

Go Programming

i

About the Tutorial

Go language is a programming language initially developed at Google in the year

2007 by Robert Griesemer, Rob Pike, and Ken Thompson. It is a statically-typed

language having syntax similar to that of C. It provides garbage collection, type

safety, dynamic-typing capability, many advanced built-in types such as variable

length arrays and key-value maps. It also provides a rich standard library.

The Go programming language was launched in November 2009 and is used in

some of the Google's production systems.

Audience

This tutorial is designed for software programmers with a need to understand the

Go programming language from scratch. This tutorial will give you enough

understanding on Go programming language from where you can take yourself to

higher levels of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of

computer programming terminologies. If you have a good command over C, then

it would be quite easy for you to understand the concepts of Go programming and

move fast on the learning track.

Disclaimer & Copyright

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher. We strive to update the contents

of our website and tutorials as timely and as precisely as possible, however, the

contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides

no guarantee regarding the accuracy, timeliness or completeness of our website

or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

Go Programming

ii

Table of Contents

About the Tutorial ... i

Audience .. i

Prerequisites .. i

Table of Contents .. ii

1. OVERVIEW .. 1

Features of Go Programming .. 1

Features Excluded Intentionally .. 1

Go Programs ... 2

Compiling and Executing Go Programs .. 2

2. ENVIRONMENT SETUP .. 3

Try it Option Online .. 3

Local Environment Setup .. 3

Text Editor .. 3

The Go Compiler ... 4

Download Go Archive ... 4

Installation on UNIX/Linux/Mac OS X, and FreeBSD ... 4

Installation on Windows ... 5

Verifying the Installation... 5

3. PROGRAM STRUCTURE ... 6

Hello World Example .. 6

Executing a Go Program .. 7

4. BASIC SYNTAX ... 8

Tokens in Go ... 8

Line Separator ... 8

Comments .. 8

Go Programming

iii

Identifiers ... 9

Keywords .. 9

Whitespace in Go .. 9

5. DATA TYPES .. 11

Integer Types .. 12

Floating Types ... 12

Other Numeric Types .. 13

6. VARIABLES .. 14

Variable Definition in Go ... 14

Static Type Declaration in Go .. 15

Dynamic Type Declaration / Type Inference in Go .. 16

Mixed Variable Declaration in Go ... 16

The lvalues and the rvalues in Go.. 17

7. CONSTANTS .. 19

Integer Literals .. 19

Floating-point Literals ... 20

Escape Sequence ... 20

String Literals in Go ... 21

The const Keyword.. 22

8. OPERATORS .. 23

Arithmetic Operators .. 23

Relational Operators ... 25

Logical Operators .. 27

Bitwise Operators ... 29

Assignment Operators .. 31

Miscellaneous Operators .. 34

Go Programming

iv

Operators Precedence in Go ... 35

9. DECISION MAKING .. 38

The if Statement ... 39

The if…else Statement .. 40

Nested if Statement .. 42

The Switch Statement ... 43

The Select Statement .. 48

The if...else if...else Statement .. 49

10. LOOPS ... 52

for Loop .. 52

Nested for Loops ... 56

Loop Control Statements .. 58

The continue Statement .. 60

The goto Statement .. 62

The Infinite Loop ... 64

11. FUNCTIONS ... 66

Defining a Function ... 66

Calling a Function .. 67

Returning Multiple Values from Function ... 68

Function Arguments .. 69

Call by Value ... 70

Call by Reference .. 71

Function Usage ... 73

Function Closures .. 74

Method ... 75

Go Programming

v

12. SCOPE RULES .. 77

Local Variables .. 77

Global Variables .. 78

Formal Parameters ... 79

Initializing Local and Global Variables ... 80

13. STRINGS .. 81

Creating Strings ... 81

String Length ... 82

Concatenating Strings ... 82

14. ARRAYS ... 84

Declaring Arrays .. 84

Initializing Arrays .. 84

Accessing Array Elements ... 85

Go Arrays in Detail .. 86

Multidimensional Arrays in Go ... 87

Two-Dimensional Arrays ... 87

Initializing Two-Dimensional Arrays .. 87

Accessing Two-Dimensional Array Elements ... 88

Passing Arrays to Functions .. 89

15. POINTERS .. 92

What Are Pointers? ... 92

How to Use Pointers?.. 93

Nil Pointers in Go .. 94

Go Pointers in Detail ... 94

Go – Array of Pointers ... 95

Go – Pointer to Pointer ... 96

Go – Passing Pointers to Functions ... 98

Go Programming

vi

16. STRUCTURES ... 100

Defining a Structure .. 100

Accessing Structure Members ... 100

Structures as Function Arguments .. 102

Pointers to Structures ... 104

17. SLICES ... 106

Defining a slice .. 106

len() and cap() functions ... 106

Nil slice ... 107

Subslicing .. 107

append() and copy() Functions .. 109

18. RANGE .. 111

19. MAPS .. 113

Defining a Map ... 113

delete() Function... 114

20. RECURSION ... 116

Examples of Recursion in Go ... 116

21. TYPE CASTING ... 119

22. INTERFACES .. 120

23. ERROR HANDLING ... 123

Go Programming

1

Go is a general-purpose language designed with systems programming in mind.

It was initially developed at Google in the year 2007 by Robert Griesemer, Rob

Pike, and Ken Thompson. It is strongly and statically typed, provides inbuilt

support for garbage collection, and supports concurrent programming.

Programs are constructed using packages, for efficient management of

dependencies. Go programming implementations use a traditional compile and

link model to generate executable binaries. The Go programming language was

announced in November 2009 and is used in some of the Google's production

systems.

Features of Go Programming

The most important features of Go programming are listed below:

 Support for environment adopting patterns similar to dynamic languages.
For example, type inference (x := 0 is valid declaration of a variable x of

type int)

 Compilation time is fast.

 Inbuilt concurrency support: lightweight processes (via go routines),

channels, select statement.

 Go programs are simple, concise, and safe.

 Support for Interfaces and Type embedding.

 Production of statically linked native binaries without external

dependencies.

Features Excluded Intentionally

To keep the language simple and concise, the following features commonly

available in other similar languages are omitted in Go:

 Support for type inheritance

 Support for method or operator overloading

 Support for circular dependencies among packages

 Support for pointer arithmetic

 Support for assertions

 Support for generic programming

1. OVERVIEW

Go Programming

2

Go Programs

A Go program can vary in length from 3 lines to millions of lines and it should be

written into one or more text files with the extension ".go". For example, hello.go.

You can use "vi", "vim" or any other text editor to write your Go program into a

file.

Compiling and Executing Go Programs

For most of the examples given in this tutorial, you will find a Try it option, so

just make use of it and enjoy your learning.

Try the following example using the Try it option available at the top right corner

of the following sample code:

package main

import "fmt"

func main() {

 fmt.Println("Hello, World!")

}

Go Programming

3

Try it Option Online

You really do not need to set up your own environment to start learning Go

programming language. Reason is very simple, we already have set up Go

Programming environment online, so that you can compile and execute all the

available examples online at the same time when you are doing your theory work.

This gives you confidence in what you are reading and to check the result with

different options. Feel free to modify any example and execute it online.

Try the following example using the Try it option available at the top right corner

of the following sample code displayed on our website:

package main

import "fmt"

func main() {

 fmt.Println("Hello, World!")

}

For most of the examples given in this tutorial, you will find a Try it option.

Local Environment Setup

If you are still willing to set up your environment for Go programming language,

you need the following two software available on your computer:

 A text editor

 Go compiler

Text Editor

You will require a text editor to type your programs. Examples of text editors

include Windows Notepad, OS Edit command, Brief, Epsilon, EMACS, and vim or

vi.

The name and version of text editors can vary on different operating systems. For

example, Notepad is used on Windows, and vim or vi is used on Windows as well

as Linux or UNIX.

2. ENVIRONMENT SETUP

Go Programming

4

The files you create with the text editor are called source files. They contain

program source code. The source files for Go programs are typically named with

the extension ".go".

Before starting your programming, make sure you have a text editor in place and

you have enough experience to write a computer program, save it in a file, compile

it, and finally execute it.

The Go Compiler

The source code written in source file is the human readable source for your

program. It needs to be compiled and turned into machine language so that your

CPU can actually execute the program as per the instructions given. The Go

programming language compiler compiles the source code into its final executable

program.

Go distribution comes as a binary installable for FreeBSD (release 8 and above),

Linux, Mac OS X (Snow Leopard and above), and Windows operating systems with

32-bit (386) and 64-bit (amd64) x86 processor architectures.

The following section explains how to install Go binary distribution on various OS.

Download Go Archive

Download the latest version of Go installable archive file from Go Downloads. The

following version is used in this tutorial: go1.4.windows-amd64.msi.

It is copied it into C:\>go folder.

OS Archive name

Windows go1.4.windows-amd64.msi

Linux go1.4.linux-amd64.tar.gz

Mac go1.4.darwin-amd64-osx10.8.pkg

FreeBSD go1.4.freebsd-amd64.tar.gz

Installation on UNIX/Linux/Mac OS X, and FreeBSD

Extract the download archive into the folder /usr/local, creating a Go tree in

/usr/local/go. For example:

tar -C /usr/local -xzf go1.4.linux-amd64.tar.gz

Add /usr/local/go/bin to the PATH environment variable.

https://golang.org/dl/

Go Programming

5

OS Output

Linux export PATH=$PATH:/usr/local/go/bin

Mac export PATH=$PATH:/usr/local/go/bin

FreeBSD export PATH=$PATH:/usr/local/go/bin

Installation on Windows

Use the MSI file and follow the prompts to install the Go tools. By default, the

installer uses the Go distribution in c:\Go. The installer should set the c:\Go\bin

directory in Window's PATH environment variable. Restart any open command

prompts for the change to take effect.

Verifying the Installation

Create a go file named test.go in C:\>Go_WorkSpace.

File: test.go

package main

import "fmt"

func main() {

 fmt.Println("Hello, World!")

}

Now run test.go to see the result:

C:\Go_WorkSpace>go run test.go

Output

Hello, World!

Go Programming

6

Before we study the basic building blocks of Go programming language, let us first

discuss the bare minimum structure of Go programs so that we can take it as a

reference in subsequent chapters.

Hello World Example

A Go program basically consists of the following parts:

 Package Declaration

 Import Packages

 Functions

 Variables

 Statements and Expressions

 Comments

Let us look at a simple code that would print the words "Hello World!":

package main

import "fmt"

func main() {

 /* This is my first sample program. */

 fmt.Println("Hello, World!")

}

Let us take a look at the various parts of the above program:

1. The first line of the program package main defines the package name in

which this program should lie. It is a mandatory statement, as Go programs

run in packages. The main package is the starting point to run the program.

Each package has a path and name associated with it.

2. The next line import "fmt" is a preprocessor command which tells the Go

compiler to include the files lying in the package fmt.

3. The next line func main() is the main function where the program execution

begins.

3. PROGRAM STRUCTURE

Go Programming

7

4. The next line /*...*/ is ignored by the compiler and it is there to add

comments in the program. Comments are also represented using // similar

to Java or C++ comments.

5. The next line fmt.Println(...) is another function available in Go which

causes the message "Hello, World!" to be displayed on the screen. Here fmt

package has exported Println method which is used to display the message

on the screen.

6. Notice the capital P of Println method. In Go language, a name is exported

if it starts with capital letter. Exported means the function or

variable/constant is accessible to the importer of the respective package.

Executing a Go Program

Let us discuss how to save the source code in a file, compile it, and finally execute

the program. Please follow the steps given below:

1. Open a text editor and add the above-mentioned code.

2. Save the file as hello.go

3. Open the command prompt.

4. Go to the directory where you saved the file.

5. Type go run hello.go and press enter to run your code.

6. If there are no errors in your code, then you will see "Hello World!" printed

on the screen.

$ go run hello.go

Hello, World!

Make sure the Go compiler is in your path and that you are running it in the

directory containing the source file hello.go.

Go Programming

8

We discussed the basic structure of a Go program in the previous chapter. Now it

will be easy to understand the other basic building blocks of the Go programming

language.

Tokens in Go

A Go program consists of various tokens. A token is either a keyword, an identifier,

a constant, a string literal, or a symbol. For example, the following Go statement

consists of six tokens:

fmt.Println("Hello, World!")

The individual tokens are:

fmt

.

Println

(

"Hello, World!"

)

Line Separator

In a Go program, the line separator key is a statement terminator. That is,

individual statements don't need a special separator like “;” in C. The Go compiler

internally places “;” as the statement terminator to indicate the end of one logical

entity.

For example, take a look at the following statements:

fmt.Println("Hello, World!")

fmt.Println("I am in Go Programming World!")

Comments

Comments are like helping texts in your Go program and they are ignored by the

compiler. They start with /* and terminate with the characters */ as shown below:

/* my first program in Go */

4. BASIC SYNTAX

Go Programming

9

You cannot have comments within comments and they do not occur within a string

or character literals.

Identifiers

A Go identifier is a name used to identify a variable, function, or any other user-

defined item. An identifier starts with a letter A to Z or a to z or an underscore _

followed by zero or more letters, underscores, and digits (0 to 9).

identifier = letter { letter | unicode_digit } .

Go does not allow punctuation characters such as @, $, and % within identifiers.

Go is a case-sensitive programming language. Thus, Manpower and manpower

are two different identifiers in Go. Here are some examples of acceptable

identifiers:

mahesh kumar abc move_name a_123

myname50 _temp j a23b9 retVal

Keywords

The following list shows the reserved words in Go. These reserved words may not

be used as constant or variable or any other identifier names.

break Default Func interface Select

case Defer Go map Struct

chan Else Goto package Switch

const fallthrough if range Type

continue For import return Var

Whitespace in Go

Whitespace is the term used in Go to describe blanks, tabs, newline characters,

and comments. A line containing only whitespace, possibly with a comment, is

known as a blank line, and a Go compiler totally ignores it.

Whitespaces separate one part of a statement from another and enables the

compiler to identify where one element in a statement, such as int, ends and the

next element begins. Therefore, in the following statement:

var age int;

Go Programming

10

There must be at least one whitespace character (usually a space) between int

and age for the compiler to be able to distinguish them. On the other hand, in the

following statement:

fruit = apples + oranges; // get the total fruit

No whitespace characters are necessary between fruit and =, or between = and

apples, although you are free to include some if you wish for readability purpose.

Go Programming

11

In the Go programming language, data types refer to an extensive system used

for declaring variables or functions of different types. The type of a variable

determines how much space it occupies in storage and how the bit pattern stored

is interpreted.

The types in Go can be classified as follows:

Sr. No. Types and Description

1

Boolean types

They are boolean types and consists of the two predefined

constants: (a) true (b) false

2

Numeric types

They are again arithmetic types and they represents a) integer types

or b) floating point values throughout the program.

3

String types

A string type represents the set of string values. Its value is a

sequence of bytes. Strings are immutable types. That is, once they

are created, it is not possible to change the contents of a string. The

predeclared string type is string.

4

Derived types

They include (a) Pointer types, (b) Array types, (c) Structure types,

(d) Union types and (e) Function types f) Slice types g) Function

types h) Interface types i) Map types j) Channel Types

Array types and structure types are collectively referred to as aggregate types.

The type of a function specifies the set of all functions with the same parameter

and result types. We will discuss the basic types in the following section, whereas

other types will be covered in the upcoming chapters.

5. DATA TYPES

Go Programming

12

Integer Types

The predefined architecture-independent integer types are:

Sr. No. Types and Description

1
uint8

Unsigned 8-bit integers (0 to 255)

2
uint16

Unsigned 16-bit integers (0 to 65535)

3
uint32

Unsigned 32-bit integers (0 to 4294967295)

4
uint64

Unsigned 64-bit integers (0 to 18446744073709551615)

5
int8

Signed 8-bit integers (-128 to 127)

6
int16

Signed 16-bit integers (-32768 to 32767)

7
int32

Signed 32-bit integers (-2147483648 to 2147483647)

8

int64

Signed 64-bit integers

(-9223372036854775808 to 9223372036854775807)

Floating Types

The predefined architecture-independent float types are:

Sr. No. Types and Description

1
float32

IEEE-754 32-bit floating-point numbers

2
float64

IEEE-754 64-bit floating-point numbers

Go Programming

13

3
complex64

Complex numbers with float32 real and imaginary parts

4
complex128

Complex numbers with float64 real and imaginary parts

The value of an n-bit integer is n bits and is represented using two's complement

arithmetic operations.

Other Numeric Types

There is also a set of numeric types with implementation-specific sizes:

Sr. No. Types and Description

1
byte

same as uint8

2
rune

same as int32

3
uint

32 or 64 bits

4
int

same size as uint

5
uintptr

an unsigned integer to store the uninterpreted bits of a pointer value

Go Programming

14

A variable is nothing but a name given to a storage area that the programs can

manipulate. Each variable in Go has a specific type, which determines the size and

layout of the variable's memory, the range of values that can be stored within that

memory, and the set of operations that can be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore

character. It must begin with either a letter or an underscore. Upper and lowercase

letters are distinct because Go is case-sensitive. Based on the basic types

explained in the previous chapter, there will be the following basic variable types:

Type Description

byte Typically a single octet(one byte). This is an byte type.

int The most natural size of integer for the machine.

float32 A single-precision floating point value.

Go programming language also allows to define various other types of variables

such as Enumeration, Pointer, Array, Structure, and Union, which we will discuss

in subsequent chapters. In this chapter, we will focus only basic variable types.

Variable Definition in Go

A variable definition tells the compiler where and how much storage to create for

the variable. A variable definition specifies a data type and contains a list of one

or more variables of that type as follows:

var variable_list optional_data_type;

Here, optional_data_type is a valid Go data type including byte, int, float32,

complex64, boolean or any user-defined object, etc., and variable_list may

consist of one or more identifier names separated by commas. Some valid

declarations are shown here:

var i, j, k int;

var c, ch byte;

var f, salary float32;

d = 42;

6. VARIABLES

Go Programming

15

The statement “var i, j, k;” declares and defines the variables i, j and k; which

instructs the compiler to create variables named i, j, and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The type

of variable is automatically judged by the compiler based on the value passed to

it. The initializer consists of an equal sign followed by a constant expression as

follows:

variable_name = value;

For example,

d = 3, f = 5; // declaration of d and f. Here d and f are int

For definition without an initializer: variables with static storage duration are

implicitly initialized with nil (all bytes have the value 0); the initial value of all

other variables is zero value of their data type.

Static Type Declaration in Go

A static type variable declaration provides assurance to the compiler that there is

one variable available with the given type and name so that the compiler can

proceed for further compilation without requiring the complete detail of the

variable. A variable declaration has its meaning at the time of compilation only,

the compiler needs the actual variable declaration at the time of linking of the

program.

Example
Try the following example, where the variable has been declared with a type and

initialized inside the main function:

package main

import "fmt"

func main() {

 var x float64

 x = 20.0

 fmt.Println(x)

 fmt.Printf("x is of type %T\n", x)

}

When the above code is compiled and executed, it produces the following result:

Go Programming

16

20

x is of type float64

Dynamic Type Declaration / Type Inference in Go

A dynamic type variable declaration requires the compiler to interpret the type of

the variable based on the value passed to it. The compiler does not require a

variable to have type statically as a necessary requirement.

Example

Try the following example, where the variables have been declared without any

type. Notice, in case of type inference, we initialized the variable y

with := operator, whereas x is initialized using = operator.

package main

import "fmt"

func main() {

 var x float64 = 20.0

 y := 42

 fmt.Println(x)

 fmt.Println(y)

 fmt.Printf("x is of type %T\n", x)

 fmt.Printf("y is of type %T\n", y)

}

When the above code is compiled and executed, it produces the following result:

20

42

x is of type float64

y is of type int

Mixed Variable Declaration in Go

Variables of different types can be declared in one go using type inference.

Go Programming

17

Example

package main

import "fmt"

func main() {

 var a, b, c = 3, 4, "foo"

 fmt.Println(a)

 fmt.Println(b)

 fmt.Println(c)

 fmt.Printf("a is of type %T\n", a)

 fmt.Printf("b is of type %T\n", b)

 fmt.Printf("c is of type %T\n", c)

}

When the above code is compiled and executed, it produces the following result:

3

4

foo

a is of type int

b is of type int

c is of type string

The lvalues and the rvalues in Go

There are two kinds of expressions in Go:

1. lvalue: Expressions that refer to a memory location is called "lvalue"

expression. An lvalue may appear as either the left-hand or right-hand side

of an assignment.

2. rvalue: The term rvalue refers to a data value that is stored at some

address in memory. An rvalue is an expression that cannot have a value

assigned to it which means an rvalue may appear on the right- but not left-

hand side of an assignment.

Go Programming

18

Variables are lvalues and so may appear on the left-hand side of an assignment.

Numeric literals are rvalues and so may not be assigned and cannot appear on the

left-hand side.

The following statement is valid:

x = 20.0

The following statement is not valid. It would generate compile-time error:

10 = 20

Go Programming

19

Constants refer to fixed values that the program may not alter during its

execution. These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating

constant, a character constant, or a string literal. There are also enumeration

constants as well.

Constants are treated just like regular variables except that their values cannot

be modified after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix

specifies the base or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for

decimal.

An integer literal can also have a suffix that is a combination of U and L, for

unsigned and long, respectively. The suffix can be uppercase or lowercase and can

be in any order.

Here are some examples of integer literals:

212 /* Legal */

215u /* Legal */

0xFeeL /* Legal */

078 /* Illegal: 8 is not an octal digit */

032UU /* Illegal: cannot repeat a suffix */

Following are other examples of various type of Integer literals:

85 /* decimal */

0213 /* octal */

0x4b /* hexadecimal */

30 /* int */

30u /* unsigned int */

30l /* long */

30ul /* unsigned long */

7. CONSTANTS

Go Programming

20

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and

an exponent part. You can represent floating point literals either in decimal form

or exponential form.

While representing using decimal form, you must include the decimal point, the

exponent, or both and while representing using exponential form, you must

include the integer part, the fractional part, or both. The signed exponent is

introduced by e or E.

Here are some examples of floating-point literals:

3.14159 /* Legal */

314159E-5L /* Legal */

510E /* Illegal: incomplete exponent */

210f /* Illegal: no decimal or exponent */

.e55 /* Illegal: missing integer or fraction */

Escape Sequence

When certain characters are preceded by a backslash, they will have a special

meaning in Go. These are known as Escape Sequence codes which are used to

represent newline (\n), tab (\t), backspace, etc. Here, you have a list of some of

such escape sequence codes:

Escape sequence Meaning

\\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

Go Programming

21

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits

\xhh . . . Hexadecimal number of one or more digits

The following example shows how to use \t in a program:

package main

import "fmt"

func main() {

 fmt.Printf("Hello\tWorld!")

}

When the above code is compiled and executed, it produces the following result:

Hello World!

String Literals in Go

String literals or constants are enclosed in double quotes "". A string contains

characters that are similar to character literals: plain characters, escape

sequences, and universal characters.

You can break a long line into multiple lines using string literals and separating

them using whitespaces.

Here are some examples of string literals. All the three forms are identical strings.

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

Go Programming

22

The const Keyword

You can use const prefix to declare constants with a specific type as follows:

const variable type = value;

The following example shows how to use the const keyword:

package main

import "fmt"

func main() {

 const LENGTH int = 10

 const WIDTH int = 5

 var area int

 area = LENGTH * WIDTH

 fmt.Printf("value of area : %d", area)

}

When the above code is compiled and executed, it produces the following result:

value of area : 50

Note that it is a good programming practice to define constants in CAPITALS.

Go Programming

23

An operator is a symbol that tells the compiler to perform specific mathematical

or logical manipulations. Go language is rich in built-in operators and provides the

following types of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Miscellaneous Operators

This tutorial explains arithmetic, relational, logical, bitwise, assignment, and other

operators one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by Go language.

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands A + B gives 30

- Subtracts second operand from the first A - B gives -10

* Multiplies both operands A * B gives 200

/
Divides the numerator by the

denominator.
B / A gives 2

%
Modulus operator; gives the remainder

after an integer division.
B % A gives 0

++
Increment operator. It increases the

integer value by one.
A++ gives 11

--
Decrement operator. It decreases the

integer value by one.
A-- gives 9

8. OPERATORS

Go Programming

24

Example

Try the following example to understand all the arithmetic operators available in

Go programming language:

package main

import "fmt"

func main() {

 var a int = 21

 var b int = 10

 var c int

 c = a + b

 fmt.Printf("Line 1 - Value of c is %d\n", c)

 c = a - b

 fmt.Printf("Line 2 - Value of c is %d\n", c)

 c = a * b

 fmt.Printf("Line 3 - Value of c is %d\n", c)

 c = a / b

 fmt.Printf("Line 4 - Value of c is %d\n", c)

 c = a % b

 fmt.Printf("Line 5 - Value of c is %d\n", c)

 a++

 fmt.Printf("Line 6 - Value of a is %d\n", a)

 a--

 fmt.Printf("Line 7 - Value of a is %d\n", a)

}

When you compile and execute the above program, it produces the following

result:

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Line 4 - Value of c is 2

Go Programming

25

Line 5 - Value of c is 1

Line 6 - Value of a is 22

Line 7 - Value of a is 21

Relational Operators

The following table lists all the relational operators supported by Go language.

Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

==

It checks if the values of two operands are

equal or not; if yes, the condition becomes

true.

(A == B) is not

true.

!=

It checks if the values of two operands are

equal or not; if the values are not equal, then

the condition becomes true.

(A != B) is true.

>

It checks if the value of left operand is greater

than the value of right operand; if yes, the

condition becomes true.

(A > B) is not true.

<

It checks if the value of left operand is less

than the value of the right operand; if yes, the

condition becomes true.

(A < B) is true.

>=

It checks if the value of the left operand is

greater than or equal to the value of the right

operand; if yes, the condition becomes true.

(A >= B) is not

true.

<=

It checks if the value of left operand is less

than or equal to the value of right operand; if

yes, the condition becomes true.

(A <= B) is true.

Example

Try the following example to understand all the relational operators available in

Go programming language:

package main

import "fmt"

Go Programming

26

func main() {

 var a int = 21

 var b int = 10

 if(a == b) {

 fmt.Printf("Line 1 - a is equal to b\n")

 } else {

 fmt.Printf("Line 1 - a is not equal to b\n")

 }

 if (a < b) {

 fmt.Printf("Line 2 - a is less than b\n")

 } else {

 fmt.Printf("Line 2 - a is not less than b\n")

 }

 if (a > b) {

 fmt.Printf("Line 3 - a is greater than b\n")

 } else {

 fmt.Printf("Line 3 - a is not greater than b\n")

 }

 /* Lets change value of a and b */

 a = 5

 b = 20

 if (a <= b) {

 fmt.Printf("Line 4 - a is either less than or equal to b\n")

 }

 if (b >= a) {

 fmt.Printf("Line 5 - b is either greater than or equal to b\n")

 }

}

When you compile and execute the above program, it produces the following

result:

Line 1 - a is not equal to b

Line 2 - a is not less than b

Go Programming

27

Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

Line 5 - b is either greater than or equal to b

Logical Operators

The following table lists all the logical operators supported by Go language.

Assume variable A holds 1 and variable B holds 0, then:

Operator Description Example

&&
Called Logical AND operator. If both the operands

are non-zero, then condition becomes true.
(A && B) is false.

||

Called Logical OR Operator. If any of the two

operands is non-zero, then condition becomes

true.

(A || B) is true.

!

Called Logical NOT Operator. Use to reverses the

logical state of its operand. If a condition is true,

then Logical NOT operator will make false.

!(A && B) is true.

The following table shows all the logical operators supported by Go language.

Assume variable A holds true and variable B holds false, then:

Operator Description Example

&&
Called Logical AND operator. If both the operands

are false, then the condition becomes false.
(A && B) is false.

||

Called Logical OR Operator. If any of the two

operands is true, then the condition becomes

true.

(A || B) is true.

!

Called Logical NOT Operator. Use to reverses the

logical state of its operand. If a condition is true,

then Logical NOT operator will make it false.

!(A && B) is true.

Go Programming

28

Example
Try the following example to understand all the logical operators available in Go

programming language:

package main

import "fmt"

func main() {

 var a bool = true

 var b bool = false

 if (a && b) {

 fmt.Printf("Line 1 - Condition is true\n")

 }

 if (a || b) {

 fmt.Printf("Line 2 - Condition is true\n")

 }

 /* lets change the value of a and b */

 a = false

 b = true

 if (a && b) {

 fmt.Printf("Line 3 - Condition is true\n")

 } else {

 fmt.Printf("Line 3 - Condition is not true\n")

 }

 if (!(a && b)) {

 fmt.Printf("Line 4 - Condition is true\n")

 }

}

When you compile and execute the above program, it produces the following

result:

Line 2 - Condition is true

Line 3 - Condition is not true

Line 4 - Condition is true

Go Programming

29

Bitwise Operators

Bitwise operators work on bits and perform bit-by-bit operation. The truth tables

for &, |, and ^ are as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume A = 60; and B = 13. In binary format, they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C language are listed in the following table.

Assume variable A holds 60 and variable B holds 13, then:

Operator Description Example

&
Binary AND Operator copies a bit to

the result if it exists in both operands.

(A & B) will give 12,

which is 0000 1100

|
Binary OR Operator copies a bit if it

exists in either operand.

(A | B) will give 61, which

is 0011 1101

^
Binary XOR Operator copies the bit if

it is set in one operand but not both.

(A ^ B) will give 49,

which is 0011 0001

<< Binary Left Shift Operator. The left

operands value is moved left by the

A << 2 will give 240

which is 1111 0000

Go Programming

30

number of bits specified by the right

operand.

>>

Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15 which

is 0000 1111

Example

Try the following example to understand all the bitwise operators available in Go

programming language:

package main

import "fmt"

func main() {

 var a uint = 60 /* 60 = 0011 1100 */

 var b uint = 13 /* 13 = 0000 1101 */

 var c uint = 0

 c = a & b /* 12 = 0000 1100 */

 fmt.Printf("Line 1 - Value of c is %d\n", c)

 c = a | b /* 61 = 0011 1101 */

 fmt.Printf("Line 2 - Value of c is %d\n", c)

 c = a ^ b /* 49 = 0011 0001 */

 fmt.Printf("Line 3 - Value of c is %d\n", c)

 c = a << 2 /* 240 = 1111 0000 */

 fmt.Printf("Line 4 - Value of c is %d\n", c)

 c = a >> 2 /* 15 = 0000 1111 */

 fmt.Printf("Line 5 - Value of c is %d\n", c)

}

Go Programming

31

When you compile and execute the above program, it produces the following

result:

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is 240

Line 5 - Value of c is 15

Assignment Operators

The following table lists all the assignment operators supported by Go language:

Operator Description Example

=

Simple assignment operator, Assigns

values from right side operands to left

side operand

C = A + B assigns the value

of A + B into C

+=

Add AND assignment operator, It

adds right operand to the left operand

and assign the result to left operand

C += A is equivalent to C =

C + A

-=

Subtract AND assignment operator, It

subtracts right operand from the left

operand and assign the result to left

operand

C -= A is equivalent to C =

C - A

*=

Multiply AND assignment operator, It

multiplies right operand with the left

operand and assign the result to left

operand

C *= A is equivalent to C =

C * A

/=

Divide AND assignment operator, It

divides left operand with the right

operand and assign the result to left

operand

C /= A is equivalent to C =

C / A

%=

Modulus AND assignment operator, It

takes modulus using two operands

and assign the result to left operand

C %= A is equivalent to C =

C % A

Go Programming

32

<<= Left shift AND assignment operator
C <<= 2 is same as C = C

<< 2

>>= Right shift AND assignment operator
C >>= 2 is same as C = C

>> 2

&= Bitwise AND assignment operator
C &= 2 is same as C = C &

2

^=
bitwise exclusive OR and assignment

operator

C ^= 2 is same as C = C ^

2

|=
bitwise inclusive OR and assignment

operator
C |= 2 is same as C = C | 2

Example

Try the following example to understand all the assignment operators available in

Go programming language:

package main

import "fmt"

func main() {

 var a int = 21

 var c int

 c = a

 fmt.Printf("Line 1 - = Operator Example, Value of c = %d\n", c)

 c += a

 fmt.Printf("Line 2 - += Operator Example, Value of c = %d\n", c)

 c -= a

 fmt.Printf("Line 3 - -= Operator Example, Value of c = %d\n", c)

 c *= a

 fmt.Printf("Line 4 - *= Operator Example, Value of c = %d\n", c)

Go Programming

33

 c /= a

 fmt.Printf("Line 5 - /= Operator Example, Value of c = %d\n", c)

 c = 200;

 c <<= 2

 fmt.Printf("Line 6 - <<= Operator Example, Value of c = %d\n", c)

 c >>= 2

 fmt.Printf("Line 7 - >>= Operator Example, Value of c = %d\n", c)

 c &= 2

 fmt.Printf("Line 8 - &= Operator Example, Value of c = %d\n", c)

 c ^= 2

 fmt.Printf("Line 9 - ^= Operator Example, Value of c = %d\n", c)

 c |= 2

 fmt.Printf("Line 10 - |= Operator Example, Value of c = %d\n", c)

}

When you compile and execute the above program, it produces the following

result:

Line 1 - = Operator Example, Value of c = 21

Line 2 - += Operator Example, Value of c = 42

Line 3 - -= Operator Example, Value of c = 21

Line 4 - *= Operator Example, Value of c = 441

Line 5 - /= Operator Example, Value of c = 21

Line 6 - <<= Operator Example, Value of c = 800

Line 7 - >>= Operator Example, Value of c = 200

Line 8 - &= Operator Example, Value of c = 0

Line 9 - ^= Operator Example, Value of c = 2

Line 10 - |= Operator Example, Value of c = 2

Go Programming

34

Miscellaneous Operators

There are a few other important operators supported by Go Language

including sizeof and ?:.

Operator Description Example

&
Returns the address of a

variable.

&a; provides actual address of the

variable.

* Pointer to a variable. *a; provides pointer to a variable.

Example

Try following example to understand all the miscellaneous operators available in

Go programming language:

package main

import "fmt"

func main() {

 var a int = 4

 var b int32

 var c float32

 var ptr *int

 /* example of type operator */

 fmt.Printf("Line 1 - Type of variable a = %T\n", a);

 fmt.Printf("Line 2 - Type of variable b = %T\n", b);

 fmt.Printf("Line 3 - Type of variable c= %T\n", c);

 /* example of & and * operators */

 ptr = &a /* 'ptr' now contains the address of 'a'*/

 fmt.Printf("value of a is %d\n", a);

 fmt.Printf("*ptr is %d.\n", *ptr);

}

When you compile and execute the above program, it produces the following

result:

Go Programming

35

Line 1 - Type of variable a = int

Line 2 - Type of variable b = int32

Line 3 - Type of variable c= float32

value of a is 4

*ptr is 4.

Operators Precedence in Go

Operator precedence determines the grouping of terms in an expression. This

affects how an expression is evaluated. Certain operators have higher precedence

than others; for example, the multiplication operator has higher precedence than

the addition operator.

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has

higher precedence than +, so it first gets multiplied with 3*2 and then adds into

7.

Here, operators with the highest precedence appear at the top of the table, and

those with the lowest appear at the bottom. Within an expression, higher

precedence operators will be evaluated first.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Go Programming

36

Logical OR || Left to right

Conditional ?: Right to left

Assignment
= += -= *= /= %=>>= <<= &=

^= |=
Right to left

Comma , Left to right

Example

Try the following example to understand the operator precedence available in Go

programming language:

package main

import "fmt"

func main() {

 var a int = 20

 var b int = 10

 var c int = 15

 var d int = 5

 var e int;

 e = (a + b) * c / d; // (30 * 15) / 5

 fmt.Printf("Value of (a + b) * c / d is : %d\n", e);

 e = ((a + b) * c) / d; // (30 * 15) / 5

 fmt.Printf("Value of ((a + b) * c) / d is : %d\n" , e);

 e = (a + b) * (c / d); // (30) * (15/5)

 fmt.Printf("Value of (a + b) * (c / d) is : %d\n", e);

 e = a + (b * c) / d; // 20 + (150/5)

 fmt.Printf("Value of a + (b * c) / d is : %d\n" , e);

}

Go Programming

37

When you compile and execute the above program, it produces the following

result:

Value of (a + b) * c / d is : 90

Value of ((a + b) * c) / d is : 90

Value of (a + b) * (c / d) is : 90

Value of a + (b * c) / d is : 50

Go Programming

38

Decision making structures require that the programmer specify one or more

conditions to be evaluated or tested by the program, along with a statement or

statements to be executed if the condition is determined to be true, and optionally,

other statements to be executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most

of the programming languages:

Go programming language provides the following types of decision making

statements. Click the following links to check their detail.

Statement Description

if statement
An if statement consists of a boolean expression

followed by one or more statements.

if...else statement

An if statement can be followed by an optional else

statement, which executes when the boolean

expression is false.

nested if statements
You can use one if or else if statement inside another if

or else if statement(s).

9. DECISION MAKING

Go Programming

39

switch statement
A switch statement allows a variable to be tested for

equality against a list of values.

select statement

A select statement is similar to switch statement with

difference that case statements refers to channel

communications.

The if Statement

An if statement consists of a boolean expression followed by one or more

statements.

Syntax
The syntax of an if statement in Go programming language is:

if(boolean_expression)

{

 /* statement(s) will execute if the boolean expression is true */

}

If the boolean expression evaluates to true, then the block of code inside the if

statement is executed. If boolean expression evaluates to false, then the first set

of code after the end of the if statement (after the closing curly brace) is executed.

Flow Diagram

Go Programming

40

Example

package main

import "fmt"

func main() {

 /* local variable definition */

 var a int = 10

 /* check the boolean condition using if statement */

 if(a < 20) {

 /* if condition is true then print the following */

 fmt.Printf("a is less than 20\n")

 }

 fmt.Printf("value of a is : %d\n", a)

}

When the above code is compiled and executed, it produces the following result:

a is less than 20;

value of a is : 10

The if…else Statement

An if statement can be followed by an optional else statement, which executes

when the boolean expression is false.

Syntax
The syntax of an if...else statement in Go programming language is:

if(boolean_expression)

{

 /* statement(s) will execute if the boolean expression is true */

}

else

{

 /* statement(s) will execute if the boolean expression is false */

Go Programming

41

}

If the boolean expression evaluates to true, then the if block of code is executed,

otherwise else block of code is executed.

Flow Diagram

Example

package main

import "fmt"

func main() {

 /* local variable definition */

 var a int = 100;

 /* check the boolean condition */

 if(a < 20) {

 /* if condition is true then print the following */

 fmt.Printf("a is less than 20\n");

Go Programming

42

 } else {

 /* if condition is false then print the following */

 fmt.Printf("a is not less than 20\n");

 }

 fmt.Printf("value of a is : %d\n", a);

}

When the above code is compiled and executed, it produces the following result:

a is not less than 20;

value of a is : 100

Nested if Statement

It is always legal in Go programming to nest if-else statements, which means you

can use one if or else if statement inside another if or else if statement(s).

Syntax
The syntax for a nested if statement is as follows:

if(boolean_expression 1)

{

 /* Executes when the boolean expression 1 is true */

 if(boolean_expression 2)

 {

 /* Executes when the boolean expression 2 is true */

 }

}

You can nest else if...else in the similar way as you have nested if statement.

Example

package main

import "fmt"

func main() {

Go Programming

43

 /* local variable definition */

 var a int = 100

 var b int = 200

 /* check the boolean condition */

 if(a == 100) {

 /* if condition is true then check the following */

 if(b == 200) {

 /* if condition is true then print the following */

 fmt.Printf("Value of a is 100 and b is 200\n");

 }

 }

 fmt.Printf("Exact value of a is : %d\n", a);

 fmt.Printf("Exact value of b is : %d\n", b);

}

When the above code is compiled and executed, it produces the following result:

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

The Switch Statement

A switch statement allows a variable to be tested for equality against a list of

values. Each value is called a case, and the variable being switched on is checked

for each switch case.

In Go programming, switch statements are of two types:

 Expression Switch - In expression switch, a case contains expressions,
which is compared against the value of the switch expression.

 Type Switch - In type switch, a case contain type which is compared

against the type of a specially annotated switch expression.

Go Programming

44

Expression Switch

The syntax for expression switch statement in Go programming is as follows:

switch(boolean-expression or integral type){

 case boolean-expression or integral type :

 statement(s);

 case boolean-expression or integral type :

 statement(s);

 /* you can have any number of case statements */

 default : /* Optional */

 statement(s);

}

The following rules apply to a switch statement:

 The expression used in a switch statement must have an integral or
boolean expression, or be of a class type in which the class has a single

conversion function to an integral or boolean value. If the expression is not
passed, then the default value is true.

 You can have any number of case statements within a switch. Each case is

followed by the value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the

variable in the switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements

following that case will execute. No break is needed in the case statement.

 A switch statement can have an optional default case, which must appear
at the end of the switch. The default case can be used for performing a task
when none of the cases is true. No break is needed in the default case.

Go Programming

45

Flow Diagram

Example

package main

import "fmt"

func main() {

 /* local variable definition */

 var grade string = "B"

 var marks int = 90

 switch marks {

 case 90: grade = "A"

 case 80: grade = "B"

 case 50,60,70 : grade = "C"

Go Programming

46

 default: grade = "D"

 }

 switch {

 case grade == "A" :

 fmt.Printf("Excellent!\n")

 case grade == "B", grade == "C" :

 fmt.Printf("Well done\n")

 case grade == "D" :

 fmt.Printf("You passed\n")

 case grade == "F":

 fmt.Printf("Better try again\n")

 default:

 fmt.Printf("Invalid grade\n");

 }

 fmt.Printf("Your grade is %s\n", grade);

}

When the above code is compiled and executed, it produces the following result:

Well done

Excellent!

Your grade is A

Type Switch

The syntax for a type switch statement in Go programming is as follows:

switch x.(type){

 case type:

 statement(s);

 case type:

 statement(s);

 /* you can have any number of case statements */

 default: /* Optional */

 statement(s);

}

Go Programming

47

The following rules apply to a switch statement:

 The expression used in a switch statement must have an variable of
interface{} type.

 You can have any number of case statements within a switch. Each case is

followed by the value to be compared to and a colon.

 The type for a case must be the same data type as the variable in the

switch, and it must be a valid data type.

 When the variable being switched on is equal to a case, the statements
following that case will execute. No break is needed in the case statement.

 A switch statement can have an optional default case, which must appear
at the end of the switch. The default case can be used for performing a task

when none of the cases is true. No break is needed in the default case.

Example

package main

import "fmt"

func main() {

 var x interface{}

 switch i := x.(type) {

 case nil:

 fmt.Printf("type of x :%T",i)

 case int:

 fmt.Printf("x is int")

 case float64:

 fmt.Printf("x is float64")

 case func(int) float64:

 fmt.Printf("x is func(int)")

 case bool, string:

 fmt.Printf("x is bool or string")

 default:

 fmt.Printf("don't know the type")

 }

Go Programming

48

}

When the above code is compiled and executed, it produces the following result:

type of x :<nil>

The Select Statement

The syntax for a select statement in Go programming language is as follows:

select {

 case communication clause :

 statement(s);

 case communication clause :

 statement(s);

 /* you can have any number of case statements */

 default : /* Optional */

 statement(s);

}

The following rules apply to a select statement:

 You can have any number of case statements within a select. Each case is

followed by the value to be compared to and a colon.

 The type for a case must be the communication channel operation.

 When the channel operation occurs, the statements following that case is

executed. No break is needed in the case statement.

 A select statement can have an optional default case, which must appear

at the end of the select. The default case can be used for performing a task
when none of the cases is true. No break is needed in the default case.

Example

package main

import "fmt"

func main() {

 var c1, c2, c3 chan int

 var i1, i2 int

 select {

Go Programming

49

 case i1 = <-c1:

 fmt.Printf("received ", i1, " from c1\n")

 case c2 <- i2:

 fmt.Printf("sent ", i2, " to c2\n")

 case i3, ok := (<-c3): // same as: i3, ok := <-c3

 if ok {

 fmt.Printf("received ", i3, " from c3\n")

 } else {

 fmt.Printf("c3 is closed\n")

 }

 default:

 fmt.Printf("no communication\n")

 }

}

When the above code is compiled and executed, it produces the following result:

no communication

The if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is

very useful to test various conditions using single if...else if statement.

While using if…else if…else statements, there are a few points to keep in mind:

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of the remaining else if's or else's will be
tested.

Syntax
The syntax of if...else if...else statement in Go programming language is:

if(boolean_expression 1)

{

 /* Executes when the boolean expression 1 is true */

}

else if(boolean_expression 2)

{

 /* Executes when the boolean expression 2 is true */

Go Programming

50

}

else if(boolean_expression 3)

{

 /* Executes when the boolean expression 3 is true */

}

else

{

 /* executes when the none of the above condition is true */

}

Example

package main

import "fmt"

func main() {

 /* local variable definition */

 var a int = 100

 /* check the boolean condition */

 if(a == 10) {

 /* if condition is true then print the following */

 fmt.Printf("Value of a is 10\n")

 } else if(a == 20) {

 /* if else if condition is true */

 fmt.Printf("Value of a is 20\n")

 } else if(a == 30) {

 /* if else if condition is true */

 fmt.Printf("Value of a is 30\n")

 } else {

 /* if none of the conditions is true */

 fmt.Printf("None of the values is matching\n")

 }

 fmt.Printf("Exact value of a is: %d\n", a)

Go Programming

51

}

When the above code is compiled and executed, it produces the following result:

None of the values is matching

Exact value of a is: 100

Go Programming

52

There may be a situation when you need to execute a block of code several

number of times. In general, statements are executed sequentially: the first

statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow more

complicated execution paths. A loop statement allows us to execute a statement

or group of statements multiple times and following is the general form of a loop

statement in most of the programming languages:

Go programming language provides the following types of loops to handle looping

requirements.

Loop Type Description

for loop
It executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

nested loops These are one or multiple loops inside any for loop.

for Loop

A for loop is a repetition control structure. It allows you to write a loop that needs

to execute a specific number of times.

10. LOOPS

Go Programming

53

Syntax
The syntax of for loop in Go programming language is:

for [condition | (init; condition; increment) | Range]

{

 statement(s);

}

The flow of control in a for loop is as follows:

 If a condition is available, then for loop executes as long as condition is

true.

 If a for clause that is (init; condition; increment) is present, then:

o The init step is executed first, and only once. This step allows you to

declare and initialize any loop control variables. You are not required to

put a statement here, as long as a semicolon appears.

o Next, the condition is evaluated. If it is true, the body of the loop is

executed. If it is false, the body of the loop does not execute and the

flow of control jumps to the next statement just after the for loop.

o After the body of the for loop executes, the flow of control jumps back

up to the increment statement. This statement allows you to update

any loop control variables. This statement can be left blank, as long as

a semicolon appears after the condition.

o The condition is now evaluated again. If it is true, the loop executes and

the process repeats itself (body of loop, then increment step, and then

again the condition). After the condition becomes false, the for loop

terminates.

 If range is available, then the for loop executes for each item in the range.

Go Programming

54

Flow Diagram

Example

package main

import "fmt"

func main() {

 var b int = 15

 var a int

 numbers := [6]int{1, 2, 3, 5}

Go Programming

55

 /* for loop execution */

 for a := 0; a < 10; a++ {

 fmt.Printf("value of a: %d\n", a)

 }

 for a < b {

 a++

 fmt.Printf("value of a: %d\n", a)

 }

 for i,x:= range numbers {

 fmt.Printf("value of x = %d at %d\n", x,i)

 }

}

When the above code is compiled and executed, it produces the following result:

value of a: 0

value of a: 1

value of a: 2

value of a: 3

value of a: 4

value of a: 5

value of a: 6

value of a: 7

value of a: 8

value of a: 9

value of a: 1

value of a: 2

value of a: 3

value of a: 4

value of a: 5

value of a: 6

value of a: 7

Go Programming

56

value of a: 8

value of a: 9

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of x = 1 at 0

value of x = 2 at 1

value of x = 3 at 2

value of x = 5 at 3

value of x = 0 at 4

value of x = 0 at 5

Nested for Loops

Go programming language allows to use one loop inside another loop. The

following section shows a few examples to illustrate the concept:

Syntax
The syntax for a nested for loop statement in Go is as follows:

for [condition | (init; condition; increment) | Range]
{
 for [condition | (init; condition; increment) | Range]
 {
 statement(s);
 }
 statement(s);
}

Go Programming

57

Example
The following program uses a nested for loop to find the prime numbers from 2 to

100:

package main

import "fmt"

func main() {

 /* local variable definition */

 var i, j int

 for i=2; i < 100; i++ {

 for j=2; j <= (i/j); j++ {

 if(i%j==0) {

 break; // if factor found, not prime

 }

 }

 if(j > (i/j)) {

 fmt.Printf("%d is prime\n", i);

 }

 }

}

When the above code is compiled and executed, it produces the following result:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

Go Programming

58

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Loop Control Statements

Loop control statements change an execution from its normal sequence. When an

execution leaves its scope, all automatic objects that were created in that scope

are destroyed.

Go supports the following control statements:

Control Statement Description

break statement

It terminates a for loop or switch statement and

transfers execution to the statement immediately

following the for loop or switch.

continue statement
It causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

goto statement It transfers control to the labeled statement.

The break statement in Go programming language has the following two usages:

1. When a break statement is encountered inside a loop, the loop is

immediately terminated and the program control resumes at the next

statement following the loop.

Go Programming

59

2. It can be used to terminate a case in a switch statement.

If you are using nested loops, the break statement will stop the execution of the

innermost loop and start executing the next line of code after the block.

Syntax
The syntax for a break statement in Go is as follows:

break;

Flow Diagram

Example

package main

import "fmt"

func main() {

 /* local variable definition */

 var a int = 10

Go Programming

60

 /* for loop execution */

 for a < 20 {

 fmt.Printf("value of a: %d\n", a);

 a++;

 if a > 15 {

 /* terminate the loop using break statement */

 break;

 }

 }

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

The continue Statement

The continue statement in Go programming language works somewhat like a

break statement. Instead of forcing termination, a continue statement forces

the next iteration of the loop to take place, skipping any code in between.

In case of the for loop, continue statement causes the conditional test and

increment portions of the loop to execute.

Syntax
The syntax for a continue statement in Go is as follows:

continue;

Go Programming

61

Flow Diagram

Example

package main

import "fmt"

func main() {

 /* local variable definition */

 var a int = 10

 /* do loop execution */

 for a < 20 {

 if a == 15 {

 /* skip the iteration */

 a = a + 1;

 continue;

Go Programming

62

 }

 fmt.Printf("value of a: %d\n", a);

 a++;

 }

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

The goto Statement

A goto statement in Go programming language provides an unconditional jump

from the goto to a labeled statement in the same function.

Note: Use of goto statement is highly discouraged in any programming language

because it becomes difficult to trace the control flow of a program, making the

program difficult to understand and hard to modify. Any program that uses a goto

can be rewritten using some other construct.

Syntax
The syntax for a goto statement in Go is as follows:

goto label;

..

.

label: statement;

Here, label can be any plain text except Go keyword and it can be set anywhere

in the Go program above or below to goto statement.

Go Programming

63

Flow Diagram

Example

package main

import "fmt"

func main() {

 /* local variable definition */

 var a int = 10

 /* do loop execution */

 LOOP: for a < 20 {

 if a == 15 {

 /* skip the iteration */

 a = a + 1

Go Programming

64

 goto LOOP

 }

 fmt.Printf("value of a: %d\n", a)

 a++

 }

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

The Infinite Loop

A loop becomes an infinite loop if its condition never becomes false. The for loop

is traditionally used for this purpose. Since none of the three expressions that

form the for loop are required, you can make an endless loop by leaving the

conditional expression empty or by passing true to it.

package main

import "fmt"

func main() {

 for true {

 fmt.Printf("This loop will run forever.\n");

 }

}

Go Programming

65

When the conditional expression is absent, it is assumed to be true. You may have

an initialization and increment expression, but C programmers more commonly

use the for(;;) construct to signify an infinite loop.

Note: You can terminate an infinite loop by pressing Ctrl + C keys.

Go Programming

66

A function is a group of statements that together perform a task. Every Go

program has at least one function, which is main(). You can divide your code into

separate functions. How you divide your code among different functions is up to

you, but logically, the division should be such that each function performs a

specific task.

A function declaration tells the compiler about a function name, return type, and

parameters. A function definition provides the actual body of the function.

The Go standard library provides numerous built-in functions that your program

can call. For example, the function len() takes arguments of various types and

returns the length of the type. If a string is passed to it, the function returns the

length of the string in bytes. If an array is passed to it, the function returns the

length of the array.

Functions are also known as method, sub-routine, or procedure.

Defining a Function

The general form of a function definition in Go programming language is as

follows:

func function_name([parameter list]) [return_types]

{

 body of the function

}

A function definition in Go programming language consists of a function header and

a function body. Here are all the parts of a function:

 Func: It starts the declaration of a function.

 Function Name: It is the actual name of the function. The function name
and the parameter list together constitute the function signature.

 Parameters: A parameter is like a placeholder. When a function is invoked,

you pass a value to the parameter. This value is referred to as actual

parameter or argument. The parameter list refers to the type, order, and
number of the parameters of a function. Parameters are optional; that is, a

function may contain no parameters.

 Return Type: A function may return a list of values. The return_types is

the list of data types of the values the function returns. Some functions
perform the desired operations without returning a value. In this case, the

return_type is the not required.

11. FUNCTIONS

Go Programming

67

 Function Body: It contains a collection of statements that define what the

function does.

Example
The following source code shows a function called max(). This function takes two

parameters num1 and num2 and returns the maximum between the two:

/* function returning the max between two numbers */

func max(num1, num2 int) int

{

 /* local variable declaration */

 result int

 if (num1 > num2) {

 result = num1

 } else {

 result = num2

 }

 return result

}

Calling a Function

While creating a Go function, you give a definition of what the function has to do.

To use a function, you will have to call that function to perform the defined task.

When a program calls a function, the program control is transferred to the called

function. A called function performs a defined task and when its return statement

is executed or when its function-ending closing brace is reached, it returns the

program control back to the main program.

To call a function, you simply need to pass the required parameters along with its

function name. If the function returns a value, then you can store the returned

value. For example:

package main

import "fmt"

func main() {

Go Programming

68

 /* local variable definition */

 var a int = 100

 var b int = 200

 var ret int

 /* calling a function to get max value */

 ret = max(a, b)

 fmt.Printf("Max value is : %d\n", ret)

}

/* function returning the max between two numbers */

func max(num1, num2 int) int {

 /* local variable declaration */

 var result int

 if (num1 > num2) {

 result = num1

 } else {

 result = num2

 }

 return result

}

We have kept the max() function along with the main() function and compiled the

source code. While running the final executable, it would produce the following

result:

Max value is : 200

Returning Multiple Values from Function

A Go function can return multiple values. For example:

package main

import "fmt"

Go Programming

69

func swap(x, y string) (string, string) {

 return y, x

}

func main() {

 a, b := swap("Mahesh", "Kumar")

 fmt.Println(a, b)

}

When the above code is compiled and executed, it produces the following result:

Kumar Mahesh

Function Arguments

If a function is to use arguments, it must declare variables that accept the values

of the arguments. These variables are called the formal parameters of the

function.

The formal parameters behave like other local variables inside the function and

are created upon entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a

function:

Call Type Description

Call by value

This method copies the actual value of an argument into

the formal parameter of the function. In this case,

changes made to the parameter inside the function have

no effect on the argument.

Call by reference

This method copies the address of an argument into the

formal parameter. Inside the function, the address is used

to access the actual argument used in the call. This means

that changes made to the parameter affect the argument.

By default, Go uses call by value to pass arguments. In general, it means the code

within a function cannot alter the arguments used to call the function. The above

program, while calling the max() function, used the same method.

Go Programming

70

Call by Value

The call by value method of passing arguments to a function copies the actual

value of an argument into the formal parameter of the function. In this case,

changes made to the parameter inside the function have no effect on the

argument.

By default, Go programming language uses call by value method to pass

arguments. In general, this means that code within a function cannot alter the

arguments used to call the function. Consider the function swap() definition as

follows:

/* function definition to swap the values */

func swap(int x, int y) int {

 var temp int

 temp = x /* save the value of x */

 x = y /* put y into x */

 y = temp /* put temp into y */

 return temp;

}

Now, let us call the function swap() by passing actual values as in the following

example:

package main

import "fmt"

func main() {

 /* local variable definition */

 var a int = 100

 var b int = 200

 fmt.Printf("Before swap, value of a : %d\n", a)

 fmt.Printf("Before swap, value of b : %d\n", b)

 /* calling a function to swap the values */

 swap(a, b)

Go Programming

71

 fmt.Printf("After swap, value of a : %d\n", a)

 fmt.Printf("After swap, value of b : %d\n", b)

}

func swap(x, y int) int {

 var temp int

 temp = x /* save the value of x */

 x = y /* put y into x */

 y = temp /* put temp into y */

 return temp;

}

Put the above code in a single C file, and then compile and execute it. It will

produce the following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

It shows that there is no change in the values though they had been changed

inside the function.

Call by Reference

The call by reference method of passing arguments to a function copies the

address of an argument into the formal parameter. Inside the function, the

address is used to access the actual argument used in the call. This means that

changes made to the parameter affect the passed argument.

To pass the value by reference, argument pointers are passed to the functions

just like any other value. Accordingly, you need to declare the function parameters

as pointer types as in the following function swap(), which exchanges the values

of the two integer variables pointed to by its arguments.

/* function definition to swap the values */

func swap(x *int, y *int) {

 var temp int

 temp = *x /* save the value at address x */

Go Programming

72

 *x = *y /* put y into x */

 y = temp / put temp into y */

}

To learn more about pointers in Go programming, please go through Go - Pointers.

For now, let us call the function swap() by passing values by reference as in the

following example:

package main

import "fmt"

func main() {

 /* local variable definition */

 var a int = 100

 var b int= 200

 fmt.Printf("Before swap, value of a : %d\n", a)

 fmt.Printf("Before swap, value of b : %d\n", b)

 /* calling a function to swap the values.

 * &a indicates pointer to a ie. address of variable a and

 * &b indicates pointer to b ie. address of variable b.

 */

 swap(&a, &b)

 fmt.Printf("After swap, value of a : %d\n", a)

 fmt.Printf("After swap, value of b : %d\n", b)

}

func swap(x *int, y *int) {

 var temp int

 temp = *x /* save the value at address x */

 *x = *y /* put y into x */

 y = temp / put temp into y */

}

http://www.tutorialspoint.com/go/go_pointers.htm

Go Programming

73

Put the above code in a single C file, and then compile and execute it. It produces

the following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

It shows that the change has reflected outside the function as well, unlike call by

value where the changes do not reflect outside the function.

Function Usage

A function can be used in the following ways:

Function Usage Description

Function as Value
Functions can be created on the fly and can be used as

values.

Function Closures
Functions closures are anonymous functions that can be

used in dynamic programming.

Method Methods are special functions with a receiver.

Go programming language provides the flexibility to create functions on the fly

and use them as values. In the following example, we've initialized a variable with

a function definition. Purpose of this function variable is just to use inbuilt

math.sqrt() function. For example:

package main

import (

 "fmt"

 "math"

)

func main(){

 /* declare a function variable */

 getSquareRoot := func(x float64) float64 {

 return math.Sqrt(x)

Go Programming

74

 }

 /* use the function */

 fmt.Println(getSquareRoot(9))

}

When the above code is compiled and executed, it produces the following result:

3

Function Closures

Go programming language supports anonymous functions which can act as

function closures. Anonymous functions are used when we want to define a

function inline without passing any name to it.

In our example, we created a function getSequence() which returns another

function. The purpose of this function is to close over a variable i of upper function

to form a closure. For example:

package main

import "fmt"

func getSequence() func() int {

 i:=0

 return func() int {

 i+=1

 return i

 }

}

func main(){

 /* nextNumber is now a function with i as 0 */

 nextNumber := getSequence()

 /* invoke nextNumber to increase i by 1 and return the same */

 fmt.Println(nextNumber())

Go Programming

75

 fmt.Println(nextNumber())

 fmt.Println(nextNumber())

 /* create a new sequence and see the result, i is 0 again*/

 nextNumber1 := getSequence()

 fmt.Println(nextNumber1())

 fmt.Println(nextNumber1())

}

When the above code is compiled and executed, it produces the following result:

1

2

3

1

2

Method

Go programming language supports special types of functions called methods. In

method declaration syntax, a "receiver" is present to represent the container of

the function. This receiver can be used to call a function using "." operator. For

example:

Syntax

func (variable_name variable_data_type) function_name() [return_type]{

 /* function body*/

}

package main

import (

 "fmt"

 "math"

)

/* define a circle */

type Circle strut {

Go Programming

76

 x,y,radius float64

}

/* define a method for circle */

func(circle Circle) area() float64 {

 return math.Pi * circle.radius * circle.radius

}

func main(){

 circle := Circle(x:0, y:0, radius:5)

 fmt.Printf("Circle area: %f", circle.area())

}

When the above code is compiled and executed, it produces the following result:

Circle area: 78.539816

Go Programming

77

A scope in any programming is a region of the program where a defined variable

can exist and beyond that the variable cannot be accessed. There are three places

where variables can be declared in Go programming language:

1. Inside a function or a block (local variables)

2. Outside of all functions (global variables)

3. In the definition of function parameters (formal parameters)

Let us find out what are local and global variables and what are formal

parameters.

Local Variables

Variables that are declared inside a function or a block are called local variables.

They can be used only by statements that are inside that function or block of code.

Local variables are not known to functions outside their own. The following

example uses local variables. Here all the variables a, b, and c are local to the

main() function.

package main

import "fmt"

func main() {

 /* local variable declaration */

 var a, b, c int

 /* actual initialization */

 a = 10

 b = 20

 c = a + b

 fmt.Printf ("value of a = %d, b = %d and c = %d\n", a, b, c)

}

When the above code is compiled and executed, it produces the following result:

value of a = 10, b = 20 and c = 30

12. SCOPE RULES

Go Programming

78

Global Variables

Global variables are defined outside of a function, usually on top of the program.

Global variables hold their value throughout the lifetime of the program and they

can be accessed inside any of the functions defined for the program.

A global variable can be accessed by any function. That is, a global variable is

available for use throughout the program after its declaration. The following

example uses both global and local variables:

package main

import "fmt"

/* global variable declaration */

var g int

func main() {

 /* local variable declaration */

 var a, b int

 /* actual initialization */

 a = 10

 b = 20

 g = a + b

 fmt.Printf("value of a = %d, b = %d and g = %d\n", a, b, g)

}

When the above code is compiled and executed, it produces the following result:

value of a = 10, b = 20 and c = 30

A program can have the same name for local and global variables but the value of

the local variable inside a function takes preference. For example:

package main

import "fmt"

Go Programming

79

/* global variable declaration */

var g int = 20

func main() {

 /* local variable declaration */

 var g int = 10

 fmt.Printf ("value of g = %d\n", g)

}

When the above code is compiled and executed, it produces the following result:

value of g = 10

Formal Parameters

Formal parameters are treated as local variables with-in that function and they

take preference over the global variables. For example:

package main

import "fmt"

/* global variable declaration */

var a int = 20;

func main() {

 /* local variable declaration in main function */

 var a int = 10

 var b int = 20

 var c int = 0

 fmt.Printf("value of a in main() = %d\n", a);

 c = sum(a, b);

 fmt.Printf("value of c in main() = %d\n", c);

}

Go Programming

80

/* function to add two integers */

func sum(a, b int) int {

 fmt.Printf("value of a in sum() = %d\n", a);

 fmt.Printf("value of b in sum() = %d\n", b);

 return a + b;

}

When the above code is compiled and executed, it produces the following result:

value of a in main() = 10

value of a in sum() = 10

value of b in sum() = 20

value of c in main() = 30

Initializing Local and Global Variables

Local and global variables are initialized to their default value, which is 0; while

pointers are initialized to nil.

Data Type Initial Default Value

int 0

float32 0

pointer Nil

Go Programming

81

Strings, which are widely used in Go programming, are a read-only slice of bytes.

In the Go programming language, strings are slices. The Go platform provides

various libraries to manipulate strings:

 unicode

 regexp

 strings

Creating Strings

The most direct way to create a string is to write:

var greeting = "Hello world!"

Whenever it encounters a string literal in your code, the compiler creates a string

object with its value. In this case, it is "Hello world!'.

A string literal holds valid UTF-8 sequences called runes. A string holds arbitrary

bytes.

package main

import "fmt"

func main() {

 var greeting = "Hello world!"

 fmt.Printf("normal string: ")

 fmt.Printf("%s", greeting)

 fmt.Printf("\n")

 fmt.Printf("hex bytes: ")

 for i := 0; i < len(greeting); i++ {

 fmt.Printf("%x ", greeting[i])

 }

 fmt.Printf("\n")

 const sampleText = "\xbd\xb2\x3d\xbc\x20\xe2\x8c\x98"

13. STRINGS

Go Programming

82

/*q flag escapes unprintable characters, with + flag it escapes non-

ascii characters as well to make output unambiguous */

fmt.Printf("quoted string: ")

 fmt.Printf("%+q", sampleText)

 fmt.Printf("\n")

}

It would produce the following result:

normal string: Hello world!

hex bytes: 48 65 6c 6c 6f 20 77 6f 72 6c 64 21

quoted string: "\xbd\xb2=\xbc \u2318"

Note: The string literal is immutable. Once it is created, a string literal cannot be

changed.

String Length

len(str) method returns the number of bytes contained in a string literal.

package main

import "fmt"

func main() {

 var greeting = "Hello world!"

 fmt.Printf("String Length is: ")

 fmt.Println(len(greeting))

}

It would produce the following result:

String Length is : 12

Concatenating Strings

The strings package includes a method join for concatenating multiple strings:

strings.Join(sample, " ")

Join concatenates the elements of an array to create a single string. Second

parameter is a separator which is placed between the elements of the array.

Go Programming

83

Let us look at the following example:

package main

import (

 "fmt"

 "strings"

)

func main() {

 greetings := []string{"Hello","world!"}

 fmt.Println(strings.Join(greetings, " "))

}

It would produce the following result:

Hello world!

Go Programming

84

Go programming language provides a data structure called the array, which can

store a fixed-size sequential collection of elements of the same data type. An array

is used to store a collection of data, but it is often more useful to think of an array

as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ...,

number99, you declare one array variable such as numbers and use numbers[0],

numbers[1], and ..., numbers[99] to represent individual variables. A specific

element in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds

to the first element and the highest address to the last element.

Declaring Arrays

To declare an array in Go, a programmer specifies the type of the elements and

the number of elements required by an array as follows:

var variable_name [SIZE] variable_type

This is called a single-dimensional array. The arraySize must be an integer

constant greater than zero and type can be any valid Go data type. For example,

to declare a 10-element array called balance of type float32, use this statement:

var balance [10] float32

Here, balance is a variable array that can hold up to 10 float numbers.

Initializing Arrays

You can initialize an array in Go, either one by one or using a single statement as

follows:

var balance = [5]float32{1000.0, 2.0, 3.4, 7.0, 50.0}

14. ARRAYS

Go Programming

85

The number of values between the braces { } cannot be larger than the number

of elements that we declare for the array between the square brackets [].

If you omit the size of the array, an array just big enough to hold the initialization

is created. Therefore, if you write:

var balance = []float32{1000.0, 2.0, 3.4, 7.0, 50.0}

You will create exactly the same array as you did in the previous example.

Following is an example to assign a single element of the array:

balance[4] = 50.0

The above statement assigns element number 5th in the array with a value of

50.0. All arrays have 0 as the index of their first element which is also called base

index and last index of an array will be total size of the array minus 1. Following

is the pictorial representation of the same array we discussed above:

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the

index of the element within square brackets after the name of the array. For

example:

float32 salary = balance[9]

The above statement will take the 10th element from the array and assign the

value to salary variable. Following is an example which will use all the above-

mentioned three concepts, viz. declaration, assignment, and accessing arrays:

package main

import "fmt"

func main() {

 var n [10]int /* n is an array of 10 integers */

 var i,j int

 /* initialize elements of array n to 0 */

 for i = 0; i < 10; i++ {

Go Programming

86

 n[i] = i + 100 /* set element at location i to i + 100 */

 }

 /* output each array element's value */

 for j = 0; j < 10; j++ {

 fmt.Printf("Element[%d] = %d\n", j, n[j])

 }

}

When the above code is compiled and executed, it produces the following result:

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

Go Arrays in Detail

There are important concepts related to array which should be clear to a Go

programmer:

Concept Description

Multi-dimensional arrays

Go supports multidimensional arrays. The

simplest form of a multidimensional array is the

two-dimensional array.

Passing arrays to functions
You can pass to the function a pointer to an array

by specifying the array's name without an index.

Go Programming

87

Multidimensional Arrays in Go

Go programming language allows multidimensional arrays. Here is the general

form of a multidimensional array declaration:

var variable_name [SIZE1][SIZE2]...[SIZEN] variable_type

For example, the following declaration creates a three-dimensional [5][10][4]

integer array:

var threedim [5][10][4]int

Two-Dimensional Arrays

A two-dimensional array is the simplest form of a multidimensional array. A two-

dimensional array is, in essence, a list of one-dimensional arrays. To declare a

two-dimensional integer array of size [x, y], you would write something as follows:

var arrayName [x][y] variable_type

Where variable_type can be any valid Go data type and arrayName can be a

valid Go identifier. A two-dimensional array can be taken as a table having x

number of rows and y number of columns. A 2-dimensional array a, which contains

three rows and four columns can be shown as below:

Thus, every element in the array a is identified by an element name as a[i][j],

where a is the name of the array, and i and j are the subscripts that uniquely

identify each element in a.

Initializing Two-Dimensional Arrays

Multidimensional arrays may be initialized by specifying bracketed values for each

row. The following array is with 3 rows and each row has 4 columns.

a = [3][4]int{

 {0, 1, 2, 3} , /* initializers for row indexed by 0 */

 {4, 5, 6, 7} , /* initializers for row indexed by 1 */

Go Programming

88

 {8, 9, 10, 11} /* initializers for row indexed by 2 */

}

Accessing Two-Dimensional Array Elements

An element in a two-dimensional array is accessed by using the subscripts, i.e.,

row index and column index of the array. For example:

int val = a[2][3]

The above statement takes the 4th element from the 3rd row of the array. You

can verify it in the above diagram. Let us check the following program where we

have used nested loop to handle a two-dimensional array:

package main

import "fmt"

func main() {

 /* an array with 5 rows and 2 columns*/

 var a = [5][2]int{ {0,0}, {1,2}, {2,4}, {3,6},{4,8}}

 var i, j int

 /* output each array element's value */

 for i = 0; i < 5; i++ {

 for j = 0; j < 2; j++ {

 fmt.Printf("a[%d][%d] = %d\n", i,j, a[i][j])

 }

 }

}

When the above code is compiled and executed, it produces the following result:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

Go Programming

89

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

As explained above, you can have arrays with any number of dimensions, although

it is likely that most of the arrays you create will be of one or two dimensions.

Passing Arrays to Functions

If you want to pass a one-dimensional array as an argument in a function, you

would have to declare a function formal parameter in one of following two ways.

Both the declaration methods produce similar results because each tells the

compiler that an integer array is going to be received. Similarly, you can pass a

multidimensional array as a formal parameter.

Way-1

Formal parameters as a sized array as follows:

void myFunction(param [10]int)

{

.

.

.

}

Way-2

Formal parameters as an unsized array as follows:

void myFunction(param []int)

{

.

.

.

}

Go Programming

90

Example

Now, consider the following function, which will take an array as an argument

along with another argument and based on the passed arguments, it will return

the average of the numbers passed through the array as follows:

func getAverage(arr []int, int size) float32

{

 var i int

 var avg, sum float32

 for i = 0; i < size; ++i {

 sum += arr[i]

 }

 avg = sum / size

 return avg;

}

Now, let us call the above function as follows:

package main

import "fmt"

func main() {

 /* an int array with 5 elements */

 var balance = []int {1000, 2, 3, 17, 50}

 var avg float32

 /* pass array as an argument */

 avg = getAverage(balance, 5) ;

 /* output the returned value */

 fmt.Printf("Average value is: %f ", avg);

}

func getAverage(arr []int, size int) float32 {

Go Programming

91

 var i,sum int

 var avg float32

 for i = 0; i < size;i++ {

 sum += arr[i]

 }

 avg = float32(sum / size)

 return avg;

}

When the above code is compiled together and executed, it produces the following

result:

Average value is: 214.400000

As you can see, the length of the array doesn't matter as far as the function is

concerned because Go performs no bounds checking for formal parameters.

Go Programming

92

Pointers in Go are easy and fun to learn. Some Go programming tasks are

performed more easily with pointers, and other tasks, such as call by reference,

cannot be performed without using pointers. So it becomes necessary to learn

pointers to become a perfect Go programmer.

As you know, every variable is a memory location and every memory location has

its address defined which can be accessed using ampersand (&) operator, which

denotes an address in memory. Consider the following example, which will print

the address of the variables defined:

package main

import "fmt"

func main() {

 var a int = 10

 fmt.Printf("Address of a variable: %x\n", &a)

}

When the above code is compiled and executed, it produces the following result:

Address of a variable: 10328000

So you understood what is memory address and how to access it. Now let us see

what pointers are.

What Are Pointers?

A pointer is a variable whose value is the address of another variable, i.e., direct

address of the memory location. Like any variable or constant, you must declare

a pointer before you can use it to store any variable address. The general form of

a pointer variable declaration is:

var var_name *var-type

Here, type is the pointer's base type; it must be a valid C data type and var-

name is the name of the pointer variable. The asterisk * you used to declare the

pointer is the same asterisk that you use for multiplication. However, in this

statement, the asterisk is being used to designate a variable as a pointer. The

following are valid pointer declarations:

15. POINTERS

Go Programming

93

var ip *int /* pointer to an integer */

var fp *float32 /* pointer to a float */

The actual data type of the value of all pointers, whether integer, float, or

otherwise., is the same, a long hexadecimal number that represents a memory

address. The only difference between pointers of different data types is the data

type of the variable or constant that the pointer points to.

How to Use Pointers?

There are a few important operations, which we frequently perform with pointers:

(a) we define pointer variables, (b) assign the address of a variable to a pointer,

and (c) access the value at the address stored in the pointer variable.

All these operations are carried out using the unary operator * that returns the

value of the variable located at the address specified by its operand. The following

example demonstrates how to perform these operations:

package main

import "fmt"

func main() {

 var a int= 20 /* actual variable declaration */

 var ip *int /* pointer variable declaration */

 ip = &a /* store address of a in pointer variable*/

 fmt.Printf("Address of a variable: %x\n", &a)

 /* address stored in pointer variable */

 fmt.Printf("Address stored in ip variable: %x\n", ip)

 /* access the value using the pointer */

 fmt.Printf("Value of *ip variable: %d\n", *ip)

}

When the above code is compiled and executed, it produces the following result:

Address of var variable: 10328000

Go Programming

94

Address stored in ip variable: 10328000

Value of *ip variable: 20

Nil Pointers in Go

Go compiler assign a nil value to a pointer variable in case you do not have exact

address to be assigned. This is done at the time of variable declaration. A pointer

that is assigned nil is called a nil pointer.

The nil pointer is a constant with a value of zero defined in several standard

libraries. Consider the following program:

package main

import "fmt"

func main() {

 var ptr *int

 fmt.Printf("The value of ptr is : %x\n", ptr)

}

When the above code is compiled and executed, it produces the following result:

The value of ptr is 0

On most of the operating systems, programs are not permitted to access memory

at address 0 because that memory is reserved by the operating system. However,

the memory address 0 has special significance; it signals that the pointer is not

intended to point to an accessible memory location. But by convention, if a pointer

contains the nil (zero) value, it is assumed to point to nothing.

To check for a nil pointer you can use if statement as follows:

if(ptr != nil) /* succeeds if p is not nil */

if(ptr == nil) /* succeeds if p is null */

Go Pointers in Detail

Pointers have many but easy concepts and they are very important to Go

programming. The following concepts of pointers should be clear to a Go

programmer:

Go Programming

95

Concept Description

Go – Array of pointers
You can define arrays to hold a number

of pointers.

Go – Pointer to pointer
Go allows you to have pointer on a

pointer and so on.

Passing pointers to functions in Go

Passing an argument by reference or by

address both enable the passed

argument to be changed in the calling

function by the called function.

Go – Array of Pointers

Before we understand the concept of arrays of pointers, let us consider the

following example, which makes use of an array of 3 integers:

package main

import "fmt"

const MAX int = 3

func main() {

 a := []int{10,100,200}

 var i int

 for i = 0; i < MAX; i++ {

 fmt.Printf("Value of a[%d] = %d\n", i, a[i])

 }

}

When the above code is compiled and executed, it produces the following result:

Value of a[0] = 10

Value of a[1] = 100

Value of a2] = 200

Go Programming

96

There may be a situation when we want to maintain an array, which can store

pointers to an int or string or any other data type available. The following

statement declares an array of pointers to an integer:

var ptr [MAX]*int;

This declares ptr as an array of MAX integer pointers. Thus, each element in ptr,

now holds a pointer to an int value. The following example makes use of three

integers, which will be stored in an array of pointers as follows:

package main

import "fmt"

const MAX int = 3

func main() {

 a := []int{10,100,200}

 var i int

 var ptr [MAX]*int;

 for i = 0; i < MAX; i++ {

 ptr[i] = &a[i] /* assign the address of integer. */

 }

 for i = 0; i < MAX; i++ {

 fmt.Printf("Value of a[%d] = %d\n", i,*ptr[i])

 }

}

When the above code is compiled and executed, it produces the following result:

Value of a[0] = 10

Value of a[1] = 100

Value of a[2] = 200

Go – Pointer to Pointer

A pointer to a pointer is a form of chain of pointers. Normally, a pointer contains

the address of a variable. When we define a pointer to a pointer, the first pointer

contains the address of the second pointer, which points to the location that

contains the actual value as shown below.

Go Programming

97

A variable that is a pointer to a pointer must be declared as such. This is done by

placing an additional asterisk in front of its name. For example, the following

statement declares a pointer to a pointer of type int:

var ptr **int;

When a target value is indirectly pointed to by a pointer to a pointer, accessing

that value requires that the asterisk operator be applied twice, as is shown in the

following example:

package main

import "fmt"

func main() {

 var a int

 var ptr *int

 var pptr **int

 a = 3000

 /* take the address of var */

 ptr = &a

 /* take the address of ptr using address of operator & */

 pptr = &ptr

 /* take the value using pptr */

 fmt.Printf("Value of a = %d\n", a)

 fmt.Printf("Value available at *ptr = %d\n", *ptr)

 fmt.Printf("Value available at **pptr = %d\n", **pptr)

}

Go Programming

98

When the above code is compiled and executed, it produces the following result:

Value of var = 3000

Value available at *ptr = 3000

Value available at **pptr = 3000

Go – Passing Pointers to Functions

Go programming language allows you to pass a pointer to a function. To do so,

simply declare the function parameter as a pointer type.

In the following example, we pass two pointers to a function and change the value

inside the function which reflects back in the calling function:

package main

import "fmt"

func main() {

 /* local variable definition */

 var a int = 100

 var b int= 200

 fmt.Printf("Before swap, value of a : %d\n", a)

 fmt.Printf("Before swap, value of b : %d\n", b)

 /* calling a function to swap the values.

 * &a indicates pointer to a ie. address of variable a and

 * &b indicates pointer to b ie. address of variable b.

 */

 swap(&a, &b);

 fmt.Printf("After swap, value of a : %d\n", a)

 fmt.Printf("After swap, value of b : %d\n", b)

}

func swap(x *int, y *int) {

 var temp int

Go Programming

99

 temp = *x /* save the value at address x */

 *x = *y /* put y into x */

 y = temp / put temp into y */

}

When the above code is compiled and executed, it produces the following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

Go Programming

100

Go arrays allow you to define variables that can hold several data items of the

same kind. Structure is another user-defined data type available in Go

programming, which allows you to combine data items of different kinds.

Structures are used to represent a record. Suppose you want to keep track of the

books in a library. You might want to track the following attributes of each book:

 Title

 Author

 Subject

 Book ID

In such a scenario, structures are highly useful.

Defining a Structure

To define a structure, you must use type and struct statements. The struct

statement defines a new data type, with multiple members for your program. The

type statement binds a name with the type which is struct in our case. The format

of the struct statement is as follows:

type struct_variable_type struct {

 member definition;

 member definition;

 ...

 member definition;

}

Once a structure type is defined, it can be used to declare variables of that type

using the following syntax.

Variable_name := structure_variable_type {value1, value2…valuen}

Accessing Structure Members

To access any member of a structure, we use the member access operator (.).

The member access operator is coded as a period between the structure variable

name and the structure member that we wish to access. You would

use struct keyword to define variables of structure type. The following example

explains how to use a structure:

16. STRUCTURES

Go Programming

101

package main

import "fmt"

type Books struct {

 title string

 author string

 subject string

 book_id int

}

func main() {

 var Book1 Books /* Declare Book1 of type Book */

 var Book2 Books /* Declare Book2 of type Book */

 /* book 1 specification */

 Book1.title = "Go Programming"

 Book1.author = "Mahesh Kumar"

 Book1.subject = "Go Programming Tutorial"

 Book1.book_id = 6495407

 /* book 2 specification */

 Book2.title = "Telecom Billing"

 Book2.author = "Zara Ali"

 Book2.subject = "Telecom Billing Tutorial"

 Book2.book_id = 6495700

 /* print Book1 info */

 fmt.printf("Book 1 title : %s\n", Book1.title)

 fmt.printf("Book 1 author : %s\n", Book1.author)

 fmt.printf("Book 1 subject : %s\n", Book1.subject)

 fmt.printf("Book 1 book_id : %d\n", Book1.book_id)

 /* print Book2 info */

Go Programming

102

 fmt.printf("Book 2 title : %s\n", Book2.title)

 fmt.printf("Book 2 author : %s\n", Book2.author)

 fmt.printf("Book 2 subject : %s\n", Book2.subject)

 fmt.printf("Book 2 book_id : %d\n", Book2.book_id)

}

When the above code is compiled and executed, it produces the following result:

Book 1 title : Go Programming

Book 1 author : Mahesh Kumar

Book 1 subject : Go Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

Structures as Function Arguments

You can pass a structure as a function argument in very similar way as you pass

any other variable or pointer. You would access structure variables in the same

way as you did in the above example:

package main

import "fmt"

type Books struct {

 title string

 author string

 subject string

 book_id int

}

func main() {

 var Book1 Books /* Declare Book1 of type Book */

 var Book2 Books /* Declare Book2 of type Book */

Go Programming

103

 /* book 1 specification */

 Book1.title = "Go Programming"

 Book1.author = "Mahesh Kumar"

 Book1.subject = "Go Programming Tutorial"

 Book1.book_id = 6495407

 /* book 2 specification */

 Book2.title = "Telecom Billing"

 Book2.author = "Zara Ali"

 Book2.subject = "Telecom Billing Tutorial"

 Book2.book_id = 6495700

 /* print Book1 info */

 printBook(Book1)

 /* print Book2 info */

 printBook(Book2)

}

func printBook(book Books)

{

 fmt.printf("Book title : %s\n", book.title);

 fmt.printf("Book author : %s\n", book.author);

 fmt.printf("Book subject : %s\n", book.subject);

 fmt.printf("Book book_id : %d\n", book.book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : Go Programming

Book author : Mahesh Kumar

Book subject : Go Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Go Programming

104

Book book_id : 6495700

Pointers to Structures

You can define pointers to structures in the same way as you define pointer to any

other variable as follows:

var struct_pointer *Books

Now, you can store the address of a structure variable in the above defined pointer

variable. To find the address of a structure variable, place the “&” operator before

the structure name as follows:

struct_pointer = &Book1;

To access the members of a structure using a pointer to that structure, you must

use the "." operator as follows:

struct_pointer.title;

Let us re-write the above example using structure pointer:

package main

import "fmt"

type Books struct {

 title string

 author string

 subject string

 book_id int

}

func main() {

 var Book1 Books /* Declare Book1 of type Book */

 var Book2 Books /* Declare Book2 of type Book */

 /* book 1 specification */

 Book1.title = "Go Programming"

 Book1.author = "Mahesh Kumar"

Go Programming

105

 Book1.subject = "Go Programming Tutorial"

 Book1.book_id = 6495407

 /* book 2 specification */

 Book2.title = "Telecom Billing"

 Book2.author = "Zara Ali"

 Book2.subject = "Telecom Billing Tutorial"

 Book2.book_id = 6495700

 /* print Book1 info */

 printBook(&Book1)

 /* print Book2 info */

 printBook(&Book2)

}

func printBook(book *Books)

{

 fmt.printf("Book title : %s\n", book.title);

 fmt.printf("Book author : %s\n", book.author);

 fmt.printf("Book subject : %s\n", book.subject);

 fmt.printf("Book book_id : %d\n", book.book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : Go Programming

Book author : Mahesh Kumar

Book subject : Go Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Go Programming

106

Go Slice is an abstraction over Go Array. Go Array allows you to define variables

that can hold several data items of the same kind but it does not provide any

inbuilt method to increase its size dynamically or get a sub-array of its own. Slices

overcome this limitation. It provides many utility functions required on Array and

is widely used in Go programming.

Defining a slice

To define a slice, you can declare it as an array without specifying its size.

Alternatively, you can use make function to create a slice.

var numbers []int /* a slice of unspecified size */

/* numbers == []int{0,0,0,0,0}*/

numbers = make([]int,5,5) /* a slice of length 5 and capacity 5*/

len() and cap() functions

A slice is an abstraction over array. It actually uses arrays as an underlying

structure. The len() function returns the elements presents in the slice

where cap() function returns the capacity of the slice (i.e., how many elements it

can be accommodate). The following example explains the usage of slice:

package main

import "fmt"

func main {

 var numbers = make([]int,3,5)

 printSlice(numbers)

}

func printSlice(x []int){

 fmt.printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x)

}

When the above code is compiled and executed, it produces the following result:

17. SLICES

Go Programming

107

len=3 cap=5 slice=[0 0 0]

Nil slice

If a slice is declared with no inputs, then by default, it is initialized as nil. Its length

and capacity are zero. For example:

package main

import "fmt"

func main {

 var numbers []int

 printSlice(numbers)

 if(numbers == nil){

 fmt.printf("slice is nil")

 }

}

func printSlice(x []int){

 fmt.printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x)

}

When the above code is compiled and executed, it produces the following result:

len=0 cap=0 slice=[]

slice is nil

Subslicing

Slice allows lower-bound and upper bound to be specified to get its subslice using

[lower-bound:upper-bound]. For example:

Go Programming

108

package main

import "fmt"

func main {

 /* create a slice */

 numbers := []int{0,1,2,3,4,5,6,7,8}

 printSlice(numbers)

 /* print the original slice */

 fmt.Println("numbers ==", numbers)

 /* print the sub slice starting from index 1(included) to index

4(excluded)*/

 fmt.Println("numbers[1:4] ==", numbers[1:4])

 /* missing lower bound implies 0*/

 fmt.Println("numbers[:3] ==", numbers[:3])

 /* missing upper bound implies len(s)*/

 fmt.Println("numbers[4:] ==", numbers[4:])

 numbers1 := make([]int,0,5)

 printSlice(numbers1)

 /* print the sub slice starting from index 0(included) to index

2(excluded) */

 number2 := numbers[:2]

 printSlice(number2)

 /* print the sub slice starting from index 2(included) to index

5(excluded) */

 number3 := numbers[2:5]

 printSlice(number3)

}

Go Programming

109

func printSlice(x []int){

 fmt.printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x)

}

When the above code is compiled and executed, it produces the following result:

len=9 cap=9 slice=[0 1 2 3 4 5 6 7 8]

numbers == [0 1 2 3 4 5 6 7 8]

numbers[1:4] == [1 2 3]

numbers[:3] == [0 1 2]

numbers[4:] == [4 5 6 7 8]

len=0 cap=5 slice=[]

len=2 cap=9 slice=[0 1]

len=3 cap=7 slice=[2 3 4]

append() and copy() Functions

One can increase the capacity of a slice using the append() function.

Using copy() function, the contents of a source slice are copied to a destination

slice. For example:

package main

import "fmt"

func main {

 var numbers []int

 printSlice(numbers)

 /* append allows nil slice */

 numbers = append(numbers, 0)

 printSlice(numbers)

 /* add one element to slice*/

 numbers = append(numbers, 1)

 printSlice(numbers)

Go Programming

110

 /* add more than one element at a time*/

 numbers = append(numbers, 2,3,4)

 printSlice(numbers)

 /* create a slice numbers1 with double the capacity of earlier slice*/

 numbers1 := make([]int, len(numbers), (cap(numbers))*2)

 /* copy content of numbers to numbers1 */

 copy(numbers1,numbers)

 printSlice(numbers1)

}

func printSlice(x []int){

 fmt.printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x)

}

When the above code is compiled and executed, it produces the following result:

len=0 cap=0 slice=[]

len=1 cap=2 slice=[0]

len=2 cap=2 slice=[0 1]

len=5 cap=8 slice=[0 1 2 3 4]

len=5 cap=16 slice=[0 1 2 3 4]

Go Programming

111

The range keyword is used in for loop to iterate over items of an array, slice,

channel or map. With arrays and slices, it returns the index of the item as integer.

With maps, it returns the key of the next key-value pair. Range either returns one

value or two. If only one value is used on the left of a range expression, it is the

1st value in the following table.

Range expression 1st Value 2nd Value(Optional)

Array or slice a [n]E index i int a[i] E

String s string type index i int rune int

map m map[K]V key k K value m[k] V

channel c chan E element e E none

Example
The following paragraph shows how to use range:

package main

import "fmt"

func main {

 /* create a slice */

 numbers := []int{0,1,2,3,4,5,6,7,8}

 /* print the numbers */

 for i:= range numbers {

 fmt.Println("Slice item",i,"is",numbers[i])

 }

 /* create a map*/

 coutryCapitalMap := map[string] string

{"France":"Paris","Italy":"Rome","Japan":"Tokyo"}

18. RANGE

Go Programming

112

 /* print map using keys*/

 for country := range countryCapitalMap {

 fmt.Println("Capital of",country,"is",countryCapitalMap[country])

 }

 /* print map using key-value*/

 for country,capital := range countryCapitalMap {

 fmt.Println("Capital of",country,"is",capital)

 }

}

When the above code is compiled and executed, it produces the following result:

Slice item 0 is 0

Slice item 1 is 1

Slice item 2 is 2

Slice item 3 is 3

Slice item 4 is 4

Slice item 5 is 5

Slice item 6 is 6

Slice item 7 is 7

Slice item 8 is 8

Capital of France is Paris

Capital of Italy is Rome

Capital of Japan is Tokyo

Capital of France is Paris

Capital of Italy is Rome

Capital of Japan is Tokyo

Go Programming

113

Go provides another important data type named map which maps unique keys to

values. A key is an object that you use to retrieve a value at a later date. Given a

key and a value, you can store the value in a Map object. After the value is stored,

you can retrieve it by using its key.

Defining a Map

You must use make function to create a map.

/* declare a variable, by default map will be nil*/

var map_variable map[key_data_type]value_data_type

/* define the map as nil map can not be assigned any value*/

map_variable = make(map[key_data_type]value_data_type)

Example
The following example illustrates how to create and use a map:

package main

import "fmt"

func main {

 var coutryCapitalMap map[string]string

 /* create a map*/

 coutryCapitalMap = make(map[string]string)

 /* insert key-value pairs in the map*/

 countryCapitalMap["France"] = "Paris"

 countryCapitalMap["Italy"] = "Rome"

 countryCapitalMap["Japan"] = "Tokyo"

 countryCapitalMap["India"] = "New Delhi"

 /* print map using keys*/

19. MAPS

Go Programming

114

 for country := range countryCapitalMap {

 fmt.Println("Capital of",country,"is",countryCapitalMap[country])

 }

 /* test if entry is present in the map or not*/

 captial, ok := countryCapitalMap["United States"]

 /* if ok is true, entry is present otherwise entry is absent*/

 if(ok){

 fmt.Println("Capital of United States is", capital)

 }else {

 fmt.Println("Capital of United States is not present")

 }

}

When the above code is compiled and executed, it produces the following result:

Capital of India is New Delhi

Capital of France is Paris

Capital of Italy is Rome

Capital of Japan is Tokyo

Capital of United States is not present

delete() Function

delete() function is used to delete an entry from a map. It requires the map and

the corresponding key which is to be deleted. For example:

package main

import "fmt"

func main {

 /* create a map*/

 coutryCapitalMap := map[string] string

{"France":"Paris","Italy":"Rome","Japan":"Tokyo","India":"New Delhi"}

 fmt.Println("Original map")

Go Programming

115

 /* print map */

 for country := range countryCapitalMap {

 fmt.Println("Capital of",country,"is",countryCapitalMap[country])

 }

 /* delete an entry */

 delete(countryCapitalMap,"France");

 fmt.Println("Entry for France is deleted")

 fmt.Println("Updated map")

 /* print map */

 for country := range countryCapitalMap {

 fmt.Println("Capital of",country,"is",countryCapitalMap[country])

 }

}

When the above code is compiled and executed, it produces the following result:

Original Map

Capital of France is Paris

Capital of Italy is Rome

Capital of Japan is Tokyo

Capital of India is New Delhi

Entry for France is deleted

Updated Map

Capital of India is New Delhi

Capital of Italy is Rome

Capital of Japan is Tokyo

Go Programming

116

Recursion is the process of repeating items in a self-similar way. The same concept

applies in programming languages as well. If a program allows to call a function

inside the same function, then it is called a recursive function call. Take a look at

the following example:

func recursion() {

 recursion() /* function calls itself */

}

func main() {

 recursion()

}

The Go programming language supports recursion. That is, it allows a function to

call itself. But while using recursion, programmers need to be careful to define an

exit condition from the function, otherwise it will go on to become an infinite loop.

Examples of Recursion in Go

Recursive functions are very useful to solve many mathematical problems such as

calculating factorial of a number, generating a Fibonacci series, etc.

Example 1: Calculating Factorial Using Recursion in Go

The following example calculates the factorial of a given number using a recursive

function:

package main

import "fmt"

func factorial(i int) {

 if(i <= 1) {

 return 1

 }

 return i * factorial(i - 1)

}

20. RECURSION

Go Programming

117

func main {

 var i int = 15

 fmt.Printf("Factorial of %d is %d\n", i, factorial(i))

}

When the above code is compiled and executed, it produces the following result:

Factorial of 15 is 2004310016

Example 2: Fibonacci Series Using Recursion in Go

The following example shows how to generate a Fibonacci series of a given number

using a recursive function:

package main

import "fmt"

func fibonaci(i int) {

 if(i == 0) {

 return 0

 }

 if(i == 1) {

 return 1

 }

 return fibonaci(i-1) + fibonaci(i-2)

}

func main() {

 var i int

 for i = 0; i < 10; i++ {

 fmt.Printf("%d\t%n", fibonaci(i))

 }

}

When the above code is compiled and executed, it produces the following result:

Go Programming

118

0 1 1 2 3 5 8 13 21 34

Go Programming

119

Type casting is a way to convert a variable from one data type to another data

type. For example, if you want to store a long value into a simple integer then you

can type cast long to int. You can convert values from one type to another using

the cast operator. Its syntax is as follows:

type_name(expression)

Example

Consider the following example where the cast operator causes the division of one

integer variable by another to be performed as a floating number operation.

package main

import "fmt"

func main() {

 var sum int = 17

 var count int = 5

 var mean float32

 maen = float32(sum)/float32(count)

 fmt.Printf("Value of mean : %f\n",mean)

}

When the above code is compiled and executed, it produces the following result:

Value of mean : 3.400000

21. TYPE CASTING

Go Programming

120

Go programming provides another data type called interfaces which represents

a set of method signatures. The struct data type implements these interfaces to

have method definitions for the method signature of the interfaces.

Syntax

/* define an interface */

type interface_name interface {

 method_name1 [return_type]

 method_name2 [return_type]

 method_name3 [return_type]

 ...

 method_namen [return_type]

}

/* define a struct */

type struct_name struct {

 /* variables */

}

/* implement interface methods*/

func (struct_name_variable struct_name) method_name1() [return_type] {

 /* method implementation */

}

...

func (struct_name_variable struct_name) method_namen() [return_type] {

 /* method implementation */

}

22. INTERFACES

Go Programming

121

Example

package main

import (

 "fmt"

 "math"

)

/* define an interface */

type Shape interface {

 area() float64

}

/* define a circle */

type Circle struct {

 x,y,radius float64

}

/* define a rectangle */

type Rectangle struct {

 width, height float64

}

/* define a method for circle (implementation of Shape.area())*/

func(circle Circle) area() float64 {

 return math.Pi * circle.radius * circle.radius

}

/* define a method for rectangle (implementation of Shape.area())*/

func(rect Rectangle) area() float64 {

 return rect.width * rect.height

}

/* define a method for shape */

Go Programming

122

func getArea(shape Shape) float64 {

 return shape.area()

}

func main() {

 circle := Circle{x:0,y:0,radius:5}

 rectangle := Rectangle {width:10, height:5}

 fmt.Printf("Circle area: %f\n",getArea(circle))

 fmt.Printf("Rectangle area: %f\n",getArea(rectangle))

}

When the above code is compiled and executed, it produces the following result:

Circle area: 78.539816

Rectangle area: 50.000000

Go Programming

123

Go programming provides a pretty simple error handling framework with inbuilt

error interface type of the following declaration:

type error interface {

 Error() string

}

Functions normally return error as last return value. Use errors.New to construct

a basic error message as following:

func Sqrt(value float64)(float64, error) {

 if(value < 0){

 return 0, errors.New("Math: negative number passed to Sqrt")

 }

 return math.Sqrt(value)

}

Use return value and error message.

result, err:= Sqrt(-1)

if err != nil {

 fmt.Println(err)

}

Example

package main

import "errors"

import "fmt"

import "math"

func Sqrt(value float64)(float64, error) {

 if(value < 0){

23. ERROR HANDLING

Go Programming

124

 return 0, errors.New("Math: negative number passed to Sqrt")

 }

 return math.Sqrt(value)

}

func main() {

 result, err:= Sqrt(-1)

 if err != nil {

 fmt.Println(err)

 }else {

 fmt.Println(result)

 }

 result, err = Sqrt(9)

 if err != nil {

 fmt.Println(err)

 }else {

 fmt.Println(result)

 }

}

When the above code is compiled and executed, it produces the following result:

Math: negative number passed to Sqrt

3

