Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

12-1-1994

Data Parallel Algorithms

Howard Jay Siegel
Purdue University School of Electrical Engineering

Lee Wang
Purdue University School of Electrical Engineering

John John E. So
Purdue University School of Electrical Engineering

Muthucumaru Maheswaran
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Siegel, Howard Jay; Wang, Lee; So, John John E.; and Maheswaran, Muthucumaru, "Data Parallel Algorithms" (1994). ECE Technical
Reports. Paper 207.
http://docs.lib.purdue.edu/ecetr/207

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages

DATA PARALLEL ALGORITHMS

HOWARD JAY SIEGEL

LEE WANG

JOHN JOHN E. SO
MUTHUCUMARU MAHESWARAN

TR-EE 94-38
DECEMBER 1994

Data Parallel Algorithms

to appear as achapter in:
Handbook of Parallel and Distributed Computing

edited by Albert Y. Zomaya, McGraw-Hill, 1995

Howard Jay Siegel
Lee Wang
John John E. So
Muthucumaru Maheswaran

Parallel Processing Laboratory
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907-1285, USA
{ hj, lwang, johnjohn, rnaheswar) @ecn.purdue.edu

December 1994

Purdue University
School of Electrical Engineering
Technica Report TR-EE 94-38

Thisresearch vas supported by NRaD under contract number N68786-91-D-1799 and by a Fullbright Scholarship.

-11 -

Data Parallel Algorithms

Howard Jay Siegel. Lee Wang. John John E. So. and Muthucumaru Maheswaran

Purdue University
Page

Lo OVEIVIBIW ...ttt et sae st et eb sttt st ettt bbb e s st st sb et 1

2 =T 3 T= 1Y o = 3

3. Impact of Data DIStDULIONcc.ioieviieiieiirieiee ettt erere s s 7
1G5 R 1 0110 1111 o 1 "
3.2. The Serial Image Smoothing AIGOrthm..........cccooveeriiiinm e 7
3.3. Parallel Implementation Using Square SUDIMEgES...........cocvveviricrmmiiinecrnriimiiininc i 8
34. Paralel Implementation Using the Horizontal (Row) Stripe Method.........ccueevienennen. 11
3.5. Impact of a Specific Interconnection Network on EXecution TIME........cceeeveeveeerrersens 14
3.6, SUMMAIY teerssesssmssnmsnisnisnissnisnssss s a R 20...

4. CU/PE OVENaD ccriirismimimimimimnimsssssssssssssssss s sssssssss s sms s s s 21.

5. Parallel ReAUCION OPEraLiONS........ccccierierirrerieirieeiereneertnertesesresesseesesressencesesessessaesssnsssesaenns 27
5.1 INEFOAUCLION.......veveeereierreree sttt e s sesenesere e re st tsaa s s e bs s nasbensrsnsssnsnes 27
5.2. A Single Reduction Operation on aSingle Set of Data......cccocevrveerrierrsseersseessssensans 27
5.3. Multiple Reduction Operationson aSingle Set of Data.....ccooeveersersserssrsssessenssensannns 29
5.4. A Single Reduction Operation on Multiple SetS of Data......ousssrsserssssssssssssssssssssnnsas 32
5.5. A Generalized Form of Reduction Operations................coceveevvereeeeniemrninreneesnneesneennan 34
5.6. Parallel PrefiX.........cooioiviiiiiiiiiiiiernie et eiens et ee s sissasnsies s 37
5.7, SUMIMAIY tiesueisssrerssesssssmmssnessseisssmnsnessssiss s ss s e s s s s sssasessnessnssssansnssnensnn 38.

-1v -

8.1, INErOUUCLION.c.eeeeeueereaeererenaeacenrnsesresesressassssseseseassssessesaasassessssesnsssssessessassersossnssssensenseres 39
6.2. MAiX TraNGDOSiON.cceteeuieeernrirtrreencrteteesintecsseensstessesesensesstssroneasansessssssassseseessssassessases 39
6.3. Matrix-by-MatriX MUItIPIHCALION «.cveueereenieieeeccceeecenieeceeateie e saesee s ecs s e et avensssennas 40
6.4. Matrix-by-Vector MUItipliCation.......co e stisesteresaesesaas 42
7. Mapping Algorithmsonto Partionable M achingS.....c.ceeeccoeeeerercerrremricermeseessessneseenneeeesens 43
70 OO 1100 L1 4T 43
7.2. Impact of Increasing the NUMbDEr Of PES....cocuuimremmmnmsmssnessssssssssssssssssssssssssesasses 44
7.3. Impact of Subtask Parall&lism ... 46.
TS ¥ 101012 4z..
8. Achieving Scalability Using a Set of Algorithms...unssnm, A9

9. CoNClUSIONS AN FULUIE DIl ECLIONS...ceiiereeeeeerirneerricsereresrerassssssssesesssnsssassssarsessssssnsansssssnrasass 53

Abstract

Data parallelism isamodel of paralel computing in which the same set of instructionsis applied
to al the elementsin adata set. A sampling of data parallel algorithmsis presented. The exam-
ples are certainly not exhaustive, but address many issues involved in designing data parallel
algorithms. Case studies are used to illustrate some algorithm design techniques; and to highlight
some implementation decisions that influence the overall performance of a parallel algorithm. It
isshown that the characteristics of a particular parallel machine to be used need to be considered

in transforming a given task into a parallel algorithm that executeseffectively.

-vi -

DATA PARALLEL ALGORITHMS

Howard Jay Siegel, Lee Wang, John John E. So, and Muthucumaru Maheswaran
Purdue University

1. OVERVIEW

As the size, hardware complexity, and programming diversity of parallel systems continue to
evolve, the range of alternatives for implementing a task on these systems grows. Choosing a
parallel algorithm and implementation becomes an important decision, and the choice has a
significant impact on the execution time of the application.

Data parallelism is a model of paralel computing in which the same set of instructions is
applied to all the elements in a data set [Mas91, Wil93]. A sampling of data parallel algorithms
is presented. The examples are certainly not exhaustive, but address many issues involved in
designing data parallel algorithms. Case studies are used to illustrate some algorithm design
techniques and to highlight some implementation decisions that influence the overall perfor-
mance of a paralel algorithm. It is shown that the characteristics of a particular parallel
machine to be used need to be considered in transforming a given task into a parallel algorithm
that executes effectively.

This report focuses on algorithm design techniques for mapping data parallel agorithms

onto large scale (i.e., 2 to 216

processors) distributed memory parallel machines. The SMD
(single instruction stream — multiple data stream) model of parallelism is used to demonstrate
the techniques presented; however, the methods can be used with the MIMD (multiple instruc-

tion stream — multiple data stream), the SPMD (single program — multiple data stream, which is

Thisresearch was supported by NRaD under contract number N68786-91-D-1799and by aFulbright Scholarship.

-2

asubclass of MIMD), and the mixed-mode (hybrid SIMD/MIMD) models of parallelism as well.

Data parallel programs typically exhibit a high degree of uniformity (operations to be per-
formed are uniform across the data set) and are often well suited to the SIMD model because
only a single instruction stream is necessary [BeS91, Jam87]. Implementing these applications
on SIMD machines is often more cost effective than solving them using MIMD machines
[HiS86]. Among the advantages of the SIMD mode of paralelism that can 'be exploited are
implicit synchronization that allows more efficient inter-processor communication, the ability to
overlap scalar operations on the control unit with the operations on the processing elements, and
the need for only one program [BeS91, SiA92c]. Mixed-mode processing and the trade-offs
between the SIMD and MIMD modes of parallelism are discussed further in [S1A95].

In Section 2, the SIMD machine model used in this report and other machine models are
discussed. The choices for data distribution among the processing elements are explored in Sec-
tion 3. The effect of the data distribution on execution time is demonstrated using an image
smoothing algorithm. In addition, the impact of the interconnection network topology on the
number of data transfers required to perform the computations is also studied. It is shown that
the optimum data distribution is dependent on the architecture of the machine in use and the
application to be implemented in parallel. Section 4 examines overlapping the operations of the
control unit and the processing elements and uses an image correlation algorithm to illustrate
how this overlap can be optimized.

Section 5 discusses parallel reduction operations. A sampling of matrix and vector opera-
tions is covered in Section 6. Parale implementations of matrix transpose, matrix-by-matrix
multiplication, and matrix-by-vector multiplication are presented. In Section 7, the effect on
execution time of increasing the number of processors used (scalability of the algorithm) and the
impact of partitioning the system for subtask parallelism are explored. It isshown that increasing
the number of processors used does not always yield a decrease in execution tirne or an increase
in system efficiency. In Section 8, the computation of multiple quadratic forms is used as an

illustrative example on how scalability can be achieved using a suite of algorithms.

2. MACHINE MODEL

As stated previoudly, the data parallel algorithm studies will be based on the SIMD machine
model [Fly66], and most of the results will also be applicable to the SPMD model on MIMD
machines and to both models on mixed-mode systems. In the SIMD model, only a single
sequence of instructions is present, but each instruction is executed simultaneously in an arbi-
trary set of processors, with each processor operating on its own data. Typically, an SIMD
machine consists of N processors, N memory modules, a CU (control unit), and an interconnec-
tion network. Each processors is paired with a memory module to form a PE (processing ele-
ment). The CU broadcasts instructions in sequence to the PEs and al enabled PEs execute the
same instruction at the same time. Thus, there is a single instruction stream. Each enabled PE
executes the instructions on the data in its own associated memory module, resulting in multiple
data streams. The interconnection network allows communication among the PEs [Sie90].
Examples of SIMD systems that have been built include the Thinking Machines CM-2 [Hil85],
DAP [Hun89], llliac 1V [BaB68], MasPar MP-1 [Bl1a90] and MP-2, MPP [Bat80], and STARAN
[Bat74, Bat77].

Figure 1 shows the SIMD machine model used in thisreport. Thismodel isreferred to asa
PE-to —PE configuration [Sie90] or physically distributed memory organization. There are
N =2" PEs and the PEs are numbered from 0 to N — 1. The PE’s memory isonly used to store
data, not instructions.

The CU is made up of a processor, a memory, and an instruction broadcast queue. The CU
fetches and decodes the program instructions from its own memory. Only one program exists, a
portion of which isto be executed on the CU and the other portion of which isto be executed on
the PEs. Typically, the CU executes the control flow instructions, e.g., loop indexing, and
broadcasts the data processing instructions to the PEs. The disabled PEs must remain idle while

the instruction that was broadcast from the CU isexecuted in enabled PEs.

control unit
PEO | PE 1 | PE2 | PEN-1 N
proc. 0 proc. 1 proc. 2 proc. N -1
l | | e |
mem. 0 mem. 1 mem. 2 mem. N-1

interconnection network

Figure 1: Digtributed memory model of an SSIMD machine.

As an example, consider the execution of the if-then-else construct, where the if-
conditional involvesdata loca to each PE. First, the enable status o the PEs prior to the execu-
tion of theif-then-elsecongtruct is saved. All disabled PEs will remain disabled during the exe-
cution of the if-then-elseconstruct. An enabled PE is kept enabled for the "*then’* clauseif the
result of the if-conditional test is truefor the PE. Otherwise, it isdisabled for the **then™ clause.
Then the ingtructions of the "*then'* clause are broadcast from the CU and executed by the
enabled PEs. Next, the PEs that were enabled for the *"then’* clause are disabled and the PEs
enabled prior to the if-then-else construct, but disabled for the **then'* clause, are enabled for the
"ele" clause. The CU broadcasts the instructions of the **else™ clause and the enabled PEs
execute these instructions. At theend o the if-then-else construct, the previoudy saved enable
status isrestored, i.e., each PE returns to the enable state it was in before the execution o the if-
then-else construct.

The CU broadcasts a single stream of instructions from the instruction broadcast queue to
the PEs in the computational engine. It will not issue the next instruction until all the enabled

PEs have completed executing the current instruction, thereby implicitly synchronizing the PEs

-5-

at instruction-level granularity. Once the CU processor determines the instructions that should
be placed in the queue, it may proceed with its own execution while the queued. instructions are
broadcast to the PEs. This concurrent CU and PE execution is called CU/PE overlap [KiN91,
SiS95], which isdiscussed in Section 4.

Recall that most methods discussed in this report can aso be adopted for SPMD operation
on existing MIMD machines (e.g., Thinking Machines CM-5 [HiT93], nCUBE 2 [HaM89], Intel
Paragon, and Cray T3D) and mixed-mode systems (e.g., OPSILA [DuB88], PASM [SiS95], and
Triton/1 [PhW93]). In contrast to the SIMD machine model, the MIMD machine model [Fly66]
does not have a CU, but consists of N independent PEs. The PEs are connected to one another
via an interconnection network, asin the SIMD case. The PE memory stores the program in
addition to the data. Each PE executes its own instruction stream, and all PEs operate asynchro-
nously with respect to one another. Any synchronization among PEs needed has to be explicitly
specified in the program. The SPMD model is a subclass of the MIMD model [DaG88]. In the
SPMD model, all PEs execute the same program asynchronously. Each of the PEs takesits own
control path during the course of the execution. In a mixed-mode system [FiC91], the PEs can
switch between the SIMD and the MIMD modes of parallelism at instruction-level granularity

There is a great variety of interconnection networks that can be used in parallel machines
(e.g., see [NaS93, Sie90, VaR94]). Considering the impact of network selection on each algo-
rithm described is beyond the scope of this report. Therefore, unless otherwise specified, a net-
work that efficiently supports the inter-PE communications needed is assumed for each algo-
rithm. Furthermore, unless otherwise specified, inter-PE communication will be measured in
number of data words sent; other metrics, not considered here, include number of distinct net-
work path establishments and size of the dataitems transferred. An example of the impact of the

network selected isincluded in Section 3 to introduce theissuesinvolved.

3 IMPACT OFDATA DISTRIBUTION
31 Introduction

One issue that must be addressed in designing data parallel algorithms is how data should be
mapped across the PEs. If the mapping of the data across the PEs is optimized,,it is possible to
gain significant performanceimprovements for a particular algorithm [BIN92].

One class of problems that exhibit data parallelism are window-based tasks. Examples of
these tasks include image correlation [ArN91, SiS82], image smoothing [SiA92¢, SiS81], and
range image segmentation [GiW92]. This section demonstrates the impact of data distribution
across the PEs on the computation time and the communication time for a given algorithm.
Image smoothing is used as a representative of window-based algorithms to illustrate how vary-

ing the mapping across the PEs can affect the execution time.
32 The Serial Image Smoothing Algorithm

Smoothing is a procedure applied to an image to reduce noise. An M *M image A is stored in
memory as a two-dimensional array (matrix) where each element, called a picture element, or
pixel, isan integer whose value represents the gray-level intensity of the corresponding point in
the discretized image. For each non-edge pixel (i,j) in A, a3* 3window centered at (i,j) isused
to generate the corresponding pixel in the M *M smoothed image A. A serial algorithm to

accomplish thisis:

fori=1toM-2do
forj=1to M-2do
A GH=[AG-1Lj-D+AG-D)+AG+1L,j-D+AG-1,)+AGHT
AG+Lj)+A G-1Lj+1)+A (i,j+1)+A (+1,j+1)]/9

In the case of an edge pixel, no calculation is performed and the pixel itself is taken to be the

smoothed value. Because there are 4M - 4 edge pixels in the M xM image A, the serial time

-8-

complexity is the time to execute M2 - (4M -4)=0(M?) smoothing operations. For

M = 4,096, thisis 16,760,836 smoothing operations, (approximately M?).
3.3. Parallel Implementation Using Square Subimages

In thisreport, it is assumed that when implementing an algorithm on a parallel machine, the goal
is to minimize the execution time. Factors that, in general, help to do this include decreasing
inter-PE communications and balancing the workload among the PEs so that as many PEs as
possible are concurrently executing the algorithm.

Assume N PEs are logically arranged as a N x W grid. TheM xM image A is mapped
onto the PEs by superimposing the image onto the PE grid. Thus, eadh PE stores an
M /\/IV) *x (M /\/17) square subimage, as shown in Figure 2(a). Therefore, each PE performs up
to M2/N smoothing operations. All PEs smooth their subimages simultaneously, i.e., at most N
smoothing operations can be performed concurrently at each step, one in each PE.

To smooth the pixels at the edge of a subimage, pixels from spatially adjacent subimages
must be transferred, as shown in Figure 2(b). PE i requires at most M/\/]V pixels from each of
the four PEs directly adjacent to it and one pixel from each of the four PEs diagonally adjacent
to it. Thus, at most, 4M /\/A_/ + 4 inter-PE data transfers are required per PE to smooth the entire
image A. Just as the PEs can all smooth simultaneously, all N PEs can transfer data simultane-
ously (recall from Section 2 that an appropriate network is assumed to support this). The time
complexity of the parallel algorithm when operating onanM xM image A with N PEs is the sum
of M2/N smoothing operations and 4M /AN + 4 inter-PE data transfers (where up to N smooth-
ing operations or up to N data transfers can occur concurrently). Assuming that the time to per-
form one transfer is equal to t times the time to perform one smoothing operation, the speedup,

S of the parallel version over that of the serial version of the algorithm isdefined as:

MINN

PEO PE1- - - ixel
PE W WNPEs 1pixd | o0 1pixd
PE \/IV : J\,L /
. MINN MINN
M AN PEQ pixels — pgj = pixels
pixels pixels \\ ﬂ
7| N
Ag{,;/{sv 1 pixd — 1+ pixel
PEN_'\/]V_l « « PEN-.. pixels
\IIVPES
(a) (b)

Figure 2 (@) Data allocation and (b) pixel transfers for image smoothing using square

subimages.

_ serid timecomplexity (M-2)?
parallel time complexity M—2+'C ﬂ+4
N W

For example, if M =4,096 and N = 256, the number of inter-PE data transfersrequired is 1,028
and 65,536 smoothing operations are performed. If =1, the speedup is 40942/66,564 = 252.
(The value of t is machine architecture dependent and could be less than, equal to, or greater
than 1.)

In the above speedup calculation, the complexities are computed by only counting the
smoothing operations and the inter-PE data transfers. It is assumed that the uni-processor
machine that executes the serial algorithm and each processor in the parallel machine are of
equivalent computing power. Theoretically, the maximum possible speedup is N. This is

achieved when the total workload is equally distributed among the PEs, no overhead (e.g. no

-10 -

inter-PE data transfers) is incurred, and all PEs are always active during the execution. If the
time to perform an inter-PE data transfer becomes much less than the time to perform a smooth-
ing operation, which is the case, for example when using the Xnet in the MasPar MP-1 [B1a90],
the speedup will be closer to N. The speedup will never equal N even if inter-PE communication
Isignored because the PEs containing the edge pixelsof theM xM imageA will be disabled for
some smoothing operations and are therefore underutilized for some steps of the algorithm. This
demonstrates that inter-PE data transfers and naski ng, i.e., disabling some PEs for some opera-
tions, result in aless than perfect speedup [SiA92c].

Consider the number of inter-PE data transfers required per PE. Instead of using square
subimages, suppose the M2/N pixelsare mapped to each PE such that the subimage in a PE hasr
pixels per row and ¢ pixels per column, where r¢ = M2/N. To minimize the number of inter-PE
data transfers per PE, whichis 2r +2¢ + 4, replace r with M2/(cN)) and minimize the expression

with respect to c:

2M?
cN

d _d
%(Zr +2c+4)= e

+2c+4]=0

Thisyieldsc = M/\/IV, subject to the constraint that C is an integer. It follows that r = M/\/ﬁ.
Thus, r =c, i.e., each PE should contain a square subimage [SiS82]. For example, if M = 4,096
and N =256, each PE is assigned M?/N = (4,096)2/256 = 65,536 pixels. If the pixels are
mapped to each PE as a 256 x 256 (r = ¢ = 256) square subirnage, the number of inter-PE data
transfers needed is 4 x 256 + 4 = 1,028. If instead the 65,536 pixels are mapped to each PE as a
64x1,024 (r =64, c =1,024 or r = 1,024, ¢ = 64) rectangular subimage, the number of inter-
PE data transfersneeded is 2% 1,024+ 2x 64+ 4= 2,176.

-11-
34. Paradlel Implementation Using the Horizontal (Row) Stripe Method

In the preceding subsection, it is shown that the way data is distributed across the PEs dictates
the number of inter-PE data transfers required. An aternative method of mapping data among
the PEs is based on distributing consecutive rows of data, as opposed to square subimages, to the
PEs. This approach results in a decreased number of calculations performed per PE compared to
using square subirnages.

Recall that in the image smoothing algorithm, the border (edge) pixels of image A do not
require any smoothing operations. In general, for some window-based image processing tasks
these border pixels may play an important role in the selection of the data distribution method.
The horizontal stripe method allows window-based algorithms to take advantage of the fact that
no calculations need to be performed on the column border pixels by distributing the column
border pixels evenly among all the PEs, thereby decreasing the total number of :requiredcalcula
tions [GiW92]. The square subimage method does not take advantage of this fact because the
border pixels are distributed unevenly among the PEs; some PEs will not get any border pixels
and consequently must perform the maximum number of smoothing operations (M 2/N). These
PEs dictate the time required to perform the necessary computations to finish the: task.

Using the same image smoothing algorithm discussed in the previous subsection, theM x M
image A isdivided into N rectangular (MIN) M subimages, whereM 2 N, as shown in Figure 3.
Each PE storesM /N rows by M columns of pixel data. The number of pixelsassigned to each PE
remains unchanged (still equal to M2/N). However, PE i will now require a total of 2M pixels
fromits two neighboring PEs; M pixelswill be required from PE i —1 and anotlher M pixels will
be required from PE i +1. Recall that it isalways assumed that all N PEs can transfer data simul-

taneously. The number of inter-PE transfersincreases, for N > 4, relative to the square subimage
method discussed in previous subsection (from 4M AN +4 to 2M). However, for the stripe
method, the border pixels located on the left side and the right side of the image are uniformly

distributed among all the PEs. Because calculations on these column border pixels are not

-12 -

performed, once the inter-PE data transfersare complete, each PE will perform a total of at most

(MIN) > (M -2) smoothing operations. Thus, each PE avoids smoothing at least 2M IN image

edge pixels when using the horizontal stripe method compared with using square subimages.

M pixes
— M pixds
M /Npixels PEO
_— U
M /N pixels PE 1 PE 1
— 0
M pixels
M [Npixels { PEN -1
(a) (b)

Figure 3: (a) Data alocation and (b) pixel transfersfor image smoothing using the horizontal
stripe method.

Comparing the two schemes, the sguare distribution scheme requires fewer inter-PE
transfers but more smoothing operations. Although the horizontal stripe method requires more
transfers, it has the potential of decreasing the execution time due to the reduced number of
smoothing operations resulting from not processing the column border pixels. For image
smoothing, the square subimage method, as shown in Subsection 3.3, may be best, but for other
window-based image processing algorithms, e.g., range image segmentation, it may be outper-
formed by the horizontal strip method [GiW92].

The results derived so far in this subsection used a 3* 3 window. The derivations can be
generalized for aw xw window, with more complex operations being performed on the set of

data values within the window. For a task with aw *w window, the square subimage method

-13 -

performs M2/N operations and the horizontal stripe method performs (M2/N)-2 [w/2J (MIN)

operations, where [XJ is the floor of X, i.e., the greatest integer less than or equal to X. In the
— 2

case of the sguare subimage method, each PE must transfer 4 [w/ZJ x(M /\A'V) + 4 [w/2J)

data elements. In the horizontal stripe method, 2 |_w/2J M data elements are transferred per PE.

As the window size w increases, the number of operations required by the horizontal stripe

method decreases. The time complexity of an operation increases as O (w?). The number of
operations performed by the horizontal strip method is AT,, =2 LW/ZJ (MIN) less than that of
the square subimage method. But the number of inter-PE transfers performed by the square
subimage is ATy gngper =2 lw/2JM -4 lw /2J (M /\5/-) =4 |.w /2J)2 less than that of the horizon-
tal stripe method. If the computation time per operation is greater than or equa to

[ATxmmfer/ATso-! * the transfer time per data item, where [xl isthe ceiling of X, i.., the smal-

lest integer greater than or equal to x, then the horizontal stripe method i s better. For example, if
w=21, M =4,096, and N = 256, then AT,, = 320 and AT}, =71,280. If the computation

time per operation equals [7 1,280/320-| =223* transfer time, then the horizontal stripe method

is better. For a task such as image correlation, where each operation involves more than
w2 = 441 multiplications and additions, this could be the case (it is machine architecture depen-
dent).

Thus, for window-based tasks, distribution of the image across PEs should not always be
done by using sguare subimages. The subimage window size and the task to be performed have
to be considered when deciding which data distribution scheme to use. In general, the horizontal
stripe method may result in a decreased execution time whenever calculations on the column
border pixels are not needed and inter-PE transfers are relatively fast compared to calculations
needed for each pixel position.

-14 -

35. Impact of a Specific Interconnection Network on Execution Time

I nterconnection Networks Considered

The impact of a particular interconnection network on the time complexity of the parallel algo-
rithm for a particular application is discussed next. The same data distribution across the PEs is
used to compare the performance of an algorithm on two parallel machines wiith topologically
distinct interconnection networks [SiA92b].

Consider two hypothetical parallel processing systems where the only difference between
the two systems is the topological structureof their interconnection networks: one is a mesh with
no wrap-around connections from one edge to another, and the other is a ring (Figure 4). All
other system parameters are assumed identical, including the number of PEs, the computing and
communication hardware, the operating system, the language, the communication protocols, and
the link bandwidth. Both networks have N PEs labeled from 0 to N—1. In the mesh topology, PE
i isdirectly connected to PEs i—1, i +1, i+\fﬁ, and i—\/ﬁ. In the ring topology, PE i only has
direct connections to PEs i —1 and i +1. For both networks, all PEs can send data simultaneously
in the same direction.

To illustrate the impact of different interconnection network topologies while holding all
other factors identical, the same SIMD image smoothing algorithm is executed on both systems.
The two distribution methods described in Subsections 3.3 and 3.4 are used to compare the two

architectures.

Mesh versus Ring Using Square Subimages

First consider the system with a mesh interconnection network. Figure 2 depicts how pixels
from an M xM image are mapped onto a N x VN mesh of PEs as sguare subimages. Pixels
from N subimages of size (M /\/17) x(M /\/IV) are mapped onto PEs so that adjacent subimages
are mapped. to adjacent PEs in the mesh. Asdiscussed earlier, each PE performs at most M2/N

smoothing operations and 4M /\/IV +4 inter-PE data transfers. Figure 5(a) illustrates the

-15 -

i-1-\N| NN i+1-\M

-1 i i+1 i-1 i i+1

i—1+\/ﬁ i+\/17 i+1+%;

(a) (b)

Figure 4: Connection patternsfor PE i for (a) the mesh and (b) the ring topologies.

required data transfers for PE 6 for N = 16.
Next, consider a system with aring interconnection network. It is assumed that the image
is distributed among the PEs as square subimages in the same way as described above for the

mesh. For the genera problem of smoothing M x M images using N PEs, it is shown below that

atotal of 2M\N +2M + 4 inter-PE data transfers are required for the ring. Figure 5(b) is an
example showing the required data transfersfor PE 6 for N =16. This example will be used in

thefollowing general description.

The M/NN pixels aong the right vertical boundary of each subimage must be transferred
from PE i-1 to PE i (e.g., 5to 6). This requires M/\/IV inter-PE data transfers. Likewise,
transferring the M NN pixels from the left vertical subimage boundary from PE i+| to PE i
(e.g., 7t0 6) also requires M /NN inter-PE data transfers. To transfer the M /\/IV pixels aong the
upper horizontal subimage boundary from PE i N to PE i (e.g., 2 to 6) requires
K (M NN)=M inter-PE data transfers because PE i N and PE i are separated by W

-16 -

o

3
14 13 12 1—1 9\ g
1|0 1}1 \(\‘

(@) (b)

—
W

Figure 5 The required data transfersto PE 6 for (a) the mesh and (b) the ring topologiesfor
N =16.

links. Likewise, to transfer the M NN pixels aong the lower horizontal subimage boundary
from PE i+WN to PE | (e.g., 10 to 6) requiresM inter-PE data transfers. Next consider sending
the corner pixels needed by PE i. Pixels from the diagonally adjacent PEs can be sent through
intermediate PEs. The required pixels from PEs i—\VN+1 (e.g-, 3) and i+VN+1 (e.g., 11) have
already been transferred to PE i +1 (e.g., 7), S0 only two transfersare needed to move these pix-
elsto PE i. The casefor the pixelsfrom the upper and lower left diagonal PEs issimilar. Thus,
the total number of inter-PE data transfersfor the ring is 2M /AN +2M +4. For N > 1, thisis
greater than the number of required inter-PE data transfersfor the mesh, given by 4(M/ N)t 4.

For example, if M =4,096 and N = 256, the number of inter-PE transfersfor the mesh is 1,028
and for thering it is8,708.

-17 -

Mesh versus Ring Using the Horizontal Stripe Method

Instead of using square subimages, consider the horizontal stripe method. A mapping of pixel
valuesfrom the N rectangular (M IN)> M subimagesonto the ring topology is shown in Figure 6.
Pixel values along the horizontal boundaries of the rectangular subimages are transferred to the
neighboring PEs, which requires a total of 2M inter-PE data transfersfor the ring topology; M
pixels are transferred from PE -1 to PE i and M pixels are transferred from PE i +1 to PE i.
Thus, the total number of inter-PE data transfersis reduced from 2M /\/1_\/_ +2M + 4 using square

subimagesto 2M using the horizontal stripe method for the ring network.

M pixels
AL

MIN pixels{ PI%: 0

1
PE1
|

M pixes

- -
- T

|
PE 1\{ -1
U/
2M transfers

Figure 6. Mapping (MIN)xM subimages onto the PEs of the ring, showing the directions of

transfers.

For the mesh network with no wrap-around connections between edges, if the horizontal
stripe method is used, a total of 2M (\/17 + 1) inter-PE data transfers are required as demon-
strated in Figure 7. For any PE i that is not on the right vertical edge of the N PE mesh, M
transfers are needed to transfer pixelsfrom PE i to PE i+1. For any PE i that is not on the |eft

vertical edge of the N PE mesh, another M transfers are required to transfer pixels from PE i to

-18 -

PE i—1. These horizontal transfers are shown in Figure 7(a). In addition, M pixels have to be
transferred from PE { % \/17— lto PE; x \/17, 1<i< \/17—1. This will require *Nx M transfers
because the source PE is YN links away from the destination PE. Similarly, PE i * \/17 will send
M pixelsto PE i x \/17— 1,1<i< \117—1. Thiswill aso require\/IVx M inter-PE data transfers.
These transfers between PEs on the left and right vertical edges are depicted. in Figure 7(b).
Thus, the number of inter-PE transfers for the mesh network when using the horizontal stripe
method is A +M +MAN + MV =2M (VN +1). This is much greater than that required for
the ring network when using the same method for data distribution. For example, if for
M =4,096 and N = 256, the number of inter-PE transfersfor thering is 8,192 and for the mesh it

1$139,264. In thiscase, the ring outperformsthe mesh.

is - 0]1]2]3

0 _1%:2 3 _ 2

4;:5#6::7 451607

= T

8 =910 11 8~ T 9 110 11

oz o

123 1 14#15 12113 141 15
(a) (b)

Figure 7. Mapping (MIN)*N subimages onto the PEs of the mesh with the directions of

transfers shown; (a) 2M transfers, (b) 2(\/IV M) transfers.

Best Case Comparison

Based on the above analyses, in terms of the number of inter-PE data transfers, the square

subimage data distribution is best for the mesh network, the horizontal stripe method is best for

-19-

the ring network, and the best mesh approach is better than the best ring approach. However,
recall from Subsection 3.4, the horizontal stripe method can also avoid processing the column
border pixels, reducing the calculations performed by each PE. Aswas discussed in that subsec-
tion, consider a w *w window and a window-based image processing task more complex than
smoothing. The comparison between the best mesh and best ring cases is the same as the com-
parison between the square subimage and horizontal stripe methods in that subsection. Thus,
depending on the window size and the image processing task, the ring may be better than the
mesh (as well as less expensive to implement).

Another aspect of the interaction of the algorithm, data distribution, and interconnection
network is the number of distinct network settings (i.e., path changes). In certain types of net-
work implementations, the number of network settings used can impact performance (even for a
fixed total number of data items to be transferred). In many network implementations, due to
software and/or hardware overhead, establishing the path for transmitting data is a significant
portion of the transfer time, and is independent of the number of words to be transferred using
that setting. Thus, it may beimportant to minimize the number of network settings used.

Consider image smoothing with 3> 3 windows and the horizontal stripe rnethod of Figure
6. PE i stores rows i xMIN to(i T 1)*MIN -1 of the image. In general, it receives row
| xMIN -1 from PEi —1, and row(i *1)xM IN from PE i +1. PE i smootlhes the pixelsin
rows i xM/N to(i +1)xMIN -1 of theimage. Instead of using these two network settings, a
single setting can be used by only sending rows(i +1)xMIN and(i +1)xM/N *1 from PE
i+ 1toPEi. Inthiscase, PE i smoothes rowsi xMIN +1toi *1)*MIN of theimage. With
this approach, the number of dataitems transferred is still 2M and the maximum number of pix-
els smoothed in any PE is still M2/N. Thiscan be generalized for w *xw windows. Also, this
approach can be applied to square subimages, reducing the number of network settings from four

to two.

=20 -
3.6. Summary

As has been shown, the way in which data are distributed among the PEs may influence both the
number of inter-PE transfers needed and the number of computations to be performed. Con-
versely, the topology of the inter-PE network of the machine may influence which data distribu-
tion is best. Interestingly, even if the problem domain is limited to window-based image pro-
cessing tasks, no onedata distribution is best for all window sizes and image operations. Thus, it

isimportant to carefully analyze all of thesefactors to find the best data distribution.

-21-
4. CU/PE OVERLAP

In this section, the impact of CU/PE overlap on execution timein SIMD mode isexamined. The
CU CPU initiates parallel computations by sending blocks of SIMD code to the CU instruction
broadcast queue. Oncein the queue, each SIMD instruction is broadcast to al the PEs while the
CU CPU can be performing its own computations. This property is called CU/PE overlap
[ArN91, BeS91, KiN91]. CUPE overlap can improve the overall performance of a program
because CU execution and PE execution can occur concurrently. This aspect of data parallel
algorithms is the only one discussed in this report that is not directly applicable to MIMD
machines.

Image correlation [ArN91, SiS82] is used to examine the effects of CUPE overlap.
Image correlation involves determining the position at which an image template best matches a
portion of an input image. Let x denote an r xc template array, let A be an R x C input image
array, and let y be an r x¢ portion of A. Also, let a given image coordinate be (row, col) such
thaa0<row <R -r)and0<col<(C-c),andlety(i,j)=A (row+i, col+j) for al coordinates
(i,j) where 0<i < rand 0 < j < ¢. The coefficient d determination, D2, is computed to deter-
mine the quality of fit of the template to the overlapped data of the input image. One part of this
calculation is to compute ¥ Y x (i, j)y (i, j) for each possible match position for 0 <i < r and
0<j<e.

CUPE overlap is an analytical quantity that can be maximized. Consider the above com-
putation. Two possible approaches to compute this two-dimensional summation are given in C-
like notation in Figures 8 and 9 (based on [ArN91]). Assumethat the instruction broadcast queue
isempty when the CU starts execution of either code segment and that the queue is large enough
such that it never overflowsduring execution. For simplicity, it is assumed that the match posi-
tion is(0,0) and the size of the template never exceedsthat of the subimage. The image data are
distributed among the PEs by segmenting the input image into rectangular subimages, each of

which hasthe size R' xC' The template and subimage arrays are represented as one-dimensional

-2

arrays temp[] and subimagel], respectively. The scalar variable xysum accumulates the desired
sum.

The same task is performed by both code segments, but the workload is distributed dif-
ferently between the CU and the PEs. The first approach, shown in Figure 8, overworks the PEs
by performing al the array indexing calculations on the PEs; whereas the second approach,
shown in Figure 9, overworksthe CU by letting the CU perform all the array indexing calcula-
tions. The numbers along the left and right sides of each figure provide approximate statement
execution times in microseconds for the CU and for the PEs, respectively, as :measured on the

PASM prototype.

14 for (i=0i<ni++) {/*4,8,6%*/

17 snd-short(&i,i); /* sendi (8 bits) from CU to PEs */ 8
14 for(j=0;j<cijH+) { /*4,8,6%
17 send-short(&j,j); /* send j (8 bits) from CU to PEs */ 8
6 smdbegin /* load PE instruction block into queue */
Xysum += temp[c % i + j] * subimage[C’ > * j]; 90
smdend

Figure8: Code segment overworking the PEs.

The time complexities can be determined by examing the code segments. For the "*for"*
statements,,the time to initialize the loop-control variable is 4, the time to test the end-of-loop
condition is 8, and the time to increment the loop-control variableis6. For the approach shown
in Figure 8, the time complexities of the CU ad the PEs are

Téy=r>x(14+11)+@+8)+rx(c x(14+ 17+ 6)+ (4 +8)) =3Trc +43r + 12 and

-23 -

thase= temp[]; /* initializetemplate pointer */ o
ibase = subimage(]; /* initidize subimage pointer */
T /*4,8,6%
14 for(i=0;i<ri++) { _ _
32 tptr = thase + ¢ xi— 1; /* increment templaterow pointer */
32 iptr=ibase + C" i — 1; /* increment subimage row pointer */
14 for(j=0;j<c;j++) { /*4,8,6%
10 tptr +=1; /* increment templ ate.column pointer */
10 iptr+=1; /* increment subimage column pointer */
17 send_int(&ptr, tptr); /* send template pointer (16 bits) from CUto PEs */ 8
17 send_int(&iptr, iptr); /* send subimage pointer (16 bits) from CU toPEs */ 8
6 simdbegin /* load PE instruction block into queue */
Xysum += (*tptr) * (*iptr); 34
simdend

Figure9 Code segment overworking the CU.

T$g =r x8%rxcx(90+8)=98rc +8r, respectively. For r21 and c21, Thg >Tey. If
r=c=7, T¢y=2,126 and T$r=4,858. For the gpproach shown in Figure 9,
Tey =r* (74*c+90)+ 12="74rc +90r + 12 and T3x = 50cr, respectively. For r 2 1and ¢ 2 1,
Ty > The. If r=c=7,T2y =4,268 and Tz = 2,450.

Because the CU broadcaststhe instructionsto the PEs, the time before the PEs receive their
first instructionsand the time for the PEs to execute the fina instructions broadcast to them have
to be considered. Let T4, denote the time for the PEs to execute the |ast instructions broadcast
to them minus the time to perform CU computation after the final SIMD blodk; has been broad-
cast, i.e., Tna IS the time some PE continuesto execute after the CU is done. If the differenceis
less than zero, set T, = 0. For the first approach, the CU incrementsand then checks the index
vidue o i and j after it broadcasts the find SIMD block, and thus

-24 -

Tna=(8190) - (6 +6+8+6+18)=64. Let Ty, bethe PE idle time during the first itera-
tion. T4y ad Touu, can be caculated smilaly. For the first approach,
Sarp =418+ 17+4+8+17) -8=50. For r=c=7, the total execution time of the first

approachis

max(T&y + Tnat, Toarup + TPE) = max(2,126 + 64, 50 + 4,858) = 4,908
and for the second approach, the total executiontimeis

max(T2y + Thnat, Toarup + The) = max(4,268 + 8, 134 +2,450) = 4,276

By balancing the workload between the CU and the PEs, CU/PE overlap can be maxim-
ized, ie., |TCU+Tﬁ,,a, = Tpg — Tsarnp) is minimized, and thus the execution time can be
reduced. A third approach, shown in Figure 10, attempts to minimize
| Tcu T T finat = TPE — Tstarmup | by migrating two indexing operations from the CU to the PEs.

The total execution time for the third approach is
max(T¢y + Thnats Tstarp + ThE) = max(1,860 + 26, 112 + 2,758) = 2,870

Thus, by balancing the operations performed on the CU and on the PEs, it is possible to achieve
better performance.

In summary, this section has shown that on SIMD machinesthat have CU/PE overlap capa-
bility, CU/PE overlap can be maximized to reduce the algorithm execution time, especialy
when loop-intensive computations are involved. Thus, to achieve the best performance, it is

important to examine the code and to balance CU PE overlap whenever possible.

14
32

32
17

17
14

-25-

thase= temp(]; /¥ initidlize template pointer */
ibase= subimage(]; /* initializesubimage pointer */
for(i=0;i<ni++) ([$4,8,6%
tptr = thase+ ¢ i -1; /*incrementtemplaterow pointer */
iptr=ibaset C’'xi— 1; /*increment subimage row pointer */

send_int(&tptr, tptr); /™ send template pointer (16 bits) from CU to PEs */ 8

send_int(&iptr, iptr); /* send subimage pointer (16 bits) from CU to PEs */ 8
for(j=0;j<c;j++) (/*4,8,6%
simdbegin /* load PE instruction block into queue */
tptr += 1; * increment template column pointer */ 10
iptr+=1; /* increment subimage column pointer */ 10
Xysum += (*tptr) * (*iptr); 34
smdend

Figure 10: Code segment optimizing CU/PE overlap.

-26 -

5 PARALLEL REDUCTION OPERATIONS

51 Introduction

Many problems require that all the elements of adata set be combined in some :fashion,e.g., the
sum or product of al elements of an array. These operationsare known as reduction operations,
i.e., a single value is computed as the result of an operation on the data set. Parallel reduction
operations can only be applied to associative operations, e.g., sum, product, min, and max. It is
important to study parallel algorithms for reduction operations because data elements are gen-
erally distributed across the PEs on parallel machines. As examples, recursive doubling and

parallel prefix are discussed in detail in this section.
52 A Single Reduction Operation on aSingle Set of Data

Recursive doubling is used to demonstrate the concept of a single reduction operation on asingle
set of data in this subsection. The recursive doubling procedure, sometimes also called
tree summing, is an algorithm that combines a set of operands distributed across PEs [Sto80].
Consider the example of finding the sum of M numbers. Sequentially, this requires one load and
M-1 additions, or approximately M additions. However, if these M numbers are distributed
across N =M PEs, the parallel summing procedure requires log N transfer-add steps, where a
transfer—add is composed of the transfer of a partial sum to a PE and the addition of that partial
sum to the PE’s local sum. Let 7,44 be the time required to execute an addition and {yansfer —add
be the time to execute a transfer-add. Then the speedup o this algorithm is
(M * t244) | (10 2N * tyangfer —ada) = O (NlogaN), assuming t444 and fyanger —aad are of the same
order.

This is demonstrated for M =N =8 in Figure 11. Assume that the goal is to calculate

7
3 4 (i) and A (i) isinitially stored in PE i. First, each odd numbered PE i transfers its data item
i=0

to PE i-1 (at time ¢g). Each PE receiving a data item adds it to the data item it is storing (at

-28 -

time t;). PE 2 sends its partia sum (A (2) +A (3)) to PEO, and PE 6 sends its partial sum
(A (6)+A (7)) to PE 4 (at time ¢3). Each of PEs 0 and 4 adds its received partial sum to its
stored partial sum (at timez3). Then, PE 4 sendsits partial sum to PE 0 (at time ¢4). PE then
computes the complete sum (at timezs). All of theinter-PE transferscan be adjusted so that the
complete sum could be computed by any one of the PEs.

PE daa time —

to t; 1 13 ty Is
AO) AOHAQ) AOHA(IHAR)HAZ) uUm
ALY
A2)<AQHAQ

Acy

A4 _AD+A(S) _ A@HA(SHA (6)+A (7/

0 swaf
AB) _AGHA(T
10y

A7

AW W= O

Figure 11. Recursive doubling using result-to-one-PE technique for M =N =8, where sum

,
= 3 Al
| =0

The recursive doubling technique can also be applied to a set of operands whose size is
greater than the number of PEs. Let M be the number of operandsand let N =2" be the number
of PEs, addressed from 0 to N — 1, where PE P’s addressin binary isp,,_;...p1pg. Let eech PE

store {MVNJ o the operandsand let M mod N PEs receive one additional operand from the
remaining M mod N operands. First, each PE sequentialy sumsits loca data, requiring at most
(M /N] operations. Once the local sums are obtained, then log, N transfer-adds are performed.

In general, in the j-th inter-PE transfer, where j proceeds from 0 to log,N -1, PE
P=pn_1..pj+110..0 sends its partid sum to PE P' =p,_;...p;1100...0. PE P* combines the

-29.

received partial sum and its previously computed local partial sum to form a new local partial

sum. After log,N transfer-adds, PE 0 will contain the complete sum. The speedup is

M > t,q)/([M IN -| * tadd + 1082N * tyansfer —ada). The greater the difference between M and N,
M > N, the closer the speedup isto N. If M < N, then this technique can still be applied. In this
situation, only M PEs would be used.

The above demonstrates the result -to-one - PE technique, where the global result will be
avallablein asingle PE. Analternative isthe result-to-every - PE technique, in which each PE
will have the global result. Thisisshownin Figure12for M =N =8. Let atransfer —op be com-
posed of a transfer of an operand to a PE and an operation combining this operand and a local
operand of this PE. Asin the previous technique, once the loca results have been obtained,
log, N transfer-ops are made to find the global result. In transfer-op j, where j proceeds from 0 to
logoN - 1, PE P =p,_;..p1po exchanges partia results with PE P' =p,_;...pj..p1po. After
log, N transfer-ops, each PE will have the global result in itslocal memory.

Consider the trade-offs between the result-to-one-PE and result-to-every-PE techniques. In
SIMD mode, the result-to-one-PE approach has the overhead of disabling PEs in transfer-op
steps other than the first step. Thus, even if the result is not needed in al PEs, the result-to-
every-PE method may be faster because the masking overhead for disabling PEs isavoided. For
SIMD or MIMD mode, when the result is only needed in one PE, using the result-to-every-PE
method may cause unnecessary delays in the interconnection network. These trade-offs would

have to be balanced for a particular SIMD architecture.
53 Multiple Reduction Operations on a Single Set of Data

In the previous subsection, performing one reduction operation on a single data set was dis-
cussed. In this subsection, performing multiple reduction operations on a single set of data is
reviewed. The min/max problem, i.e., finding the minimum and the maximum values from a set

of data smultaneously, isanalyzed asan illustrative example.

PE daa time —

to t) 3 ty Is
0 AO) AOrHADL) AOHA(HAQHAQR) _sim
L A QA @014 AOHAM+AQ+AR) [sum
2 AQ), AQHAQB) AO)+A (D+A D+A (3 sum
3 sum
4 A (4)‘ >A WA sum
; AGDXAGHA Q) N A@HAG)IHA ©+A I sum
¢ A0 AGHA®) A @+A 5)+A 6)+A (T \\ sum
7 A XNAGHAD/ \A@AHAGHAGHA sum

Figure12: Recursive doubling using result-to-every-PE technique.

A straightforward method of solving the min/max problemin parallel isto use the recursive
doubling procedure twice: first to find the maximum value and then to find the rninimum value.
A better technique is to divide the PEs into two groups, such that one group finds the maximum
value while the other group simultaneously finds the minimum value. Figure 13 demonstrates
the process of finding the rninimum and the maximum values of a data set of M = 16 elements
on N =8 PEs.

For simplicity, assume that the data set hasM elements, where M is an integer multiple of
N. Each PE isassigned MIN elements. In the first step, each PE finds the local minimum value
and the local maximum value. Then in the next step, PEs are divided into two groups: the upper
half and the lower half. A PE in the upper haf hasits high-order address bitp,,.; =0 and aPEin
the lower half hasits high-order addressbit p,_; = 1.

In the third step, each PE P=p,-.p1po exchanges loca values with PE
P =p,_1..p1Po- A PE in the lower haf transfersits local minimum value, while a PE in the

upper haf transfers its local maximum value. Each PE in the lower half computes a new local

-31-

PE dda time —>

tg ty t, 13 14 ts g
o AM,A() _ min
1 AQAG N 7 7 f
, ABAG) \\ /7
3 AW0),A(D
s A®LAO max
5 A(10), A(11
6 (>
; A(M,A05/ N 7

Figure 13: Finding the minimum and maximum values concurrently for M =16 and N =8 by

adapting the result-to-one PE technique.

maximum value, by choosing the larger value from its original local maximum value and the
value it received. Each PE in the upper hdf computes a new local minimum value by choosing
the smaller value from its original minimum value and the value it received. Then, the lower half
of the PEs do transfer-max operations and the upper haf of the PEs do transfer-min operations
independently but concurrently (see Figure 13). As a result of this step, the global maximum
value is known by one or all PEs in the lower hdf (depending on which technique is selected:
result-to-one-PE or result-to-all-PEs) and the global minimum value is known by one or all PEs
in the upper half. If needed, the maximum and minimum values can be exchanged between the
two groups (in a single inter-PE transfer) so that each group can have both the nnaxirnum and the
minimum values. The total number of transfer-comparesis 1+1og, (N /2), where the first term
comes from theinitial exchange of local values, and the second term comes from the concurrent

recursive doubling processes.

In general, the technique can accommodate K reduction operations on a single set of data,
where K 2 2. The number of transfer-opsis given by (K — 1) +log, (N /K), assuming that N and
K are powers of two and the number of operandsis an integer multiple of N. Again, the first term
and the second term come from the initial exchange of local values and from the concurrent

recursive doubling processes, respectively.
54. A Single Reduction Operation on Multiple Sets of Data

Recursive doubling can also be applied to one reduction operation on multiple sets of data. An
example isglobal histogramming [SiA92c, SiS81], also known as vector summation, which will
be studied next.

Let an M M input image be mapped onto N PEs such that each PE holds M2/N pixels, as
in the image smoothing example discussed in Subsection 3.3. Global histogramming involves
computing B bins, where each bin has two attributes associated with it: (1) the range of pixel
valuesit represents and (2) the number of pixelsin the entire image that have values within that
range. For this algorithm, it is assumed that N is an integer multiple of B. Each possible pixel
value belongs to exactly one bin range. Each PE first computes alocal B-bin histogram for the
M?N pixelsin its memory. Let A(x,y) be the gray-level value of the subimage pixel in row x

and column vy, and let bin(i), where 0 <i <B, be initialized to 0. f each PE contains an

(M/\/IV)% (M/\/IV) subimage, then an algorithm to compute the local B-bin histogramsis:

forx =0 to (M/AN)—1
fory=0to(M/\/17)—1
bin(4 (x,y)) = bin(A (x,y)) + 1

(For the serial algorithm, set N =1.) The PEs then combine their local histograms to obtain the
globa histogram. This is a process of a single combining operation on multiple bins. One
straightforward approach to compute the global histogram is to combine one bin at a time using

recursive doubling, requiring B * logs N transfer-add steps.

Consider an overlapped recursive doubling procedure for combining local histograms,
where al the bins are summed in an interleaved fashion. Figure 14 shows this process for
N =16 and B =4. In thefigure, (O, ..., 3) denotes the values of hinsO, ..., 3 accumulated in the
PE. The N PEs arelogically divided into NIB blocksof B PEs each. Inthefirst b =log,B stages,
each of the NIB blocks ssimultaneously combine their histograms. As a result, each PE in a
block holds a different bin computed by summing the values of the corresponding local bins of
the PEs in the block. Thisis done by dividing each block of PEs in half such that the PEs with
lower addresses form one group and the PEs with the higher addresses form the other group.
Each group accumulates the sumsfor haf of the bins and sends the binsit is not accumulating to
the other group. For example, in stage 0, PE 0 accumulates bins0 and 1 from PE 0 and PE 2.
Simultaneously, PE 1 accumulates bins 0 and 1 from PE 1 and PE 3. The next phase involves
dividing each group of B12 PEs into two groups of B 14 PEs using the same rule for partitioning
PEs asin the previous phase. These two new groups only exchange those bins for which they
had accumulated sums in the previous phase. This subdividing process continues until each
group hasonly one PE. Once the subdividing process terminates, each PE will contain only one
bin, and this bin will have the accumulated value for the PEs in the block that originally included
this PE. Continuing the example above, PE 0 accumulates bin 0 from PE 0 and PE 1, while PE 1
accumulates bin 1 from PE 0 and PE 1.

In the next n — b stages, where n =log, N, the partial histograms of al the blocks are com-
bined by performing B simultaneous recursive-doubling operations. Each of these B recursive-
doubling operations involves the NIB PEs that store the bins of same index. For the examplein
Figure 14, PEs 0, 4, 8, and 12 combine the bin 0 data, while PEs 1, 5, 9, and 13 combine the bin
1 data, etc. Asaresult, the histogram for the entire image is distributed over £ PEs, where bin i
islocated in PEi,for0<i <B.

For the first b stages of the algorithm, B/2/*! transfer-adds are used at stage j, where
0<j<b,foratota of B-1. Ateach stagej, whereb < j < n, one transfer-add occurs. Thus the

final n — b stages require logy(N/B) =n — b transfer-adds. The total number of transfer-adds

-34 -

©) ©)

) (2)
3) 3)

Y
PR BB
W) (W) = =
VVMX/
P~ SN
w = O
R

PRRPD NRPRR BRRPRN RRPPR

O

2SS vow 9 ona we —o |F
~~
o

©)

W W L) W YSM W W W W
S
W) s
VVVX\-/
P NS N
W == O
R N

~~

=)
T S e T e T e T e N
. v . . T e . M . - « v e .

ot et

b W
—
o

Figure14: Global histogrammingfor B =4 and N = 16.

needed to merge the local histograms using the overlapped recursive-doubling scheme is then
B — 1t 1log,(N/B). For redistic valuesof N and B (e.g., N = 1,024 and B = 256), thisis approx-
imately log,N times faster then the straightforward approach of performing B8 recursive dou-

bling+n sequence.
55. A Generalized Form of Reduction Operations

A generalization of the techniquesdiscussed in Subsections5.2 to 5.4 isto apply multiple reduc-
tion operations on multiple sets of data. A distinct operation is defined as an associative opera-
tion on one set of data. Both one associative operation on multiple sets of data and multiple asso-
ciative operations on one set of data are considered multiple distinct operations. For example, if
min and max operations are applied on one set of data, they are considered two distinct opera-
tions. In the global histogramming example, the combining operation is applied on four bins,

thus there are four distinct operations. It is obvious that the number of distinct operations is

always greater than or equal to the number of associative operations. Assume that each data set
is of the same size M. Let N be the number of PEs used and let K be the number of distinct
operations. For simplicity, it is assumed that M, N, and K are all powers of two, where M >N
and K =N, and each PE hasM IN elements of each data set.

The generalized reduction operation process can be divided into three phases: (1) comput-
ing local partial results, (2) grouping PEs for different distinct operations, and (3) combining
partial results. In the first phase, each PE computesK local partial results, one for each distinct
operation on itslocal data. There are no inter-PE transfersin this phase, and the number of con-
current local operationsis K x (MIN). In the second phase, the PEs are logically divided into
NIK groups. A single PE accumulates the partial results with respect to one distinct operation
for the block during this phase. As shown in the example for global histogramming, K -1
transfer-op steps are needed to accomplish this phase. The last phaseis to perform K recursive
doubling procedures concurrently, one for each distinct operation. This is the same as the last
step shown in the min/max and the global histogramming examples and needs loga(N/K)
transfer-ops. Thus, the total number of transfer-opsisK — 1+ loga(N IK).

When K > N, i.e., when there are more distinct operations than the number of PEs, inter-
leaved recursive doubling procedures can still be used to find the results. This approach is

referred to as p—recursivedoubling [WaN94]. In this case, p =K and the final results of K dis-
tinct operations can be computed in log, N steps, where [K 12 +1] transfer-op operations occur at

step j,for 0< j <logsN. In the p-recursivedoubling procedure, K is not required to be a power
of two. Figure 15 illustrates how N =4 PEs sum the elementsfor K =6 sets of data, assuming
each set has N elements. Thisrequiresfive transfer-adds, three of which are for thefirst step and

two for the second step.

=36 -

0. 1 3 0, y1 2,3
data held 0+a0+af)+a0 a tatagtag
in PE 0 aftal 0t le oy 2 oy 3

alto,taia)
“talvaira’
data held a°+a11+af+a3] &, RS el
inPE 1 al+al 0L 1o 2. 3

5 5 a5+a5+a5+a5

0, 1, 2
data held a3+ avt og+ o 1. 2 3
in PE 2 a§+a: a2+a2+az+a2
data held %arakd

0, 1 2, 3
in PE 3 ;““13’ 373 . ta,tojtag

- fifth transfer-add
fourth transfer-add

—— —
second step

first step

first transfer-add second transfer-add third transfer-add
e

time

Figure 15: p-recursivedoubling for K =6 and N =4, to compute i of, for 0<a <6.
b=0

=37 -
56. Pardllel Prefix

A parallel technigue similar to recursive doubling is parallel prefix. For A(i), 0<i <N, the

paralel prefix method can compute B(j):)j"_‘A(i), 0<j<N, in log,N transfer-add steps
i=0

[Sto80].

Itisassumed that PEi,0<i <N, hasA (i) resident, and it will have B (i) asthe result. Fig-
ure 16 demonstrates this procedure for the case N = 8. Initially, every PE executes B (i) =A(i).
In transfer-add step j, wherej proceedsfrom 0 tolog, N — 1, PE P sendsits partial result B (P) to
PEP =P+2/ only if P < N. PE P computes a new partial result B (P) from its own partial

result and the received value. After logyN transfer-op steps, PE i will haveB (i).

PE daa time —>
to t1 ty I3 4 ts

. AQ) _A(0)
L AU AOHA)N_ N\ _AQHA(D)
) AN, AMHARINY AO+A(1+A(2) A\ _ AOHAHAQQ)
., AQG) AQHAG AOHAIHARHAB) \\\ _ A OHA(DHA(+A(3)

AB N, AQHAUNYN AMHARHAGHA @) N\\\Y A (OHA ()+A Q)1+~ - +A (4)
4 A(5) A@HAGINN AQHABGHAMWHAB) ~ \\Y A (OH+A(IHA Q1+ - - +A(5)
2 A6 AG1HA (6 A A TA GYHAB) — \§ A OA (LA (D) - - +A (6)
5 AGLN, A©+AQ) A@HAGHAGA(T) —ﬁ(O)+14(1)+A Q)+ -+A(T)

Figure 16: Parallel prefix for N =M =8.

57. Summary

Various parallel reduction operation techniquesfor associative operations were discussed in this

section. The choice of technique will depend primarily on the application task to be performed.
Because computers use finite precision arithmetic, applying certain associative operations

(such asfloating point addition) on the same set of data but in different sequence could give dif-

ferent results. However, this problem existsfor serial aswell as parallel machines.

-39.-
6. MATRIX AND VECTOR OPERATIONS

6.1 Introduction

This section examines parallel matrix operations by considering three examples. matrix transpo-
sition, matrix-by-matrix multiplication, and matrix-vector multiplication. In each case, only one

of many possible approachesis presented.
62 Matrix Transposition

Given an M xM matrix A, the transpose of A, AT, isAT(i,j)=A (.i), where 0<i,j <M. The
parallel matrix transposition technique described here is part of a two-dimensional FFT algo-
rithm presented in [JaM86]. For simplicity, assume M =N, the number of the PEs used. The
data is distributed across the PEs such that PE i containsrow i of A, 0<i <N. The goal is to
haverow i of AT (i.e., column i of A) storedin PEi,0<i < N.

Let B be the base address of the location that holdsthe row of A in a PE and let B be the
base address of the memory segment that is allocated to hold a row of A Tina PE. The follow-

ing codefor PE i isexecuted by all PEs simultaneously to generate AT.

(S1) forj=1toM—-1do

(S2) fetch thevalue at location B (i + j)mod M 1% A (i +f) ¥/
(S3) transfer from PE i to PE (i +j) mod M
(54 store the received value at location BT + (i = j¥ M) modM /% AT (i +j,i) */

(S5) copy thevalueat locationB+itoBT +i /* moveA (i,i) toAT(i,i) */

In statement S2, each PE fetches the value to be sent from its rnemory location
B+(+j)modM. In $S4, each PE dsores the received vaue at location
BT+ (i - j+ M) mod M. When S1 through S4 are done, only the diagonal elements remain to
be processed, which isdonein S5. Thisis simply a matter of copying A (i,i) to AT(,i), which

does not require any inter-PE transfers. Figure 17 showsthe transposition processfor N =M =4

- 40 -

for j =1. The tota number of matrix elements that must be transferred is M (M — 1), because
the M elementsin the major diagonal are not transferred. At most, M elements can be moved in
paralel in one transfer step. Thus, this algorithm uses M —1 transfers, which is the minimum
possible given these data distributions. This technique can be directly extended for M > N, and

each PE storing a square submatrix of A.

PE # PE#

0o 00 D 02 O3 0 OO0 (10 @0 (GO

1 10 @) (12 (13 1 0 @y @n 3D

2 (20 @D 22 @3 2 02 1.2 22 G2

3 3G9 6D G2 G 3 03 1,3 @23 (G3)
(@) (b)

Figure 17: Matrix transpose for N =M =4 for j= 1. The data transferred are underlined. (a)
Matrix A and (b) matrix AT across PEs.

6.3. Matrix-by-Matrix Multiplication

Given an M xM matrix A and an M *x M matrix B, the product of A and B isan M *xM matrix
C =A xB whose elements are given by
M-1

Cgr)= Y Algh)*B(hr), 0<gr<M-1
h=0

Using the straightforward approach, the serial execution timeist, =M 3top, wherez,, isthetime

required for one addition and one multiplication.

—

Assume that N PEs are arranged in alogical YV x YV grid and the PEs are labeled from
PE(0,0) to PE(\[IV -1, \[IV —1). Consider two M * M matricesA and B partitioned into N subma-
trices A¥ and N submatricesB ¥, respectively, 0<i,j < YN. Each of the submatrices is of size
M /\[IV xM/\N. MatricesA and B are superimposed onto the PE grid such that PE(,) has the
submatrices A ¥ and B¥, PE(i,]) also allocates space for the submatrix C¥ of the result matrix
C. To calculate C¥, PE(i,]) needs the submatrices A * and B¥ for 0sk < WN. That is, PE(i.})
needs data from PE(i,k) and PE(k,]), for 0 <k < \fﬁ . To acquire the required rubmatrices, all-
to-all row and column broadcasts are performed by the PEs. Once the broadcasts are complete,

PE(, j) will have submatrices A% and submatrices B¥, for 0 <k < YN. An agorithm that per-
forms parallel matrix multiplicationis shown below [KuG94]. Thefollowing codefor PE(i,j) is

executed by all PEs simultaneously.

fork=1to\[IV—1do

send A to PEG, (j+k) mod YN) /* al-to-all row broadcast */
fork=1to YN - 1do

send B¥ to PE((i+k) mod VN,) /¥ dll-to-all column broadcast */
initialize submatrix C¥ to all zeros
fork=0to \IIV—ldo

Ci=C¥4+Akxpk /* local multiplication of submatrices*/

Consider thefirst **for'* loop of the above algorithm. Each **send* takes (M2/N)x Yransfer

time units, Where t,, 4., is theinter-PE transfer timefor a matrix element. Hence, the time taken
by the **for* loop is (\[IV— l)(MZ/N)t,m,qe,. The tota time for the first two **for"* loopsis
2(\/17 - 1M 2/N)tm,,,sfe,. The final **for'* loop performs the computations necessary to calcu-
late the submatrix C*¥. intime NN (M NN 1, = (M3IN)1,,. The speedup achieved with N PEs

is

3
5= Mo
M3IN)top + 2NN = DM Nty ansier

More efficient, but more complex, algorithmsfor matrix-by-matrix multiplication can be found

in the literature (e.g., [KuG94)).
64. Matrix-by-Vector Multiplication

Matrix-by-vector multiplication is a specia case of matrix-by-matrix multiplication. Given an
M *M matrix A and an M > 1 vector U, the product of A and U isan M 1 vector V =A xU
whose elements are given by

V(i) =Mi1A G UG), 0<i<M
j=0

The straightforward serial implementation takes O (M%) time.

A parallel algorithm for matrix-by-vector multiplicationis given below [KuG94]. For sim-
plicity, assume M =N, where N is the number of PEs used. The elements of matrix A are distri-
buted among the PEs such that each PE i, 0<i <N, is assigned row i of A. The vector U is

stored in each PE. V (i) iscomputed on PE i by multiplying the row i of A that is stored in PE i

M-1
with the vector U, i.e., PEi computes V(@)= Y A(i,j)*U(), 0<i<M. Thiswill requireM
j=0

multiplications and M - 1 additions per PE. Assuming that the time to perform the multiplica-
tion isof the same order as the time to perform an addition, the resulting parallel time complex-
ity is O(M). An O (M) speedup is attained by this paralel agorithm. This technique can be
adapted for M > N.

-43 -
7. MAPPING ALGORITHMSONTO PARTIONABLEMACHINES

7.1 Introduction

Partitionable paralle machines are parallel processing systems that can be divided into
independent or communicating subsystems, each having the same characteristics as the original
machine [LiM87, SiS81]. The ability to form multiple independent subsystemsto execute multi-
ple tasksin parallel provides such partitionable parallel machines with the potential of achieving
better performance. Most MIMD machines can be partitioned, either under system or user con-
trol. A multiple-SIMD machine includes multiple CUs so that it can be partitioned into
independent SIMD subsystems [Nut77]. The CM-2 hardware design could support this [TuR88].
PASM is a prototype partitionable system where each submachine can operate using
mixed mode parallelism [SiS95]. In this section, two aspects of mapping agorithms onto parti-
tionable parallel machines are considered: the impact of increasing the number of PEs used, and
theimpact of subtask parallelism.

The time required to move data between the local PE memories and the system secondary
memory (or external I/O devices) varies greatly among different configurations of paralel
machines. Thus, for the analyses here, the simplifying assumption is made that there is not a
significant difference in this memory transfer time due to varying the number of PEs used for a
task. These analyses can beextended to include this memory transfer timeiif it is significant.

In this section, it is instructive to consider overhead and its impact on parallel efficiency.
Overhead operations are those that are needed for parallel execution, but not for serial execution
{(e.g., inter-PE data transfers). The paralld efficiency, E, of a parallel implementation measures

the amount.of overhead that isincurred:

E— speedup _ seria time
PEs (# PEs) x parallel time

That is, the efficiency is the speedup divided by the number of the PEs used to achieve this

speedup. Obvioudly, efficiency could decrease if the increase in the speedup grows more slowly
than the increase in the number of the PEs used, i.e., improved efficiency and increased speedup

are not mutually implied. The efficiency measurewill be used in the next two subsections.
72 Impact of Increasing the Number of PEs

Increasing the number of PEs may or may not decrease the execution time. Two examples,
image smoothing and recursive doubling, are analyzed to demonstrate the impact of increasing
the number of PEs on performance [KrM88, SiA92c].

Recall from Subsection 3.3 that smoothing an M *M image with N PEs using square
subimages requires that each PE perform M2/N smoothing operations and 4M NN + 4 inter-PE
data transfers. The execution time decreases as N increases (N < M 2y because both the number
of smoothing operations and the number of inter-PE transfersare inversely proportional to N.

Let 7, be the time to perform a smoothing operation and Zanger the time to perform an
inter-PE data transfer. The parallel efficiency for the smoothing algorithm can be approximated
as (M = 2)%t,,/(M*1,, T @MAN + AN)yransfer)- AsN increases, the efficiency decreases. Thus,
increasing N reduces the total execution time, but causes the efficiency to decrease. Thisis
because as N increases, the PEs spend more time executing overhead operations (i.e., inter-PE
transfers) relative to required computations (i.e., smoothing operations). For example, when
N =M?, the PEs may spend more time transferring data than smoothing. One must determine
the metric that isimportant in a given situation: execution time or parallel efficiency.

The impact of increasing N has a different effect on the recursive doubling agorithm.
Assume that MIN numbers are stored in each PE, where M is the number of operands and N is
the number of PEs used. Both M and N are assumed to be powersof two, M 2N, and t, gnsfer —add
and 1,4 ae as defined in Subsection 52 The total execution time is
(M IN)tagq + (108 2N)yranster —add-

Assume that a transfer-add takes T times as long as an addition, i.€., transfer —add =T tadd-

In this case, as N increases the number of local additions decreases but the number of transfer-

adds increases. Thus, as N increases, the execution time first decreases then increases. The
minimum execution time is afunction of t. The efficiency of the paralld recursive doubling is
M/(M + tNlog,N). Thus, the parallel efficiency always decreases asN increases.

One way to find the number of PEs that will minimize the execution time is to determine
the partial derivative of the execution time formula with respect to N. For the recursive doubling
example, this yields 9T /0N = (-MIN? + T/(NIn2)) * t,44. The derivative is negative for
N < (M/t)in2 and is positive for N > (M /t)In2. Thus, as N increases from 1 to (M /t)In2, the
execution time decreases, and as N increases beyond (M /1)In2, the execution time increases. Let
N be the largest value such that N; £ (M/1)in2 and let N, be the smallest value such that
N2 > (M/t)In2, where N and N, are positive integers and are powers of two. Either N1 or N,
whichever givesasmaller Tyy41, iSchosen as the number of the PEs to be used.

For example, if ©=10 and M =24, then the execution time is (2'4/N + 10log ;N) * t 44
time units. Figure 18 shows the execution timesas N increases. Using the above procedure, 21°
PEs are chosen to achieve the minimum execution time. Thisresult impacts the concept of max-
imizing machine utilization. Typically, one tries to make use of all the PEs available, with the
goal of maximizing the number of concurrent operations to minimize the execution time. This
study demonstrates that maximizing utilization (i.e., using the largest N possible) does not
aways mean minimizing execution time. It may be faster to partition the machine and use a
subset of the PEs available.

Thus, whether increasing N reduces overall execution time is algorithm dependent. Furth-
ermore, increased parallel efficiency may not imply decreased execution time, and vice versa

Similarly, increased utilization of PEs may not imply decreased execution time. and vice versa.

- 46 -

N 27 238 29 | 210 | 211 | 212 | 213 | 214 |
timeunits | 148 | 144 | 122 116 | 118 | 124 | 132

141 |

Figure 18 Execution time versus number of PEs (N) for M=2!* and t= 10.

73. Impact of Subtask Parallelism

The effect of partitioning a parallel task into smaller, concurrent subtasks can have an impact on
performance. Consider the task of smoothing four images such that the total time to smooth all
four is minimized. One way to do this is to smooth the four images one at a time, using all N
PEs to smooth each image. Another way is to partition the task such that all four images are
smoothed concurrently, each using N/4 PEs, as shown in Figure 19.

The time required to smooth the four M *M images in sequence is
A(M 2N, T (4(M/\/17)t A)tirangpers), four times that to smooth a singleimage. For M =512
and N =1,024, thisis 1,024 x,, T 272 * tiransfer- 1NE total time required for N PEs to smooth
the four images concurrently, each on N/4 PEs, is (M?/(N /4))ts, + (4M NN 14)+ Btyansfer
(because all four images are smoothed concurrently, it is the same as the time to smooth one
image on N/4 PEs). For M =512 and N = 1,024, thisis 1,024 * ¢, + 132 Yransfer- 1HUS, parti-
tioning the system and exploiting subtask parallelism decreases the execution time by reducing
the number of inter-PE transfers.

The number of inter-PE transfersrequired in the partitioning approachis 4 x (M JNN 4yt 4,

whereas in the other approach, 4 * (4(M /\fIV H4) inter-PE transfers are needed. This reduction
in inter-PE transfers gives the partitioning approach a smaller execution time. For example, if

M =512 and N=1,024, there are 132 versus 272 inter-PE transfers. Assuming that

image 1 image 2

N/4PEs | N/4 PEs

image 3 imaged
N/APEs | N/4 pEs

Figure 19: Smoothing four images concurrently on N PEs.

tso = transter = 1, the parallel efficiency of smoothing four 512 * 512 images in sequence, each
using 1,024 PEs, is 78%, while the efficiency of smoothing all four images simultaneously on a
system partitioned into four submachines of 256 PEs each is 88%. The efficiency of smoothing
images concurrently isimproved over that of smoothing images in sequence because the larger
subimage Size (32 * 32 versus 16 * 16) reduces the portion of the total execution time spent on
doing inter-PE data transfers for to, =tyage =1 (132/(322+132)=11% versus
68/(16% + 68) = 21%). The same number of smoothing operations are performed in both

schemes. Therefore, in thiscase, partitioning improves both execution time and efficiency.

7.4. Summary

In this section, two aspects of mapping agorithms onto partitionable machines were discussed.
Partitioning can be used to select a subset of the PEs for the task when it isfaster then using all
of them. Partitioning can also be used to improve performance by executing multiple subtasks

simultaneously [NaM93].

-48 -

8. ACHIEVING SCALABILITY USINGA SET OF ALGORITHMS

A parallel algorithm isscalableif it iscapable of delivering an increase in performance propor-
tiona to an increase of the number of processors utilized {Wil93]. However, one algorithmic
approach to a task may not always be able to give the best performance for various input-data
parameters and system parameters. Scalability can be better achieved by selecting one agorithm
or some agorithm combination from a suite of algorithms to perform the task effectively as
these parameters vary.

The set approach is to have a set of algorithmsfrom which the most appropriate algorithm
or combination of algorithms is selected based on the ratio between the data size and the target
machine size. Parallel agorithms for computing multiple quadratic forms (MQFs) are dis-
cussed in this section as a case study in the design of scalable algorithms [WalN94]. |mplemen-
tations of the MQF problem for various data-size/machine-size ratios were evaluated in great
detail in [WalN94]. The goa of this section is not to discuss the details of the MQF study, but
rather to use the results to demonstrate the importance of the set approach to achieve scalability.

Let a steering vector (s—vector) be an r x 1 vector of complex numbers and v be the total
number of s-vectors. Define M to be an r xr matrix of complex numbersand M (i, j) to be the
element of M in row i and column j, where0 <4, j <r. The g-th s-vector is denoted by 54, where
0 <q < v. Element m of the s-vector q is denoted by s,(m), where0<m < r. Let H denote the
Hermitian transpose, i.e., the complex conjugate transpose of the s-vector. The MQF calculation
can be defined asw, = si'Ms,, where0<q < v.

One parallel implementation used to solve the MQF problem is the uncoupled method. In

this approach, no inter-PE communication is needed. By distributing v s-vectors evenly among
N PEs, [v /N] quadratic forms will be calculated in each of v mod N PEs, and [v /NJ on each

remaining PE. Thus, the time to compute the MQFs isthe samefor kN < v < (k T 1)N, for k > 1.
Another approach used to solve the MQF problem is the coupled method, which does use

inter-PE communications. Let PE(i,) denote the PEin row i and column jinan a>blogica PE

-50 -

grid, where0<i <a,0<j <b,and axb=N. The svectors are loaded into the PE memories

such that an (r/a)-element subvector of the Hermitian of each s-vector, sg’ ,and an (r /b)-element
subvector of at most [v /a-l s-vectors, s4, are stored in each PE memory. Each PE also holds an

(rla) *(r/b) portion of M. After local computations are done, summations are performed, first

within columns of PEs and later within rows of PEs, using the p-recursive doubling technique
described in Subsection 5.5.

An implementation of these two approaches on the nCUBE 2 MIMD machine is shown in
Figure 20, where r =16, N =16, 32, and 64, with b fixed at 16, and a varying such that
N =axb. The execution times as a function of the number of steering vectorsis shown for the
uncoupled and coupled cases. As can be observed, the faster approach for a given N and r
depends on v.

The uncoupled and coupled approachescan be combined by using the uncoupled approach
to process lv /NJ *N vectors and using the coupled approach to compute the remaining ones.

For the nCUBE 2 implementation example of Figure 20, if v=380 and N =64, then 64 vectors
could be processed by the uncoupled method (0.0049 seconds) and 16 vectors by the coupled
method (0.0032 seconds), for a total time of 0.0081 seconds. To process 80 vectors by the
uncoupled method by itself takes 0.0097 seconds, and the coupled method by itself takes 0.01
seconds.

Another variation is to exploit subtask partitioning, as was presented in Subsection 7.3. For
the nCUBE 2 implementation example of Figure 20, processing 80 vectors using 64 PEs on the
nCUBE 2 with the coupled approach requires 0.01 seconds, but by partitioning the machine into
four submachines of 16 PEs, each processing 20 vectors, requiresonly 0.0077 seconds. Whether
partitioning i s advantageous depends on the valuesof v, r, and N.

In summary, choosing an optimal algorithm for the MQF problem is dependent on the
characteristics of the input-data and the machine. By having a set of algorithms that solve the

problem efficiently for various input-data parameters and system parameters, an algorithm (or

=51 -

0.035 —
coupled _
uncoupled ---------
0.028 —
0.021 -

time

(seconds) 0014 _j

0.007

O 8 16 24 32 40 48 56 64 72
number of steering vectors, v

Figure 20: Execution time of the uncoupled and coupled data parallel methodsfor the nCUBE

2forr =16 and N =16, 32 and 64.

combined agorithm) selection methodol ogy can be implemented. .

-52-

-53.-
9 CONCLUSIONSAND FUTUREDIRECTIONS

In designing algorithms for large-scale parallel machines, many issues must be addressed to dev-
ise an effective implementation. The importance of these issues cannot be overemphasized due
to their direct impact on the performance of these algorithms. This report has surveyed some
aspects of some of these issues. For more information, readers are encouraged to see the papers
listed in the references and bookson parallel algorithms, such as[AklI89, BeT89, Cha92, Go(Q93,
JaG87, KrS92, KuG94, Kum9l, LaD90, Mod88, Pit93]. Some potential future research prob-
lemsin thedesign of data parallel algorithms are discussed below. However, the discussion is by
no means exhaustive.

In Section 3, the impact of data distribution on the execution time was examined. It was
shown that the best data distribution for one network may not be the best for another network.
Future research i s necessary to establish a methodology for determining an optimal data distribu-
tion for a given problem-machine combination. The factors that must be considered to design
such a methodology for guiding data distribution decisions include (@) the problem parameters,
(b) effectively utilizing the PEs, (C) the interconnection network topology, and. (d) the inter-PE
communication latency. The resulting methodology for data distribution should minimize the
total overall execution time.

A machine-dependent issue that is not addressed in thisreport is the communication latency
(i.e., the time needed to move a data item needed by one PE but located in another). Because
this impacts the overall communication cost, to reduce the execution time, it is necessary to
develop design techniques that reduce or hide the communication latency. The communication
latency is dependent on factors such as (a) the software and hardware overhead for formatting
the data to be transferred and establishing the path in the network, (b) the distance from the
source PE to destination PE in number of links, () the amount of communication and computa
tion overlap possible, and (d) the message size. One way to hide the latency is to initiate the
data transfer before the data item is actually needed by the destination PE. Incorporating this

-54-

approach into one data parallel programming style, or having a compiler do it automaticaly, is
important.

None of the case studies used in this report involved real-time I/O. One of the challenging
areas where data parallel agorithms could be effectively applied is real-time processing, e.g.,
real-time image processing, where real-time I/O operations are integrated into the algorithm.
The overall goal is to minimize or to hide the I/O latency. The issues that must be considered
include (a) quantifying the I/O characteristics of the application, (b) characterizing the target
machine, and (c) scheduling the I/O operations.

Algorithm scalability isanother key issue that must be addressed in designing an agorithm
for massively paralel machines. Idealy, an algorithm should be designed so that it can be
scaled to future generation machines as they become available. Section 8 illustrated how to
achieve scalability using a set of algorithms. One agorithm or combination of algorithms is
selected based on the ratio between the data size and the target machine size to solve a given
problem. Given the ratio, the algorithm(s) selected should achieve the best performance. Data
parallel agorithm designers should consider this multiple algorithm approach to scalability.
Research is needed to develop a methodology to automatically select an algorithm or combina
tion of algorithms from a set of programs given information about the problem-size/machine-
Size ratio and other relevant information about the problem and the machine.

The examples of parallel matrix operations in Section 6 cover dense matrices. A related
area that is receiving wide attention at present is operations on very large, very sparse matrices
{KuG94]. Sparse matrix representation schemes impact the efficiency of the solution methods.
The best serial algorithms cannot be easily paralelized. Hence, it is necessary to develop new
algorithms and new representation schemesfor sparse matrices that would effectively make use
of massively parallel machines. For example, much research is needed in parallel sparse matrix
factorization. Current understanding of this areais based on empirical studies. Further research

IS necessary to theoretically analyze the parallelism and scalability of this operation.

-55-

Exploiting concurrent execution of multiple subtasks can be important in reducing the exe-
cution time as demonstrated in Section 7. Given a partitionable machine and an application, a
systematic approach is necessary to determine whether employing subtask parallelism will
decrease the execution time [NaM93]. If subtask parallelismisto be employed, then it is neces-
sary to determine the submachine sizes and the mapping of the subtasks onto the submachines
that will result in the minimum execution time [ChD89]. Theissues that need to be considered
in the analysis include (@) identifying the individual subtasks, (b) determining the characteristics
(computational requirements and modes of parallelism) of each subtask, (c) mapping the sub-
tasks onto the submachines, and (d) determining the optimal sizes for the subnnachines. In the
case of heterogeneous computing, where there are different parallel machines connected by high
speed links, the analysis becomeseven more complex (see [SiA95]).

An application that exhibits data parallelism can be implemented either on an SIMD
machine or on an MIMD machine using SPMD mode. It is necessary to devise a systematic
approach to aid the programmer in selecting the best type of machine architecture for the appli-
cation under consideration. In making the choice, the trade-offs between SIMD and MIMD
architectures discussed in [SiA95] must be considered. Once an architecture is chosen, the algo-
rithm for the given application should be optimized with respect to the target architecture.

A data parallel algorithm can also be mapped onto a hybrid SIMD/MIMD mixed-mode
machine (a survey of mixed-mode machinesisin [SiA95]). When thisis done, the programmer
can specify which portion of the program should employ SIMD mode and which SPMD mode.
In mapping an application onto a mixed-mode machine, two important issues that must be con-
sidered are: (@) where to switch modes within the program, and (b) how to identify the best exe-
cution mode (i.e., SIMD or SPMD) for each portion of the program. The use of both SIMD and
SPMD modes to execute a single program becomes more complex when a suite of heterogene-
ous parallel machinesisconsidered instead of a mixed-mode machine. In this case, mode switch-
ing implies switching between machines, which involves additional software and hardware over-

heads (see [SiA95]).

-56 -

The previous paragraph discusses using both SIMD and SPMD modes within a single data
parallel program. Mixed-mode machines and suites of heterogeneous parallel computers inter-
connected by high-speed links also offer the possibility of combining data parallelism and con-
trol parallelism (where each PE can follow a different program). The issues raised in the last
paragraph can be extended to three choices. data parallelism using SIMD execution, data paral-
lelism using SPMD execution, and control parallelism using MIMD execution. Designing such
hybrid data/control parallel algorithmsis another futuredirection for research.

An issue related to the data parallel algorithm design techniques is the development of an
effective parallel programming environment [AdC94, Pan91]. Such an environrnent iscrucia in
supporting the implementation of data parallel algorithms on massively pardldl machines. The
components of this environment include (a) user-friendly interfacesin both textual and graphical
forms, (b) portable paralel programming languages, (c) compilers, (d) libraries that contains
optimized machine-dependent data parallel algorithms, and (€) tools (e.g., paralel program
debuggers, performance analyzers). An effective parallel programming environment will reduce
program development time, increase programmer productivity, ensure program portability, and
improve performance. Increased programmer productivity is achieved by making use of the
scalable libraries and tools. The portability is ensured by supporting the same parallel language
and library functions across multiple hardware platforms. The improved performance can be
attained by fine tuning the program using the tools and libraries provided.

Researchers have been working for many years to develop fully automatic techniques for
paralelizing sequential algorithms [AdC94]. An aternative approach utilizes semi-automatic
techniques for parallelization. The Data Parallel Meta Language (DPML) [FrM94] is one such
effort. The ideais to develop a metalanguage to specify the communication patterns, data distri-
bution strategies, and coordination of subtasks. The meta language provides; a model of the
problem-machine combination to the compiler, so that the compiler can better parallelize the
serial code. The input to the parallelizing compiler is the seria program augmented with the

specification of the machine architecture and the problem characteristics in the meta language.

-57.-

This meta language approach is aso promising for heterogeneous computing. Further research
IS necessary to identify the information needed in a metalanguage and to design a meta language
for heterogeneous computing environments.

This report has provided an overview of data parallel agorithm design techniques. The
case studies used to illustrate the techniques and to highlight the impact of implementation deci-
sions were based on the message-passing distributed-memory SIMD machine model. The
analysis can be extended to other machine models as well, such as shared address space
distributed-memory machines and various types of MIMD machines. However, additional
analysis must be done to map the algorithms to those model s efficiently, because of the different
architectural properties of machines (e.g., multiple instruction streams). The remapping would
not be necessary if the techniques discussed were based on an abstract machine model that sub-
sumes al existing models. However, such a model does not presently exist. A future research
problem is to develop one universa modd or a small number of fundamental models that
abstract the salient features of parallel machines and that will support machine-independent
paralel programming. In addition, the model must provide realistic information on the relative
costs of computation, communication, and synchronization [KoN93]. Therein lies the difficulty,
i.e., developing a general machine-independent model that is **'precise enough' about perfor-
mance without being 'too explicit' about the implementation details'™ of any machine [SiA92a].
The agorithm design techniques based on such a standard parallel machine model would be
applicable to all existing paralel machine models. Thus, the design techniques for parallel ago-
rithms could be unified. The advantages of this unified approach would include algorithm porta-
bility, algorithm scalability, run-time migration of tasks across parallel machines, and reduction
in agorithm development time.

In summary, there isa great deal of activity in the field of data parallel algorithms, as evi-
denced in the sampling of relevant references listed at the end of this report. The goal of this
report was to provide an introduction to some of the issues germane to constructing effective

data parallel programs. This section has discussed a variety of areasfor future research directly

-58 -

or indirectly related to data parallel algorithms. In general, the future directions for research
relating to data parallel algorithms should lead to the mapping of applications onto parallel
machines in ways that most effectively exploit the computing power these machines provide. In
many cases, this may enable the performance of application tasks that would be infeasible
without the computing power of parallel machines. Finally, when contrasting the data parallel
approach to the control parallel approach, many researchersfeel that the data parallel paradigm
must be employed, at least within subtasks, to take advantage of massively parallel machines

with athousand or more processors.
ACKNOWLEDGMENTS

The authors thank K. H. Casey, R. Gupta, J. M. Siegel, M. Tan, M. Theys, and A. Y. Zomayafor

their comments.

-59.

REFERENCES

[AdC94]

[Ak189]

[ATN91]

[BaB68]

[Bat74]

[Bat77]

[Bat80]

[BeS91]

V. Adre, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kre-
mer, J. Mdllor-Crurnmey, S. Warren, and C. Tseng, ‘‘Requirements for Data-
Parallel Programming Environments," IEEE Parallel and Distributed Technology
Systems and Applications, Vol.2, No. 3, Fall 1994, pp. 48-57.

S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1989.

J. B. Armstrong, M. A. Nichols, H. J. Siegel, and L. H. Jamieson, "* Examining the
Effects of CU/PE Overlap and Synchronization Overhead When 'Using the Com-
plete Sums Approach to Image Correlation,"* Proceedings of the Third IEEE Sym-
posium on Parallel and Distributed Processing, Dec. 1991, pp. 224 - 232.

G. H. Barnes, R. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes,
"Thellliac IV Computer,”* |IEEE Trans. Computers, Vol. C-17, No. 8, Aug. 1968,
pp. 746-757.

K. E. Batcher, ““STARAN Parallel Processor System Hardware,"" AFIPS 1974
National Computer Conf., May 1974, pp. 405-410.

K. E. Batcher, ““STARAN Series E,"* 1977 Int'l Conf.on Parallel Processing, Aug.
1977, pp. 140-143,

K. E. Batcher, "*Design of a Massively Paralel Processor,”* IEEE Trans. Comput-
ers, Vol. C-29, No. 9, Sep. 1980, pp. 836-844.

T. B. Berg and H. J. Siegel, *‘Instruction Execution Trade-offs for SIMD vs. MIMD
vs. Mixed-Mode Parallelism,"* Fifth Int'| Parallel Processing Symposium, May
1991, pp. 301 - 308.

[BeT89]

[B1a90]

[BIN92]

[Cha92]

[ChD89]

[DaG88]

[DuB38]

[FiC91]

[Fly66]

- 60 -

D. P. Betsekas and J N. Tsitsiklis, Parallel and Distributed Computation,
Prentice-Hall, New Jersey, 1989.

T. Blank, " The MasPar MP-1 Architecture,”" IEEE Compcon, Feb. 1990, pp. 20-
24.

T. Blank and J. R Nickaolls, ""A Grimm Collection of MIMD Fairy Tales,
Proceedings of the Fourth Symposium on Frontiers of Massively Parallel Computa-
tion, Oct. 1992, pp. 448-457.

P. Chaudhuri, Parallel Algorithms: Design and Analysis, Prentice Hall, New Y ork,
New York, 1992.

C. H. Chu, E. J. Delp, L. H. Jamieson, H. J. Siegel, F. J Weil, and A. B. Whinston,
""A Model for an Intelligent Operating System for Executing Image Understanding
Tasks on a Reconfigurable Parallel Architecture,"* J. Parallel and Distributed Com-
puting, Vol. 21, No. 1, Jun. 1989, pp. 598-622.

F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, "*A Single-Program-
Multiple-Data Computational Model for EPEX/FORTRAN,’” Parallel Computing,
Vol 7, No. 1, Apr. 1988, pp. 11-24.

P. Duclos, F. Boeri, M. Auguin, and G. Giraudon, *"Image Processing on a
SIMD/SPMD Architecture: OPSILA,"* Ninth Int'! Conf. Pattern Recognition, Nov.
1988, pp. 430-433.

S. A. Fineberg, T. L. Casavant, and H. J. Siegel, ‘“Experimental Analysis of a
Mixed-Mode Parallel Architecture Using Bitonic Sequence Sorting,”” J. Parallel
and Distributed Computing, Vol. 11, No. 3, Mar. 1991, pp. 239-251.

M. J. Flynn, "*Very High-Speed Computing Systems,"* Proceedings of the |EEE,
Voal. 54, No. 12, Dec. 1966, pp. 1901-1909.

[FTM94]

[GiW92]

[Go093]

[HaM89]

[Hil85]

[HiS86]

[HiT93]

[Hun89]

[JaG87]

[JaM86]

-6l -

R. S. Francis, I. D. Mathieson, P. G. Whiting, M. R. Dix, H. L. Davis, and L. D.
Rotstayn, "*A Data Parallel Scientific Modelling Language,"* J. Parallel and Distri-
buted Computing, Val. 21, No. 1, Apr. 1994, pp. 46-60.

N. Giolmas, D. W. Watson, D. M. Chelberg, and H. J. Siegel, **A Parallel Approach
to Hybrid Range Image Segmentation,"* Proceedings of the Sixth Int’ Parallel Pro-
cessing Symposium, Mar. 1992, pp. 334-342.

G. Golub and J. M. Ortega, Scientific Computing An Introduction with Parallel
Computing, Academic Press, Inc., California, 1993.

J. P. Hayes and T. Mudge, ""Hypercube Supercomputers,”® Proceedings of the
|EEE, Vol 77, No. 12, pp. 1829-1841.

W. D. Hillis, The Connection Machine, MIT Press, Cambridge, Massachusetts,
1985.

W. D. Hillis and G. L,, Jr. Steele, **Data Parallel Algorithms,"* Communications of
the ACM, Val. 29, No. 12, Dec. 1986, pp. 1170-1183.

W. D. Hillis and L. W. Tucker, ""The CM-5 Connection Machine: A Scalable
Supercomputer,” Communications of the ACM, Vol. 16, No. 11, Nov. 1993, pp.
31-40

D. J. Hunt, "*AMT DAP- A Processor Array in a Workstation Environment,** Com-
puter Systems Science and Engineering, Val. 4, No. 2, Apr. 1989, pp. 107-114.

L. H. Jamieson, D. Gannon, and R. J. Douglass, eds., The Characteristics of Parallel
Algorithms, MIT Press, Cambridge, M assachusetts, 1987.

L. H. Jamieson, P. H. Mudller, J., and H. J. Siegel, “‘FFT Algorithmsfor SIMD
Parallel Processing Systems,"" J. Parallel and Distributed Computing, Vol. 3, No.
1, Mar. 1986, pp. 48-71.

[Jam87]

[KiN91]

[KoN93]

[KrM88]

[KrS92]

[KuG94]

[Kum91]

[LaD90]

[LiM87]

[Masol]

-62 -

L. H. Jamieson, " Characterizing Parallel Algorithms,"* in The Characteristics o
Parallel Algorithms, L. H. Jamieson, D. G. Gannon, and R. J. Donglass, eds., The
MIT Press, Cambridge, Massachusetts, 1987.

S. D. Kim, M. A. Nichals, and H. J Siegel, "*"Modeling Overlapped Operation
Between the Control Unit and Processing Elements in an SIMD Machine,"" J.
Parallel and Distributed Computing, Vol. 12, No. 4, Aug. 1991, pp. 329-342.

J. S. Kowadlik and K. W. Neves, "* Softwarefor Parallel Computing: Key Issues and
Research Directions,”" in Software for Parallel Computation, J. S. Kowalik and L.
Grandinetti, eds., Springer-Verlag, Germany, 1993, pp. 3-33.

R. Krishnamurti and E. Ma, ""The Processor Partitioning Problem in Specia-
Purpose Partitionable Systems,"" 1988 Int'/ Conf. on Parallel Processing, Vol. I,
Aug. 1988, pp. 434-443.

L. Krongo and D. Shumsheruddin, Advancesin Parallel Algorithms, Halsted Press,
New York, New York, 1992.

V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Comput-
ing: Design and Analysis, The Benjamin/Cummings Publishing Company, Red-
wood City, California, 1994.

V. K. P. Kumar, ed., Parallel Architecturesand Algorithmsfor Image Understand-
ing, Academic Press, Boston, Massachusetts, 1991.

S. Lakshmivarahan and S. K. Dhall, Analysis and Design of Parallel Algorithms :
Arithmetic and Matrix Problems, McGraw-Hill, New Y ork, New Y ork, 1990.

G. J. Lipovski and M. Malek, Parallel Computing, John Wiley & Sons, New Y ork,
New York, 1987.

Data-Parallel Programming Guide, MasPar Computer Corporation, Sunnyvale,
California, 1991.

[Mod88]

[NaM93]

[NaS93]

[Nut77]

[Pan91]

[PhW93]

[Pit93]

[SiA92a]

-63 -

J. J Modi, Parallel Algorithms and Matrix Computation, Oxford University Press,
New York, New Y ork, 1988.

W. G. Nation, A. A. Maciejewski, and H. J. Siegel, "*A Methodology for Exploiting
Concurrency Among Independent Tasks in Partitionable Parallel Processing Sys-
tems,"* J. Parallel and Distributed Computing, Specia Issue on Performance of
Supercomputers, Vol. 19, No. 3, Nov. 1993, pp. 271-278.

W. G. Nation, G. Saghi, and H. J. Siegdl, **Propertiesd Interconnection Networks
for Large-Scale Paraldl Processing Systems,"" Int'| Summer Institute on Parallel
Architectures,Languages, and Algorithms, July 1993, pp. 51-82

G. J. Nutt, "*Multiprocessor Implementation of a Parallel Processor,”" Proceedings
of the Fourth Annual Symposium on Computer Architecture, 1977, pp. 147-152.

C. M. Pancake, " Software Support for Paralledl Computing: Where Are We
Headed?,"" Communications of the ACM, Vol. 34, No. 11, Nov. 1991, pp. 53-64.

M. Philippsen, T. Warschko, W. Tichy, and C. Herter, **Project Triton: Towards
Improved Programmability of Parallel Machines'" 26th Hawaii Int’'l Conf. Sytem
Sciences, Jan. 1993, pp. 192-201.

|. Pitas, Parallel Algorithms For Digital Image Processing, Computer Vision, and
Neural Networks, John Wiley & Sons, New Y ork, New Y ork, 1993.

H. J Siegel, S. Abraham, W. L. Bain, K. E. Batcher, T. L. Casavant, D. DeGroot, J.
B. Dennis, D. C. Douglas, T. Y. Feng, J. R. Goodman, A. Huang, H. F. Jordan, J. R.
Jump, Y. N. Patt, A. J. Smith, J. E. Smith, L. Snyder, H. S Stone, R. Tuck, and B.
W. Wah, ""Report of the Purdue Workshop on Grand Challenges in Computer
Architecturefor the Support of High Performance Computing,” J. Parallel and Dis-
tributed Computing, Val. 16, No. 3, Nov. 1992, pp. 199-211.

[SiA92b]

[SiA92c]

[SiA95]

[Sie90]

[SiS81]

[SiS82]

[SiS95]

[St080]

[TuR88]

-64 -

H. J. Siegd, J. K. Antonio, and K. Liszka, "*Metricsfor Metrics. Why isit Difficult
to Compare Interconnection Networksor How Would Y ou Compare an Alligator to
an Armadillo?"" Proceedings of the New Frontiers: A Workshop on Future Direc-
tionsof Massively Parallel Processing, Oct. 1992, pp. 97-106.

H. J. Siegel, J. B. Armstrong, and D. W. Watson, **Mapping Computer-Vision-
Related Tasks Onto Reconfigurable Parallel Processing Systems,”* Computer, Vol.
25, No. 2, Feb. 1992, pp. 54-63.

H. J Siegdl, J. K. Antonio, R. C. Metzger, M. Tan, and Y. A. Li, ""Heterogeneous
Computing,” to appear in Handbook of Parallel and Distributed Computing, A. Y.
Zomaya, ed., McGraw-Hill, 1995.

H. J. Siegel, Interconnection Networksfor Large-Scale Parallel Processing: Theory
and Case Studies, Second Edition, McGraw-Hill, New Y ork, New York, 1990.

H. J Siegdl, L. J Siegel, F. C. Kernrnerer, P. T. Mueller, J., H. E. Smalley, J., and
S. D. Smith, "*PASM: A Partitionable SIMD/MIMD System for hnage Processing
and Pattern Recognition,"" IEEE Trans. Computers, Vol. C-30, No. 12, Dec. 1981,
pp. 934-947.

L. J Siegel, H. J Siegel, and A. E. Feather, " Parallel Processing Approaches to
Image Correlation,”” |EEE Trans. Computers, Vol. C-31, Mar. 1982, pp. 208-218.
H. J Siegel, T. Schwederski, W. G. Nation, J. B. Armstrong, L. Wang, J. T. Kuehn,
R. Gupta, M. D. Allemang, D. G. Meyer, and D. W. Watson, ** The Design and Pro-
totyping of the PASM Reconfigurable Parallel Processing System,”* in Parallel
Computing: Paradigms and Applications, A. Y. Zomaya, ed., Chapman and Hall,
London, United Kingdom, 1995 (in press).

H. S. Stone, ** Parallel Computers,”* in Introduction to Computer Architecture, H. S.
Stone, ed., Science Research Associates, Chicago, Illinois, 1980.

L. W. Tucker and G. G. Robertson, "Architecture and Applications of the Connec-
tion Machine,"* Computer, Val. 21, No. 8, Aug. 1988, pp. 26-38.

[VaR94]

[WaN94]

[Wil93]

-65-

A. Varma and C. S. Ragavendra, eds., I nterconnection Networks for Multiproces
sors and Multicomputers: Theory and Practice, |EEE Computer Society Press, Los
Alamitos, California, 1994.

M-C Wang, W. G. Nation, J. B. Armstrong, H. J. Siegel, S. D. Kim, M. A. Nichols,
and M. Gherrity, "*Multiple Quadratic Forms: A Case Study in the Design of Data-
Paralel Algorithms," J. Parallel and Distributed Computing, Vol 21, No. 1, Apr.
1994, pp. 124-139.

G. V. Wilson, "*A Glossary of Paralel Computing Terminology,” |EEE Parallel
and Distributed Technology, Vol 1, No. 1, Feb. 1993, pp. 52-67.

	Purdue University
	Purdue e-Pubs
	12-1-1994

	Data Parallel Algorithms
	Howard Jay Siege1
	Lee Wang
	John John E. So
	Muthucumaru Maheswaran

