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Parametric Analyses of Multispan
Viscoelastic Shear Deformable
Beams Under Excitation of a
Moving Mass
This paper presents a numerical parametric study on design parameters of multispan
viscoelastic shear deformable beams subjected to a moving mass via generalized moving
least squares method (GMLSM). For utilizing Lagrange’s equations, the unknown param-
eters of the problem are stated in terms of GMLSM shape functions and the generalized
Newmark-� scheme is applied for solving the discrete equations of motion in time do-
main. The effects of moving mass weight and velocity, material relaxation rate, slender-
ness, and span number of the beam on the design parameters and possibility of mass
separation from the base beam are scrutinized in some detail. The results reveal that for
low values of beam slenderness, the Euler–Bernoulli beam theory or even Timoshenko
beam theory could not predict the real dynamic behavior of the multispan viscoelastic
beam properly. Moreover, higher beam span number would result in higher inertial
effects as well as design parameters values. Also, more distinction has been observed
between the predicted values of design parameters regarding the shear deformable beams
and those of Euler–Bernoulli beams, specifically for high levels of moving mass velocity
and low values of material relaxation rate. Furthermore, the possibility of mass separa-
tion from the base beam moves to a greater extent as the beam span number increases
and the relaxation rate of the beam material decreases, regardless of the assumed beam
theory. �DOI: 10.1115/1.3147165�
Introduction
Vibration of beam structures acted upon by moving loads �or
asses� has been investigated theoretically and experimentally

ue to its importance and complexity over the past century. As
ass passes over a beam, it exerts a time variant force on the

eam because of the induced inertial effects of the moving load
1–4�. Actually, the applied force is mainly affected by the beam
otion, in which the latter one is a function of existing boundary

onditions of the beam as well as the assumed beam theory �5�.
he need to reduce the effects of the applied force, especially in

mportant structures under moving masses, is a hot topic among
he mechanical and structural engineers. Vibration reduction tech-
iques are commonly placed into two categories: active and pas-
ive vibration reductions. The latter one is the most widely used
ince it is the simplest, most effective, and economical solution in
ractical applications. One famous passive device is the con-
trained layer viscoelastic laminated tuned mass damper utilized
s a capable means for decreasing unwanted resonant vibrations in
he structures such as decks of aircraft carriers, long span bridges,
nd continuous pipelines conveying fluid. In all of these applica-
ions, if the host structure is controlled thoroughly by the afore-

entioned passive system, the structural system could be modeled
s a viscoelastic multispan beam-plate under external loading.

On the other hand, beam-like structures used in real practice
ay have sizable thickness or high ratio of the shear modulus to

he longitudinal one. In such cases, the transverse shear and rota-
ory inertia could not be neglected as assumed in the theory of thin
eams. As a result, the thick beam models based on the Timosh-
nko or other higher-order shear deformable beam theories have
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gained more popularity in analyzing the mentioned structures, par-
ticularly when capturing higher natural frequencies is of concern.

A few studies have been carried out with regard to the vibration
analysis of multispan beams subjected to the moving masses.
Frýba �1� presented analytical solutions in some special cases for
the problems of Euler–Bernoulli beam structures �single and mul-
tispan beams� subjected to a system of moving loads or masses.
To elaborate the effect of shear and rotatory inertia, he demon-
strated an analytical solution for a simply supported Timoshenko
beam excited by a moving load. Lee �6� explored the dynamic
response of a simply supported Timoshenko beam subjected to a
moving mass, using assumed mode method. He also investigated
the possibility of moving mass separation from the base beam due
to the inertial effects of the moving load. This was detected by
monitoring the contact force between the base beam and the mov-
ing mass.

The problem of multispan Euler–Bernoulli beams traversed by
moving loads is fairly well studied in the past 2 decades, employ-
ing miscellaneous methodologies �1,7–10�. In this regard, a few
works are available in the literature as the effects of the moving
load inertia are taken into consideration in the mathematical for-
mulation of the problem. Using the eigenfunction expansion
method, Ichikawa et al. �11� explored the dynamic response of
multispan Euler–Bernoulli beam acted upon by a moving mass. It
was elucidated that the effects of moving load inertia substantially
influence the vibration behavior of the system, especially for high
values of moving mass weight and velocity.

Toshiaki and Kenichi �12� studied the dynamic behavior of
classical Timoshenko and Levinson beams under moving loads
with spring and damping by using transfer matrix method. The
accuracy of the proposed models and dynamic responses of mul-
tispan beams was demonstrated through several numerical results.
Wang �13� investigated vibration of multispan Timoshenko beams
under a moving force by modal analysis. The effects of span num-

ber, rotatory inertia, and shear deformation on design parameters
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f the beam were examined. It was indicated that higher span
umber would result in higher values of design parameters. In
nother work, Wang and Tsu �14� explored the out-of-plane vibra-
ion of a multispan Timoshenko curved beam due to a moving
oad including the warping inertia of the beam by modal analysis.
t was shown that a critical velocity exists at which the absolutely
aximum strain energy density of the curved beam occurs; addi-

ionally, higher span number results in higher absolute maximum
train energy density and critical velocity of the beam. The dy-
amic behavior of a continuous nonuniform Timoshenko beam
ubjected to a set of moving loads was studied by Zhu and Law
15� based on Hamilton’s principle in which the intermediate sup-
orts were modeled by very stiff linear springs.

A parametric study on the evaluation of design parameters in-
luding maximum deflection and bending moment of beam struc-
ures subjected to a moving mass was conducted by Kiani et al.
5� via reproducing kernel particle method �RKPM�. The results
anifested that according to the slenderness and boundary condi-

ions of the beam, the appropriate beam theory should be selected
or precise capturing of the beam dynamic response. This note-
orthy issue inspired the authors to explore the dynamic behavior
f multispan viscoelastic shear deformable beams, which are tra-
ersed by a moving mass. Therefore, this work is devoted to the
ssessment of design parameters for multispan viscoelastic Ti-
oshenko and higher-order beams under the excitation of a mov-

ng mass by utilizing GMLSM. This meshless numerical method
as developed by Atluri et al. �16� through modifying the local

pproximation in the moving least squares method by adding the
rst derivative of the unknown field as an independent variable.
esides, static analyses of thin beams based on GMLSM revealed

emarkable results for both deflection and bending moment of thin
eams with different boundary conditions �16�. For using
agrange’s equations, the unknown parameters of the problem are
iscretized according to the so-called meshless method. Then, the
eneralized Newmark-� scheme is employed for solving discrete
quations of motion in time domain based on the work of Kiani et
l. �5�. The maximum values of deflection plus maximum positive
nd negative bending moments are considered as the crucial de-
ign parameters. The effects of moving mass weight and velocity,
aterial relaxation rate, slenderness, and span number of the base

eam on the design parameters are studied in some detail for the
ultispan viscoelastic Euler–Bernoulli beam �EB�, Timoshenko

eam �TB�, and higher-order beam �HOB�. The validity of the
alculations is corroborated by comparing the obtained results of
he proposed model with those of other researchers.

Assumptions of the Mechanical Problem
The under study system is a finite NS-span beam with length L

ransversely constrained at support locations by axial linear
prings with constant Kz, as depicted in Fig. 1. The beam is also
xially fixed in one end. The length of the ith span of the beam is
i and in the case of equal span lengths, li=L /NS ; i
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ig. 1 Schematic representation of a multispan viscoelastic
hear deformable beam subjected to a moving mass
1,2 , . . . ,NS. The elastic field components of the system are out-
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lined in the Cartesian coordinate system, with the x-axis coinci-
dent to the neutral axis of the undeformed beam, and the z-axis
perpendicular to the beam neutral axis toward the applied gravi-
tational acceleration, g. In the modeling of the problem, the fol-
lowing assumptions are made. �1� The material of the beam is
linear viscoelastic isotropic homogeneous with elastic modulus of
Eb and viscosity values of �x and �z in the x and z directions,
respectively. The material behavior of the beam obeys Kelvin–
Voigt model with the relaxation rates of �x=�x /Eb and �z
=�z /Eb, which are assumed to be age independent. �2� The cross-
section area of the beam, Ab, and the beam density, �b, are uni-
form along the beam. �3� At the time t=0, the moving mass M
enters the left hand end of the beam with constant velocity v. The
only applied load is due to the normal contact force of the moving
mass on the beam. Furthermore, the moving mass would be in
contact with the beam at all times. �4� The only acceleration com-
ponent for the moving mass over the supposed beam is üzM = �üz

+2vu̇z,x+v2uz,xx�x=xM
, where uz=uz�x ,z , t� denotes the transverse

displacement component of the beam.

3 The Numerical Solution via GMLSM
In the fourth-order boundary value problems such as thin beam

problems, it would be necessary to impose both displacement and
its slope conditions at the same point in the computational do-
main. Due to this necessity, the conventional moving least squares
method was generalized by Atluri et al. �16�, utilizing the mesh-
less interpolation scheme for the meshless local Petrov–Galerkin
method. In this regard, the slopes of the variable fields are intro-
duced as independent variables by generalizing the local approxi-
mation in the moving least squares method. This innovative
method was introduced as GMLSM. In the remainder of this part,
construction of the GMLSM shape functions and their first and
second derivatives for one-dimensional domain will be explained
in some detail. Subsequently, the application of GMLSM for solv-
ing the problem of multispan viscoelastic TB and HOB subjected
to a moving mass will be outlined.

3.1 Construction of GMLSM Shape Functions and Their
Derivatives. Consider a continuous function u�x� defined on a
one-dimensional domain �, where the nodal values and its deriva-
tive at the distinct points xI�1� I�NP ; NP=number of particles�
are given as ûI

�0� and ûI
�1�, in which ûI

�0�=u�xI�, ûI
�1�= �d /dx�u�xI�.

For each point x̄��, one may assume a local approximation ux̄�x�
in a proper small neighborhood of x= x̄ as

u�x� � ux̄�x� = pT�x − x̄�b�x̄� �1�

in which pT is a polynomial bases vector and b�x̄� is the vector of
unknown coefficients. For instance, the mth-order polynomial in
one-dimensional domain is expressed as pT�x�= �1,x ,x2 , . . . ,xm�.
In contrast to Ref. �16�, the vector parameter pT is expressed in a
local coordinate system about x= x̄. This simple improvement van-
ishes numerical instabilities due to the generation of possibly large
numbers in the next matrices. The first derivative of the local
approximation ux̄�x� is readily obtained as

u,x�x� �
d

dx
ux̄�x� =

d

dx
pT�x − x̄�b�x̄� �2�

in which �d /dx�pT�x− x̄�= �0,1 ,2�x− x̄� ,3�x− x̄�2 , . . . ,m�x− x̄�m−1�
for the mth-order polynomial bases vector. The coefficient vector

¯
b�x� is determined such that it minimizes the following �16�:
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Jx̄�b� = �
I=1

NP �wI
�0��x̄��ux̄�x� − ûI

�0��2 + wI
�1��x̄�� d

dx
ux̄�x� − ûI

�1�	2

�3�

here wI
�0� and wI

�1� are the appropriate weight functions associ-
ted with the Ith point �i.e., particle� of the spatial domain. Sub-
tituting Eqs. �1� and �2� into Eq. �3� leads to

Jx̄�b� = �
I=1

NP �wI
�0��x̄��pT�xI − x̄�b − ûI

�0��2 + wI
�1��x̄�� d

dx
pT�xI − x̄�b − ûI

�1�	2

�4�

r in matrix form

x̄�b� = �Pb − û�0��TW�0��x̄��Pb − û�0�� + �P,xb − û�1��TW�1��x̄��P,xb

− û�1�� �5�

here

P = �p�x1 − x̄�,p�x2 − x̄�, . . . ,p�xNP−x̄��T

P,x = � �p�x1 − x̄�
�x

,
�p�x2 − x̄�

�x
, . . . ,

�p�xNP − x̄�
�x

	T

�6�
u�n� = �u�n��x1�,u�n��x2�, . . . ,u�n��xNP��T; n = 0,1

�W�n��x̄��IJ = wI
�n��x̄��IJ; I,J = 1,2, . . . ,NP

n which �IJ is the Kroneker delta, and there is no summation on
. The stationary condition of Jx̄�b� with respect to the vector b
equires that

A�x̄�b = C�0�û�0� + C�1�û�1� �7�

here

A�x̄� = PTW�0�P + P,x
T W�1�P,x

�8�
C�n� = PTW�n�; n = 0,1

olving for b from Eq. �7� and substituting it into Eq. �1� leads to

u�x̄� � �
n=0

1

�̃�k��x̄�u�n� = �
n=0

1

�
I=1

NP

�I
�n��x̄�uI

�n� �9�

n which

�̃�n��x̄� = pT�0�A−1PTW�n�; n = 0,1 �10�

r

�I
�n� = �

k=1

m

�
L=1

NP

�
j=1

m

p j
T�0�A jk

−1PLkWLI
�n� �11�

here �I
�n� is the �n+1�th kind of the GMLSM shape function

ssociated with the Ith particle. The first and second derivatives of
he GMLSM shape functions are required for the computations.
onsequently, one can obtain

�I,x
�n� = �

k=1

m

�
L=1

NP

�
j=1

m

p j
T�0��A,xjk

−1 PLkWLI
�n� + A jk

−1P,xLk
WLI

�n�

+ A jk
−1PLkW,xLI

�n� � �12�
nd
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�I,xx
�n�

= �
k=1

m

�
L=1

NP

�
j=1

m

p j
T�0��A,xxjk

−1 PLkWLI
�n� + 2A,xjk

−1 P,xLk
WLI

�n� + 2A,xjk

−1 PLkW,xLI

�n� +

A jk
−1P,xxLk

WLI
�n� + 2A jk

−1P,xLk
W,xLI

�n� + A jk
−1PLkW,xxLI

�n� 	
�13�

The values of A,x
−1 and A,xx

−1 can be calculated by taking once and
twice differentiation from the equation A−1A=I, in which I is the
identity matrix. In this paper, the utilized weight function for both
kinds of GMLSM shape functions is a third-order spline function
�i.e., cubic spline� as

wI
�n��x� = � 2

3 − 4�z�2 + 4�z�3, 0 � �z� �
1
2 , n = 0,1

4
3 − 4�z� + 4�z�2 − 4

3 �z�3, 1
2 � �z� � 1, n = 0,1



�14�

in which z= �x−xI� /aI, where the parameter aI denotes the influ-
ence domain radius of the weight function associated with the Ith
particle.

3.2 Governing Equations of Motion for Multispan Vis-
coelastic TB. Let uz=w�x , t� and 	=	�x , t� correspond to the
transverse displacement and cross-section angle of the beam, re-
spectively. Therefore, the longitudinal displacement is ux=
−z	�x , t�. For the case of small displacement, the strain compo-
nents are expressed as 
xx=−z	,x and �xz=w,x−	, so the nonzero
components of stress field are �xx=E
xx+�x
̇xx and �xz=G�xz
+�z�̇xz. Subsequently, the resultant shear force �QT� and bending
moment �MT� within the beam can be written as

QT =�
A

�xzdA = kb�GbAb�ẇ,x − 	� + �zAb�ẇ,x − 	̇��

�15�

MT =�
A

�xxzdA = − �EbIb	,x + �xIb	̇,x�

where kb is the shear correction factor of the Timoshenko beam.
The Lagrangian functional is defined as

L = T − �U + V� �16�

in which T is the kinetic energy, U is the elastic strain energy, and
V is the potential energy of the beam and spring system subjected
to a moving mass loading. These parameters are expressed as

T =
1

2�
0

L

�b�Ib	̇2 + Abẇ2�dx �17�

U =
1

2�
0

L

�EbIb	,x
2 + kbGbAb�w,x − 	�2�dx +

1

2�
b

Kzw
2d

�18�

V = −�
0

L

M�g − �ẅ + 2vẇ,x + v2w,xx��w��x − xM�H�L − xM�dx

�19�

in which b denotes the constrained boundary of the beam do-
main, Ib is the second moment inertia of the beam, and ��x� and
H�x� are the Dirac-delta function and the Heaviside step function.
Furthermore, the dissipation function due to existing damping
within the beam structure is given by

R =
1

2�
0

L

��xIb	̇,x
2 + kb�zAb�ẇ,x − 	̇�2�dx �20�

According to spatial discretization via GMLSM, the unknowns of

the one-dimensional problem could be discretized as
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w�x,t� = �I
TwI = wI

T�I; I = 1,2, . . . ,NP
�21�

	�x,t� = �I
T�I = �I

T�I

n which

�I
T = ��I

�0�,�I
�1��, wI

T = �wI
�0�,wI

�1��, �I
T = �	I

�0�,	I
�1�� �22�

here I is the free index, NP is the number of particles, and wI
�l�

nd 	I
�l� are the nodal parameter values of the unknowns w and 	

ssociated with the Ith particle, correspondingly. Substituting Eq.
21� into Eqs. �17�–�20� and utilizing the Lagrange’s equations as

�L

�wI
�l� −

d

dt

�L

�ẇI
�l� −

�R

�ẇI
�l� = 0, l = 1,2

�23�
�L

�	I
�l� −

d

dt

�L

� 	̇I
�l�

−
�R

� 	̇I
�l�

= 0

he following set of equations of motion could be obtained:

Mbẍ + Cbẋ + Kbx = fb �24�

here

Mb = �Mb
ww Mb

w	

Mb
	w Mb

		 	, Cb = �Cb
ww Cb

w	

Cb
	w Cb

		 	, Kb = �Kb
ww Kb

w	

Kb
	w Kb

		 	
fb = �fb

w

fb
	 
, xJ = �wJ�t�

�J�t�

 �25�

n which the appropriate submatrices are defined as

�Mb
ww�IJ =�

0

L

�bAb�I�J
Tdx + M�I�xM��J

T�xM�H�L − xM�

�26�

�Mb
		�IJ =�

0

L

�bIb�I�J
Tdx �27�

�Cb
ww�IJ =�

0

L

kb�zAb�I,x�J,x
T dx + 2Mv�I�xM��J,x

T �xM�H�L − xM�

�28�

�Cb
w	�IJ = −�

0

L

kb�zAb�I,x�J
Tdx �29�

�Cb
	w�IJ = −�

0

L

kb�zAb�I�J,x
T dx �30�

�Cb
		�IJ =�

0

L

�kb�zAb�I�J
T + �xIb�I,x�J,x

T �dx �31�

�Kb
ww�IJ =�

0

L

kbGbAb�I,x�J,x
T dx

+�
b

Kz�I�J
Td + Mv2�I�xM��J,xx

T �xM�H�L − xM�

�32�

�Kb
w	�IJ = −�L

kbGbAb�I,x�J
Tdx �33�
0
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�Kb
	w�IJ = −�

0

L

kbGbAb�I�J,x
T dx �34�

�Kb
		�IJ =�

0

L

�kbGbAb�I�J
T + EbIb�I,x�J,x

T �dx �35�

�fb
w�I = Mg�I�xM�H�L − xM� �36�

3.3 Governing Equations of Motion for Multispan Vis-
coelastic HOB. Assume a HOB with constant transverse defor-
mation across its thickness as uz=w�x , t�, and the longitudinal
displacement of the beam as ux=x�−�z3��+w,x� �17�, in which
�=4 / �3h2� �h is the thickness of the beam� and � is the deflection
angle of the cross section of the beam with reference to the unde-
formed plane about the y-axis. In the case of small deformation,
the nonzero strain components are 
xx=z�,x−�z3��,x+w,xx� and
�xz= �1−3�z2���+w,x�. Based on the elastic Kelvin–Voigt mate-
rial behavior, the stress-strain relations are analogous to those
mentioned in Sec. 3.2 for TB. As a result, the resultant shear force
and bending moment of a HOB can be written as

QH = ��� + w,x� + ���̇ + ẇ,x�
�37�

MH = J2�,x − �J4��,x + w,xx� + P2�̇,x − �P4��̇,x + ẇ,xx�
in which

Jn =�
A

EzndA; n = 2,4,6

�38�

Pn =�
A

�xz
ndA

and

� = Gb�Ab − 3�Ib�
�39�

� = �z�Ab − 3�Ib�

Moreover, components of the total energy �L� and dissipation
function �R� are derived as the following:

T =
1

2�
0

L

�I0ẇ,x
2 + I2�̇2 − 2�I4�̇��̇ + ẇ,x� + �2I6��̇ + w�˙ �2�dx

�40�

U =
1

2�
0

L

�J2�,x
2 − 2�J4�,x��,x + w,xx� + ��� + w,x�2 + �2J6��,x

+ w,xx�2�dx +
1

2�
b

Kzw
2d �41�

V = −�
0

L

M�g − �ẅ + 2vẇ,x + v2w,xx��w��x − xM�H�L − xM�dx

�42�

R =
1

2�
0

L

�P2�̇,x
2 − 2�P4�̇,x��̇,x + ẇ,xx� + ���̇ + ẇ,x�2 + �2P6��̇,x

+ ẇ,xx�2�dx �43�

Assuming ��x , t�=�I
T�x��I�t� , I=1,2 , . . . ,NP in which �I

T�t�
= ��I

�0��t� ,�I
�1��t��, and substituting spatial discretized form of w
and � into Eqs. �40�–�43�, Lagrange’s equations are implemented
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as mentioned in Sec. 3.2� which leads to the set of equations of
otion as

Mbẍ + Cbẋ + Kbx = fb �44�
n which

Mb = �Mb
ww Mb

w�

Mb
�w Mb

�� 	, Cb = �Cb
ww Cb

w�

Cb
�w Cb

�� 	, Kb = �Kb
ww Kb

w�

Kb
�w Kb

�� 	
fb = �fb

w

fb
� 
, xJ = �wJ�t�

�J�t�

 �45�

here the appropriate submatrices are defined as

�Mb
ww�IJ =�

0

L

�I0�I�J
T + �2I6�I,xx�J,xx

T �dx

+ M�I�xM��J
T�xM�H�L − xM� �46�

�Mb
w��IJ =�

0

L

�− �I4�I,x�J
T + �2I6�I,x�J

T�dx �47�

�Mb
�w�IJ =�

0

L

�− �I4�I�J,x
T + �2I6�I�J,x

T �dx �48�

�Mb
���IJ =�

0

L

�I2 − 2�I4 + �2I6��I�J
Tdx �49�

�Cb
ww�IJ =�

0

L

���I,x�J,x
T + �2P6�I,xx�J,xx

T �dx

+ 2Mv�I�xM��J,x
T �xM�H�L − xM� �50�

�Cb
w��IJ =�

0

L

�− �P4�I,xx�J,x
T + ��I,x�J

T + �2P6�I,xx�J,x
T �dx

�51�

�Cb
�w�IJ =�

0

L

�− �P4�I,x�J,xx
T + ��I�J,x

T + �2P6�I,x�J,xx
T �dx

�52�

�Cb
���IJ =�

0

L

��P2 − 2�P4 + �2P6��I,x�J,x
T + ��I�J

T�dx

�53�

�Kb
ww�IJ =�

0

L

���I,x�J,x
T + �2J6�I,xx�J,xx

T �dx +�
b

Kz�I�J
Td

+ Mv2�I�xM��J,xx
T �xM�H�L − xM� �54�

�Kb
w��IJ =�

0

L

�− �J4�I,xx�J,x
T + ��I,x�J

T + �2J6�I,xx�J,x
T �dx

�55�

�Kb
�w�IJ =�

0

L

�− �J4�I,x�J,xx
T + ��I�J,x

T + �2J6�I,x�J,xx
T �dx

�56�

�Kb
���IJ =�L

��J2 − 2�J4 + �2J6��I,x�J,x
T + ��I�J

T�dx �57�

0
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�fb
w�I = Mg�I�xM�H�L − xM� �58�

It is obvious that the damping and stiffness matrices are not sym-
metric and time dependent. Therefore, a suitable scheme should
be employed for solving the recent equations of motion in time
domain. The generalized Newmark-� method �5� is utilized for
required calculations at each time step. Without loss of generality,
it is assumed that the beam is originally at rest; i.e., the initial
conditions of the beam are x�0�=0 and ẋ�0�=0.

4 Numerical Simulations

4.1 Comparison of GMLSM Results With Those of Other
Researchers. To investigate the proficiency of the proposed
method in determining natural frequencies of the structure, the
obtained results are verified with those of other researchers
�18,19�. To this end, consider a single span simply supported Ti-
moshenko beam with kb=0.833. To compute the natural frequen-
cies of the beam, one may take x�t�= x̃0ei�t in which x̃0 is the
vector including the initial values of the discretized equations of
motion. In the case of free vibration, by substituting this relation
into the undamped equation of motion, one may arrive at

�− �2Mb + Kb�x̃0 = 0 �59�
by solving this set of eigenvalue equations using an appropriate
method, one can obtain eigenvalues �i.e., natural frequencies� and
corresponding eigenvectors �i.e., related mode shapes�. Moreover,
the dimensionless frequency associated with the nth mode is de-
fined as �n= ��bAb�n

2 /EbIb�1/4l1. In this work, for the case of stiff
support �Kz=��, Kz=109EbIb / l1

3 is considered for proper model-
ing of the real problem. For numerical computation in this part via
GMLSM, 4NS+1 uniformly distributed particles, six Gaussian
points within each computational cell, third-order base function,
and weight function with influence domain radius of 3L / �NP
−1� are taken into account. A preliminary analysis for the conver-
gence check of the �n is carried out for a beam of rectangular
cross section with h /L=0.2, and the results of the first ten dimen-
sionless frequencies are given for the assumed Timoshenko beam
in Table 1. The number of particles varies from 5 to 25 with an
increment of 5. It is obvious that the convergence rate of the
GMLSM is so fast in most of the frequencies such that for NP
=10, the first ten dimensionless frequencies converge to four sig-
nificant digits. For NP�20, these values converge to six signifi-
cant digits. Besides, the results of the proposed method with NP
=20 are compared with those of Lee and Schultz �18� for different
values of h /L, presented in Table 2. As it is clear, the computed
results using GMLSM are in a reasonable good agreement with
those of Lee and Schultz �18� based on pseudospectral method
using 35 terms of Chebyshev polynomial. For instance, in the case
of h /L=0.2, the results of GMLSM correspond to those of Lee
and Schultz �18� with accuracy up to four significant digits.

In another comparison, the generated natural frequencies of a
multispan Timoshenko beam are verified with the work of Lin and
Chang �19�. In this case, consider an elastic simply supported
Timoshenko beam, transversely constrained by an axial spring at
its midspan. The related data for this example are as follows: L
=5 m, b=h=0.05 m, �b=7800 kg m−3, Eb=2.06�1011 N m−2,
Gb=79�109 N m−2, and �b=0.8497. The predicted values of the
proposed method for the first four natural frequencies are summa-
rized in Table 3, where the results of Lin and Chang �19� are
listed. As the results show for all cases, the predicted values of
frequencies correspond to those of Lin and Chang �19� with the
relative error lower than 0.5%.

4.2 Parametric Studies. Assessing the effects of the inter-
ested parameters related to the mathematical model of multispan
viscoelastic beams under excitation of a moving mass, it would be
convenient to define some normalized parameters. For this pur-

pose, the maximum deflection plus the maximum negative and
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ositive bending moments are normalized according to the appro-
riate maximum parameter values generated by an equivalent
tatically applied point load over the corresponding elastic thin
eam, i.e., Wmax,st, Mmax,st

− , and Mmax,st
+ . These parameters are ex-

mplified in Table 4 for EBs up to six spans. Moreover, the non-
imensional slenderness, velocity, and mass parameters are as-
umed to be like �= l1 /r, VN=v /v� �4�, and MN=M /�bAbl1,
espectively, where v�=� / l1

EbIb /�bAb and r is the gyration ra-
ius of the beam cross section about its neutral axis. The geo-
etrical and material properties of the beam are considered as

1=10 m, Eb=2.1�1011 N m−2, Gb=8.0769�1010 N m−2, b
0.1 m, h=12r, kb=0.833, and �b=7800 kg m−3.
In Figs. 2–5, the variation in normalized design parameters in

erms of span number, moving mass velocity, different values of
eam slenderness, and material relaxation rates is depicted. As it

Table 1 Convergence test of the dimensionle
beam for different numbers of GMLSM parti
=0.2…

Mode NP=5 NP=10

1 3.04541 3.04533
2 5.67229 5.67156
3 7.84735 7.83961
4 9.80653 9.65740
5 11.72863 11.22273
6 13.03233 12.60361
7 13.44427 13.03233
8 14.16642 13.44427
9 14.43845 13.84807

10 15.67197 14.43774

Table 2 Verification of the first 15 dimension
simply supported Timoshenko beam with the

Mode

h /L=0.02 h /L=0.05

LSa Present work LS Present w

1 3.1405 3.1406 3.1350 3.135
2 6.2747 6.2747 6.2314 6.231
3 9.3963 9.3963 9.2554 9.255
4 12.4994 12.4996 12.1813 12.181
5 15.5784 15.5792 14.9926 14.992
6 18.6282 18.6300 17.6810 17.681
7 21.6443 21.6475 20.2447 20.245
8 24.6227 24.6273 22.6862 22.687
9 27.5599 27.5662 25.0111 25.013

10 30.4533 30.4615 27.2263 27.229
11 33.3006 33.3113 29.3394 29.343
12 36.1001 36.1141 31.3581 31.363
13 38.8507 38.8687 33.2896 33.297
14 41.5517 41.5734 35.1410 35.150
15 44.2026 44.2316 36.9186 36.931

aLee and Schultz �LS� �18�.

Table 3 Comparison of the lowest four natur
analyzed by GMLSM with the results of Lin an
spring stiffness

Frequency �Hz� Kz=10,000,000 N /m

fn=�n / �2�� LCa Present work

f1 18.738 18.980
f2 28.004 27.907
f3 74.802 75.047
f4 80.317 79.690

a
Lin and Chang �LC� �19�.
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may be observed through Figs. 2�a�–2�c� and 5�a�–5�c�, for deep
beams ��=10� and high values of moving mass velocities �e.g.,
VN=0.8�, increasing the span number leads to higher differences
in design parameter values of EB and those of TB and HOB. As
the beam slenderness increases, the results of different beam theo-
ries approach the same values regardless of span number as well
as moving mass velocity. Also, for high levels of moving mass
velocity, the design parameter values increase as the span number
increases, specifically for low values of material relaxation rate
�Figs. 2 and 3�. In contrast to the abovementioned findings, for
VN�0.5, the design parameter values do not change appreciably,
irrespective of the considered beam theory as well as the span
number. Furthermore, the differences between the results of the
assumed beam theories and the design parameter values diminish
as the material relaxation rate increases �Figs. 2–5�.

frequency parameter „�n… of the Timoshenko
s „single span simply supported beam, h /L

NP=15 NP=20 NP=25

3.04533 3.04533 3.04533
5.67155 5.67154 5.67154
7.83953 7.83951 7.83951
9.65714 9.65708 9.65708

11.22219 11.22203 11.22204
12.60254 12.60221 12.60221
13.03231 13.03230 13.03230
13.44426 13.44425 13.44425
13.84390 13.84330 13.84330
14.43776 14.43774 14.43774

s frequencies „�n… in the present study for a
ults of Lee and Schultz †18‡

h /L=0.1 h /L=0.2

LS Present work LS Present work

3.1157 3.1157 3.0453 3.0453
6.0907 6.0907 5.6716 5.6715
8.8405 8.8405 7.8395 7.8395

11.3431 11.3431 9.6571 9.6571
13.6132 13.6132 11.2220 11.2220
15.6790 15.6792 12.6022 12.6022
17.5705 17.5709 13.0323 13.0323
19.3142 19.3148 13.4443 13.4443
20.9325 20.9336 13.8433 13.8433
22.4441 22.4456 14.4378 14.4377
23.8639 23.8660 14.9766 14.9769
25.2044 25.2074 15.6676 15.6676
26.0647 26.0646 16.0241 16.0247
26.2814 26.2814 16.9584 16.9584
26.4758 26.4799 17.0019 17.0027

frequencies in a two-span Timoshenko beam
hang †19‡ for various values of intermediate

=10,000,000 N /m Kz=�

Present work LC Present work

38 18.976 18.614 18.917
43 29.040 29.122 29.177
02 74.576 74.566 74.495
06 92.529 94.515 93.833
ss
cle
les
res

ork

0
4
4
4
8
5
5
6
2
3
6
7
3
9
8

al
d C

Kz

LC

18.7
29.1
74.8
93.3
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Note that Wst=Wmax,st / �Mgl1 /EbIb�, Mst=Mmax,st / �Mgl1�, and Mst=Mmax,st / �Mgl1�.
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Fig. 2 Variation in the normalized design parameters in terms of span number for �x=�z=0.00001: „a… �=10, „b…
�=20, and „c… �=40 „„�… V =0.2, „�… V =0.5, and „�… V =0.8; „ . . . … EBT, „� �… TBT, and „—… HOBT; M =0.15…
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Fig. 3 Variation in the normalized design parameters in terms of span number for �x=�z=0.0001: „a… �=10, „b…
Table 4 The values of Wmax,st, Mmax,st
− , and Mmax,st

+ for elastic multispan Euler–Bernoulli beams
under statically applied point load via GMLSM

NS 1 2 3 4 5 6

W̄st 0.02077 0.01506 0.01459 0.01456 0.01456 0.01456

M̄st
− - �0.09782 �0.09982 �0.10019 �0.10022 �0.10023

M̄st
+ 0.24418 0.18573 0.17860 0.17835 0.17834 0.17833

¯ 3 ¯ − − ¯ + +
�=20, and „c… �=40 „„�… VN=0.2, „�… VN=0.5, and „�… VN=0.8; „ . . . … EBT,„� �… TBT, and „—… HOBT; MN=0.15…
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On the other hand, an important phenomenon in such a loading
s the onset of the moving mass separation from the base beam
uring the course of vibration �20�. The possibility of this phe-
omenon could be addressed by checking the sign of the contact
orce between the moving mass and the base beam, which is de-
ned as
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F = �Mg − M�ẅ + 2vẇ,x + v2w,xx��x=xM
�60�

the onset of separation occurs as the sign of F changes from
positive to negative. Assuming the normalized value of the contact
force as FN=F /Mg, the variation in the extremum values of this
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arameter in terms of NS, �x, VN, and � is plotted in Figs. 6–9. As
t could be observed from Fig. 6�a�, for high moving mass veloci-
ies, the results of normalized minimum contact force in deep
eams are obviously distinct for different assumed beam theories.
his is not the case for the normalized maximum contact force in
B and HOB, even for high moving mass velocities. As the base
eam slenderness increases, the differences between the results of
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Fig. 6 Variation in the normalized values of minimum
�x=�z=0.00001: „a… �=10, „b… �=20, and „c… �=40 „„�… V
and „—… HOBT; MN=0.15…
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various beam theories decrease �see Fig. 6�. Moreover, irrespec-
tive of the assumed beam theory, the possibility of mass separa-
tion magnifies as the beam span number increases. Expectedly, as
the viscosity of the base beam increases, there would be a de-
crease in the absolute value of the normalized minimum contact
force. It implies that the higher the beam viscosity, the lower the
possibility of mass separation �Figs. 6–9�. Another significant
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oint is a correlation between the normalized maximum contact
orces of different beam theories with the results of normalized
esign parameters. This could be readily noticed by a simple com-
arison of Figs. 6–9 with Figs. 2–5.

As a general conclusion based on Figs. 2–9, the appropriate
eam theory should be selected according to the beam slenderness
or any dynamic analysis. Hence, to investigate the effect of mass
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weight and velocity of the moving mass on dynamic behavior of
multispan beams, EBT, TBT, and HOBT are adopted for �=40,
�=20, and �=10, correspondingly �Figs. 10–12�. As it is seen in
Fig. 10�a�, the inertial effects of the moving mass are not remark-
able for low levels of moving mass velocity �VN�0.2�. In such
velocities, the values of design parameters are almost independent
of the beam span number. This fact could be observed in deeper
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N=0.5 �Figs. 10�b�–12�b��, the inertial effects of moving mass
re more apparent, and there would be a slight dependency of the
esign parameters to the beam span number. For high moving
ass velocities �VN�0.5�, not only the results of moving mass

re totally distinct of those of moving loads but also the design
arameter values increase with the beam span number, especially
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for high values of moving mass weight �see Fig. 10�c��. This fact
could also be detected in deeper beams ��=10,20� �see Figs.
11�c� and 12�c��.

5 Conclusion
A comprehensive numerical parametric study was conducted on

the design parameters of multispan viscoelastic Timoshenko and
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igher-order beams under excitation of a moving mass by utilizing
MLSM. In this regard, the maximum values of deflection as well

s maximum negative and positive values of bending moment
ere considered as the crucial design parameters. For using
agrange’s equations, the unknown parameters of the problem
ere discretized according to the so-called meshless numerical
ethod, and then the generalized Newmark-� scheme was em-

loyed for solving discrete equations of motion in time domain.
he validity of the proposed numerical method was confirmed by
erifying the obtained results with those of other researchers for
he special cases of the studied problem. The effects of moving

ass weight and velocity, material relaxation rate, slenderness,
nd span number of the base beam on the design parameters were
tudied for multispan viscoelastic Euler–Bernoulli, Timoshenko,
nd higher-order beams. The results manifested that for low val-
es of beam slenderness, the EBT or even TBT could not pre-
isely predict the real dynamic behavior of the multispan vis-
oelastic beam. As a result, higher beam span number would
esult in higher difference between the predicted values of design
arameters in shear deformable beams and those of thin beams.
oreover, the results demonstrated that the values of design pa-

ameters as well as the inertial effects of the moving mass increase
s the beam span number increases, specifically for high levels of
oving mass velocity and low values of material relaxation rate.
urthermore, for all beam theories, it was indicated that the pos-
ibility of mass separation moves to greater extent as the beam
pan number increases, particularly for low values of material
elaxation rate.
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