Name \qquad Date \qquad Class \qquad

LEsson Practice A

6-4 Properties of Special Parallelograms

Match each figure with the letter of one of the vocabulary terms.

 Use each term once.1.

2.

3.

A. rectangle
B. rhombus
C. square

Fill in the blanks to complete each theorem.
4. If a parallelogram is a rhombus, then its diagonals are \qquad .
5. If a parallelogram is a rectangle, then its diagonals are \qquad .
6. If a quadrilateral is a rectangle, then it is a \qquad .
7. If a parallelogram is a rhombus, then each diagonal \qquad a pair of opposite angles.
8. If a quadrilateral is a rhombus, then it is a \qquad .

The part of a ruler shown is a rectangle with $A B=3$ inches and $B D=3 \frac{1}{4}$ inches. Find each length.
9. $D C=$ \qquad
10. $A C=$

Use the phrases and theorems from the Word Bank to complete this two-column proof.

Alternate Interior $\&$ Thm. GHIJ is a parallelogram. Trans. Prop. of \cong $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 3$

Statements	Reasons		
1. $G H I J$ is a rhombus.	1. Given		
2. a.	2. rhomb. $\rightarrow \square$		
3. $\overline{G H} \\| \bar{J}$	3. $\square \rightarrow$ opp. sides $\\|$		
4. $\angle 1 \cong \angle 2$	4. b..		
5. \mathbf{c}.	5. rhomb. \rightarrow each diag. bisects opp. $\angle \mathrm{s}$		
6. $\angle 1 \cong \angle 3$	6. d..		

Practice A

Properties of Special Parallelograms

Match each figure with the letter of one of the vocabulary terms. Use each term once.

A. rectangle B. rhombu C. square

Fill in the blanks to complete each theorem
4. If a parallelogram is a rhombus, then its diagonals are perpendicular
5. If a parallelogram is a rectangle, then its diagonals are congruent
6. If a quadrilateral is a rectangle, then it is a parallelogram
7. If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles.
8. If a quadrilateral is a rhombus, then it is a parallelogram

The part of a ruler shown is a rectangle with $A B=3$ inches and $B D=3 \frac{1}{4}$ inches. Find each length
10. $A C=$ \qquad

Use the phrases and theorems from the Word Bank to complete this two-column proot

Alternate Interior \mathbb{L} Thm Trans. Prop. of \cong

11. Given: $G H I J$ is a rhombus $\angle 2 \cong \angle 3$
Prove: $\angle 1 \cong \angle 3$

Statements		
1. GHIJ is a rhombus.	1.	
2. a. GHIJ is a parallelogram.	2.	
3. $\overline{G H} \\| \bar{J}$	3.	
4. $\angle 1 \cong \angle 2$	4.	
5. c. $\angle 2 \cong \angle 3$	5.	
6. $\angle 1 \cong \angle 3$	6.	

Reasons

Coporight © by Holt Rinehat and Winston
All
Alght tesesved.

Practice C

6-4 Properties of Special Parallelograms

For Exercises 1-5, give your answers in simplest radical form

1. Find the length of the diagonals of a rectangle with sides of
lengths a and b.
2. Find the length of the diagonals of a square with sides of
length a.
3. Find the length of the sides of a square with diagonals of
length a.
4. Find the length of the sides of a rhombus with diagonals of
lengths a and b.
5. Find the length of a rectangle with width x and a diagonal of
length $2 x$.
6. Find the measures of the angles in the triangles formed by
one diagonal of the rectangle in Exercise 5 .
one diagonal of the rectangle in Exercise 5 .
The figure shows a kind of quadrilateral called a kite. A kite is a quadrilateral with exactly two pairs of congruent consecutive sides. Use the figure to write paragraph proofs for Exercises 7 and 8.
7. Prove: $\angle C B A \cong \angle C D A$

Possible answer: It is given that $\overline{C B} \cong \overline{C D}$ and $\overline{A B} \cong \overline{A D}$ $\overline{C A}$ is congruent to $\overline{C A}$ by the Reflexive Property of Congruence. Thus $\triangle A B C$ is congruent to $\triangle A D C$ by SSS. By CPCTC, $\angle C B A \cong \angle C D A$
8. Prove: $\overline{A C}$ is the perpendicular bisector of $\overline{B D}$. Possible answer: It is given that $\overline{C B} \cong \overline{C D}$ and $\overline{A B} \cong \overline{A D}$. So C and A are on the perpendicular bisector of $B D$ by the Conv. of the Perpendicular Bisector Thm. So, since two points determine a line, $\overline{A C}$ is the perpendicular bisector of $\overline{B D}$.
For Exercises 9-11, name all the types of quadrilaterals (kite, parallelogram, rectangle, rhombus, or square) that satisfy the given conditions
9. The diagonals bisect each other
parallelogram, rectangle, rhombus, square
10. The diagonals are perpendicular.
kite, rhombus, square
11. The diagonals are congruent.
rectangle, square

Practice B

6-4 Properties of Special Parallelograms
Tell whether each figure must be a rectangle, rhombus, or square based on the information given. Use the most specific name possible.

square

rhombus
A modern artist's sculpture has rectangular faces. The face shown here is 9 feet long and 4 feet wide. Find each measure in simplest radical form. (Hint: Use the Pythagorean Theorem.)
4. $D C=\frac{9 \text { feet }}{\text { 6. } D B=} \quad \sqrt{97}$ feet
5. $A D=$
$\frac{4 \mathrm{ft}}{\frac{\sqrt{97}}{2} \mathrm{ft}}$
$V W X Y$ is a rhombus. Find each measure.
8. $X Y=$ \qquad 36
9. $\mathrm{m} \angle Y V W=$ \qquad 107°
10. $\mathrm{m} \angle V Y X=$ \qquad 73°

11. $\mathrm{m} \angle X Y Z=36.5^{\circ}$
12. The vertices of square $J K L M$ are $J(-2,4), K(-3,-1), L(2,-2)$, and $M(3,3)$. Find each of the following to show that the diagonals of square JKLM are congruent perpendicular bisectors of each other.

$$
\begin{aligned}
& J L=\frac{2 \sqrt{13}}{\text { of } \bar{J}=} \\
& \text { slope }-\frac{3}{2} \\
& \text { midpoint of } \overline{J L}=(\mathbf{0}, 1
\end{aligned}
$$

$$
\begin{aligned}
& K M=\frac{2 \sqrt{13}}{} \\
& \text { slope of } \overline{K M}=\frac{2}{3} \\
& \text { midpoint of } \overline{K M}=(\quad 0
\end{aligned}
$$

\qquad 1)

Write a paragraph proof.

13. Given: $A B C D$ is a rectangle.

Prove: $\angle E D C \cong \angle E C D$

Possible answer: $A B C D$ is a rectangle, so $\overline{A C}$ is congruent to $B D$. Because $A B C D$ is a rectangle, it is also a parallelogram. Because $A B C D$ is a parallelogram, its diagonals bisect each other. By the definition of bisector, $E C=\frac{1}{2} A C$ and $E D=\frac{1}{2} B D$. But by the definition of congruent segments, $A C=B D$. So substitution and the Transitive Property of Equality show that $E C=E D$. Because $\overline{E C \cong \overline{E D}, \triangle E C D \text { is an isosceles triangle. }}$ The base angles of an isosceles triangle are congruent, so $\angle E D C \cong \angle E C D$.
 Holt Geometry

Review for Mastery

Properties of Special Parallelograms

A rectangle is a quadrilateral with four right angles. A rectangle has the following properties.

Properties of Rectangles						
${ }_{G}$ GHJKK is a parallelogram.						
If a quadrilateral is a rectangle, then it is a parallelogram.	If a parallelogram is a rectangle, then its diagonals are congruent.					

Since a rectangle is a parallelogram, a rectangle also has all the properties of parallelograms.
A rhombus is a quadrilateral with four congruent sides. A rhombus has the following properties.

Properties of Rhombuses					
Q $Q R S T$ is a parallelogram.	If a quadrilateral is a rhombus, then it is a parallelogram.	If a parallelogram is a rhombus, then its diagonals are perpendicular.			If a parallelogram is a
:---					
rhombus, then each					
diagonal bisects a pair					
of opposite angles.					

Since a rhombus is a parallelogram, a rhombus also has all the properties of parallelograms
$A B C D$ is a rectangle. Find each length.

