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Abstract 

Data parallelism is a model of parallel computing in which the same set of instructions is applied 

to all the elements in a data set. A sampling of data parallel algorithms is presented. The exam- 

ples are certainly not exhaustive, but address many issues involved in designing data parallel 

algorithms. Case studies are used to illustrate some algorithm design techniques; and to highlight 

some implementation decisions that influence the overall performance of a parallel algorithm. It 

is shown that the characteristics of a particular parallel machine to be used need to be considered 

in transforming a given task into a parallel algorithm that executes effectively. 
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1. OVERVIEW 

As the size, hardware complexity, and programming diversity of parallel syst'ems continue to 

evolve, the range of alternatives for implementing a task on these systems grows. Choosing a 

parallel algorithm and implementation becomes an important decision, and tlhe choice has a 

significant impact on the execution time of the application. 

Data parallelism is a model of parallel computing in which the same set of instructions is 

applied to all the elements in a data set [Mas9 1, Wi1931. A sampling of data parallel algorithms 

is presented. The examples are certainly not exhaustive, but address many issues involved in 

designing data parallel algorithms. Case studies are used to illustrate some algorithm design 

techniques and to highlight some implementation decisions that influence thc: overall perfor- 

mance of a parallel algorithm. It is shown that the characteristics of a particular parallel 

machine to be used need to be considered in transforming a given task into a piuallel algorithm 

that executes effectively. 

This report focuses on algorithm design techniques for mapping data parallel algorithms 

onto large scale (i.e., 26 to 216 processors) distributed memory parallel machines. The SIMD 

(single instruction stream - multiple data stream) model of parallelism is used to demonstrate 

the techniques presented; however, the methods can be used with the MIMD (imultiple instruc- 

tion stream - multiple data stream), the SPMD (single program - multiple data stream, which is 

This research was supported by NRaD under conmct number N68786-91-D-1799 and by a Fulbright Scholarship. 



a subclass of MIMD), and the mixed-mode (hybrid SIMDIMIMD) models of parallelism as well. 

Data parallel programs typically exhibit a high degree of uniformity (operiations to be per- 

formed are uniform across the data set) and are often well suited to the SIMI) model because 

only a single instruction stream is necessary [BeS91, Jam871. Implementing these applications 

on SIMD machines is often more cost effective than solving them using h4IMD machines 

[HiS86]. Among the advantages of the SIMD mode of parallelism that can 'be exploited are 

implicit synchronization that allows more efficient inter-processor comrnunicati~on, the ability to 

overlap scalar operations on the control unit with the operations on the processing elements, and 

the need for only one program [BeS91, SiA92cI. Mixed-mode processing and the trade-offs 

between the SIMD and MIMD modes of parallelism are discussed further in [SiA95]. 

In Section 2, the SIMD machine model used in this report and other mac:hine models are 

discussed. The choices for data distribution among the processing elements are explored in Sec- 

tion 3. The effect of the data distribution on execution time is demonstrated using an image 

smoothing algorithm. In addition, the impact of the interconnection network topology on the 

number of data transfers required to perform the computations is also studied. It is shown that 

the optimum data distribution is dependent on the architecture of the machine in use and the 

application to be implemented in parallel. Section 4 examines overlapping the operations of the 

control unit and the processing elements and uses an image correlation algorithm to illustrate 

how this overlap can be optimized. 

Section 5 discusses parallel reduction operations. A sampling of matrix and vector opera- 

tions is covered in Section 6. Parallel implementations of matrix transpose, matrix-by-matrix 

multiplication, and matrix-by-vector multiplication are presented. In Section 7, the effect on 

execution time of increasing the number of processors used (scalability of the al.gorithm) and the 

impact of partitioning the system for subtask parallelism are explored. It is shown that increasing 

the number of processors used does not always yield a decrease in execution tirne or an increase 

in system efficiency. In Section 8, the computation of multiple quadratic forlms is used as an 

illustrative example on how scalability can be achieved using a suite of algorithms. 



2. MACHINE MODEL 

As stated previously, the data parallel algorithm studies will be based on the SIMD machine 

model [Fly66], and most of the results will also be applicable to the SPMD model on MIMD 

machines and to both models on mixed-mode systems. In the SIMD model, only a single 

sequence of instructions is present, but each instruction is executed simultaneously in an arbi- 

trary set of processors, with each processor operating on its own data. Typically, an SIMD 

machine consists of N processors, N memory modules, a CU (control unit), and an interconnec- 

tion network. Each processors is paired with a memory module to form a PE (processing ele- 

ment). The CU broadcasts instructions in sequence to the PEs and all enabled PEs execute the 

same instruction at the same time. Thus, there is a single instruction stream. Each enabled PE 

executes the instructions on the data in its own associated memory module, resulting in multiple 

data streams. The interconnection network allows communication among the PEs [SiegO]. 

Examples of SIMD systems that have been built include the Thinking Machines CM-2 [Hi185], 

DAP [Hun89], Illiac IV [BaB68], MasPar MP-1 [Bla90] and MP-2, MPP [Bat80], and STARAN 

[Bat74, Bat771. 

Figure 1 shows the SIMD machine model used in this report. This model is referred to as a 

PE -to -PE con8guration [Sie90] or physically distributed memory organizalion. There are 

N = 2" PEs and the PEs are numbered from 0 to N - 1. The PE's memory is only used to store 

data, not instructions. 

The CU is made up of a processor, a memory, and an instruction broadcast queue. The CU 

fetches and decodes the program instructions from its own memory. Only one program exists, a 

portion of which is to be executed on the CU and the other portion of which is tlo be executed on 

the PEs. Typically, the CU executes the control flow instructions, e.g., loop indexing, and 

broadcasts the data processing instructions to the PEs. The disabled PEs must remain idle while 

the instruction that was broadcast from the CU is executed in enabled PEs. 
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Figure 1: Distributed memory model of an SIMD machine. 

As an example, consider the execution of the if-then-else construct, where the if- 

conditional involves data local to each PE. First, the enable status of the PEs prior to the execu- 

tion of the if-then-else construct is saved. All disabled PEs will remain disabled during the exe- 

cution of the if-then-else construct. An enabled PE is kept enabled for the "then" clause if the 

result of the if-conditional test is true for the PE. Otherwise, it is disabled for thle "then" clause. 

Then the instructions of the "then" clause are broadcast from the CU and executed by the 

enabled PEs. Next, the PEs that were enabled for the "then" clause are disabled and the PEs 

enabled prior to the if-then-else construct, but disabled for the "then" clause, are enabled for the 

"else" clause. The CU broadcasts the instructions of the "else" clause and the enabled PEs 

execute these instructions. At the end of the if-then-else construct, the previously saved enable 

status is restored, i.e., each PE returns to the enable state it was in before the execution of the if- 

then-else construct. 

The CU broadcasts a single stream of instructions from the instruction broadcast queue to 

the PEs in the computational engine. It will not issue the next instruction untiil all the enabled 

PEs have completed executing the current instruction, thereby implicitly synchronizing the PEs 



at instruction-level granularity. Once the CU processor determines the instructions that should 

be placed in the queue, it may proceed with its own execution while the queued. instructions are 

broadcast to the PEs. This concurrent CU and PE execution is called CUIPE overlap [KiN91, 

SiS951, which is discussed in Section 4. 

Recall that most methods discussed in this report can also be adopted for SPMD operation 

on existing MIMD machines (e.g., Thinking Machines CM-5 [HiT93], nCUBE 2 [HaMBg], Intel 

Paragon, and Cray T3D) and mixed-mode systems (e.g., OPSILA [DuBBB], PASM [SiS95], and 

Triton/l [PhW93]). In contrast to the SIMD machine model, the MIMD machine model [Fly661 

does not have a CU, but consists of N independent PEs. The PEs are connecteld to one another 

via an interconnection network, as in the SIMD case. The PE memory stores the program in 

addition to the data. Each PE executes its own instruction stream, and all PEs operate asynchro- 

nously with respect to one another. Any synchronization among PEs needed has to be explicitly 

specified in the program. The SPMD model is a subclass of the MIMD model [DaGBB]. In the 

SPMD model, all PEs execute the same program asynchronously. Each of the F'Es takes its own 

control path during the course of the execution. In a mixed-mode system [FiCgl], the PEs can 

switch between the SIMD and the MIMD modes of parallelism at instruction-level granularity 

There is a great variety of interconnection networks that can be used in parallel machines 

(e.g., see [NaS93, Sie90, VaR941). Considering the impact of network selection on each algo- 

rithm described is beyond the scope of this report. Therefore, unless otherwise specified, a net- 

work that efficiently supports the inter-PE communications needed is assumed for each algo- 

rithm. Furthermore, unless otherwise specified, inter-PE communication will be measured in 

number of data words sent; other metrics, not considered here, include number of distinct net- 

work path establishments and size of the data items transferred. An example of the impact of the 

network selected is included in Section 3 to introduce the issues involved. 





3. IMPACT OF DATA DISTRIBUTION 

3.1. Introduction 

One issue that must be addressed in designing data parallel algorithms is how data should be 

mapped across the PEs. If the mapping of the data across the PEs is optimized,, it is possible to 

gain significant performance improvements for a particular algorithm [BlN92]. 

One class of problems that exhibit data parallelism are window-based tasks. Examples of 

these tasks include image correlation [ArN9 1, SiS821, image smoothing [SiA92c, SiS8 11, and 

range image segmentation [GiW92]. This section demonstrates the impact of data distribution 

across the PEs on the computation time and the communication time for a given algorithm. 

Image smoothing is used as a representative of window-based algorithms to illustrate how vary- 

ing the mapping across the PEs can affect the execution time. 

3.2. The Serial Image Smoothing Algorithm 

Smoothing is a procedure applied to an image to reduce noise. An M M ima,ge A is stored in 

memory as a two-dimensional array (matrix) where each element, called a picture element, or 

pixel, is an integer whose value represents the gray-level intensity of the corresponding point in 

the discretized image. For each non-edge pixel (i, j )  in A, a 3 3 window centered at (i, j )  is used 

to generate the corresponding pixel in the M M smoothed image A'. A seirial algorithm to 

accomplish this is: 

for i = 1 to M-2 do 

f o r j =  1 toM-2do 

A' (i,j) = [ A ( i - 1 , j - l ) + A ( i , j - l ) + A ( i + l , j - 1 )  +A(i- l , j )+A(i , j )  + 
A (i+l, j )  +A (i-1, j+ l )  + A  (i, j+ l )  +A (i+l, j+l)]  / 9 

In the case of an edge pixel, no calculation is performed and the pixel itself is taken to be the 

smoothed value. Because there are 4M - 4 edge pixels in the M M image A, the serial time 



complexity is the time to execute M - (4M - 4) = 0 (M ') smoothing operations. For 

M = 4,096, this is 16,760,836 smoothing operations, (approximately M2). 

3.3. Parallel Implementation Using Square Subimages 

In this report, it is assumed that when implementing an algorithm on a parallel machine, the goal 

is to minimize the execution time. Factors that, in general, help to do this include decreasing 

inter-PE communications and balancing the workload among the PEs so that as many PEs as 

possible are concurrently executing the algorithm. 

Assume N PEs are logically arranged as a 6 6 grid. The M M image A is mapped 

onto the PEs by superimposing the image onto the PE grid. Thus, eaclh PE stores an 

(MI*) x (MI*) square subimage, as shown in Figure 2(a). Therefore, each PE performs up 

to M 2 1 ~  smoothing operations. All PEs smooth their subimages simultaneously, i.e., at most N 

smoothing operations can be performed concurrently at each step, one in each PI:. 

To smooth the pixels at the edge of a subimage, pixels from spatially adjacent subimages 

must be transferred, as shown in Figure 2(b). PE i requires at most MI* pixels from each of 

the four PEs directly adjacent to it and one pixel from each of the four PEs diagonally adjacent 

to it. Thus, at most, 4M l f i  + 4 inter-PE data transfers are required per PE to smooth the entire 

image A. Just as the PEs can all smooth simultaneously, all N PEs can transfeir data simultane- 

ously (recall from Section 2 that an appropriate network is assumed to support this). The time 

complexity of the parallel algorithm when operating on an M x M image A with .N PEs is the sum 

of M 2 1 ~  smoothing operations and 4M&+ 4 inter-PE data transfers (where up to N smooth- 

ing operations or up to N data transfers can occur concurrently). Assuming that the time to per- 

form one transfer is equal to z times the time to perform one smoothing operation, the speedup, 

S, of the parallel version over that of the serial version of the algorithm is define~d as: 



w e l s  
I \ 

PEO P E I *  
1 pixel 1 pixel 

1 pixel pixel 

PEN-$-l PEN-:. pixels 

Figure 2: (a) Data allocation and (b) pixel transfers for image smoothin~g using square 

subimages. 

serial time complexity 
S = - - (M - 212 

parallel time complexity 2 

N 

For example, if M = 4,096 and N = 256, the number of inter-PE data transfers required is 1,028 

and 65,536 smoothing operations are performed. If z = 1, the speedup is 4094~166,564 = 252. 

(The value of z is machine architecture dependent and could be less than, equal to, or greater 

than 1.) 

In the above speedup calculation, the complexities are computed by only counting the 

smoothing operations and the inter-PE data transfers. It is assumed that the uni-processor 

machine that executes the serial algorithm and each processor in the parallel machine are of 

equivalent computing power. Theoretically, the maximum possible speedup is N. This is 

achieved when the total workload is equally distributed among the PEs, no overhead (e.g. no 



inter-PE data transfers) is incurred, and all PEs are always active during the execution. If the 

time to perform an inter-PE data transfer becomes much less than the time to perform a smooth- 

ing operation, which is the case, for example when using the Xnet in the MasPar MP- 1 [BlagO], 

the speedup will be closer to N. The speedup will never equal N even if inter-PE communication 

is ignored because the PEs containing the edge pixels of the M M image A will be disabled for 

some smoothing operations and are therefore underutilized for some steps of the algorithm. This 

demonstrates that inter-PE data transfers and masking, i.e., disabling some PEs for some opera- 

tions, result in a less than perfect speedup [SiA92c]. 

Consider the number of inter-PE data transfers required per PE. Instead of using square 

subimages, suppose the M2/N pixels are mapped to each PE such that the subimage in a PE has r 

pixels per row and c pixels per column, where rc = M2/N. To minimize the number of inter-PE 

data transfers per PE, which is 2r + 2c + 4, replace r with M2/(cN) and minimize the expression 

with respect to c: 

This yields c =MI$, subject to the constraint that c is an integer. It follows that r =MI&. 

Thus, r = c, i.e., each PE should contain a square subimage [SiS82]. For example, if M = 4,096 

and N = 256, each PE is assigned M2/N = (4,0961~1256 = 65,536 pixels. TF the pixels are 

mapped to each PE as a 256 256 (r = c = 256) square subirnage, the number of inter-PE data 

transfers needed is 4 256 + 4 = 1,028. If instead the 65,536 pixels are mapped1 to each PE as a 

64 1,024 (r = 64, c = 1,024 or r = 1,024, c = 64) rectangular subimage, the number of inter- 

PE data transfers needed is 2 1,024 + 2 64 + 4 = 2,176. 



3.4. Parallel Implementation Using the Horizontal (Row) Stripe Method 

In the preceding subsection, it is shown that the way data is distributed across the PEs dictates 

the number of inter-PE data transfers required. An alternative method of mapping data among 

the PEs is based on distributing consecutive rows of data, as opposed to square subimages, to the 

PEs. This approach results in a decreased number of calculations performed per PE compared to 

using square subirnages. 

Recall that in the image smoothing algorithm, the border (edge) pixels of image A do not 

require any smoothing operations. In general, for some window-based image processing tasks 

these border pixels may play an important role in the selection of the data distribution method. 

The horizontal stripe method allows window-based algorithms to take advantage of the fact that 

no calculations need to be performed on the column border pixels by distributing the column 

border pixels evenly among all the PEs, thereby decreasing the total number of :required calcula- 

tions [GiW92]. The square subimage method does not take advantage of this fact because the 

border pixels are distributed unevenly among the PEs; some PEs will not get any border pixels 

and consequently must perform the maximum number of smoothing operations (M~IN).  These 

PEs dictate the time required to perform the necessary computations to finish the: task. 

Using the same image smoothing algorithm discussed in the previous subs~:ction, the M M 

image A is divided into N rectangular (MIN) M subimages, where M 2 N, as shown in Figure 3. 

Each PE stores M IN rows by M columns of pixel data. The number of pixels ass.igned to each PE 

remains unchanged (still equal to M~/N) .  However, PE i will now require a total of 2M pixels 

from its two neighboring PEs; M pixels will be required from PE i-1 and anotlher M pixels will 

be required from PE i+l .  Recall that it is always assumed that all N PEs can tra~nsfer data simul- 

taneously. The number of inter-PE transfers increases, for N > 4, relative to the square subimage 

method discussed in previous subsection (from 4 ~ l $ +  4 to 2M). However, for the stripe 

method, the border pixels located on the left side and the right side of the image are uniformly 

distributed among all the PEs. Because calculations on these column border pixels are not 



performed, once the inter-PE data transfers are complete, each PE will perform a total of at most 

(M IN) (M -2) smoothing operations. Thus, each PE avoids smoothing at least 2M IN image 

edge pixels when using the horizontal stripe method compared with using square subimages. 

M pixels 

I 
- M pixels 

M IN pixels \ 
M pixels 

Figure 3: (a) Data allocation and (b) pixel transfers for image smoothing using the horizontal 

stripe method. 

Comparing the two schemes, the square distribution scheme requires fewer inter-PE 

transfers but more smoothing operations. Although the horizontal stripe method requires more 

transfers, it has the potential of decreasing the execution time due to the reduced number of 

smoothing operations resulting from not processing the column border pisels. For image 

smoothing, the square subimage method, as shown in Subsection 3.3, may be best, but for other 

window-based image processing algorithms, e.g., range image segmentation, i.t may be outper- 

formed by the horizontal strip method [GiW92]. 

The results derived so far in this subsection used a 3 3 window. The derivations can be 

generalized for a w w window, with more complex operations being performed on the set of 

data values within the window. For a task with a w w window, the square subimage method 



performs M ~ I N  operations and the horizontal stripe method performs ( M 2 / ~ ) - 2  w I2 (MIN) L 1 
operations, where x is the floor of x, i.e., the greatest integer less than or equal to x. In the L 1 

2 
case of the square subimage method, each PE must transfer 4 [w 12 (M I ~ T  + 4( [w/21) 

data elements. In the horizontal stripe method, 2 w I2 M data elements are transferred per PE. L J  
As the window size w increases, the number of operations required by the horizontal stripe 

method decreases. The time complexity of an operation increases as 0 (w2). The number of 

operations performed by the horizontal strip method is ATop = 2 w12 (MIN) less than that of Ll 
the square subimage method. But the number of inter-PE transfers performed by the square 

subimage is ATtramfir (M 1 6 )  - 4( [W 12 1 l2 less than that of the horizon- 

tal stripe method. If the computation time per operation is greater than or equal to 

p~ms j -e r111~ , ]  the transfer time per data item, where x is the ceiling of x, i.e., the smal- 1 l 
lest integer greater than or equal to x, then the horizontal stripe method is better. For example, if 

w = 2 1, M := 4,096, and N = 256, then ATop = 320 and ATtraner = 7 1,280. If the computation 

time per operation equals 71,2801320 = 223 transfer time, then the horizontal stripe method 1 1  
is better. For a task such as image correlation, where each operation involves more than 

w2 = 441 multiplications and additions, this could be the case (it is machine architecture depen- 

dent) . 
Thus, for window-based tasks, distribution of the image across PEs shou:ld not always be 

done by using square subimages. The subimage window size and the task to be: performed have 

to be considered when deciding which data distribution scheme to use. In general, the horizontal 

stripe method may result in a decreased execution time whenever calculations on the column 

border pixels are not needed and inter-PE transfers are relatively fast compared to calculations 

needed for each pixel position. 



3.5. Impact of a Specific Interconnection Network on Execution Time 

Interconnection Networks Considered 

The impact of a particular interconnection network on the time complexity of tlhe parallel algo- 

rithm for a particular application is discussed next. The same data distribution across the PEs is 

used to compare the performance of an algorithm on two parallel machines wiith topologically 

distinct interconnection networks [SiA92b]. 

Consider two hypothetical parallel processing systems where the only difference between 

the two systems is the topological structure of their interconnection networks: one is a mesh with 

no wrap-around connections from one edge to another, and the other is a ring (Figure 4). All 

other system parameters are assumed identical, including the number of PEs, the computing and 

communication hardware, the operating system, the language, the communication protocols, and 

the link bandwidth. Both networks have N PEs labeled from 0 to N-1. In the mesh topology, PE 

i is directly connected to PEs i-1, i+ l ,  i+$, and i - 6 .  In the ring topology, PE i only has 

direct connections to PEs i -1 and i+l .  For both networks, all PEs can send datia simultaneously 

in the same direction. 

To illustrate the impact of different interconnection network topologies while holding all 

other factors identical, the same SIMD image smoothing algorithm is executed on both systems. 

The two distribution methods described in Subsections 3.3 and 3.4 are used to compare the two 

architectures. 

Mesh versus Ring Using Square Subimages 

First consider the system with a mesh interconnection network. Figure 2 depicts how pixels 

from an M M image are mapped onto a fix fi mesh of PEs as square subimages. Pixels 

from N subimages of size (M 1 6 )  (MI*) are mapped onto PEs so that adjacent subimages 

are mapped. to adjacent PEs in the mesh. As discussed earlier, each PE performs at most M 2 1 ~  

smoothing operations and 4M/$+4 inter-PE data transfers. Figure 5(a) illustrates the 



Figure 4: Connection patterns for PE i for (a) the mesh and (b) the ring topologies. 

required data transfers for PE 6 for N = 16. 

Next, consider a system with a ring interconnection network. It is assumed that the image 

is distributed among the PEs as square subimages in the same way as described above for the 

mesh. For the general problem of smoothing M M images using N PEs, it is shown below that 

a total of 2 ~ 6  + 2M + 4 inter-PE data transfers are required for the ring. Figure 5(b) is an 

example showing the required data transfers for PE 6 for N = 16. This example will be used in 

the following general description. 

The MIS pixels along the right vertical boundary of each subimage must be transferred 

from PE i-1 to PE i (e.g., 5 to 6). This requires M l f i  inter-PE data transfers. Likewise, 

transferring the M I 6  pixels from the left vertical subimage boundary from PE i+l to PE i 

(e.g., 7 to 6) also requires M 16 inter-PE data transfers. To transfer the M 16- pixels along the 

upper horizontal subimage boundary from PE i - 6  to PE i (e.g., 2 to 6) requires 

6 (MI&)  = M inter-PE data transfers because PE i - 6  and PE i are separated by 6 



Figure 5: The required data transfers to PE 6 for (a) the mesh and (b) the rin.g topologies for 

links. Likewise, to transfer the MI$ pixels along the lower horizontal subimage boundary 

from PE i+$ to PE i (e.g., 10 to 6) requires M inter-PE data transfers. Next consider sending 

the corner pixels needed by PE i. Pixels from the diagonally adjacent PEs can be sent through 

intermediate PEs. The required pixels from PEs i-$+l (e.g., 3) and i+++l (e.g., 11) have 

already been transferred to PE i + l  (e.g., 7), so only two transfers are needed to move these pix- 

els to PE i. The case for the pixels from the upper and lower left diagonal PEs is similar. Thus, 

the total number of inter-PE data transfers for the ring is 2 M l f i  + 2M + 4. Fior N > 1, this is 

greater than the number of required inter-PE data transfers for the mesh, given by 4(M I*) + 4. 

For example, if M = 4,096 and N = 256, the number of inter-PE transfers for the mesh is 1,028 

and for the ring it is 8,708. 



Mesh versus Ring Using the Horizontal Stripe Method 

Instead of using square subimages, consider the horizontal stripe method. A mapping of pixel 

values from the N  rectangular ( M  IN) M  subimages onto the ring topology is shown in Figure 6. 

Pixel values along the horizontal boundaries of the rectangular subimages are transferred to the 

neighboring PEs, which requires a total of 2M inter-PE data transfers for the ring topology; M  

pixels are transferred from PE i -1 to PE i  and M  pixels are transferred from PE i +l to PE i. 

Thus, the total number of inter-PE data transfers is reduced from 2 ~ l G  + 2M + 4 using square 

subimages to 2M using the horizontal stripe method for the ring network. 

M  pixels 

pixels 

V 
2M transfers 

pixels 

Figure 6: Mapping ( M I N )  M  subimages onto the PEs of the ring, showing the directions of 

transfers. 

For the mesh network with no wrap-around connections between edges, if the horizontal 

stripe method is used, a total of 2M (& + 1) inter-PE data transfers are required as demon- 

strated in Figure 7. For any PE i  that is not on the right vertical edge of the N  PE mesh, M  

transfers are needed to transfer pixels from PE i to PE i + l .  For any PE i that is not on the left 

vertical edge of the N  PE mesh, another M  transfers are required to transfer pixels from PE i to 



PE i-1. These horizontal transfers are shown in Figure 7(a). In addition, M pixels have to be 

transferred from PE i 6 - 1 to PE i 6 ,  1 5 i i 6 - 1 .  This will require ~fi M transfers 

because the source PE is $ links away from the destination PE. Similarly, PE i 6 will send 

M pixels to PE i 6 - 1, 1 5 i 5 6 - 1 .  This will also require 6 M inter-PE data transfers. 

These transfers between PEs on the left and right vertical edges are depicted. in Figure 7(b). 

Thus, the number of inter-PE transfers for the mesh network when using the horizontal stripe 

method is M + M + M 6 + M 6 = 2~ ( 6  + 1). This is much greater than that required for 

the ring network when using the same method for data distribution. For example, if for 

M = 4,096 and N = 256, the number of inter-PE transfers for the ring is 8,192 and for the mesh it 

is 139,264. In this case, the ring outperforms the mesh. 

Figure 7: Mapping (MIN) N subimages onto the PEs of the mesh with the directions of 

transfers shown; (a) 2M transfers, (b) 2 ( 6 ~ )  transfers. 

Best Case Comparison 

Based on the above analyses, in terms of the number of inter-PE data transfers, the square 

subimage data distribution is best for the mesh network, the horizontal stripe method is best for 



the ring network, and the best mesh approach is better than the best ring approach. However, 

recall from Subsection 3.4, the horizontal stripe method can also avoid processing the column 

border pixels, reducing the calculations performed by each PE. As was discussed in that subsec- 

tion, consider a w w window and a window-based image processing task more complex than 

smoothing. The comparison between the best mesh and best ring cases is the siame as the com- 

parison between the square subimage and horizontal stripe methods in that siubsection. Thus, 

depending on the window size and the image processing task, the ring may be better than the 

mesh (as well as less expensive to implement). 

Another aspect of the interaction of the algorithm, data distribution, and interconnection 

network is the number of distinct network settings (i.e., path changes). In certain types of net- 

work imple~nentations, the number of network settings used can impact performance (even for a 

fixed total number of data items to be transferred). In many network implemcmtations, due to 

software and/or hardware overhead, establishing the path for transmitting data is a significant 

portion of the transfer time, and is independent of the number of words to be transferred using 

that setting. Thus, it may be important to minimize the number of network settirigs used. 

Consider image smoothing with 3 3 windows and the horizontal stripe rnethod of Figure 

6. PE i stores rows i MIN to (i + 1) MIN - 1 of the image. In general, it receives row 

i M IN - 1 from PE i - 1, and row (i + 1) M IN from PE i +l . PE i smootlhes the pixels in 

rows i MIN to (i + 1) MIN - 1 of the image. Instead of using these two network settings, a 

single setting can be used by only sending rows (i + 1) MIN and (i + 1) MIN + 1 from PE 

i + 1 to PE i. In this case, PE i smoothes rows i MIN + 1 to (i + 1) MIN of the image. With 

this approach, the number of data items transferred is still 2M and the maximum number of pix- 

els smoothed in any PE is still M ~ / N .  This can be generalized for w w win'dows. Also, this 

approach can be applied to square subimages, reducing the number of network settings from four 

to two. 



As has been shown, the way in which data are distributed among the PEs may influence both the 

number of i.nter-PE transfers needed and the number of computations to be performed. Con- 

versely, the topology of the inter-PE network of the machine may influence which data distribu- 

tion is best. Interestingly, even if the problem domain is limited to window-based image pro- 

cessing tasks, no one data distribution is best for all window sizes and image operations. Thus, it 

is important to carefully analyze all of these factors to find the best data distribution. 



4. CU/PE OVERLAP 

In this section, the impact of CUIPE overlap on execution time in SIMD mode is examined. The 

CU CPU initiates parallel computations by sending blocks of SIMD code to the CU instruction 

broadcast queue. Once in the queue, each SIMD instruction is broadcast to all the PEs while the 

CU CPU can be performing its own computations. This property is called CUPE overlap 

[ArN91, BeS91, KiN911. CUPE overlap can improve the overall performance of a program 

because CU execution and PE execution can occur concurrently. This aspect of data parallel 

algorithms is the only one discussed in this report that is not directly applicable to MIMD 

machines. 

Image correlation [ArN91, SiS821 is used to examine the effects of CUPE overlap. 

Image corrc?lation involves determining the position at which an image template best matches a 

portion of an input image. Let x denote an r c template array, let A be an R C input image 

array, and let y be an r x c portion of A. Also, let a given image coordinate be: (row, col) such 

that 0 5 I'OM.? 5 (R - r )  and 0 5 col < (C - c), and let y (i, j )  = A  (row+i, col+j) for all coordinates 

(i, j )  where 0 5 i < r and 0 5 j < C. The coefficient of determination, D 2 ,  is computed to deter- 

mine the quality of fit of the template to the overlapped data of the input image. One part of this 

calculation is to compute z u ( i ,  j)y (i, j )  for each possible match position for 0 5 i < r and 

O l j < c .  

CUPE overlap is an analytical quantity that can be maximized. Considel: the above com- 

putation. TWO possible approaches to compute this two-dimensional summation are given in C- 

like notation in Figures 8 and 9 (based on [ArNgl]). Assume that the instruction1 broadcast queue 

is empty when the CU starts execution of either code segment and that the queue is large enough 

such that it never overflows during execution. For simplicity, it is assumed tha.t the match posi- 

tion is (0,0:1 and the size of the template never exceeds that of the subimage. Tlne image data are 

distributed among the PEs by segmenting the input image into rectangular subimages, each of 

which has the size R' C' The template and subimage arrays are represented as one-dimensional 



arrays temp[] and subimage[], respectively. The scalar variable xysum accumulates the desired 

sum. 

The same task is performed by both code segments, but the workload is distributed dif- 

ferently between the CU and the PEs. The first approach, shown in Figure 8, overworks the PEs 

by performing all the array indexing calculations on the PEs; whereas the second approach, 

shown in Figure 9, overworks the CU by letting the CU perform all the array indexing calcula- 

tions. The numbers along the left and right sides of each figure provide appro~rimate statement 

execution times in microseconds for the CU and for the PEs, respectively, as :measured on the 

PASM prototype. 

14 for ( i = 0; i < r, i++ ) ( /* 4 , 8 , 6  */ 

17 send-short( &i, i ); P send i (8 bits) from CU to PEs */ 8 

14 for(j=O;j<c;j++) { /*4 ,8 ,6* /  

17 send-short( &j, j ); /* send j (8 bits) from CU to PEs */ 

6 simdbegin P' load PE instruction block into queue */ 
xysum += temp[c i + j] subimage[ C' i + j]; 90 

simdend 

1 

Figure 8: Code segment overworking the PEs. 

The time complexities can be determined by examing the code segments. For the "for" 

statements,, the time to initialize the loop-control variable is 4,  the time to test the end-of-loop 

condition is 8, and the time to increment the loop-control variable is 6 .  For tht: approach shown 

in Figuse 8, the time complexities of the CU and the PEs are 

T E u = r x ( 1 4 +  1 7 ) + ( 4 + 8 ) + r x ( c x ( 1 4 +  1 7 + 6 ) + ( 4 + 8 ) ) = 3 7 r c + 4 3 r +  :l2 and 



tbase = temp[]; P initialize template pointer */ 
ibase = subimage[]; /* initialize subimage pointer */ 
for ( i = 0; i < r; i++ ) { /* 49 8- 6 */ 

tptr = tbase + c x i - 1; /* increment template row pointer */ 

iptr = ibase + C' X i - 1; /* increment subimage row pointer */ 
for( j=O;j<c; j++)  ( /*4,8,6*/ 

tptr += 1; P increment template column pointer *I 
iptr += 1; /* increment subimage column pointer */ 
send-int( &QU, tpn ); p send template pointer (16 bits) from CU to PEls */ 8 
send-int( kip@, iptr 1; p send subimage pointer (16 bits) from CU to PBs *I 8 
simdbegin P load PE instruction block into queue */ 

xysum += (*tptr) (*iptr); 34 
sirndend 

Figure 9: Code segment overworking the CU. 

T$,y = r 8 + r x c x (90 + 8) = 98rc + 8r, respectively. For r 2 1 and c 2 1, TPE > TEU. If 

r = c  =7, TEu=2,126 and TFE=4,858. For the approach shown in Figure 9, 

TgU = r (74 c + 90) + 12 = 74rc + 90r + 12 and TiE = 5Occr. respectively. Fair r 2 1 and c 2 1, 

TgU > TBE. If r = c = 7, TgU = 4,268 and TiE = 2,450. 

Because the CU broadcasts the instructions to the PEs, the time before the PEs receive their 

first instructions and the time for the PEs to execute the final instructions broadcast to them have 

to be considered. Let Thml denote the time for the PEs to execute the last instnuctions broadcast 

to them minus the time to perform CU computation after the final SIMD block; has been broad- 

cast, i.e., TfinaZ is the time some PE continues to execute after the CU is done. Ui the difference is 

less than zero, set Thai = 0. For the first approach, the CU increments and then checks the index 

value of i and j after it broadcasts the final SIMD block, and thus 



Gml = (8 + 90) - (6 + 6 + 8 + 6 + 8) = 64. Let Tstartq be the PE idle time during the first itera- 

b tion. TbnUl and Tmrtup can be calculated similarly. For the first approach, 

T:,,, = (4 + 8 + 17 + 4 + 8 + 17) - 8 = 50. For r = c = 7, the total execution time of the first 

approach is 

and for the second approach, the total execution time is 

By balancing the workload between the CU and the PEs, CUPE overlap can be maxim- 

ized, i.e., 1 Tcu + Tfinal - TPE - Tsrartup ) is minimized, and thus the execution time can be 

reduced. A third approach, shown in Figure 10, attempts to minimize 

I Tcu + Tfvral - T f E  - Tstartup 1 by migrating two indexing operations from the CU to the PEs. 

The total execution time for the third approach is 

Thus, by balancing the operations performed on the CU and on the PEs, it is possible to achieve 

better performance. 

In summary, this section has shown that on SIMD machines that have CU/PE overlap capa- 

bility, CU/PE overlap can be maximized to reduce the algorithm execution time, especially 

when loop-intensive computations are involved. Thus, to achieve the best performance, it is 

important to examine the code and to balance CUPE overlap whenever possible. 



tbase = temp[]; I* initialize template pointer */ 
ibase = subimagel:]; r" initialize subimage pointer */ 
for(i=O;i<r, i++) ( /*4,8,6*/ 

tptr = tbase + c i - 1; /* increment template row pointer */ 
iptr = ibase + C' i - 1; /* increment subimage row pointer */ 

send-int( &tptr, tptr ); /* send template pointer (16 bits) from CU to PEs */ 8 

send-int( &iptr, ipe ); P send subimage pointer (16 bits) from CU to PEs */ 
for(j=O;j<c;j++) ( /*4,8,6*/ 

simdbegin p load PE instruction block into queue */ 

tpt.r+= 1; /* increment template column pointer */ 10 
iptr += 1; /* increment subimage column pointer */ 10 

xysum += (*tptr) (*iptr); 
simdend 

1 

Figure 10: Code segment optimizing CU/PE overlap. 





5. PARALLEL REDUCTION OPERATIONS 

5.1. Introduction 

Many problems require that all the elements of a data set be combined in some :fashion, e.g., the 

sum or product of all elements of an array. These operations are known as reduction operations, 

i.e., a single value is computed as the result of an operation on the data set. Parallel reduction 

operations can only be applied to associative operations, e.g., sum, product, min, and max. It is 

important to study parallel algorithms for reduction operations because data eliements are gen- 

erally distributed across the PEs on parallel machines. As examples, recursi-ve doubling and 

parallel prefix are discussed in detail in this section. 

5.2. A Single Reduction Operation on a Single Set of Data 

Recursive doubling is used to demonstrate the concept of a single reduction operation on a single 

set of data in this subsection. The recursive doubling procedure, sometimes also called 

tree summing, is an algorithm that combines a set of operands distributed across PEs [Sto80]. 

Consider the example of finding the sum of M numbers. Sequentially, this requires one load and 

M-1 additions, or approximately M additions. However, if these M numbers are distributed 

across N = M PEs, the parallel summing procedure requires log2N transfer-add steps, where a 

transfer-add is composed of the transfer of a partial sum to a PE and the addition of that partial 

sum to the PE's local sum. Let tadd be the time required to execute an addition and ttransfer-add 

be the time to execute a transfer-add. Then the speedup of this algorithm is 

(M t,dd) 'I (log 2N ttr,,f,r,dd) = 0 (Nllog2N), assuming tadd and ttran$er-add are of the same 

order. 

This is demonstrated for M = N = 8 in Figure 11. Assume that the goal is to calculate 

7 
CA (i) and A (i) is initially stored in PE i. First, each odd numbered PE i tran.sfers its data item 
i=O 

to PE i-1 (at time to). Each PE receiving a data item adds it to the data item it is storing (at 



time t 1). PE 2 sends its partial sum (A (2) + A  (3)) to PEO, and PE 6 sends its partial sum 

(A (6) + A  (7)) to PE 4 (at time t2). Each of PEs 0 and 4 adds its received partial sum to its 

stored partial sum (at time t3). Then, PE 4 sends its partial sum to PE 0 (at time t4). PE 0 then 

computes the complete sum (at time t5) .  All of the inter-PE transfers can be adjusted so that the 

complete sum could be computed by any one of the PEs. 

data - time - - 

A (0)- A @)+A (1) - A (O)+A (l)+A (2)+A (3) sum 

A (2) - A (2)+A ( 

A ( 3 y  

Figure 11: Recursive doubling using result-to-one-PE technique for M  = N = 8, where sum 

7 
= C A (i). 

i = O  

The recursive doubling technique can also be applied to a set of 0peran.d~ whose size is 

greater than the number of PEs. Let M be the number of operands and let N  = :2n be the number 

of PEs, addressed from 0 to N - 1, where PE P's address in binary is pn-1 ...p ~ p o .  Let each PE 

store MIN of the operands and let M mod N PEs receive one additional operand from the L l  
remaining .A4 mod N  operands. First, each PE sequentially sums its local data, requiring at most 

[ M I N I  operations. Once the local sums are obtained, then logzN transfer-adds are performed. 

In general, in the j-th inter-PE transfer, where j proceeds from 0 to log2N - 1, PE 

P =pn-l . . .Pj+l 10 ... 0 sends its partial sum to PE P' =pn-l m..pj+l 00 ... 0. PE P' combines the 



received partial sum and its previously computed local partial sum to form a new local partial 

sum. After log2N transfer-adds, PE 0 will contain the complete sum. 'The speedup is 

(M tadd)/( MIN tadd + l0g2N ttrmfer-add). The greater the difference beltween M and N, 1 1  
M > N, the closer the speedup is to N. If M < N, then this technique can still be applied. In this 

situation, only M PEs would be used. 

The above demonstrates the result -to -one -PE technique, where the global result will be 

available in a single PE. An alternative is the result-to -every -PE technique, in which each PE 

will have the global result. This is shown in Figure 12 for M = N = 8. Let a transfer -op be com- 

posed of a transfer of an operand to a PE and an operation combining this operand and a local 

operand of this PE. As in the previous technique, once the local results have been obtained, 

log2N transfer-ops are made to find the global result. In transfer-op j, where j proceeds from 0 to 
- 

log2N - 1, PE P = p,-1 . . p  ~p 0 exchanges partial results with PE P' = p,-1 .., p j . .  .p ~p 0. After 

log2N transfer-ops, each PE will have the global result in its local memory. 

Consider the trade-offs between the result-to-one-PE and result-to-every-E'E techniques. In 

SIMD mode, the result-to-one-PE approach has the overhead of disabling PEs in transfer-op 

steps other than the first step. Thus, even if the result is not needed in all PEs, the result-to- 

every-PE method may be faster because the masking overhead for disabling PEs is avoided. For 

SIMD or MIMD mode, when the result is only needed in one PE, using the result-to-every-PE 

method may cause unnecessary delays in the interconnection network. These trade-offs would 

have to be balanced for a particular SIMD architecture. 

5.3. Multiple Reduction Operations on a Single Set of Data 

In the previous subsection, performing one reduction operation on a single data set was dis- 

cussed. In this subsection, performing multiple reduction operations on a single set of data is 

reviewed. The minlmax problem, i.e., finding the minimum and the maximum values from a set 

of data simultaneously, is analyzed as an illustrative example. 



PE data time - -- - 
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Figure 12: Recursive doubling using result-to-every-PE techniqu.e. 

A straightforward method of solving the rninfmax problem in parallel is to use the recursive 

doubling procedure twice: first to find the maximum value and then to find the rninimum value. 

A better technique is to divide the PEs into two groups, such that one group firrds the maximum 

value while the other group simultaneously finds the minimum value. Figure 13 demonstrates 

the process of finding the rninimum and the maximum values of a data set of M = 16 elements 

on N = 8 PEs. 

For simplicity, assume that the data set has M elements, where M is an integer multiple of 

N.  Each PE is assigned MIN elements. In the first step, each PE finds the local1 minimum value 

and the local maximum value. Then in the next step, PEs are divided into two groups: the upper 

half and the lower half. A PE in the upper half has its high-order address  bit^,.-^ = 0 and a PE in 

the lower half has its high-order address  bit^,-^ = 1. 

In the third step, each PE P =pn-l  . . .p lpo exchanges local values with PE 

P' = fi-l. ..p l p  0. A PE in the lower half transfers its local minimum value, while a PE in the 

upper half transfers its local maximum value. Each PE in the lower half com~putes a new local 
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Figure 13: Finding the minimum and maximum values concurrently for M = 16 and N = 8 by 

adapting the result-to-one PE technique. 

maximum value, by choosing the larger value from its original local maximum value and the 

value it received. Each PE in the upper half computes a new local minimum vidue by choosing 

the smaller value from its original minimum value and the value it received. Then, the lower half 

of the PEs do transfer-max operations and the upper half of the PEs do transfer-min operations 

independently but concurrently (see Figure 13). As a result of this step, the global maximum 

value is known by one or all PEs in the lower half (depending on which technique is selected: 

result-to-one-PE or result-to-all-PEs) and the global minimum value is known by one or all PEs 

in the upper half. If needed, the maximum and minimum values can be exchanged between the 

two groups (in a single inter-PE transfer) so that each group can have both the nnaxirnum and the 

minimum values. The total number of transfer-compares is 1 + log2(N/2), where the first term 

comes from the initial exchange of local values, and the second term comes frolm the concurrent 

recursive doubling processes. 



In general, the technique can accommodate K reduction operations on a single set of data, 

where K 2 2. The number of transfer-ops is given by (K - 1) + logz(NIK), assuming that N and 

K are powers of two and the number of operands is an integer multiple of N. Aga.in, the first term 

and the second term come from the initial exchange of local values and from the concurrent 

recursive doubling processes, respectively. 

5.4. A Single Reduction Operation on Multiple Sets of Data 

Recursive doubling can also be applied to one reduction operation on multiple sets of data. An 

example is global histogramming [SiA92c, SiS8 I] ,  also known as vector summiztion, which will 

be studied next. 

Let an M M input image be mapped onto N PEs such that each PE holds M ~ I N  pixels, as 

in the image smoothing example discussed in Subsection 3.3. Global histogramming involves 

computing B bins, where each bin has two attributes associated with it: (1) the range of pixel 

values it represents and (2) the number of pixels in the entire image that have values within that 

range. For this algorithm, it is assumed that N is an integer multiple of B. Each possible pixel 

value belongs to exactly one bin range. Each PE first computes a local B-bin histogram for the 

M 2 / ~  pixels in its memory. Let A (x,y) be the gray-level value of the subimage pixel in row x 

and column y, and let bin(i), where 0 I i < B, be initialized to 0. If each PE contains an 

(Mlf i )  x (')~M/fi) subimage, then an algorithm to compute the local B-bin histograms is: 

(For the serial algorithm, set N = 1.) The PEs then combine their local histograms to obtain the 

global histogram. This is a process of a single combining operation on mlultiple bins. One 

straightforward approach to compute the global histogram is to combine one t in  at a time using 

recursive doubling, requiring B log2N transfer-add steps. 



Consider an overlapped recursive doubling procedure for combining local histograms, 

where all the bins are summed in an interleaved fashion. Figure 14 shows this process for 

N = 16 and B = 4. In the figure, (0, ..., 3) denotes the values of bins 0, ..., 3 accumulated in the 

PE. The N PEs are logically divided into NIB blocks of B PEs each. In the first b = log2B stages, 

each of the NIB blocks simultaneously combine their histograms. As a result, each PE in a 

block holds a different bin computed by summing the values of the corresponding local bins of 

the PEs in the block. This is done by dividing each block of PEs in half such that the PEs with 

lower addresses form one group and the PEs with the higher addresses form the other group. 

Each group accumulates the sums for half of the bins and sends the bins it is not accumulating to 

the other group. For example, in stage 0, PE 0 accumulates bins 0 and 1 from PE 0 and PE 2. 

Simultaneously, PE 1 accumulates bins 0 and 1 from PE 1 and PE 3. The next phase involves 

dividing each group of B 12 PEs into two groups of B 14 PEs using the same rule for partitioning 

PEs as in the previous phase. These two new groups only exchange those bins for which they 

had accumulated sums in the previous phase. This subdividing process continues until each 

group has only one PE. Once the subdividing process terminates, each PE will contain only one 

bin, and this bin will have the accumulated value for the PEs in the block that originally included 

this PE. Continuing the example above, PE 0 accumulates bin 0 from PE 0 and PE 1, while PE 1 

accumulates bin 1 from PE 0 and PE 1. 

In the next n - b stages, where n = log2N, the partial histograms of all the blocks are com- 

bined by performing B simultaneous recursive-doubling operations. Each of these B recursive- 

doubling operations involves the NIB PEs that store the bins of same index. For the example in 

Figure 14, PEs 0, 4, 8, and 12 combine the bin 0 data, while PEs 1, 5, 9, and 1:3 combine the bin 

1 data, etc. As a result, the histogram for the entire image is distributed over 6: PEs, where bin i 

is located in PE i, for 0 I i < B. 

For the first b stages of the algorithm, B12~'' transfer-adds are used at stage j, where 

0 I j < b, for a total of B -1. At each stage j, where b I j < n, one transfer-add occurs. Thus the 

final n - b stages require log2(NIB) = n  - b transfer-adds. The total number of transfer-adds 



Figure 14: Global histogramming for B = 4 and N = 16. 

needed to merge the local histograms using the overlapped recursive-doubling scheme is then 

B - 1 + logz(NIB). For realistic values of N and B (e.g., N = 1,024 and B = 25tj), this is approx- 

imately log2N times faster then the straightforward approach of performing .B recursive dou- 

bling~ in sequence. 

5.5. A Generalized Form of Reduction Operations 

A generalization of the techniques discussed in Subsections 5.2 to 5.4 is to apply multiple reduc- 

tion operations on multiple sets of data. A distinct operation is defined as an associative opera- 

tion on one set of data. Both one associative operation on multiple sets of data and multiple asso- 

ciative operations on one set of data are considered multiple distinct operations. For example, if 

min and max operations are applied on one set of data, they are considered two distinct opera- 

tions. In the global histogramming example, the combining operation is applied on four bins, 

thus there are four distinct operations. It is obvious that the number of distinct operations is 



always greater than or equal to the number of associative operations. Assume that each data set 

is of the sane size M. Let N be the number of PEs used and let K be the number of distinct 

operations. For simplicity, it is assumed that M, N, and K are all powers of two, where M 2 N 

and K 5 N, and each PE has M IN elements of each data set. 

The generalized reduction operation process can be divided into three phases: (1) comput- 

ing local partial results, (2) grouping PEs for different distinct operations, and (3) combining 

partial results. In the first phase, each PE computes K local partial results, one for each distinct 

operation on its local data. There are no inter-PE transfers in this phase, and the number of con- 

current local operations is K (MIN). In the second phase, the PEs are logicidly divided into 

NIK groups. A single PE accumulates the partial results with respect to one distinct operation 

for the block during this phase. As shown in the example for global histograrnming, K - 1 

transfer-op steps are needed to accomplish this phase. The last phase is to perform K recursive 

doubling procedures concurrently, one for each distinct operation. This is the same as the last 

step shown in the minfmax and the global histogramming examples and needs log2(NIK) 

transfer-ops. Thus, the total number of transfer-ops is K - 1 + log2(N IK). 

When K > N, i.e., when there are more distinct operations than the number of PEs, inter- 

leaved recursive doubling procedures can still be used to find the results. 'T'his approach is 

referred to as p-recursive doubling [WaN94]. In this case, p = K and the final results of K dis- 

tinct operations can be computed in log2N steps, where transfer-op operations occur at 

step j, for 0 5 j < log2N. In the p-recursive doubling procedure, K is not required to be a power 

of two. Figure 15 illustrates how N = 4 PEs sum the elements for K = 6 sets of data, assuming 

each set has N elements. This requires five transfer-adds, three of which are foi: the first step and 

two for the second step. 
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Figure 15: p-recursive doubling for K = 6 and N = 4, to compute C at, for 0 i a < 6. 

b=O 



5.6. Parallel Prefix 

A parallel technique similar to recursive doubling is parallel prefi .  For A (i), 0 i < N, the 

j 
parallel prefix method can compute BU) = CA(i) ,  0 S j < N, in log2N transfer-add steps 

i=O 

[Sto80]. 

It is assumed that PE i, 0 5 i < N, has A (i) resident, and it will have B ( i )  as the result. Fig- 

ure 16 demonstrates this procedure for the case N = 8. Initially, every PE executes B (i) = A (i). 

In transfer-add step j, where j proceeds from 0 to log2N - 1, PE P sends its partial result B (P) to 

PE P' = P + 2j only if P' < N. PE P' computes a new partial result B (P') frorn its own partial 

result and the received value. After log2N transfer-op steps, PE i will have B (i). 

data time - -- 

Figure 16: Parallel prefix for N = M = 8. 



5.7. Summary 

Various parallel reduction operation techniques for associative operations were 'discussed in this 

section. The choice of technique will depend primarily on the application task tc~ be performed. 

Because computers use finite precision arithmetic, applying certain associative operations 

(such as floating point addition) on the same set of data but in different sequence could give dif- 

ferent results. However, this problem exists for serial as well as parallel machines. 



6. MAT= AND VECTOR OPERATIONS 

6.1. Introduction 

This section examines parallel matrix operations by considering three examples: matrix transpo- 

sition, matrix-by-matrix multiplication, and matrix-vector multiplication. In eaclh case, only one 

of many possible approaches is presented. 

6.2. Matrix Transposition 

Given an M M matrix A, the transpose of A, A T, is A T(i, j) =A (j,i), where 01 5 i, j < M. The 

parallel matrix transposition technique described here is part of a two-dimensional FFT algo- 

rithm presented in [JaM86]. For simplicity, assume M = N, the number of the PEs used. The 

data is distributed across the PEs such that PE i contains row i of A, 0 I i < AT. The goal is to 

have row i of AT (i.e., column i of A) stored in PE i, 0 I i < N. 

Let B be the base address of the location that holds the row of A in a PE and let B be the 

base address of the memory segment that is allocated to hold a row of A T  in a PE. The follow- 

ing code for PE i is executed by all PEs simultaneously to generate AT. 

(Sl) f o r j = l t o M - 1 d o  

(s2) fetch the value at location B + (i + j) mod M I* A (i,i+j) */ 

(s3) transfer from PE i to PE (i + j )  mod M 

(s4) store the received value at location B + (i - j + M) mod M I* A T(i +j, i) */ 

(S5) copy the value at location B + i to B + i I* move A (i,i) to A T(i,i) */ 

In statement S2, each PE fetches the value to be sent from its rnemory location 

B + (i + j )  mod M. In S4, each PE stores the received value at location 

B + (i - j + M) mod M. When S 1 through S4 are done, only the diagonal elements remain to 

be processed, which is done in S5. This is simply a matter of copying A (i,i) to A T(i,i), which 

does not require any inter-PE transfers. Figure 17 shows the transposition process for N = M = 4 



for j = 1. The total number of matrix elements that must be transferred is M  (IM - l), because 

the M  elements in the major diagonal are not transferred. At most, M  elements can be moved in 

parallel in one transfer step. Thus, this algorithm uses M-1 transfers, which i~s the minimum 

possible given these data distributions. This technique can be directly extended for M  > N, and 

each PE storing a square submatrix of A. 

Figure 17: Matrix transpose for N = M  = 4 for j = 1. The data transferred are underlined. (a) 

Matrix A and (b) matrix A across PEs. 

6.3. Matrix-by-Matrix Multiplication 

Given an kt M  matrix A and an M M  matrix B, the product of A and B is an M  M  matrix 

C = A  B whose elements are given by 

Using the straightforward approach, the serial execution time is t, = ~ ' t ~ ~ ,  where top is the time 

required for one addition and one multiplication. 



Assume that N PEs are arranged in a logical 6 6 grid and the PEs are labeled from 

PE(0,O) to P E ( ~ - 1 ,  6 - 1 ) .  Consider two M M matrices A and B partitioned into N subma- 

trices A 'j and N submatrices B 'J, respectively, 0 l i, j < 6. Each of the submi3trices is of size 

M l& Ml f i .  Matrices A and B are superimposed onto the PE grid such that PE(i,j) has the 

submatrices A 'j and B 'j. PE(i, j )  also allocates space for the submatrix cij of the result matrix 

C. To calculate c ' ~ ,  PE(i, j )  needs the submatrices A ik and B kj for 0 k < 6. That is, PE(i, j )  

needs data from PE(i,k) and PE(k, j), for 0 k < 6. To acquire the required rubmatrices, all- 

to-all row and column broadcasts are performed by the PEs. Once the broadcasts are complete, 

PE(i, j )  will have submatrices A" and submatrices Bkj, for 0 r k < 6. An algorithm that per- 

forms parallel matrix multiplication is shown below [KuG94]. The following code for PE(i, j )  is 

executed by all PEs simultaneously. 

send A 'j to PE(i, (j+k) mod 6 /* all-to-all row broadcast */ 

send B 'j to PE((i +k) mod j )  /* all-to-all column broadcast */ 

initialize submatrix cii to all zeros 

cij =cij + A i k  x B k j  /* local multiplication of submatrices */ 

Consider the first "for" loop of the above algorithm. Each "send" takes (M21N) ttranger 

time units, where t ,der is the inter-PE transfer time for a matrix element. Hence, the time taken 

by the "for" loop is ( 6  - l ) ( ~ ~ / N ) t , , ~ ~ ~ .  The total time for the first two "for" loops is 

2 ( 6  - I)(~M~/N)~,,, . .  The final "for" loop performs the computations necessary to calcu- 

late the submatrix cij. in time  MI$;^ = ( M ~ I N ) ~ ~ ~ .  The speedup achieved with N PEs 

is: 



S = 
M top 

(M3 /N)tOp + 2 ( 6  - l ) ( ~ ~ / ~ ) t t r a + r  

More efficient, but more complex, algorithms for matrix-by-matrix multiplication can be found 

in the literature (e.g., [KuG94]). 

6.4. Matrix-by-Vector Mu1 tiplication 

Matrix-by-vector multiplication is a special case of matrix-by-matrix multip1ic:ation. Given an 

M M matrix A and an M 1 vector U, the product of A and U is an M 1 vector V = A  U 

whose elements are given by 

The straightforward serial implementation takes 0 (M 2, time. 

A parallel algorithm for matrix-by-vector multiplication is given below [KuG94]. For sim- 

plicity, assume M = N, where N is the number of PEs used. The elements of m;atrix A are distri- 

buted among the PEs such that each PE i, 0 5 i < N, is assigned row i of A. The vector U is 

stored in each PE. V (i) is computed on PE i by multiplying the row i of A that is stored in PE i 

M-1 
with the vector U, i.e., PE i computes V(i) = C A (i, j) UU), 0 5 i < M. This will require M 

multiplicati.ons and M - 1 additions per PE. Assuming that the time to perform the multiplica- 

tion is of the same order as the time to perform an addition, the resulting parallel time complex- 

ity is 0 (M). An 0 (M) speedup is attained by this parallel algorithm. This technique can be 

adapted for M > N. 



7. MAPPING ALGORITHMS ONTO PARTIONABLE MACHINES 

7.1. Introduction 

Partitionable parallel machines are parallel processing systems that can be divided into 

independent or communicating subsystems, each having the same characteristics as the original 

machine [LiM87, SiS811. The ability to form multiple independent subsystems to execute multi- 

ple tasks in parallel provides such partitionable parallel machines with the potential of achieving 

better performance. Most MIMD machines can be partitioned, either under system or user con- 

trol. A multiple-SIMD machine includes multiple CUs so that it can be partitioned into 

independent SIMD subsystems [Nut77]. The CM-2 hardware design could support this [TuR88]. 

PASM is a prototype partitionable system where each submachine can operate using 

mixed mode parallelism [SiS95]. In this section, two aspects of mapping algorithms onto parti- 

tionable parallel machines are considered: the impact of increasing the number of PEs used, and 

the impact of subtask parallelism. 

The time required to move data between the local PE memories and the system secondary 

memory (or external I/O devices) varies greatly among different configurations of parallel 

machines. Thus, for the analyses here, the simplifying assumption is made that there is not a 

significant difference in this memory transfer time due to varying the number of PEs used for a 

task. These analyses can be extended to include this memory transfer time if it is significant. 

In this section, it is instructive to consider overhead and its impact on parallel efficiency. 

Overhead operations are those that are needed for parallel execution, but not for serial execution 

(e.g., inter-PE data transfers). The parallel ejjiciency, E, of a parallel imp1emc:ntation measures 

the amount. of overhead that is incurred: 

E = 
speedup - - serial time 
# PEs (# PEs) parallel time 

That is, the efficiency is the speedup divided by the number of the PEs used to achieve this 



speedup. Obviously, efficiency could decrease if the increase in the speedup grolws more slowly 

than the increase in the number of the PEs used, i.e., improved efficiency and increased speedup 

are not mutually implied. The efficiency measure will be used in the next two subsections. 

7.2. Impact of Increasing the Number of PEs 

Increasing the number of PEs may or may not decrease the execution time. Two examples, 

image smoothing and recursive doubling, are analyzed to demonstrate the impact of increasing 

the number of PEs on performance [K.M88, SiA92cI. 

Recall from Subsection 3.3 that smoothing an M M image with N PEs using square 

subimages requires that each PE perform M ~ I N  smoothing operations and 4M I& + 4 inter-PE 

data transfers. The execution time decreases as N increases (N 5 M2) because both the number 

of smoothing operations and the number of inter-PE transfers are inversely propl~rtional to N. 

Let t,,, be the time to perform a smoothing operation and ttran$er the time to perform an 

inter-PE data transfer. The parallel efficiency for the smoothing algorithm can be approximated 

as (M - 2)2tsol(~2tso + (4M & + 4N)ttradm). As N increases, the efficiency decreases. Thus, 

increasing N reduces the total execution time, but causes the efficiency to decrease. This is 

because as N increases, the PEs spend more time executing overhead operations (i.e., inter-PE 

transfers) relative to required computations (i.e., smoothing operations). Foir example, when 

N = M ~ ,  the PEs may spend more time transferring data than smoothing. One must determine 

the metric that is important in a given situation: execution time or parallel efficicency. 

The impact of increasing N has a different effect on the recursive doubling algorithm. 

Assume that MIN numbers are stored in each PE, where M is the number of operands and N is 

the number of PEs used. Both M and N are assumed to be powers of two, M 2 IV, and ttransfer-add 

and tadd are as defined in Subsection 5.2. The total execution time is 

(M 1N)tadd + (log 2N)ttra~er -add. 

Assume that a transfer-add takes z times as long as an addition, i.e,, ttral~er-add = z tadd. 

In this case, as N increases the number of local additions decreases but the number of transfer- 



adds increases. Thus, as N increases, the execution time first decreases then increases. The 

minimum execution time is a function of z. The efficiency of the parallel recu~sive doubling is 

MI(M + Wlog2N). Thus, the parallel efficiency always decreases as N increases. 

One way to find the number of PEs that will minimize the execution time is to determine 

the partial derivative of the execution time formula with respect to N. For the recursive doubling 

example, this yields aT,,t,llaN = (-M/N~ + zl(Nln2)) t d d .  The derivative is negative for 

N < (M 1z)ln 2 and is positive for N > (M/z)ln2. Thus, as N increases from 1 to (M /z)ln2, the 

execution time decreases, and as N increases beyond (M /z)ln2, the execution time increases. Let 

N 1 be the largest value such that N 1 (M /%)In2 and let N2  be the smallest value such that 

N 2 > (M /z)ln2, where N and N2 are positive integers and are powers of two. IEither N or N 2, 

whichever gives a smaller Ttotar, is chosen as the number of the PEs to be used. 

For example, if z = 10 and M = 214, then the execution time is ( 2 l 4 / ~  + 1010g2N) t d d  

time units. Figure 18 shows the execution times as N increases. Using the above procedure, 2'' 

PEs are chosen to achieve the minimum execution time. This result impacts the concept of max- 

imizing machine utilization. Typically, one tries to make use of all the PEs available, with the 

goal of martimizing the number of concurrent operations to minimize the execution time. This 

study demonstrates that maximizing utilization (i.e., using the largest N possible) does not 

always mean minimizing execution time. It may be faster to partition the machine and use a 

subset of the PEs available. 

Thus, whether increasing N reduces overall execution time is algorithm dependent. Furth- 

ermore, increased parallel efficiency may not imply decreased execution time, and vice versa. 

Similarly, nncreased utilization of PEs may not imply decreased execution time. and vice versa. 



Figure 18: Execution time versus number of PEs (N) for M  = 214 and ,t = 10. 

7.3. Impact of Subtask Parallelism 

time units 

The effect of partitioning a parallel task into smaller, concurrent subtasks can have an impact on 

122 

performance. Consider the task of smoothing four images such that the total time to smooth all 

148 

four is minimized. One way to do this is to smooth the four images one at a time, using all N 

144 
- 
116 - 

PEs to smooth each image. Another way is to partition the task such that all four images are 

smoothed concurrently, each using N/4 PEs, as shown in Figure 19. 

118 

The time required to smooth the four M X M  images in sequence is 

4((M2/~)tS,= + (4(M/&) + 4))ttrmSfers), four times that to smooth a single image. For M = 512 

124 

and N = 1,024, this is 1,024 tso + 272 tpmger. The total time required for IY PEs to smooth 

the four images concurrently, each on N 14 PEs, is (M 'I(N /4))tso + ( 4 ( ~  /IF) + 4)trreer 

132 

(because all four images are smoothed concurrently, it is the same as the tirrre to smooth one 

image on N/4 PEs). For M = 512 and N = 1,024, this is 1,024 ts, + 132 ttrarsfer. Thus, parti- 

1 4 d  

tioning the system and exploiting subtask parallelism decreases the execution time by reducing 

the number of inter-PE transfers. 

The number of inter-PE transfers required in the partitioning approach is 4 ( M l f i )  + 4, 

whereas in the other approach, 4 (4(M/$)t4) inter-PE transfers are needed. This reduction 

in inter-PE transfers gives the partitioning approach a smaller execution time. For example, if 

M = 512 and N = 1,024, there are 132 versus 272 inter-PE transfers. Assuming that 



Figure 19: Smoothing four images concurrently on N PEs. 
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N 14 PEs 

tso = ttr,,,+,. = 1, the parallel efficiency of smoothing four 512 512 images in sequence, each 

using 1,024 PEs, is 78%, while the efficiency of smoothing all four images sin~ultaneously on a 

system partitioned into four submachines of 256 PEs each is 88%. The efficiency of smoothing 

images concurrently is improved over that of smoothing images in sequence because the larger 

subimage size (32 32 versus 16 x 16) reduces the portion of the total execution time spent on 

doing inter-PE data transfers for t o  = t = 1 (1321(32~ + 132) = 11% versus 

681(16~ + 68) = 21%). The same number of smoothing operations are performed in both 

schemes. Therefore, in this case, partitioning improves both execution time and efficiency. 

image4 

N I4 PEs 

In this section, two aspects of mapping algorithms onto partitionable machines were discussed. 

Partitioning can be used to select a subset of the PEs for the task when it is faster then using all 

of them. Partitioning can also be used to improve performance by executing multiple subtasks 

simultaneously [NaM93]. 





8. ACHIEVING SCALABILITY USING A SET OF ALGORITHMS 

A parallel algorithm is scalable if it is capable of delivering an increase in perfmnance propor- 

tional to an increase of the number of processors utilized [Wi193]. However, one algorithmic 

approach to a task may not always be able to give the best performance for various input-data 

parameters and system parameters. Scalability can be better achieved by selecting one algorithm 

or some algorithm combination from a suite of algorithms to perform the task effectively as 

these parameters vary. 

The set approach is to have a set of algorithms from which the most appropriate algorithm 

or combination of algorithms is selected based on the ratio between the data size and the target 

machine size. Parallel algorithms for computing multiple quadratic forms (MQFs) are dis- 

cussed in this section as a case study in the design of scalable algorithms [WaN94]. Implemen- 

tations of the MQF problem for various data-size/machine-size ratios were evaluated in great 

detail in [WaN94]. The goal of this section is not to discuss the details of the MQF study, but 

rather to use the results to demonstrate the importance of the set approach to achieve scalability. 

Let a steering vector (s -vector) be an r 1 vector of complex numbers and v be the total 

number of s-vectors. Define M to be an r r matrix of complex numbers and M (i, j )  to be the 

element of M in row i and column j, where 0 I i, j < r. The q-th s-vector is denoted by sq, where 

0 I q < v. Element m of the s-vector q is denoted by sq(m), where 0 I m < r. Let H denote the 

Hermitian transpose, i.e., the complex conjugate transpose of the s-vector. The MQF calculation 

can be defined as wq = S ~ M S ~ ,  where 0 5 q < v. 

One parallel implementation used to solve the MQF problem is the unco~upled method. In 

this approach, no inter-PE communication is needed. By distributing v s-vectors evenly among 

quadratic forms will be calculated in each of v mod N PEs, and 

remaining PE. Thus, the time to compute the MQFs is the same for kN < v I (k + 1)N, for k 2 1. 

Another approach used to solve the MQF problem is the coupled method, which does use 

inter-PE communications. Let PE(i, J] denote the PE in row i and column j in a m  a b logical PE 



grid, where 0 2 i < a, 0 2 j < b, and a b = N. The s-vectors are loaded into tlle PE memories 

such that an (r /a)-element subvector of the Hermitian of each s-vector, s r ,  and an (r 1b)-element 

subvector of at most vla s-vectors, sq, are stored in each PE memory. Each l?E also holds an 1 1  
(rla)  (r lb :~ portion of M. After local computations are done, summations are performed, first 

within colu~ms of PEs and later within rows of PEs, using the p-recursive doubling technique 

described in Subsection 5.5. 

An implementation of these two approaches on the nCUBE 2 MIMD machine is shown in 

Figure 20, where r = 16, N = 16, 32, and 64, with b fixed at 16, and a viirying such that 

N = a b. The execution times as a function of the number of steering vectors is shown for the 

uncoupled and coupled cases. As can be observed, the faster approach for a given N and r 

depends on v. 

The uncoupled and coupled approaches can be combined by using the unc:oupled approach 

to process [v IN] XN vectors and using the coupled approach to compute the remaining ones. 

For the nCUBE 2 implementation example of Figure 20, if v = 80 and N = 64, then 64 vectors 

could be p~:ocessed by the uncoupled method (0.0049 seconds) and 16 vectors by the coupled 

method (0.0032 seconds), for a total time of 0.0081 seconds. To process 810 vectors by the 

uncoupled method by itself takes 0.0097 seconds, and the coupled method by itself takes 0.01 

seconds. 

Another variation is to exploit subtask partitioning, as was presented in Subsection 7.3. For 

the nCUBE 2 implementation example of Figure 20, processing 80 vectors using 64 PEs on the 

nCUBE 2 with the coupled approach requires 0.0 1 seconds, but by partitioning the machine into 

four submachines of 16 PEs, each processing 20 vectors, requires only 0.0077 seconds. Whether 

partitioning is advantageous depends on the values of v, r, and N. 

In summary, choosing an optimal algorithm for the MQF problem is dependent on the 

characteristics of the input-data and the machine. By having a set of algorithms that solve the 

problem efficiently for various input-data parameters and system parameters, an algorithm (or 
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Figure 20: Execution time of the uncoupled and coupled data parallel methods for the nCUBE 

2 for r = 16 and N =16, 32 and 64. 

combined algorithm) selection methodology can be implemented. . 





9. CONCLUSIONS AND FUTURE DIRECTIONS 

In designing algorithms for large-scale parallel machines, many issues must be addressed to dev- 

ise an effective implementation. The importance of these issues cannot be overemphasized due 

to their dire.ct impact on the performance of these algorithms. This report has surveyed some 

aspects of some of these issues. For more information, readers are encouraged to see the papers 

listed in the references and books on parallel algorithms, such as [Akl89, BeT89, Cha92, Go093, 

JaG87, KrS92, KuG94, Kum9 1, LaD90, Mod88, Pit931. Some potential future research prob- 

lems in the design of data parallel algorithms are discussed below. However, the discussion is by 

no means exhaustive. 

In Section 3, the impact of data distribution on the execution time was examined. It was 

shown that the best data distribution for one network may not be the best for mother network. 

Future research is necessary to establish a methodology for determining an optimal data distribu- 

tion for a given problem-machine combination. The factors that must be considered to design 

such a methodology for guiding data distribution decisions include (a) the problem parameters, 

(b) effectively utilizing the PEs, (c) the interconnection network topology, and. (d) the inter-PE 

communication latency. The resulting methodology for data distribution should minimize the 

total overall execution time. 

A machine-dependent issue that is not addressed in this report is the communication latency 

(i.e., the time needed to move a data item needed by one PE but located in another). Because 

this impacts the overall communication cost, to reduce the execution time, it is necessary to 

develop design techniques that reduce or hide the communication latency. The communication 

latency is dependent on factors such as (a) the software and hardware overhead for formatting 

the data to be transferred and establishing the path in the network, (b) the distance from the 

source PE to destination PE in number of links, (c) the amount of communicati.on and computa- 

tion overlap possible, and (d) the message size. One way to hide the latency is to initiate the 

data transfer before the data item is actually needed by the destination PE. Incorporating this 



approach into one data parallel programming style, or having a compiler do it automatically, is 

important. 

None of the case studies used in this report involved real-time 110. One of the challenging 

areas where data parallel algorithms could be effectively applied is real-time processing, e.g., 

real-time image processing, where real-time VO operations are integrated intlo the algorithm. 

The overall goal is to minimize or to hide the I10 latency. The issues that must be considered 

include (a) quantifying the VO characteristics of the application, (b) characterizing the target 

machine, and (c) scheduling the I10 operations. 

Algorithm scalability is another key issue that must be addressed in designing an algorithm 

for massively parallel machines. Ideally, an algorithm should be designed so that it can be 

scaled to future generation machines as they become available. Section 8 illustrated how to 

achieve scalability using a set of algorithms. One algorithm or combination of algorithms is 

selected based on the ratio between the data size and the target machine size to solve a given 

problem. Given the ratio, the algorithm(s) selected should achieve the best performance. Data 

parallel algorithm designers should consider this multiple algorithm approach to scalability. 

Research is needed to develop a methodology to automatically select an algorithm or combina- 

tion of algorithms fiom a set of programs given information about the prob1e:m-sizelmachine- 

size ratio and other relevant information about the problem and the machine. 

The examples of parallel matrix operations in Section 6 cover dense matrices. A related 

area that is receiving wide attention at present is operations on very large, very sparse matrices 

[KuG94]. Sparse matrix representation schemes impact the efficiency of the solution methods. 

The best serial algorithms cannot be easily parallelized. Hence, it is necessary to develop new 

algorithms and new representation schemes for sparse matrices that would effectively make use 

of massively parallel machines. For example, much research is needed in parallel sparse matrix 

factorization. Current understanding of this area is based on empirical studies. Further research 

is necessary to theoretically analyze the parallelism and scalability of this operation. 



Exploiting concurrent execution of multiple subtasks can be important in rtducing the exe- 

cution time as demonstrated in Section 7. Given a partitionable machine and an application, a 

systematic approach is necessary to determine whether employing subtask parallelism will 

decrease the execution time [NaM93]. If subtask parallelism is to be employed, then it is neces- 

sary to determine the submachine sizes and the mapping of the subtasks onto the submachines 

that will result in the minimum execution time [ChD89]. The issues that need to be considered 

in the analysis include (a) identifying the individual subtasks, (b) determining th~e characteristics 

(computational requirements and modes of parallelism) of each subtask, (c) mapping the sub- 

tasks onto the submachines, and (d) determining the optimal sizes for the subnnachines. In the 

case of heterogeneous computing, where there are different parallel machines connected by high 

speed links, the analysis becomes even more complex (see [SiA95]). 

An application that exhibits data parallelism can be implemented either on an SIMD 

machine or on an MIMD machine using SPMD mode. It is necessary to devise a systematic 

approach to aid the programmer in selecting the best type of machine architecture for the appli- 

cation under consideration. In making the choice, the trade-offs between SIMD and MIMD 

architectures discussed in [SiA95] must be considered. Once an architecture is chosen, the algo- 

rithm for the given application should be optimized with respect to the target architecture. 

A data parallel algorithm can also be mapped onto a hybrid SIMD/MIPiclID mixed-mode 

machine (a survey of mixed-mode machines is in [SiA95]). When this is done, the programmer 

can specify which portion of the program should employ SIMD mode and which SPMD mode. 

In mapping an application onto a mixed-mode machine, two important issues that must be con- 

sidered are: (a) where to switch modes within the program, and (b) how to identify the best exe- 

cution mode (i.e., SIMD or SPMD) for each portion of the program. The use of both SIMD and 

SPMD modes to execute a single program becomes more complex when a suite of heterogene- 

ous parallel machines is considered instead of a mixed-mode machine. In this case, mode switch- 

ing implies switching between machines, which involves additional software and hardware over- 

heads (see rSiA951). 



The previous paragraph discusses using both SIMD and SPMD modes witlhin a single data 

parallel program. Mixed-mode machines and suites of heterogeneous parallel computers inter- 

connected by high-speed links also offer the possibility of combining data parallelism and con- 

trol parallelism (where each PE can follow a different program). The issues raised in the last 

paragraph can be extended to three choices: data parallelism using SIMD execu~tion, data paral- 

lelism using SPMD execution, and control parallelism using MIMD execution. Designing such 

hybrid data/control parallel algorithms is another future direction for research. 

An issue related to the data parallel algorithm design techniques is the development of an 

effective parallel programming environment [AdC94, Pan911. Such an environrnent is crucial in 

supporting the implementation of data parallel algorithms on massively parallell machines. The 

components of this environment include (a) user-friendly interfaces in both textual and graphical 

forms, (b) portable parallel programming languages, (c) compilers, (d) libraries that contains 

optimized machine-dependent data parallel algorithms, and (e) tools (e.g., parallel program 

debuggers, performance analyzers). An effective parallel programming environ~ment will reduce 

program development time, increase programmer productivity, ensure program portability, and 

improve performance. Increased programmer productivity is achieved by making use of the 

scalable libraries and tools. The portability is ensured by supporting the same parallel language 

and library functions across multiple hardware platforms. The improved performance can be 

attained by fine tuning the program using the tools and libraries provided. 

Researchers have been working for many years to develop fully automatiic techniques for 

parallelizing sequential algorithms [AdC94]. An alternative approach utilizes semi-automatic 

techniques for parallelization. The Data Parallel Meta Language (DPML) [FrPivl94] is one such 

effort. The idea is to develop a meta language to specify the communication patterns, data distri- 

bution strategies, and coordination of subtasks. The meta language provides; a model of the 

problem-machine combination to the compiler, so that the compiler can better parallelize the 

serial code. The input to the parallelizing compiler is the serial program augmented with the 

specification of the machine architecture and the problem characteristics in thle meta language. 



This meta language approach is also promising for heterogeneous computing. Further research 

is necessary to identify the information needed in a meta language and to design a meta language 

for heterogeneous computing environments. 

This report has provided an overview of data parallel algorithm design techniques. The 

case studies used to illustrate the techniques and to highlight the impact of implementation deci- 

sions were based on the message-passing distributed-memory SIMD machine model. The 

analysis can be extended to other machine models as well, such as shared address space 

distributed-memory machines and various types of MIMD machines. However, additional 

analysis must be done to map the algorithms to those models efficiently, because of the different 

architectural properties of machines (e.g., multiple instruction streams). The remapping would 

not be necessary if the techniques discussed were based on an abstract machine model that sub- 

sumes all existing models. However, such a model does not presently exist. PL future research 

problem is to develop one universal model or a small number of fundamental models that 

abstract the salient features of parallel machines and that will support machine-independent 

parallel programming. In addition, the model must provide realistic information on the relative 

costs of computation, communication, and synchronization [KoN93]. Therein lies the difficulty, 

i.e., developing a general machine-independent model that is "'precise enough' about perfor- 

mance without being 'too explicit' about the implementation details" of any machine [SiA92a]. 

The algorithm design techniques based on such a standard parallel machine model would be 

applicable to all existing parallel machine models. Thus, the design techniques for parallel algo- 

rithms could be unified. The advantages of this unified approach would include algorithm porta- 

bility, algorithm scalability, run-time migration of tasks across parallel machines, and reduction 

in algorithm development time. 

In summary, there is a great deal of activity in the field of data parallel algorithms, as evi- 

denced in the sampling of relevant references listed at the end of this report. The goal of this 

report was to provide an introduction to some of the issues germane to constmcting effective 

data parallel programs. This section has discussed a variety of areas for future research directly 



or indirectly related to data parallel algorithms. In general, the future directions for research 

relating to data parallel algorithms should lead to the mapping of applications onto parallel 

machines in ways that most effectively exploit the computing power these machines provide. In 

many cases, this may enable the performance of application tasks that would be infeasible 

without the computing power of parallel machines. Finally, when contrasting the data parallel 

approach to the control parallel approach, many researchers feel that the data parallel paradigm 

must be employed, at least within subtasks, to take advantage of massively parallel machines 

with a thousand or more processors. 
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