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Abstract: There has recently been a growing in­
terest in the study of EA perfoI'lnance in chang­
ing environments. Studies of EAs in dynaluic en­
vironlnents, however, have used only a few, liIn­
ited fitness functions. As has been shown in the
study of EAs in static environlnents, COlnpara­
tive studies of the effectiveness of various EAs in
dynalnic environlnents will require lnore rigorous
and standardized test funct.ions. These functions
should have a simple represent.ation mechanism,
so that a wide range of complexit.y and sophist.i­
cated dynalnics can be unambiguously described
in an elelnentary lnanner. This paper proposes
an initial test function generator with these char­
acteristics to facilitate further understanding of
the effectiveness of different EA implementations
in different types of dynamic environments.

1 Non-Stationary Problems

The robust capability of tlw various tyP(~S of ~~volution­

ary algorithms (EAs) to find solutions to difficult prob­
lems has permitted them to become the optimization and
search techniques of choice for many applications. But
what happens if the information that has h<:l;n provided
to an EA changes? Despit~~ the ohviously slH;cessful ap­
plication of evolutionary tedmiques to complex problems
in many different environments, the resultant solutions
are often fragile, anrl prone to failun~ wlwn suhjeeterl to
even minor changl~s in the prohlmn. Since information is
accumulated by an EA during suc:cessive itl~rations, tlwn;
is an implicit assumption of consistl~ncy in tlI(·~ evaluatioll
function. Unfortullatdy, tlw consistl;ncy assumption is
not the case in many wal prohl<~llIs. A varidy of engi­
neering, economic, and information ted l1lology prohl(~ms

require systems that adapt to changl~s OVI~r tillw. F.xam­
pies of problems with non-stationary envirolllrwnts in­
clude: target recognition, whel'll the sensor pmfonnance
may vary based on environmental conditions; sclwdul­
ing problems, where scheduling demands and availahle
resources may vary over time; investment portfolio eval­
uation, where the assessment of investment risk varies
over time; and data mining, where the contmlts of the
database being mined are c:ontinuously updated
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of EAs in changing environments (Mori, Imanishi, Kita,
and Nishikawa 1997), (Lewis, Hart, and Ritchie 1997),
(B~ick 1998). This is not surprising in view of the fact
that many of the problems that EAs are being used to
solve are known to vary over time. The "successes and
failures" of EAs in dynamic fitness landscapes that have
l)(;lm reporterl to date, howevl;r, have mostly just mea­
s1ll'ed the speed of the adaptation of some specific EA im­
plemcmtation. This 1I1easu!'(;ment is usually marie using
a simple exampl<! problc;m and often reported without
analysis of the dynamics of the sample prohlem selected
or tlw gel1llralit.y of any adaptation speed n~sults. As has
beml shown in the study of EAs in static environments,
comparative studies of the effeetiveness of various EAs
in dynamic environments will require rigorous and stan­
dardized test funetions. Furthermore, since it is likely
that techniques that are successhJI in improving the per­
formance of EAs in adapting to some types of fitness
landscape change an~ lik<~ly to be less effeet.ive in other
types of landscape changes, standardized test funetions
will 1)(; required to cover a variety of different types of
dynamic bdmvior.

As a first step in improving this situation, we have
developed a test problem glmerator eapahle of providing
instances of a wide variety of dynamic: landscapes. In this
papm' we present. the basic architeet.ure of the generator,
elaborate on its capabilities, and illustrate its use. We
begin by exarnining some of the types of non-stationary
landscapes.

2 Types of Dynamic Landscapes

In the Imilding of a test. problmn generat.or for dynamic
landscapes, an important. considl~ration is the range of
dywunic IHllmvior that t.he gmwrator should be able
to produce. In the simplest non-stationary problems,
the oVlmtll shape (morphology) of the fitness landseape
is constant, but it drifts along one or more axes over
time. It is relatively easy, for example, to take any
two-dimensional static landscape f(x, y) and make it
vary over time in this simple sense by rerlefining it as
9(:1:,1/, t) = f(:1:t-1 + ~xt, 1/t-1 + ~Yt), and by pro­
viding the "motion algorithm" for eomputing ~:1:t and
~Yt. The motion itself can have several properties in­
cluding its speed (rapid/slow relative to EA time), peri-
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odic/aperiodic, etc. The focus here is typically on how
well an EA can follow (track) a moving landscape.

More rlifficult and more interesting are lanrlscapes
whose morphology changes over time (Sl~l~, for exam­
ple, (Golrlherg anrl Smith 19G8) or (Grefmlstette 1992)).
Provirling a simple way to contruct inten~sting test prob­
lems of this type is the goal of the work pn~senterl here.
'iVe do so by focusing 011 the "peaks" in a lall(lscape
anrl consirler how peaks migllt indepen[h~ntlychange over
time.

2.1 Changing Fitness Peak Heights

There are many real-world probll~1lls that can be 1llod­
elerl by simply allowing the Ileights of fitness peaks to
change over time reflecting, for example changes in the
cost of raw materials, changes in COmSll1lHlr preferences,
etc. resulting in global optima Iwcoming local optima
anrl vice-versa. Traditional EAs have no difficulty con­
verging on initially high fitness pl~aks, but tlH~ loss of
divl~rsity in the population makl~s it rlifficult for them to
arlapt to change (Grefl~nstette 1992).

2.2 Changing Fitness Peak Shapes

Closely relaterl to changes in peak heights are changes in
their shape (e.g, tall and narrow, short and wide, etc.).
Alone, shape changes don't affl~ct thl~ Iwrfonnance of tnl­
rlitional EAs much. However, in conjunction with other
sinl1lltam~ous changes, they can POSI~ considm'able diffi­
culty.

2.3 Changing Fitness Peak Locations

Another source of difficulty for current EAs are fitness
peaks that change location (Goldberg and Smith 19G8).
EAs with populations lacking in diversity have rlifficulty
tracking such changes. Tracking becomes even 1llore dif­
ficult if the peaks can move independently of one an­
other.

2.4 The Dynamics of Change

So far we have focllsed on what has been changing over
time. Equally important is how things are changing,
i.e., the rlynamic:s of change. Tlw two most (:01llmon dy­
namics studied are: a slowly drifting motion (e.g., (An­
geline 1997) or (B~ick 1998)) and an oscillatory motion
(e.g., (Oasgupta and l\1c:Gn~gor 1993) or (Mori, Iman­
ishi, Kita, ami Nishikawa 1997)).

Clearly, the form of the dynamics will play an impor­
tant role in the kind of modifications one might make
to existing EAs. To handle slowly rlrifting changes
it may be suffic:ient to incrementally increase popula­
tion diversity through adaptive local search operators
(Varak, Jukes, anrl Fogarty 1997). Howllver, oscil­
lating changes are likely to require lI10re fundanwntal

changes sllch as diploid representations (e.g., (Goldberg
and Smith 19G8), (Oasgupta and MeGregor 1993) or
Ryan (Ryan 1997)), or additional "memory" functions
(e.g., (Neubauer 1997) or (Mod, Imanishi, Kita, and
Nishikawa 1997)).

One adrlitional dynamic of interest is that of an
abrupt, unexpeeterl, eatastrophic change to the fitness
landscape, captming the kinrls of effects that power fail­
mes have on complex networks, that lO-car accidents
have on traffic flow, etc. Triggered mutation operators
are one example of the changes marle to EAs to handle
such rlynamies (Cobb and Grefenstette 1993).

3 Problem Generator Characteristics

Our stated goal is to develop a test problem generator
for dynamic fitness landseapes that provides for easy and
systematie testing anrl evaluation of EAs over a wide
range of dynamies as rliseussed in the previous section.
To achieve this a rlynamie prohlem generator should
have:

(I) Easily morlifiable landscape complexity that is
scalable to eomplexity levels representative of
problems found in nature.

(2) Simple parametrie methods for specifying the mor­
phological characteristies and ehanges, including
peak re-orrlering, peak reloeation, peak re-shaping.

(3) Simple methorls to specify the type of dynamics to
apply including: small steps, large steps, multiple
step sizes, recurrent motion, anrl chaotic motion.

(4) Simple representation mechanisms, so that a com­
plex environment with sophisticated dynamics can
be unambiguously rlefined in an elementary man­
ner.

(5) Reasonable eomputational efficiency.

4 Problem Generator DFl

In this section we describe in detail the features of OFl,
om cmrent problem generator. In designing DFl we
have arlopterl the view that the proeess of specifying a
U~st problem as a two step process. The first step in­
volves specifying a baseline static landscape of the de­
sired morphological complexity. Having done this, the
second step is to add the desired dynamics. We discuss
each of these steps in more detail in the following sec­
tions.

4.1 Specifying the morphology

To provide a parameterized way of specifying the basic
morphology of the landseape, in DF1 we use a "field of
cones" of rlifferent heights anrl rlifferent slopes randomly
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Figme 1: DFI with N=5, Hbase=3, Hrange=3,
Rbase=2, Rrange=5.

from 3 to G, with slopes ranging from 2 to 7. In Fig­
lire 2 we s(~e a much llIore eomplex randomly generated
landscape speeified to have 500 peaks of heights ranging
from 50 to 75, and slopes ranging from 100 to 120.

x valueyvalue

Hi E [Rha.w~, RIHLS(', + Rranyc]

where N speeifies the I1Ilmber of cones in the environ­
ment, and each <:ane is ind(~pen(hmtly speeified by its
location (Xi, Yi ), its height Hi, and itH slope Ri . Each
of these independently Hpecifi(!d cones are "bhmded" to­
gether using the '/TI.a:1: fllnction.

Each time tlw geJlPrator is call(ld it prOdIlC(~H a ran­
domly generated morpllology of thiH tyP(~ in which ran­
dom val lies for each con(! are assigned bas(!d 011 user­
speeified ranges:

Hi E [lIhasc, I/IJasc + H'I'Itnyr.]

and

seattered aerosH the landHcape. ThiH Htatic timction iH
Himilar to the plane of Gaussian distrihutions used in
(GrefenHtette 1999). Tlw static functionus(~din DFI can
be specified for '\IIY IlIlmber of dimensions. For simplicity
and for visualization pmpoHes we will use 2-dimenHional
exampleH throughout the remainder of the paper. In this
case we have:

Xi E [-1,1]

Yi E [-1, I]

There are Heveral advalltag(!s to tll(~ IIS(! of tllis hlllc­
tioll as the static basis for th(~ dynamic (!nvirOllnl(-!nL
They inclllde:

(1) the ahility to repn!sent a wid(~ r;lIIge of complex
landscapes.

(2) tlw smface contains non-ditfen~ntiahl(~regions.

(3) landscape eharact(!ristics an~ p;U-;lIllntrically id(m­
tified.

(4) fitness vahws can lw easily n!stricted to bel p()sitiv(~

(or any other mininl1l\n vahw), if rksin!d.

(5) the fllnction is (!asily (~xt(!lldabl(! to IligIH-!I' dinl(!lI­
sional spaces.

Figme 2: DFI with N=500, Hbase=50, Hrange=25,
Rbase=100, Rrange=20.

(6) tile function offers thnl(! diffenmt featun,s that can
be made dynamic (lwigllt, location, and slope).

To generate a wide rang(~ of static probl(lms of vary­
ing cO\nplexity, one need (lilly specify the paralll(!t(!rs;
N (the nmnlwr of p(~aks), H.bas(~ (tlw miJlillllllll value of
th(~ slope control variahle), Rrange (tile allow(~d range! of
for the slope control), I1base (tlH!lllinillllllll COIle Iwight),
and Hrange (tlw range of ;\llow(ld COIle lleigllts). Two (lX­
amples of the variety of fitrwss la\l(lscap(~s g(!lwrat(!d by
varying these five parallwters an! i11l1strat(~d in FiguH!s
1 and 2.

In Figure 1 we S()(, OIW of tlw randomly gewmrted
landscapes speeified to have 5 peaks of Iwights ranging

4.2 Specifying the dynamics

As discuss(~d earli(~r, it is desirable to provide a simple
mechanism for d(!scrihing a wide range of dynamic per­
formance. Since we change the dynamic features of the
(mviro\lllHmt by discrete step sizes, we would like a sim­
ph~ m(,thod for <:antrolling the generation of a variety of
differellt stpp sizes. One method for generating a Vd­

ri(~ty of dynamics with the change of a single parame­
ter is to use a one-dimensional, non-linear function that
lias simple bifilrcation transitions to progressively more
complpx behavior. One of thp most common and well­
studied functions with this behavior is the logisties nmc-
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Figure 3: The Logistics Fl\11ction.

tion givell by:

li = A * l(i-J) * (1 - Y(i-l))

Hpct = H/(Hlm8~ + H'f'{J:ngc)

• Ay - the A value for y-axis movement dynamies, if
y movement is chosen

Hpct = Hpet + Y * Hscalc.

• AI' - tlH~ A vall1\~ for eone slope dynamies, if slope
dynamics are chos(~n

• Ax - tlH~ A value for x-axis movement dynamics, if
x movmnent is chosen

• Nummove - the number of peaks in motion

• Ah - the A value for peak height dynamies, if height
dynamics are chosen

5 Examples

In this section w(~ illustrate a small set of the different
types of dynamics thitt are possible and easily described
with this test function. It is possible to generate dynamic
functions similar to many of those already studied in the
EA literature using this generator. For ease of illustra­
tion here, all examples use relatively small uniform inere­
mental steps (small A values). It is possible, but harder
to visualize dynamics involving larges step sizes, several
different fixed step sizes, or chaotic step size selection.

aud a scaling factor for each A value speeified.

same-siwd steps, large same-sized steps, steps of few dif­
ferent sizes, or chaotically changing step sizes. As sug­
gested by Figme 3, we require that the values chosen for
A mnst be greater than one and less than four.

What remains then is to map the range of Y values
produced into appropriately scaled step sizes for the par­
tienlar dynamic feature. This is aeeomplished by sealing
the Y values to kel)p the step sizes less than 0.5 ( 50%)
of the user-specified range of values, and then using the
step size as a percentage of the range to add to or sub­
tract from the CUTTent parameter value. For example,
for an individual cone that is increasing dynamically in
]wight, first the current height is computed as a pereent­
age of maximlllll height:

The cmrent Y value is then scaled by a user-supplied
height scaling factor and added to the H prL

If this is less than the 100% of the valid range, then the
new IH~ight value is computed from the pereentage value.
If it is greater than 100%, then the step change sign is
revers(~d, and remains reversed for each iteration until
the minimlllll value of the range is reached, at whieh
point it is reversed again.

Hence, the dynamics of the landscape ean be simply
and precisely sp(~cified by providing:
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(2) Whether the motion will be applied to the lwight
of the peaks, the slope of the peaks, the x-location
of the peaks, the y-location of the plmks, or any
combination thereof.

where A is a constant, and Yi is the vahw at it(~ratioll i.
A bifurcation map of the logistics fUIH:tion is provided

in Figure 3. This figure shows the values of Y that can
be generated on each it(~ration of the logistics function
for values of A between 1 and 4. For example, if a value
of 2.2 is chosen, the logisti(:s functioll will generate a
constant Y value of .5455 on each it(~ration. For a larger
A of 2.9, a larger constant Y value of .G5Ei2 is gmH~rated.

As A is increased, more cOlnplicated dynamic belmv­
iar emerges. Values slightly largm' than the first bifun:a­
tion point generate two different values of Y for altemate
iterations. For example, vahlns of 3.3 and 3.4 generate
pairs of Y values {.823G, .4794} amI {.8420, .4Ei20} re­
spectively. As larger A values are dlOs(~n the fUlH:tioll
bifurcates again aml provides m(>n~ cOlllpl(~x Iwhavior.
At A = 3.5, tlw Y vahws generat(~d are {.3828, .Ei009,
.82G9, .87,'iO}. Still larg(~r vahlns of A gelJ(~rat(~ chaotic
sequences of Y vahlns within tlH~ range shown in Fig­
ure 3.

In DF1 we use the Y values produC\~d on l~acll itera­
tion to select om step sizes for the dynamic portions of
our environment. More specifically, we attach a logistics
timction with a specified A value to each dynamic en­
tity. The result is a simple procedure for users to ohtain
c:omplex dynamics by specifying:

(1) The nmnber of peaks in the landscap(~ that will
move.

The partieular value of A chosen for each of the mov­
ing features specifies whether the movement will be small
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The landscape ehanges can also be made reemrent (simi­
lar to the recurrent knapsack problem eommonly studied
in the EA Iiteratme) through selection of the initial eon­
figuration and the step-size parameter A.

15

10·

5

10

15

5

10

15~

different static functions. For example, the static fune­
tion chosen for DFI has sharp, cone-like peaks. If more
rollnded peaks are preferred, a DF2 generator is easily
derived from DFI that uses the same base function ex­
cept that no sqnare root is taken. An example is of the
effects of this simple change is given in Figure 7.

It is dear that other statie functions will be required
to ad<eqllately represent additional dasses of problems.
For example, dynamically changing discrete optimiza­
tion problems are of consid<~rable interest, but not gen-

Figme 4: X-Y Movement of 2 Cones, Ax = 2.0, Ay =
2.0, Xsfp'psc(Lle = .15, Ysfepscale = .25.

5.1 Lineal' motion

5.2 Changing cone shapes

Figllre 5 shows the changes in the landscape callsed by
the slope of one cone starting out quite small (resulting
in a broad peak that overshadows may otlHers) and in­
ereases over time. As the cone's extent narrows, other
hidden peaks become visible.

This illustrates a nice prolwrty of the geJlerator,
namely, that <wen though a fixed 1H1mlwr of COlWS are
initially specified, the dynamic comJ>1<~xity of tlw land­
scape ean ehange rather dramatieally via the masking
effect dlle to the use of nW:L: blending.

6 Summary and Future Work

We have presented om initial efforts at designing a dy­
namie test function generator with a simple repnesenta­
tion meehanism that can unambiguously descrilw a wide
range of eomplexity and dynamics in an elerrHentary man­
ner.

The methods deserib<ed ben~in can be (~asily <~xtended

in several ways, due simplest of wllicll is to start from

~lith DFI even simple linear motion produ(:(~s rather in­
teresting dynamies. Consider a simple landscape eonsist­
ing of several peaks two of which are moving using sim­
ple linear motion. As they move, they can hide/expose
other peaks as a result of mal: blending. When they
reaeh user-specified boundaries, they "rebound" like a
billiard ball. It is diffieult to visualize this without pro­
viding a eomplete movie of the dynamics produeed. Fig­
ure 4 attempts to do so by showing frames 2, 4, and 6
of a movie of two eones (from a larger group of eones)
moving in opposite directions in tlw :L:-Y plmw.

If you look earefully, you should see them start out
dose together in the middle of the landseape, and then
move in opposite directions, one to the I<~ft and one to
the right. As they move, a previously hidden peak in the
center emerges.

5.3 Changing peak heights

As a final example, Figme 6 illustrates an enviromnent
where the peaks are stationary, but their relative height
ehanges over time.

Although we have kept things deliberately simple for
visualization purposes, even more complex dynamics can
be obtained by having more than one of these typ<~s of
ehanges happening simultaneously, and by using higher
values of A to dynamically vary step sizes.
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Figme 5: One Cone Changing Slope, A,.
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Figme 6: 14 Cones Changing Height, All.
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1.2,

erable using OFl.
However, we ar<~ qllit(~ p1<~aspd with tlw capahiliti(~sof

OFI as it stands, and are pn)s(~lItly IIsilig it to evalllate in
a lllore systematic way chang(~s OIW migllt Illak() to EAs,
sl1ch as diploid representatiolJs, tag hits, etc., to !landle
dynmnie environments. To elJCOllrage otherH to do so as
well, we have made OFI available for downloading fi'om
the NCARAI website www.aic.1lI.l.navy.milJgalist.
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