A Test Problem Generator for Non-Stationary Environments

Ronald W. Morrison
GRC International, Inc.
1900 Gallows Road
Vienna, VA 22182
rorrison@grei.com

Abstract: There has recently been a growing in-
terest in the study of EA performance in chang-
ing environments. Studies of EAs in dynamic en-
vironments, however, have used only a few, lim-
ited fitness functions. As has been shown in the
study of EAs in static environments, compara-
tive studies of the cffectiveness of various EAs in
dynamic environments will require more rigorous
and standardized test functions. These functions
should have a simple representation mechanism,
so that a wide range of complexity and sophisti-
cated dynamics can be unambiguously described
in an elementary manncr. This paper proposes
an initial test function generator with these char-
acteristics to facilitate further understanding of
the effectiveness of diffcrent EA implementations
in different types of dynamic environments.

1 Non-Stationary Problems

The robust capability of the various types of evolution-
ary algorithms (EAs) to find solutions to difficult prob-
lerns has permitted them to becone the optiinization and
search techniques of choice for many applications. But
what happens if the information that has been provided
to an EA changes? Despite the obviously successful ap-
plication of evolutionary techniques to comnplex problems
in many different enviromnents, the resultant solutions
are often fragile, and prone to failure when subjected to
even minor changes in the problem. Since information is
accurnulated by an EA during successive iterations, there
is an irnplicit assumption of consistency in the evaluation
function. Unfortunately, the consistency assumption is
not the case in many real problems. A variety of cugi-
neering, econonic, and inforination techuology problemns
require systems that adapt to changes over tiine. Examn-
ples of problems with non-stationary enviromments in-
clude: target recognition, where the sensor performance
may vary based on environmental conditions; schedul-
ing problems, where scheduling demands and available
resources may vary over time; investment portfolio eval-
uation, where the assessment of investment risk varies
over time; and data mining, where the contents of the
database being mined are continuously updated

There is a recent growing interest in the performance

0-7803-5536-9/99/$10.00 ©1999 IEEE

Kenneth A. De Jong
Department of Computer Science
George Mason University
Fairfax, VA 22030
kdejong@gimu.edu.com

of EAs in changing environments (Mori, Imanishi, Kita,
and Nishikawa 1997), (Lewis, Hart, and Ritchie 1997),
(Bick 1998). This is not surprising in view of the fact
that many of the problems that EAs are being used to
solve are known to vary over time. The “successes and
failures” of [KAs in dynamic fitness landscapes that have
been reported to date, however, have mostly just mea-
sured the speed of the adaptation of some specific EA im-
plementation. This measurement is usually made using
a simple exanple problemn and often reported without
analysis of the dynamics of the sample problem selected
or the generality of any adaptation speed results. As has
been shown in the study of EAs in static environments,
comparative studics of the effectiveness of various EAs
in dynamic environments will require rigorous and stan-
dardized test functions. Furthermore, since it is likely
that techniques that are successtul in improving the per-
formance of EAs in adapting to some types of fitness
landscape change are likely to be less effective in other
types of landscape changes, standardized test functions
will be required to cover a variety of different types of
dynamic behavior.

As a first step in improving this situation, we have
developed a test problem generator capable of providing
instances of a wide variety of dynamic landscapes. In this
paper we present the basic architecture of the generator,
elaborate on its capabilities, and illustrate its use. We
begin by examining some of the types of non-stationary
landscapes.

2 Types of Dynamic Landscapes

In the building of a test problem generator for dynamic
landscapes, an important consideration is the range of
dynamic behavior that the generator should be able
to produce. In the simplest non-stationary problems,
the overall shape (morphology) of the fitness landscape
is constant, but it drifts along one or more axes over
time. It is relatively easy, for example, to take any
two-dimensional static landscape f(z,y) and make it
vary over time in this simple sense by redefining it as
glz,y,t) = f(xe—1 + Az, yi—1 + Ay,), and by pro-
viding the “motion algorithm” for computing Az, and
Ay,. The motion itself can have several properties in-
cluding its speed (rapid/slow relative to EA time), peri-

2047

odic/aperiodic, etc. The focus here is typically on how
well an EA can follow (track) a moving landscape.

More difficult and more interesting are landscapes
whose morphology changes over timme (see, for exam-
ple, (Goldberg and Smith 1968) or (Grefenstette 1992)).
Providing a simple way to contruct interesting test proh-
lems of this type is the goal of the work presented here.
We do so by focusing ou the “peaks” in a landscape
and consider how peaks might independently chauge over
time.

2.1 Changing Fitness Peak Heights

There are many real-world problems that can be mod-
eled by simply allowing the heights of fitness peaks to
change over time reflecting, for example changes in the
cost of raw materials, changes in comsumer preferences,
etc. resulting in global optima becoming local optima
and vice-versa. Traditional EAs have no difficulty con-
verging on initially high fitness peaks, but the loss of
diversity in the population makes it difficult for them to
adapt to change (Grefenstette 1992).

2.2 Changing Fitness Pcak Shapes

Closely related to changes in peak heights are changes in
their shape (e.g, tall and narrow, short and wide, etc.).
Alone, shape changes don’t affect the performance of tra-
ditional EAs much. However, in conjunction with other
simultaneous changes, they can pose considerable diffi-
culty.

2.3 Changing Fitness Pcak Locations

Another source of difficulty for current EAs are fitness
peaks that change location (Goldberg and Simith 1968).
EAs with populations lacking in diversity have difficulty
tracking such changes. Tracking becomes even more dif-
ficult if the peaks can move independently of one an-
other.

2.4 The Dynamics of Change

So far we have focused on what has been changing over
time. Equally important is how things are changing,
i.e., the dynamics of change. The two most common dy-
namics studied are: a slowly drifting motion (e.g., (An-
geline 1997) or (Bick 1998)) and an oscillatory motion
(e.g., (Dasgupta and McGregor 1993) or (Mori, Iman-
ishi, Kita, and Nishikawa 1997)).

Clearly, the form of the dynamics will play an impor-
tant role in the kind of modifications one might make
to existing EAs. To handle slowly drifting changes
it may be sufficient to incrementally increase popula-
tion diversity through adaptive local searcli operators
(Varak, Jukes, and Fogarty 1997). However, oscil-
lating changes are likely to require more fundamental

changes such as diploid representations (e.g., (Goldberg
and Smith 1968), (Dasgupta and McGregor 1993) or
Ryan (Ryan 1997)), or additional “memory” functions
(e.g., (Neubauer 1997) or (Mori, Imanishi, Kita, and
Nishikawa 1997)).

One additional dynamic of interest is that of an
abrupt, unexpected, catastrophic change to the fitness
landscape, capturing the kinds of effects that power fail-
ures have on complex networks, that 10-car accidents
have on traffic flow, etc. Triggered mutation operators
are one example of the changes made to EAs to handle
such dynamics (Cobb and Grefenstette 1993).

3 Problem Generator Characteristics

Our stated goal is to develop a test problem generator
for dynamic fitness landscapes that provides for easy and
systematic testing and evaluation of EAs over a wide
range of dynamics as discussed in the previous section.
To achieve this a dynamic problem generator should
have:

(1) Easily modifiable landscape complexity that is
scalable to complexity levels representative of
problems found in nature.

(2) Simple parametric methods for specifying the mor-
phological characteristics and changes, including
peak re-ordering, peak relocation, peak re-shaping.

(3) Simple methods to specify the type of dynamics to
apply including: small steps, large steps, multiple
step sizes, recurrent motion, and chaotic motion.

(4) Simple representation mechanisms, so that a com-
plex environment with sophisticated dynamics can
be unambiguously defined in an elementary man-
ner,

(5) Reasonable computational efficiency.

4 Problem Generator DF1

In this section we describe in detail the features of DF1,
our current problem generator. In designing DF1 we
have adopted the view that the process of specifying a
test problem as a two step process. The first step in-
volves specifying a baseline static landscape of the de-
sired morphological complexity. Having done this, the
second step is to add the desired dynamics. We discuss
each of these steps in more detail in the following sec-
tions.

4.1 Specifying the morphology

To provide a parameterized way of specifying the basic
morphology of the landscape, in DF1 we use a “field of
cones” of different heights and different slopes randomly

2048

scattered across the landscape. This static function is
similar to the plane of Gaussian distributions used in
(Grefenstette 1999). The static function used in DF1 can
be specified for any number of dimnensions. For simplicity
and for visualization purposes we will use 2-dimensional
examples throughout the remainder of the paper. In this
case we have:

F(X,¥) = mazioy n [H,- —Rix JX X2+ (¥ - 1@)‘2]

where N specifies the number of coues in the environ-
ment, and each cone is independently specified by its
location (X;,Y;), its height H;, and its slope R;. Each
of these independently specified cones are “blended” to-
gether using the max function.

Each time the generator is called it produces a ran-
domly generated morphology of this type in which ran-
dom values for each cone are assigned based on user-
specified ranges:

H; € [Hbase, Hbase + Hrange)

R; € [Rbuse, Rbase + Rrange)
and
X, € [—1,]]
Yie[-1.1]

There are several advantages to the use of this func-
tion as the static basis for the dynamic enviromnent.
They include:

(1)

the ability to represent a wide range of complex
landscapes.

2)
(3)

the surface contains non-differentiable regions.

landscape characteristics are parametrically iden-
tified.

(4)

fitness values can be easily restricted to be positive
(or any other miniimunn value), if desired.

the function is easily extendable to higher dimen-
sional spaces.

the function offers three different features that can
be made dynamic (height, location, and slope).

(6)

To generate a wide range of static problems of vary-
ing complexity, one nced only specify the paramncters:
N (the number of peaks), Rbase (the minimun value of
the slope control variable), Rrange (the allowed range of
for the slope control), Hbase (the minimmuan cone height),
and Hrange (the range of allowed cone heights). Two ex-
amples of the variety of fitness landscapes generated by
varying these five paramcters are illustrated in Figures
1 and 2.

In Figure 1 we see oue of the randomly generated
landscapes specified to have 5 peaks of heights ranging

objective value

v value

x value

Figure 1: DF1 with
Rbase=2, Rrange=5.

N=5, Hbase=3, Hrange=3,

from 3 to 6, with slopes ranging from 2 to 7. In Fig-
ure 2 we see a much more complex randomly generated
landscape specified to have 500 peaks of heights ranging
from 50 to 75, and slopes ranging from 100 to 120.

e

Y3

tiectva v

B

X VHLS

Figure 2: DF1 with N=500, Hbase=50, Hrange=25,
Rbase=100, Rrange=20.

4.2 Specifying the dynamics

As discussed earlier, it is desirable to provide a simple
mechanism for describing a wide range of dynamic per-
formance. Since we change the dynamic features of the
environment by discrete step sizes, we would like a sim-
ple method for coutrolling the generation of a variety of
different step sizes. One method for generating a va-
riety of dynamics with the change of a single parame-
ter is to use a one-dimensional, non-linear function that
has simple bifurcation transitions to progressively more
complex behavior. One of the most common and well-
studied functions with this behavior is the logistics func-

2049

tion given hy:
Yi=A# Yoy * (1= Yio)

‘where A is a constant, and Y; is the value at iteration 1.

A bifurcation map of the logistics function is provided
in Figure 3. This figure shows the values of ¥ that can
be generated on each iteration of the logistics function
for values of A between 1 and 4. For example, if a value
of 2.2 is chosen, the logistics function will generate a
constant Y value of .5455 on each iteration. For a larger
A of 2.9, a larger constant ¥ value of .6552 ts generated.

09|
08
07y
¢ 06
S o5t

=04t

3 :
02t N
01) f .

A value
Figure 3: The Logistics Function.

As A is increased, more complicated dynamic behav-
ior emerges. Values slightly larger than the first bifurca-
tion point generate two different values of Y for alternate
iterations. For example, values of 3.3 and 3.4 generate
pairs of Y values {.8236, .4794} and {.8420), .4520} re-
spectively. As larger 4 values are chosen the function
bifurcates again and provides more complex hehavior,
At A = 3.5, the YV values generated are {3828, .5009,
.8269, .8750}. Still larger values of 4 generate chaotic
sequences of ¥ values within the range shown in Fig-
ure 3.

In DF1 we use the Y values produced on each itera-
tion to select our step sizes for the dynainic portions of
our environment. More specifically, we attach a logistics
function with a specified A value to each dynamic en-
tity. The result is a simple procedure for users to obtain
complex dynamics by specifying:

(1) The number of peaks in the landscape that will
move.

(2) Whether the motion will be applied to the height
of the peaks, the slope of the peaks, the x-location
of the peaks, the y-location of the peaks, or any
combination thereof.

The particular value of A chosen for each of the mov-
ing features specifies whether the movement will be small

same-sized steps, large same-sized steps, steps of few dif-
ferent sizes, or chaotically changing step sizes. As sug-
gested by Figure 3, we require that the values chosen for
A must be greater than one and less than four.

What remains then is to map the range of Y values
produced into appropriately scaled step sizes for the par-
ticular dynamic feature. This is accomplished by scaling
the ¥ values to keep the step sizes less than 0.5 (50%)
of the user-specified range of values, and then using the
step size as a percentage of the range to add to or sub-
tract from the current parameter value. For example,
for an individual cone that is increasing dynamically in
height, first the current height is computed as a percent-
age of maximum height:

"Hpct = H/(Hbase + Hrange)

The current Y value is then scaled by a user-supplied
height scaling factor and added to the Hpet:

Hpct = Hpet + Y * Hscale.

If this is less than the 100% of the valid range, then the
new height value is computed from the percentage value.
If it is greater than 100%, then the step change sign is
reversed, and remains reversed for each iteration until
the minimmn value of the range is reached, at which
point it is reversed again.

Hence, the dynamics of the landscape can be simply
and precisely specified by providing:

e Nummove - the number of peaks in motion

o Ah - the A value for peak height dynamics, if height
dynamics are chosen

e Ar - the A value for cone slope dynamics, if slope
dynamics are chosen

e Ax - the A value for x-axis movement dynamics, if
X movement is chosen

e Ay - the A value for y-axis movement dynamics, if
y movement is chosen

and a scaling factor for each A value specified.

5 Examples

In this section we illustrate a small set of the different
types of dynamics that are possible and easily described
with this test function. It is possible to generate dynamic
functions similar to many of those already studied in the
EA literature using this generator. For ease of illustra-
tion here, all examples use relatively small uniform incre-
mental steps (small A values). It is possible, but harder
to visualize dynamics involving larges step sizes, several
different fixed step sizes, or chaotic step size selection.

2050

The landscape changes can also be made recurrent (simi-
lar to the recurrent knapsack problem commonly studied
in the EA literature) through selection of the initial con-
figuration and the step-size parameter A.

5.1 Linear motion

With DF1 even simple linear motion produces rather in-
teresting dynamics. Consider a simple landscape cousist-
ing of several peaks two of which are moving using sim-
ple linear motion. As they move, they can hide/expose
other peaks as a result of maz blending. When they
reach user-specified boundaries, they “rebound” like a
billiard ball. It is difficult to visualize this without pro-
viding a complete movie of the dynamics produced. Fig-
ure 4 attempts to do so by showing frames 2, 4, and 6
of a movie of two cones (from a larger group of cones)
moving in opposite directions in the z-y plane.

If you look carefully, you should see them start out
close together in the middle of the landscape, and then
move in opposite directions, one to the left and one to
the right. As they move, a previously hidden peak in the
center emerges.

5.2 Changing cone shapes

Figure 5 shows the changes in the landscape caused by
the slope of one cone starting out quite small (resulting
in a broad peak that overshadows may others) and in-
creases over time. As the cone’s extent narrows, other
hidden peaks become visible.

This illustrates a nice property of the generator,
namely, that even though a fixed mumber of cones are
initially specified, the dynamic complexity of the land-
scape can change rather dramatically via the masking
effect due to the use of max blending.

5.3 Changing peak heights

As a final example, Figure 6 illustrates an enviromnent
where the peaks are stationary, but their relative height
changes over time.

Although we have kept things deliberately siimple for
visualization purposes, even more complex dynamics can
be obtained by having more than one of these types of
changes happening simultaneously, and by using higher
values of A to dynamically vary step sizes.

6 Summary and Future Work

We have presented our initial efforts at designing a dy-
namic test function generator with a simple representa-
tion mechanism that can unambiguously describe a wide
range of complexity and dynamics in an elementary man-
ner.

The methods described herein can be easily extended
in several ways, the simplest of which is to start from

Figure 4: X-Y Movement of 2 Cones, Az = 2.0, Ay =
2.0, Xstepscale = .15, Ystepscale = .25.

different static functions. For example, the static func-
tion chosen for DF1 has sharp, cone-like peaks. If more
rounded peaks are preferred, a DF2 generator is easily
derived from DF1 that uses the same base function ex-
cept that no square root is taken. An example is of the
effects of this simple change is given in Figure 7.

It is clear that other static functions will be required
to adequately represent additional clagses of problems.
For example, dynamically changing discrete optimiza-
tion problems are of considerable interest, but not gen-

2051

10

Figure 5: One Cone Changing Slope, 4r = 2.2,
Rstepscale = 3.

erable using DF1.

However, we are quite pleased with the capabilities of
DF1 as it stands, and are presently using it to evaluate in
a more systematic way changes one might inake to EAs,
such as diploid representations, tag bits, etc., to handle
dynamic environments. To encourage others to do so as
well, we have made DF1 available for downloading from
the NCARAI website www.aic.nrl.navy.mil /galist.

Figure 6: 14 Cones Changing Height, Ah = 1.2,
Hstepscale = .35.

Bibliography

Augeline, P. (1997). Tracking extrema in dynamic envi-
ronments. In Proceedings of the Sixth International
Conference on Evolutionary Programming, pp. 335~
345. Springer.

Bick, T. (1998). On the behavior of evolutionary algo-
rithms in dynamic fitness landscapes. In Proceeding
of the IEEE International Conference on Evolution-
ary Computation, pp. 446—451. IEEE.

2052

2
g
8
y value x valie
Figure 7: DF2 with N=25, Hbase=50, Hrange=25,

Rbase=50, Rrange=20

Cobb, H. G. and J. J. Grefenstette (1993). Genetic al-
gorithms for tracking changing enviromments. In Pro-
ceedings of the Fifth International Conference on Ge-
netic Algorithms, pp. 523- 530. Morgan Kaufinann.

Dasgupta, D. and D. R. McGregor (1993). Nou-
stationary function optimization using the structured
genetic algorithm. In R. Mimnmer and B. Manderick
(Eds.), Proceedings of the Second International Con-
ference on Parallel Problem Solving from Nature. El-
sevier Science.

Goldberg, D. E. and R. E. Smith (1968). Nonstationary
function optimization using genetic algoritlins with
dominance and diploidy. In Proceedings of the Second
International Conference on Geunetic Algorithms, pp.
59-68. Lawrence Erlbaum Associates.

Grefenstette, J. J. (1992). Genetic algorithins for chang-
ing environments. Tn R. Manner and B. Manderick
(Eds.), The Proceedings of the Second International
Conference on Parallel Problem Solving from Natuie,
pp. 137-144. North-Holland.

Grefenstette, J. J. (1999). Evolvability in dynamic fitness
landscapes, a genetic algorithin approach. In Proceed-
ings of the Congress on Evolutionary Computation.

Lewis, J., E. Hart, and G. Ritchie (1997). A compari-
son of dominance mechanising and simple mutation
in non-stationary problems. ln Proceedings of the
Seventh International Conference on Genetic Algo-
rithms, pp. 139-148. Morgan Kaufinann.

Mori, N., S. Imanishi, H. Kita, and Y. Nishikawa (1997).
Adaptation to changing environments by means of
the memnory based therinodynanic genetic algorithun,
In Proceedings of the Seventh International Confer-
ence on Genetic Algorithms, pp. 299-306. Morgan
Kaufmann.

Neubauer, A. (1997). Prediction of nonlinear and non-
stationary time-series using self-adaptive evolution
strategies with individual memory. In Proceedings of
the Seventh International Conference on Genetic Al-
gorithms, pp. 727-734. Morgan Kaufmann.

Ryan, C. (1997). Diploidy without dominance. In Pro-
ceedings of the Third Nordic Workshop on Genetic
Algorithms, Helsinki. Finnish Artificial Intelligence
Society.

Varak, F., K. Jukes, and T. Fogarty (1997). Adaptive
combustion balancing in multiple burner boiler us-
ing a variable range of local search. In Proceedings
of the Seventh International Conference on Genetic
Algorithms, pp. 719-726. Morgan Kaufmann.

2053

