensor of key schedules in 8bit Galois Field 
s :  8b

256 s-box in 8bit Galois Field 
M :  8b

4x4 Mix matrix in 8bit Galois Field 
i = [1:16] Set of 16 rows 
for each block of i rows 

C(:,i) = P(:,i) + V + K(1,:,:) Add IV and round key 
for each round r 
        C(:,i) = s( C(:,i) + 1)  Apply s-box 
        C(:,i1) = C(:,i2)   Shift rows 
        C(:,1:4) = (M C(:,1:4)T)T   Multiply by M 
        C(:,5:8) = (M C(:,5:8)T)T   Multiply by M 
        C(:,9:12) = (M C(:,9:12)T)T  Multiply by M 
        C(:,13:16) = (M C(:,13:16)T)T  Multiply by M 
        C(:,i) = C(:,i) + K(r,:,:)  Add round key 
    V = C(:,i)   Copy back to IV 
    i = i + 16   Increment rows 

 
where T denotes the transpose of the matrix, and for 128 bit 
AES encryption there are 10 rounds.  The above algorithm will 
encrypt N plaintexts of length M simultaneously with the same 
key.  The most computationally expensive part of the algorithm 
is the four mix matrix multiplications.  Encrypting many 
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plaintexts at the same time allows these operations to be 
performed on all the messages using efficient matrix 
multiplication operations.  This technique of combining many 
items together so they can be performed simultaneously is 
often referred to as vectorization [Birkbeck 2007]. 

AES decryption can be described in much the same way by 
reversing the steps of AES encryption.  Likewise, the IVs, key 
schedules, and s-box can also be calculated using simple 
algorithms.  

III. MATLAB IMPLEMENTATION 
The MATLAB implementation of AES has three main goals.  

The first goal is to make the cryptographic technique easy to 
understand.  The second goal is to provide relatively fast 
encryption/decryption of many short messages of the type that 
would be used in a sensor algorithm or a database analytic. The 
third goal is to provide reasonable speed so that a sensor 
algorithm or database analytic can be quickly tested on 
sufficiently large data to determine its effectiveness. 

Easy-to-understand implementations allow sensor 
algorithms, database analytics, and cryptographic techniques to 
be combined in a way that they can be adapted to a variety of 
applications.  In a MATLAB context, easy-to-understand means 
that there is a strong correspondence between the MATLAB 
code and the corresponding mathematics.  To meet this goal, 
the high level Galois Field mathematics found in the MATLAB 
Communication Toolbox is used that allows the mathematics 
of AES to be implemented in manner that is very similar to the 
written mathematics. 

 Sensor algorithms and database analytics perform their 
operations on many relatively small data elements such as a 
sensor measurements or a short strings of characters.  Thus 
cryptographic techniques applied to this data should be 
optimized for many short messages.  Many standard 
cryptographic implementations are implemented to run well on 
long messages.  Vectorizing cryptographic algorithms so that 
they perform on many messages at once allows the overall 
speed of the algorithm on short messages to be increased. 

The design process of sensor algorithms and database 
analytics is an iterative, trial-and-error process whereby the 
designer implements mathematical techniques to achieve their 
goals.  Throughout this process the implementations are tested 
on ever increasing datasets to validate the mathematics.  
Extremely slow implementations can be a significant 
impediment to the design process and requires the 
implementation must have good overall speed.  A simple way 
to deliver good overall speed is to employ parallel computing.  
Fortunately, many vectorized implementations are relatively 
easy to run in parallel.  In this case, since the encryption and 
decryption of each message is independent, this provides a 
natural approach to running the algorithm in parallel.  
Likewise, parallel MATLAB [Kepner 2009] provides the 
necessary software infrastructure for easily running a MATLAB 
program on a parallel computer.  

Employing the aforementioned techniques, a MATLAB 
implementation of the AES encryption algorithm can be 
written succinctly as shown in Appendix A. 

IV. COMPARATIVE RESULTS 
The MATLAB implementation listed in Appendix A is 

compared to three other AES implementations.  The two 
mostly widely recognized AES MATLAB implementations 
([Bucholz 2001] and [Matejka 2011]) are very similar to each 
other.   They both focus on providing an AES implementation 
in MATLAB primarily for illustrative purposes.  Neither of these 
implementations uses the Galois Field primitives found in the 
Communications Toolbox.  The third implementation is a 
MATLAB binding to the Open Secure Socket Layer [OpenSSL] 
implementation of AES written in C [Gadepally 2015].  
OpenSSL is among the most widely used encryption libraries. 

The three goals of the MATLAB Communication Toolbox 
implementation were for it to be easy to understand, have good 
speed on many short messages, and have good overall speed.  
Easy to understand in this context refers to the correspondence 
of the implementation to the mathematics.  Visual inspection of 
mathematics and the code shows a strong correspondence.  A 
proxy for the ease of understanding is the relative volume of 
the code measured in software lines of code (SLOC) using a 
code counting tool [SCLC].  Figure 2 shows the code volume 
for all four implementation of AES in MATLAB.   The 
Communications Toolbox implementation is 3x smaller than 
the other MATLAB implementations, 10x smaller than the 
MATLAB binding to OpenSSL, and 100x smaller if the 
underlying OpenSSL C code is included. 
 

 
Figure 2.  Code volume of different implementations of AES in 
MATLAB.  The Communications Toolbox implementation is 3x 
smaller than the other MATLAB implementaions, 10x smaller than 
MATLAB binding to OpenSSL, and 100x smaller if the underlying 
OpenSSL C code is included. 

The speed of the Communications Toolbox 
implemenation for messages of different size and different 
number of messages are shown in Figure 3. The top curves 
show the rate for 16 byte messages with varying numbers of 
messages.  The bottom curves show the rate for 128 messages 
with varying message lengths.  As expected, the vectorized 
Communications Toolbox implemenation peforms well for 
many short messages. 

Figure 4 is the same as Figure 3 but also includes the rate of 
the other three implementations on many 16 byte messages.  
As expected, the OpenSSL implementation is 10x faster.  The 
other MATLAB implemenations are 100x slower.  Thus, the 
Communications Toolbox implementation achieves nearly 
10% of the rate of a highly optimized C library with only 1% 
of the code. 
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Figure 3.  Encryption and decryption rates of the MATLAB 
Communications Toolbox implemenation as a function of total 
messsage size.  The top curves show rate for 16 byte messages with 
varying numbers of messages.  The bottom curves show the rate for 
128 messages with varying message lengths.  As expected, the 
vectorized Communications Toolbox implemenation peforms well 
for many short messages. 

 
Figure 4.  Comparison of encryption and decryption rates of the 
MATLAB Communications Toolbox implemenation with other 
implementations.  OpenSSL implementation is 10x faster.  The other 
MATLAB implementations are 100x slower. 

The overall speed of the Communications Toolbox 
implementation can be improved by running it in parallel.  
Because this implementation is designed to run well on many 
small messages, this provides an easy mechanism for running 
the code in parallel.  Different groups of messages can be 
processed independently on different processors.  Figure 5 
shows that a speedup of 20x was achieved using 24 processor 
cores on a single node of a compute cluster. 

 
Figure 5.  Speedup versus number of cores used for MATLAB 
Communication Toolbox implementaion.  A speedup of 20x was 
achieved using 24 processor cores on a single node of a compute 
cluster. 

V. CONCLUSIONS & FUTURE WORK 
The increasing use of networked sensor systems and 

networked databases has led to an increased interest in 
incorporating encryption directly into sensor processing and 
database algorithms.  MATLAB is the dominant tool for rapid 
prototyping of sensor processing algorithms and has extensive 
database analytics capabilities.  The advent of high level and 
high performance Galois Field mathematical environments 
allows encryption algorithms to be expressed succinctly and 
efficiently.  This work leverages the Galois Field primitives 
found in the MATLAB Communication Toolbox to implement a 
mode of the Advanced Encrypted Standard (AES) based on 
first principals mathematics.  The resulting implementation 
requires 100x less code than standard AES implementations 
and delivers speed that is effective for most algorithm 
development purposes. The parallel version achieves speed 
comparable to OpenSSL on a single node and is sufficient for 
real-time prototyping of many sensor processing algorithms 
and database analytics. 

Although the speed of this implementation is good, it is 
limited by the Galois Field matrix multiplication in the 
MATLAB Communications Toolbox.  Other computational 
algebra systems have demonstrated extremely impressive speed 
on equivalent computations.  For example, the Magma 
computational algebra system can perform the same Galois 
Field matrix multiplication 50x faster than MATLAB 
[Sutherland 2015].  Thus, additional optimization of the 
MATLAB Communications Toolbox could allow this 
implementation to equal or even surpass the speed of the 
OpenSSL version. 

Other limitations in the MATLAB Communications Toolbox 
limit the ability to easily implement more complex 
cryptographic operations.  For example, the widely used Galois 
Counter Mode (GCM) is difficult to implement without using 
128 bit Galois Fields.  Currently the MATLAB Communications 
Toolbox only supports 16 bit Galois Fields.  As the MATLAB 
Communications Toolbox expands its support for Galois 
Fields, these more complex cryptographic modes should be 
easy to implement. 
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APPENDIX A1: MATLAB AES 128 BIT CBC ENCRYPTION IMPLEMENTATION 
function ct = AESCBCencrypt(key,IV,pt) 
  Nblock = ceil(size(pt,2)/16); % Number of 16 byte blocks for plaintext. 
  pt(:,size(pt,2)+1:Nblock*16) = 0; % Pad plaintext to end of the last block. 
  ct = uint8(pt);  ct(:) = 0; % Allocate ciphertext. 
  Nround = 10; % Standard for 128 bit. 
  ob_gf8 = repmat(AESfield(uint8(IV)), size(pt,1), 1); % Set up IV. 
  sbox = genSbox(); % Compute sbox from first principles. 
  row = [2 3 1 1]; % Define mix matrix. 
  mixmat_gf8 = gallery('circul', row); 
  key_schedule = genKeys(key, Nround, sbox); % Generate the key schedule. 
  idx = 1:16; 
  for iblock=1:Nblock 
    pt_gf8 = AESfield(pt(:,idx)) + ob_gf8; % XOR plaintext with the IV. 
    ctrnd00_gf8 = pt_gf8 + repmat(key_schedule(1,:), size(pt_gf8,1),1); % Add plaintext and key. 
    for iround=1:Nround 
      ctrnd01_gf8 = AESfield(sbox(uint32(ctrnd00_gf8)+1)); % SubBytes 
      ctrnd01_gf8(:,[2 3 4  6 7 8  10 11 12  14 15 16]) = ctrnd01_gf8(:,[6 11 16  10 15 4  14 3 8  2 7 12]); % ShiftRows 
      if (iround < Nround) % MixColumns 
        ctrnd01_gf8(:,  1:4  ) = (mixmat_gf8 * ctrnd01_gf8(:,  1:4  ).').’; 
        ctrnd01_gf8(:,  5:8  ) = (mixmat_gf8 * ctrnd01_gf8(:,  5:8  ).').’; 
        ctrnd01_gf8(:,  9:12) = (mixmat_gf8 * ctrnd01_gf8(:,  9:12).').’; 
        ctrnd01_gf8(:,13:16) = (mixmat_gf8 * ctrnd01_gf8(:,13:16).').’; 
      end 
      ctrnd01_gf8 = ctrnd01_gf8 + repmat(key_schedule(iround+1,:),size(pt_gf8,1),1);  % AddRoundKey 
      ctrnd00_gf8 = ctrnd01_gf8; % Copy 01 variable to 00 variable for CBC mode. 
    end 
    ob_gf8 = ctrnd01_gf8; % Last ciphertext becomes the IV for the next block. 
    ct(:,idx) = reshape(uint8(uint32(ctrnd01_gf8)), size(pt,1), []); % Save current block of ciphertext.   
    idx = idx + 16; % Increment to the next block. 
  end 
 
function x = uint32(g); 
  x = g.x; 
end 
 
function f = AESfield(inp) 
  f = gf(inp,8,hex2dec('11B')); % Standard primitive polynomial for AES 
end 
 

APPENDIX A2: MATLAB AES 128 BIT CBC GENERATE S-BOX IMPLEMENTATION 
function sbox = genSbox() 
  pp = hex2dec('11B'); % primitive polynomial for AES . 
  row = [1 1 1 1 1 0 0 0]; % set up constants A and b. 
  A = gf(gallery('circul', row), 2); 
  b = gf([0; 1; 1; 0; 0; 0; 1; 1], 2); 
  xinv = gf(0:255, 8, pp); % Compute inverses. 
  xinv(2:256) = 1./xinv(2:256); 
  y = gf(transpose(dec2bin(uint32(xinv),8) == '1'),2); 
  z = A * y + repmat(b,1,256); % Affine transformation. 
  sbox = transpose(uint8(bin2dec(num2str(transpose(uint32(z)))))); % Reformat to make sbox. 
end 

APPENDIX A3: MATLAB AES 128 BIT CBC GENERATE KEY SCHEDULE IMPLEMENTATION 
function key_schedule = genKeys(key, Nround, sbox) 
  if sbox == 0 % Encrypt can pass in the sbox, but decrypt uses the inverse sbox. 
    sbox = genSbox(); 
  end 
  key_schedule = AESfield(zeros(Nround+1,16)); % Allocate space for Nround+1 keys of size 4x4. 
  key_schedule(1,:) = AESfield(uint8(key)); % Embed key into Galois Field. 
  x = AESfield(2); % Create round constant for any round. 
  rcon = AESfield(zeros(1,4)); 
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  for iround=1:Nround 
    rcon(1) = x^(iround - 1); % Compute round constant. 
    key_schedule(iround+1,1:4) = circshift(key_schedule(iround,13:16),-1,2); % Shift column 4 and place into column 1. 
    key_schedule(iround+1,:) = sbox(uint8(uint32(key_schedule(iround+1,:)))+1); % Tranform values with S-Box. 
    key_schedule(iround+1,1:4) = key_schedule(iround+1,1:4) + rcon;  % Add round constant. 
    % Add and shift forward to remaining columns. 
    key_schedule(iround+1,  1:4  ) = key_schedule(iround,  1:4  ) + key_schedule(iround+1,1:4  ); 
    key_schedule(iround+1,  5:8  ) = key_schedule(iround,  5:8  ) + key_schedule(iround+1,1:4  ); 
    key_schedule(iround+1,  9:12) = key_schedule(iround,  9:12) + key_schedule(iround+1,5:8  ); 
    key_schedule(iround+1,13:16) = key_schedule(iround,13:16) + key_schedule(iround+1,9:12); 
  end 
end 

APPENDIX A4: MATLAB AES 128 BIT CBC DECRYPTION IMPLEMENTATION 
function pt = AESCBCdecrypt(key,IV,ct) 
  Nblock = size(ct,2)/16; % Number of 16 byte blocks in ciphertext. 
  pt = char(zeros(size(ct,1), 16*Nblock)); % Preallocate for the plaintext. 
  Nround = 10; % Standard for 128 bit key. 
  ob_gf8 = repmat(AESfield(uint8(IV)), size(ct,1), 1); % Set up IV. 
  sbox = genSboxInv(); % Compute inverse sbox from first principles. 
  row = [14 11 13 9]; % Define mix matrix. 
  mixmat_gf8 = gallery('circul', row); 
  key_schedule = genKeys(key, Nround, 0); % Generate the key schedule. 
  idx = 1:16; 
  for iblock=1:Nblock 
  state00 = uint8(ct(:,idx));           
  for iround=Nround:-1:1 % Intermediate rounds. 
    state01 = state00 + repmat(key_schedule(iround+1,:), size(ct,1),1); % AddRoundKey 
    if (iround < Nround) % MixColumns 
      state01(:,  1:4  ) = (mixmat_gf8 * state01(:,  1:4  ).').'; 
      state01(:,  5:8  ) = (mixmat_gf8 * state01(:,  5:8  ).').'; 
      state01(:,  9:12) = (mixmat_gf8 * state01(:,  9:12).').'; 
      state01(:,13:16) = (mixmat_gf8 * state01(:,13:16).').'; 
    end 
    state01(:, [2 3 4  6 7 8  10 11 12  14 15 16]) = state01(:, [14 11 8  2 15 12 6 3 16  10 7 4]); % ShiftRows 
    state01 = AESfield(sbox(uint32(state01)+1)); % SubBytes 
    state00 = state01; % Copy 01 variable to 00 variable for CBC mode. 
  end 
  state01 = state01 + repmat(key_schedule(1,:),size(ct,1),1); % Reverse round 0 (initial round).  Add plaintext and key. 
  state01 = state01 + ob_gf8;  % XOR state with the IV. 
  ob_gf8 = uint8(ct(:,idx));  % This ciphertext becomes the IV for the next block. 
  pt(:,idx) = uint32(state01); % Save current block of plaintext. 
  idx = idx + 16; % Increment to the next block. 
end 

APPENDIX A5: MATLAB AES 128 BIT CBC GENERATE INVERSE S-BOX IMPLEMENTATION 
function sinv = genSboxInv() 
  pp = hex2dec('11B');  % primitive polynomial for AES. 
  row = [0 1 0 1 0 0 1 0]; % set up constants A and b. 
  A = gf(gallery('circul', row), 2); 
  b = gf([0; 0; 0; 0; 0; 1; 0; 1], 2); 
  y = gf(transpose(dec2bin(0:255) == '1'), 2); % Affine transformation. 
  z = A * y + repmat(b,1,256); 
  z = gf(bin2dec(num2str(transpose(uint32(z)))), 8, pp); % Reformat. 
  zinv = gf(0:255, 8, pp); % Invert results. 
  zinv(1:99) = 1./z(1:99);  
  zinv(100) = 0; 
  zinv(101:256) = 1./z(101:256); 
  sinv = uint8(uint32(zinv)); % Reformat to make inverse sbox. 
end 
 
 


