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1. Introduction

In this paper, we study the growth of sX(L), the number of simple closed
geodesics of length ≤ L on a complete hyperbolic surface X of finite area.
We also study the frequencies of different types of simple closed geodesics on
X and their relationship with the Weil-Petersson volumes of moduli spaces of
bordered Riemann surfaces.

Simple closed geodesics. Let cX(L) be the number of primitive closed
geodesics of length ≤ L on X. The problem of understanding the asymptotics
of cX(L) has been investigated intensively. Due to work of Delsarte, Huber
and Selberg, it is known that

cX(L) ∼ eL/L

as L → ∞. By this result the asymptotic growth of cX(L) is independent
of the genus of X. See [Bus] and the references within for more details and
related results. Similar statements hold for the growth of the number of closed
geodesics on negatively curved compact manifolds [Ma].

However, very few closed geodesics are simple [BS2] and it is hard to
discern them in π1(X) [BS1].

Counting problems. Let Mg,n be the moduli space of complete hyperbolic
Riemann surfaces of genus g with n cusps. Fix X ∈ Mg,n. To understand the
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growth of sX(L), it proves fruitful to study different types of simple closed
geodesics on X separately. Let Sg,n be a closed surface of genus g with n

boundary components. The mapping class group Modg,n acts naturally on the
set of isotopy classes of simple closed curves on Sg,n. Every isotopy class of a
simple closed curve contains a unique simple closed geodesic on X. Two simple
closed geodesics γ1 and γ2 are of the same type if and only if there exists
g ∈ Modg,n such that g · γ1 = γ2. The type of a simple closed geodesic γ is
determined by the topology of Sg,n(γ), the surface that we get by cutting Sg,n

along γ. We fix a simple closed geodesic γ on X and consider more generally
the counting function

sX(L, γ) = #{α ∈ Modg,n ·γ | �α(X) ≤ L}.

Note that there are only finitely many simple closed geodesics on X up to the
action of the mapping class group. Therefore,

sX(L) =
∑

γ

sX(L, γ),

where the sum is over all types of simple closed geodesics.

We say that γ =
k∑

i=1
aiγi is a multi-curve on Sg,n if γi’s are disjoint,

essential, nonperipheral simple closed curves, no two of which are in the same
homotopy class, and ai > 0 for 1 ≤ i ≤ k. In this case, the length of γ on X is

defined by �γ(X) =
k∑

i=1
ai�γi

(X). We call the multi-curve γ integral if ai ∈ N

for 1 ≤ i ≤ k (or rational if ai ∈ Q).
In Section 6 we establish the following result:

Theorem 1.1. For any rational multi-curve γ,

lim
L→∞

sX(L, γ)
L6g−6+2n

= nγ(X),(1.1)

where nγ : Mg,n → R+ is a continuous proper function.

Measured laminations. A key role in our approach is played by the space
MLg,n of compactly supported measured laminations on Sg,n: a piecewise
linear space of dimension 6g−6+2n, whose quotient by the scalars PML(Sg,n)
can be viewed as a boundary of the Teichmüller space Tg,n. The space MLg,n

has a piecewise linear integral structure; the integral points in MLg,n are in a
one-to-one correspondence with integral multi-curves on Sg,n. In fact, MLg,n

is the completion of the set of rational multi-curves on Sg,n.
The mapping class group Modg,n of Sg,n acts naturally on MLg,n. More-

over, there is a natural Modg,n-invariant locally finite measure on MLg,n, the
Thurston measure μTh, given by this piecewise linear integral structure [Th].



SIMPLE CLOSED GEODESICS ON HYPERBOLIC SURFACES 99

For any open subset U ⊂ MLg,n, we have

μTh(t · U) = t6g−6+2nμTh(U).

On the other hand, any complete hyperbolic metric X on Sg,n induces the
length function

MLg,n → R+,

λ → �λ(X),

satisfying �t·λ(X) = t �λ(X).
Let BX ⊂ MLg,n be the unit ball in the space of measured geodesic lam-

inations with respect to the length function at X (see equation (3.1)), and
B(X) = μTh(BX). In Theorem 3.3, we show that the function B : Mg,n → R+

is integrable with respect to the Weil-Petersson volume form. The contribu-
tions of X and γ to nγ(X) (defined by equation (1.1)) separate as follows:

Theorem 1.2. For any rational multi-curve γ, there exists a number
c(γ) ∈ Q>0 such that

nγ(X) =
c(γ) · B(X)

bg,n
,

where bg,n =
∫

Mg,n

B(X) · dX < ∞.

Note that c(γ) = c(δ) for all δ ∈ Modg,n ·γ.

Notes and references. In the case of g = n = 1, this result was previously
obtained by G. McShane and I. Rivin [MR]. The proof in [MR] relies on
counting the integral points in homology of punctured tori with respect to a
natural norm. See also [Z] for a different treatment of a related problem.

Polynomial lower and upper bounds for sX(L) were found by I. Rivin.
More precisely, in [Ri] it is proved that for any X ∈ Tg,n, there exists cX > 0
such that

1
cX

L6g−6+n ≤ sX(L) ≤ cX · L6g−6+2n.

Similar upper and lower bounds for the number of pants decompositions of
length ≤ L on a hyperbolic surface X were obtained by M. Rees in [Rs].

Idea of the proof of Theorem 1.2. The crux of the matter is to understand
the density of Modg,n ·γ in MLg,n. This is similar to the problem of the density
of relatively prime pairs (p, q) in Z2. Our approach is to use the moduli space
Mg,n to understand the average of these densities. To prove Theorem 1.2, we:

(I): Apply the results of [Mirz2] to show that the integral of sX(L, γ) over
the moduli space Mg,n

P (L, γ) =
∫

Mg,n

sX(L, γ) dX
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is well-behaved. Here the integral on Mg,n is taken with respect to the Weil-
Petersson volume form. In fact P (L, γ) is a polynomial in L of degree 6g−6+2n

(§5). Let c(γ) be the leading coefficient of P (L, γ). So

c(γ) = lim
L→∞

P (L, γ)
L6g−6+2n

.(1.2)

(II): Use the ergodicity of the action of the mapping class group on the
space MLg,n of measured geodesic laminations on Sg,n [Mas2] to prove that
these densities exist (§6).

Let μγ denote the discrete measure on MLg,n supported on the orbit γ;
that is,

μγ =
∑

g∈Modg,n

δg·γ .

The space MLg,n has a natural action of R+ by dilation. For T ∈ R+, let
T ∗(μγ) denote the rescaling of μγ by factor T . Although the action of Modg,n

on MLg,n is not linear, it is homogeneous. We define the measure μT,γ by

μT,γ =
T ∗(μγ)

T 6g−6+2n
.

So given U ⊂ MLg,n, we have μT,γ(U) = μγ(T · U)/T 6g−6+2n.
Then, for any T > 0:

• the measure μT,γ is also invariant under the action of Modg,n on MLg,n,

and

• it satisfies

μT,γ(BX) =
sX(T, γ)
T 6g−6+2n

.(1.3)

Therefore, the asymptotic behavior of sX(T, γ) is closely related to the asymp-
totic behavior of the sequence {μT,γ}T .

In Section 6, we prove the following result:

Theorem 1.3. As T → ∞,

μT,γ → c(γ)
bg,n

· μTh,(1.4)

where c(γ) is as defined by (1.2)

Note that (1.4) is a statement about the asymptotic behavior of discrete
measures on MLg,n, and in some sense it is independent of the geometry of
hyperbolic surfaces.

Frequencies of different types of simple closed curves. From Theorem
1.2, it follows that the relative frequencies of different types of simple closed
curves on X are universal rational numbers.
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Corollary 1.4. Given X ∈ Mg,n and rational multi-curves γ1 and γ2

on Sg,n, we have

lim
L→∞

sX(L, γ1)
sX(L, γ2)

=
c(γ1)
c(γ2)

∈ Q>0.

Remark. The same result holds for any compact surface X of variable
negative curvature; given a rational multi-curve γ, the rational number c(γ) is
independent of the metric (§6).

The frequency c(γ) ∈ Q of a given simple closed curve can be described in
a purely topological way as follows ([Mirz1]). For any connected simple closed
curve γ, we have

#({λ an integral multi-curve | i(λ, γ) ≤ k}/ Stab(γ))
k6g−6+2n

→ c(γ)

as k → ∞.

Example. For i = 1, 2, Let αi be a curve on S2 that cuts the surface into
i connected components. Then as L → ∞

sX(L, α1)
sX(L, α2)

→ 6.

In other words, a very long simple closed geodesic on a surface of genus 2 is
six times more likely to be nonseparating. For more examples see Section 6.

Connection with intersection numbers of tautological line bundles. In
Section 5, we calculate c(γ) in terms of the Weil-Petersson volumes of moduli
space of bordered hyperbolic surfaces. Hence, c(γ) is given in terms of the
intersection numbers of tautological line bundles over the moduli space of Rie-
mann surfaces of type Sg,n(γ), the surface that we get by cutting Sg,n along γ

[Mirz3]. See equation (5.5).

An alternative proof. In a sequel, we give a different proof of the growth
of the number of simple closed geodesics by using the ergodic properties of the
earthquake flow on PMg,n, the bundle of measured geodesic laminations of
unit length over moduli space.

Acknowledgments. I would like to thank Curt McMullen for his invaluable
help and many insightful discussions related to this work. I am also grateful
to Igor Rivin, Howard Masur, and Scott Wolpert for helpful comments. The
author is supported by a Clay fellowship.
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2. Background material

In this section, we present some familiar concepts concerning the moduli
space of bordered Riemann surfaces with geodesic boundary components, and
the space of measured geodesic laminations.

Teichmüller space. A point in the Teichmüller space T (S) is a complete
hyperbolic surface X equipped with a diffeomorphism f : S → X. The map f

provides a marking on X by S. Two marked surfaces f : S → X and g : S → Y

define the same point in T (S) if and only if f ◦ g−1 : Y → X is isotopic to a
conformal map. When ∂S is nonempty, consider hyperbolic Riemann surfaces
homeomorphic to S with geodesic boundary components of fixed length. Let
A = ∂S and L = (Lα)α∈A ∈ R

|A|
+ . A point X ∈ T (S, L) is a marked hyper-

bolic surface with geodesic boundary components such that for each boundary
component β ∈ ∂S, we have

�β(X) = Lβ.

Let Mod(S) denote the mapping class group of S, or in other words the group
of isotopy classes of orientation-preserving, self-homeomorphisms of S leaving
each boundary component set-wise fixed.

Let
Tg,n(L1, . . . , Ln) = T (Sg,n, L1, . . . , Ln)

denote the Teichmüller space of hyperbolic structures on Sg,n, an oriented
connected surface of genus g with n boundary components (β1, . . . , βn), with
geodesic boundary components of length L1, . . . , Ln. The mapping class group
Modg,n = Mod(Sg,n) acts on Tg,n(L) by changing the marking. The quotient
space

Mg,n(L) = M(Sg,n, �βi
= Li) = Tg,n(L1, . . . , Ln)/ Modg,n

is the moduli space of Riemann surfaces homeomorphic to Sg,n with n boundary
components of length �βi

= Li.
By convention, a geodesic of length zero is a cusp and we have

Tg,n = Tg,n(0, . . . , 0),

and
Mg,n = Mg,n(0, . . . , 0).

For a disconnected surface S =
k⋃

i=1
Si such that Ai = ∂Si ⊂ ∂S, we have

M(S, L) =
k∏

i=1

M(Si, LAi
),

where LAi
= (Ls)s∈Ai

.
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The Weil-Petersson symplectic form. Recall that a symplectic structure
on a manifold M is a nondegenerate, closed 2-form ω ∈ Ω2(M). The n-fold
wedge product

1
n!

ω ∧ · · · ∧ ω

never vanishes and defines a volume form on M . By work of Goldman [Gol],
the space Tg,n(L1, . . . , Ln) carries a natural symplectic form invariant under
the action of the mapping class group. This symplectic form is called the Weil-
Petersson symplectic form, and denoted by ω or ωwp. In this paper, we consider
the volume of the moduli space with respect to the volume form induced by
the Weil-Petersson symplectic form. Note that when S is disconnected, we
have

Vol(M(S, L)) =
k∏

i=1

Vol(M(Si, LAi
)).

The Fenchel-Nielsen coordinates. A pants decomposition of S is a set of
disjoint simple closed curves which decompose the surface into pairs of pants.
Fix a pants decomposition of Sg,n, P = {αi}k

i=1, where k = 3g − 3 + n. For
a marked hyperbolic surface X ∈ Tg,n(L), the Fenchel-Nielsen coordinates
associated with P, {�α1(X), . . . , �αk

(X), τα1(X), . . . , ταk
(X)}, consist of the

set of lengths of all geodesics used in the decomposition and the set of the
twisting parameters used to glue the pieces. We have an isomorphism [Bus]

Tg,n(L1, · · · , Ln) ∼= RP
+ × RP

by the map
X → (�αi

(X), ταi
(X)).

By work of Wolpert, the Weil-Petersson symplectic structure has a simple form
in the Fenchel-Nielsen coordinates [Wol].

Theorem 2.1 (Wolpert). The Weil-Petersson symplectic form is given
by

ωwp =
k∑

i=1

d�αi
∧ dταi

.

Measured geodesic laminations. Here we briefly sketch some basic proper-
ties of the space of measured geodesic laminations. For more details see [FLP],
[Th] and [HP].

A geodesic lamination on a hyperbolic surface X is a closed subset of X

which is a disjoint union of simple geodesics. A measured geodesic lamination
is a geodesic lamination that carries a transverse invariant measure. Namely,
a compactly supported measured geodesic lamination λ ∈ MLg,n consists of a
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compact subset of X foliated by complete simple geodesics and a measure on
every arc k transverse to λ; this measure is invariant under homotopy of arcs
transverse to λ. To understand measured geodesic laminations, it is helpful to
lift them to the universal cover of X. A directed geodesic is determined by a
pair of points (x1, x2) ∈ (S∞ × S∞) \ Δ, where Δ is the diagonal {(x, x)}. A
geodesic without direction is a point on J = ((S∞×S∞)\Δ)/Z2, where Z2 acts
by interchanging coordinates. Then geodesic laminations on two homeomor-
phic hyperbolic surfaces may be compared by passing to the circle at ∞. As
a result, the spaces of measured geodesic laminations on X, Y ∈ Tg,n are nat-
urally identified via the circle at infinity in their universal covers. The space
MLg,n of compactly supported measured geodesic laminations on X ∈ Tg,n

only depends on the topology of Sg,n. Moreover, there is a natural topology
on MLg,n, which is induced by the weak topology on the set of all π1(Sg,n)-
invariant measures supported on J .

Train tracks. A train track on S = Sg,n is an embedded 1-complex τ such
that:

• Each edge (branch) of τ is a smooth path with well-defined tangent
vectors at the end points. That is, all edges at a given vertex (switch)
are tangent.

• For each component R of S \ τ , the double of R along the interior of
edges of ∂R has negative Euler characteristic.

The vertices (or switches) of a train track are the points where three or more
smooth arcs come together. The inward pointing tangent of an edge divides the
branches that are incident to a vertex into incoming and outgoing branches.

A lamination γ on S is carried by τ if there is a differentiable map f : S→S

homotopic to the identity taking γ to τ such that the restriction of df to a
tangent line of γ is nonsingular. Every geodesic lamination λ is carried by
some train track τ . When λ has an invariant measure μ, the carrying map
defines a counting measure μ(b) for each edge b of τ . At a switch, the sum of
the entering numbers equals the sum of the exiting numbers.

Let E(τ) be the set of measures on train track τ ; more precisely, u ∈
E(τ) is an assignment of positive real numbers on the edges of the train track
satisfying the switch conditions,∑

incoming ei

u(ei) =
∑

outgoing ej

u(ej).

By work of Thurston, we have:

• If τ is a birecurrent train track (see [HP, §1.7]), then E(τ) gives rise to
an open set U(τ) ⊂ MLg,n.
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• The integral points in E(τ) are in a one-to-one correspondence with the
set of integral multi-curves in U(τ) ⊂ MLg,n.

• The natural volume form on E(τ) defines a mapping class group invariant
volume form μTh in the Lebesgue measure class on MLg,n.

Moreover, up to scale, μTh is the unique mapping class group invariant measure
in the Lebesgue measure class [Mas2]:

Theorem 2.2 (Masur). The action of Modg,n on MLg,n is ergodic with
respect to the Lebesgue measure class.

We remark that the space of measured laminations MLg,n does not have
a natural differentiable structure [Th].

Length functions. The hyperbolic length �γ(X) of a simple closed geodesic
γ on a hyperbolic surface X ∈ Tg,n determines a real analytic function on the
Teichmüller space. The length function can be extended by homogeneity and
continuity on MLg,n [Ker]. More precisely, there is a unique continuous map

L : MLg,n × Tg,n → R+,(2.1)

such that

• for any simple closed curve α, L(α, X) = �α(X),

• for t ∈ R+, L(t · λ, X) = t · L(λ, X), and

• for any h ∈ Modg,n, L(h · λ, h · X) = L(λ, X).

For λ ∈ MLg,n, �λ(X) = L(λ, X) is the geodesic length of the measured
lamination λ on X. For more details see [Th].

3. Counting integral multi-curves

In this section, we study the growth of the number of integral multi-curves
of length ≤ L on a hyperbolic Riemann surface X. To simplify notation, let
MLg,n(Z) denote the set of integral multi-curves on Sg,n.

Counting integral multi-curves. Define bX(L) by

bX(L) = #{γ ∈ MLg,n(Z) | �γ(X) ≤ L}.
In other words, bX(L) is the number of integral points in L · BX ⊂ MLg,n,
where

BX = {λ ∈ MLg,n | �λ(X) ≤ 1 }.(3.1)

In fact the subset BX ⊂ MLg,n is locally convex [Mirz1].



106 MARYAM MIRZAKHANI

The function B : Tg,n → R+ defined by

B(X) = μTh(BX)(3.2)

plays an important role in this section.

Proposition 3.1. For any X ∈ Tg,n,

bX(L)
L6g−6+2n

→ B(X)

as L → ∞.

Proof of Proposition 3.1. For any train track τ on Sg,n, define

bτ (U, L) = #(MLg,n(Z) ∩ (L · U) ∩ Uτ ).

Recall that Uτ has a linear integral structure (§2), and the points in Uτ ∩
MLg,n(Z) are in a one-to-one correspondence with the integral points in this
chart. Therefore by basic lattice counting estimates, we get

bτ (U, L)
L6g−6+2n

→ μTh(U ∩ Uτ )(3.3)

as L → ∞. Cover MLg,n by finitely many train-track charts Uτ1 , . . . , Uτk
.

Since the transition functions are volume-preserving, the result follows from
equation (3.3) applied to each chart Uτi

.

Note that the function B descends to a function over Mg,n. On the other
hand, given λ ∈ MLg,n, the length function

�λ : Tg,n → R+

is smooth [Ker]. Hence we have:

Proposition 3.2. The function B : Mg,n → R+, defined by equation
(3.2), is continuous.

In this section, we show that

bg,n =
∫

Mg,n

B(X) · dX < ∞,(3.4)

where the integral is with respect to the Weil-Petesson volume form.

Theorem 3.3. The function B is proper and integrable over Mg,n.

The proof relies on explicit upper and lower bounds for B(X) obtained in
Proposition 3.6. For an explicit calculation of bg,n, see Theorem 5.3.

Dehn’s coordinates for multi-curves. Let

P = {α1, . . . , α3g−3+n}
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be a maximal system of simple closed curves on Sg,n. In order to prove Theo-
rem 3.3, we estimate the hyperbolic length of a multi-curve on X in terms of
its combinatorial length with respect to a pants decomposition (see eq. (3.6)).

Consider the Dehn-Thurston parametrization [HP] of the set of multi-
curves defined by

DT : MLg,n(Z) → (Z+ × Z)3g−3+n(3.5)

γ → (mi, ti)
3g−3+n
i=1 ,

where mj = i(γ, αj) ∈ Z+ is the intersection number of γ and αj , and tj =
tw(γ, αj) ∈ Z is the twisting number of γ around αj . Dehn’s theorem asserts
that these parameters uniquely determine a multi-curve.

Let Z(P) be the set of (mi, ti)
3g−3+n
i=1 ∈ (Z+ × Z)3g−3+n such that the

following conditions are satisfied:

Z-1. If mi = 0, then ti ≥ 0.

Z-2. If αi1 , αi2 , αi3 bound an embedded pair of pants in Sg,n, then mi1 +mi2 +
mi3 is even.

Then we have:

Theorem 3.4 (Dehn). For any pants decomposition P of Sg,n, the map

DT : MLg,n(Z) → Z(P)

is a bijection.

See [HP] for more details.

Combinatorial lengths of multi-curves. Let γ be a multi-curve on X ∈
Tg,n. Define the combinatorial length of γ with respect to a pants decomposi-
tion P = {α1, . . . , α3g−3+n} by

LP(X, γ) =
3g−3+n∑

i=1

(mi · S(�αi
(X)) + |ti| · �αi

(X)) ,(3.6)

where S(x) = arcsinh
(

1
sinh(x/2)

)
. Note that S(x) is equal to the width of the

collar neighborhood around a simple closed geodesic of length x on a hyperbolic
surface [Bus].

We say a pants decomposition P is L−bounded on X ∈ Tg,n if |τα(X)| ≤
�α(X) ≤ L for every α ∈ P.

Proposition 3.5. Let P be an L−bounded pants decomposition of X ∈
Tg,n. Then for any multi-curve γ on X,

1
c

LP(X, γ) ≤ �γ(X) ≤ c LP(X, γ),(3.7)

where the constant c depends only on L, g and n.
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Proof. First we prove the lower bound on �γ(X) in (3.7). Our proof is
inspired by some of the ideas used in [DS] (§5.1).

Without loss of generality, we can assume that γ is a connected simple
closed geodesic on X. Fix an orientation on γ. Let p1, · · · pr be the ordered set
of intersection points of γ with P (with respect to the orientation of γ) such
that pj ∈ αkj

. Here 1 ≤ kj ≤ 3g − 3 + n, and

r = i(γ,P) =
3g−3+n∑

j=1

i(γ, αj).

Let γj denote the segment of γ between pj−1 and pj+1, where p0 = pr, and
pr+1 = p1. Define t̃j to be the twisting number of the arc γj around the curve
αkj

. Then one can verify easily that

• 2�γ(X) =
∑r

i=1 �(γj),

• i(γ, αi) = #{j |kj = i}, and

• |ti| =
∑

{j : kj=i}
|t̃j |.

We show that in terms of the above notation,

�(γj) ≥ c1 (S(�αkj
(X)) + |t̃j |�αkj

(X)),(3.8)

where c1 is a constant which only depends on L.
Let γ̃ be the lift of γ through pj−1. Let C̃j−1, C̃j and C̃j+1 be the lifts of

αkj−1 , αkj
and αkj+1 which are intersected in order by γ such that C̃j−1 ∩ γ̃ =

pj−1. Then C̃i and C̃i+1 project to two boundary components of a pair of pants
in P.

For i = j − 1, j, consider the common perpendicular segment to C̃i, C̃i+1,
with end-points denoted by Q+

i ,Q−
i+1. Let sj , dj−1 and dj be respectively the

geodesic length of arcs Q−
j Q+

j , Q+
j−1Q

−
j and Q+

j Q−
j+1. See Figure 1.

Q+
j−1 Q−

j

pj

pj+1

pj−1 Q+
j

Q−
j+1

Figure 1
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Then we have:

• dj ≥ S(�αkj
), and

• the shift sj is given by sj = |t̃j �αkj
+ ταkj

+ ej |, where |ej | < �αkj
. Since

|ταkj
| ≤ �αkj

, we get sj ≥ (|t̃j | − 2) �αkj
.

Here both ej and t̃j are independent of the geometry of X. They only depend
on the topology of γ relative to the pants decomposition P. See §5.1 in [DS]
for more details.

As a result we have

dj + sj ≥ S(�αkj
) + (|t̃j | − 2) �αkj

.(3.9)

Since P is L−bounded, �αi
(X) ≤ L, and there exists a constant DL > 0

such that dj ≥ DL. Now equation (3.8) follows from the next two basic obser-
vations:

(1) Let p1 and p2 be two points of distance x and z to a geodesic line.
Consider the geodesic quadrangle p1q1q2p2 such that d(q1, q2)=y, d(p1, q1)=x,

and d(q2, p2) = z. If y ≥ D(L), then

d = d(p1, p2) ≥ c(L)(x + y + z),(3.10)

where c(L) is a constant depending only on L. To prove (3.10), note that by
basic hyperbolic trigonometry,

cosh(d) = cosh(x) cosh(z) cosh(y) − sinh(x) sinh(z).

Here x and z are oriented lengths; if p1 and p2 lie on opposite sides of q1q2,
then x and z have opposite signs. See §2.3.2 of [Bus]. This formula implies
that cosh(d) ≥ cosh(x) cosh(z)(cosh(y)−1). Hence there exists K = K(L) > 0
such that

d ≥ x + y + z − K(L);(3.11)

see Lemma 5.1 of [DS]. Since d ≥ D(L), it is easy to see that

d ≥ min{1
2
,

D(L)
2K(L)

}(x + y + z).

(2) Note that for 0 ≤ x ≤ L, S(x)/x is bounded from below. Hence, by
(3.9) there exists a constant c2 such that

dj + sj ≥ c2(L) (S(�αkj
) + |t̃j | �αkj

).(3.12)

Therefore, by (3.10) for geodesic quadrangles pj−1 Q+
j−1 Q−

j pj and
pj Q+

j Q−
j+1 pj+1 we have

�(γj) ≥ c(L)(dj + sj).(3.13)
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Now equation (3.8) follows from (3.12) and (3.13). By adding the inequality
(3.8) for 1 ≤ j ≤ r, we get

�γ(X) =
1
2

r∑
j=1

�(γj) ≥ C(L)LP(X, γ).

Let d(α, β) denote the length of the shortest geodesic path joining two bound-
aries α and β of a pair of pants in the pants decomposition P. To obtain the
upper bound on �γ(X), it is enough to note that d(α, β) ≤ c3 (S(�α(X)) +
S(�β(X))), where the constant c3 depends only on L.

Upper and lower bounds for B(X). Next, we find upper and lower bounds
for the function B(X) in terms of the lengths of short geodesics on X. Define
R : R+ → R+ by

R(x) =
1

x | log(x)| .

Proposition 3.6. For any X ∈ Tg,n, sufficiently small ε > 0 and 1 ≤ L,

C1 ·
∏

γ : �γ(X)≤ε

R(�γ(X)) ≤ B(X),(3.14)

and
bX(L)

L6g−6+2n
≤ C2 ·

∏
γ : �γ(X)≤ε

1
�γ(X)

,(3.15)

where C1, C2 > 0 are constants depending only on g, n and ε.

Sketch of the proof. Take ε small enough such that no two closed geodesics
of length ≤ ε on a hyperbolic surface meet. For X ∈ Tg,n, let α1, . . . , αs be
the set of all simple closed geodesics of length ≤ ε on X and

PX = {α1, . . . , αs, . . . , αk}
be a maximal set of disjoint simple closed geodesics such that �αi

(X) ≤ Lg,n,
where k = 3g − 3 + n, and Lg,n is the Bers’ constant for Sg,n (see [Bus]). We
can assume that PX is Lg,n−bounded on X.

Given x, y, L > 0, consider the set Ax,y(L) defined by

Ax,y(L) = {(m, n) | mx + ny ≤ L} ⊂ Z+ × Z+.

Then for L > 6 max{x, y}
1
12

(
L2

x · y

)
≤ |Ax,y(L)|.(3.16)

Also, for L > 1

|Ax,y(L)| ≤ 3
(

L2

x · y +
L

min{x, y} + 1
)

≤ 3L2(1 +
1

x · y +
1

min{x, y}).(3.17)
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Now we can estimate bX(L), the number of integral multi-curves of length
≤ L on X, by applying (3.7). We use the combinatorial length of multi-curve
geodesics with respect to the pants decomposition PX instead of their geodesic
length on X. By setting xi = S(�αi

(X)), yi = �αi
(X), Theorem 3.4 implies

that

1
c

k∏
i=1

Axi,yi
(
L

k
) ≤ bX(L) ≤ c

k∏
i=1

Axi,yi
(L),(3.18)

where c > 0 is a constant independent of X and L. Note that

{(mi, ti)
3g−3+n
i=1 | ∀i 1 ≤ i ≤ 3g − 3 + n, ti > 0, mi ∈ 2Z+} ⊂ Z(P).

On the other hand,
S(x)/| log(x)| → 1

as x → 0. It is easy to check that:

• 1/c0 ≤ x · S(x) ≤ c0, for ε ≤ x ≤ Lg,n,

• c1 ≤ max{x, S(x)}, and

• min{x, S(x)} ≤ c2.

Here c0, c1 and c2 are constants which only depend on g, n and ε. Therefore,
(3.14) follows from (3.16) and (3.18). Similarly, (3.15) follows from (3.17) and
(3.18).

Properness and integrability of the function B. In this part we show that
the upper bound in (3.15) is an integrable proper function.

Proof of Theorem 3.3. Note that inf{�γ}γ → 0 as X → ∞ in Mg,n. Also,

R(ε) → ∞
as ε → 0. So equation (3.14) implies the function B is proper.

Next we prove that the function F : Mg,n → R defined by

F (X) =
∏

γ : �γ(X)≤ε

1
�γ(X)

,(3.19)

is integrable with respect to the Weil-Petersson volume form on Mg,n. Let
Mk,ε

g,n ⊂ Mg,n be the subset consisting of surfaces with k simple closed geodesics
of length ≤ ε. Note that using the Fenchel-Nielson coordinates, the set Mk,ε

g,n

can be covered by finitely many open sets of the form

π({(xi, yi)
3g−3+n
1 | 0 ≤ x1, . . . xk ≤ ε, xi ≤ Lg,n, 0 ≤ yi ≤ xi}).

See Section 2. By Theorem 2.1, it is enough to note that for

Vε,k = {(xi, yi)k
1 | 0 ≤ x1, . . . xk ≤ ε, 0 ≤ yi ≤ xi}
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β3

β1

β2

α

β4

β3

α1

α2 β4

β1

β2

Figure 2. Cutting a surface along a multi-curve

we have ∫
Vε,k

1
x1 · · ·xk

dx1 · · · dxk · dy1 · · · dyk < ∞.

Define fL : Mg,n → R+ by

fL(X) =
bX(L)

L6g−g+2n
.

By Proposition 3.6, the sequence {fL}L≥1 satisfies the hypothesis of Lebesgue’s
dominated convergence theorem. In fact, for every integral multi-curve γ on
Sg,n, we have

sX(L, γ)
L6g−6+2n

≤ fL(X) ≤ C2 · F (X),(3.20)

where the function F , defined by (3.19), is integrable over Mg,n.

4. Integration over the moduli space of hyperbolic surfaces

In this section, we recall the results obtained in [Mirz2] and [Mirz3] for
integrating certain geometric functions over the moduli space of hyperbolic
surfaces.

Symmetry group of a simple closed curve. For any set A of homotopy
classes of simple closed curves on Sg,n, define Stab(A) by

Stab(A) = {g ∈ Modg,n | g · A = A} ⊂ Modg,n .

Let γ =
k∑

i=1
aiγi, be a multi-curve on Sg,n. Define the symmetry group of γ,

Sym(γ), by
Sym(γ) = Stab(γ)/ ∩k

i=1 Stab(γi).

Note that for any connected simple closed curve α, |Sym(α)| = 1.
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Splitting along a simple closed curve. Consider the surface Sg,n\Uγ , where
Uγ is an open set homeomorphic to

⋃k
1((0, 1) × γi). We denote this surface

by Sg,n(γ), which is a (possibly disconnected) surface with n + 2k boundary
components and s = s(γ) connected components. Each connected component
γi of γ, gives rise to two boundary components, γ1

i and γ2
i on Sg,n(γ). Namely,

∂(Sg,n(γ)) = {β1, . . . , βn} ∪ {γ1
1 , γ2

1 , . . . , γ1
k , γ2

k}.
Now for Γ = (γ1, . . . , γk), and x = (x1, . . . , xk) ∈ Rk

+, let

T (Sg,n(γ), �Γ = x)

be the Teichmüller space of hyperbolic Riemann surfaces homeomorphic to
Sg,n(γ) such that �γi

= xi and �βi
= 0. The group G(Γ) = ∩k

i=1 Stab(γi)
naturally acts on T (Sg,n(γ), �Γ = x). Now, define

Mg,n(Γ,x) = T (Sg,n(γ), �Γ = x)/G(Γ).

Let Stab0(α) ⊂ Stab(α) denote the subgroup consisting of elements which
preserve the orientation of α. Then any g ∈ ∩k

i=1 Stab0(γi) can be thought of
as an element in Mod(Sg,n(γ)). Hence for (g, n) �= (1, 1), M(Sg,n(γ), �Γ = x)
is a finite cover of Mg,n(Γ,x) of order

N(γ) =

∣∣∣∣∣
k⋂

i=1

Stab(γi)/
k⋂

i=1

Stab0(γi)

∣∣∣∣∣ .

Therefore,

Volwp(Mg,n(Γ,x)) =
1

N(γ)

s∏
i=1

Vgi,ni
(�Ai

),(4.1)

where

Sg,n(γ) =
s⋃

i=1

Si ,

Si
∼= Sgi,ni

, and Ai = ∂Si.

There is an exceptional case which arises when g = n = 1. In this
case, every X ∈ M1,1 has a symmetry of order 2, τ ∈ Stab(γ). As a result,
Vol(M1,1(Γ, x)) = 1.

Example. Let α be a connected nonseparating simple closed curve α on
Sg,n. Then there exists an element in Stab(α) which reverses the orientation
of α, and hence N(α) = 2.

Simple closed curves on X ∈ Mg,n. Let [γ] denote the homotopy class of
a simple closed curve γ on Sg,n. Although there is no canonical simple closed
geodesic on X ∈ Mg,n corresponding to [γ], the set

Oγ = {[α]| α ∈ Mod ·γ},
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of homotopy classes of simple closed curves in the Modg,n-orbit of γ on X, is
determined by γ. In other words, Oγ is the set of [φ(γ)] where φ : Sg,n → X is
a marking of X.

Integration over the moduli space of hyperbolic surfaces. For a multi-curve

γ =
k∑

i=1
aiγi, we have

�γ(X) =
k∑

i=1

ai�γi
(X).

Given a continuous function f : R+ → R+,

fγ(X) =
∑

[α]∈Mod ·[γ]

f(�α(X)),(4.2)

defines a function fγ : Mg,n → R+. Then we can calculate the integral of fγ

over Mg,n using the following result [Mirz2]:

Theorem 4.1. For any multi-curve γ =
k∑

i=1
aiγi, the integral of fγ over

Mg,n with respect to the Weil-Petersson volume form is given by∫
Mg,n

fγ(X) dX =
2−M(γ)

|Sym(γ)|

∫
x∈Rk

+

f(|x|) Vg,n(Γ,x) x · dx,

where Γ = (γ1, . . . , γk), |x| =
k∑

i=1
ai xi, x · dx = x1 · · ·xk · dx1 ∧ · · · ∧ dxk,

M(γ) = |{i|γi separates off a one-handle from Sg,n}|,
and

Vg,n(Γ,x) = Volwp(Mg,n(Γ,x)).

By Theorem 4.1, integrating fγ , even for a compact Riemann surface,
reduces to the calculation of volumes of moduli spaces of bordered Riemann
surfaces.

Idea of the proof of Theorem 4.1. Here we briefly sketch the main idea of
how to calculate the integral of fγ over Mg,n with respect to the Weil-Petersson
volume form when γ is a connected simple closed curve. See [Mirz2] for more
details.

First, consider the covering space of Mg,n

πγ : Mγ
g,n = {(X, α) | X ∈ Mg,n, and α ∈ Oγ is a geodesic on X } → Mg,n,

where πγ(X, α) = X. The hyperbolic length function descends to the function

� : Mγ
g,n → R+
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defined by �(X, η) = �η(X). Therefore,∫
Mg,n

fγ(X) dX =
∫

Mγ
g,n

f ◦ �(Y ) dY.

On the other hand, the function f is constant on each level set of � and we
have ∫

Mγ
g,n

f ◦ �(Y ) dY =

∞∫
0

f(t) Vol(�−1(t)) dt,

where the volume is taken with respect to the volume form induced on �−1(t).
The decomposition of the surface along the simple closed curve γ gives rise

to a description of Mγ
g,n in terms of moduli spaces corresponding to simpler

surfaces. This observation leads to formulas for the integral of fγ in terms
of the Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces
and the function f as follows.

As before, let Sg,n(γ) denote the surface obtained by cutting the surface
Sg,n along γ. Also, Tg,n(γ, �γ = t) denotes the Teichmüller space of Riemann
surfaces homeomorphic to Sg,n(γ) such that the lengths of the two boundary
components corresponding to γ are equal to t. We have a natural circle bundle

�−1(t) ⊂ Mγ
g,n⏐⏐�

Mg,n(γ, �γ = t) = Tg,n(γ, �γ = t)/ Stab(γ).

We consider the S1-action on the level set �−1(t) ⊂ Mγ
g,n induced by twisting

the surface along γ. The quotient space �−1(t)/S1 inherits a symplectic form
from the Weil-Petersson symplectic form. On the other hand, Mg,n(γ, �γ = t)
is equipped with the Weil-Petersson symplectic form. Also,

�−1(t)/S1 ∼= Mg,n(γ, �γ = t)

as symplectic manifolds. So we expect to have

Vol(�−1(t)) = t Vol(Mg,n(γ, �γ = t)).

But the situation is different when γ separates off a one-handle in which case
the length of the fiber of the S1-action at a point is in fact t/2 instead of t

[Mirz2]. Hence, for any connected simple closed curve γ on Sg,n,

∫
Mg,n

fγ(X) dX = 2−M(γ)

∞∫
0

f(t) t Vol(Mg,n(γ, �γ = t)) dt,(4.3)

where M(γ) = 1 if γ separates off a one-handle, and M(γ) = 0 otherwise.
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The Weil-Petersson volumes of the moduli spaces of hyperbolic surfaces.
In [Mirz2], by using an identity for the lengths of simple closed geodesics on
hyperbolic surfaces and using Theorem 4.1, we obtain a recursive method for
calculating volume polynomials.

Theorem 4.2. The volume Vg,n(b1, . . . , bn) = Volwp(Mg,n(b)) is a poly-
nomial in b2

1, . . . , b2
n; that is,

Vg,n(b) =
∑

α

|α|≤3g−3+n

Cα · b 2α,

where Cα > 0 lies in π6g−6+2n−|2 α| · Q.

Theorem 4.3. The coefficient Cα in Theorem 4.2 is given by

Cα =
1

2|α| |α|! (3g − 3 + n − |α|)!

∫
Mg,n

ψα1
1 · · ·ψαn

n · ω3g−3+n−|α|,(4.4)

where ψi is the first Chern class of the ith tautological line bundle, ω is the
Weil-Petersson symplectic form, α! =

∏n
i=1 αi!, and |α| =

∑n
i=1 αi.

See [Mirz2] and [Mirz3] for more details.

Examples. One can use the recursive formula obtained in [Mirz2], or other
similar recursive formulas to calculate the coefficients of the volume polynomi-
als.

(1) By [Mirz2],

V1,1(b) =
1
24

(b2 + 4π2) ,(4.5)

V1,2(b1, b2) =
1

192
(4π2 + b2

1 + b2
2)(12π2 + b2

1 + b2
2).(4.6)

(2) In general, for g = 0, ∫
M0,n

ψα1
1 · · ·ψαn

n =
(

n − 3
α1 . . . αn

)
.

(3) For n = 1 and g > 1, we have [FP], [IZ]:∫
Mg,1

ψ6g−4
1 =

1
24gg!

.
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Therefore, by Theorem 4.3 the leading coefficient of the polynomial
Vg,1(L) is equal to

L6g−4

24g g! (3g − 2)!23g−2
.(4.7)

For more on calculating intersection pairings over Mg,n see [ArC].

5. Counting curves and Weil-Petersson volumes

In this section we establish a relationship between sX(L, γ) and the
Weil-Petersson volume of moduli spaces of bordered Riemann surfaces. We
use this relationship to calculate bg,n in terms of the leading coefficients of
volume polynomials.

Let P (L, γ) be the integral of sX(L, γ) over Mg,n, given by

P (L, γ) =
∫

Mg,n

sX(L, γ) dX.

Now by using Theorem 4.1 for f = χ([0, L]), we obtain the following result:

Proposition 5.1. For any multi-curve γ =
k∑

i=1
ai γi, the integral of

sX(L, γ) is given by

P (L, γ) =
2−M(γ)

|Sym(γ)|

L∫
0

∫
k∑

i=1
ai·xi=T

Vg,n(Γ,x) x dx dT,(5.1)

where x = (x1, . . . , xk), and Γ = (γ1, . . . , γk).

Note that even though Vg,n(Γ,x) depends on the choice of Γ = (γ1, . . . , γk),
the right-hand side of (5.1) only depends on γ. Using Theorem 4.2, we get:

Corollary 5.2. For any multi-curve γ, P (L, γ) is a polynomial of degree
6g−6+2n in L. If γ is a rational multi-curve, then c(γ), the leading coefficient
of this polynomial, is a positive rational number.

Notation. Define c(γ) by

c(γ) = lim
L→∞

P (L, γ)
L6g−6+2n

.(5.2)

By Corollary 5.2, c(γ) is the coefficient of L6g−6+2n in P (L, γ). Moreover, if γ

is a rational multi-curve, then by Theorem 4.2, c(γ) ∈ Q>0.
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Let Γ = (γ1, . . . , γk). Recall that by Theorem 4.2,

Volwp(Mg,n(Γ,x))

is a polynomial of degree 6g−6+2n−2k in x1, . . . xk (see equation (4.1)). Let
(2s1, . . . 2sk)Γ ∈ Q>0 denote the coefficient of x2s1

1 · · ·x2sk

k in this polynomial,
and

bΓ(2s1, . . . , 2sk) = (2s1, . . . 2sk)Γ

∏k
i=1(2si + 1)!

(6g − 6 + 2n)!
.(5.3)

Also, as before

M(γ) = |{i|γi separates off a one-handle from Sg,n}|.

Let

Sg,n = {η| η is a union of simple closed curves on Sg,n}/ Modg,n .(5.4)

Note that |Sg,n| < ∞. An element η ∈ Sg,n can be written as η = η1 ∪ · · · ηk

where ηi’s are disjoint nonhomotopic, nonperipheral simple closed curves on

Sg,n. Then η̂ =
k∑

i=1
ηi defines an integral multi-curve.

Calculation of c(γ) and bg,n. Now we can explicitly calculate the value
of the integral of the function B over Mg,n.

Theorem 5.3. In terms of the above notation, we have:

(1) The frequency c(γ) of a multi-curve γ =
∑k

i=1 aiγi is equal to

c(γ) =
2−M(γ)

|Sym(γ)| ×
∑

s

|s|=3g−3+n−k

bΓ(2s1, . . . 2sk)
a2s1+2

1 · · · a2sk+2
k

.(5.5)

Here Γ = (γ1, . . . , γk), s = (s1, . . . , sk) ∈ Z+, and |s| =
∑k

i=1 si.

(2) We have

bg,n =
∑

η∈Sg,n

Bη,

where for η =
⋃k

i=1 ηi,

Bη =
2−M(η̂)

|Sym(η̂)| ×
∑

|s|=3g−3+n−k

bη̃(2s1, . . . 2sk)
k∏

i=1

ζ(2si + 2),

and η̃ = (η1, . . . , ηk).



SIMPLE CLOSED GEODESICS ON HYPERBOLIC SURFACES 119

Proof. Part 1. To prove equation (5.5), note that given a1, · · · , ak ∈ R+,

and s1, · · · , sk ∈ Z+, we have∫
a1x1+···+akxk=T

x2s1+1
1 · · ·x2sk+1

k dx1 · · · dxk

=
(2s1 + 1)! · · · (2sk + 1)! · T 2|s|+2k−1

a2s1+2
1 · · · a2sk+2

k · (2|s| + 2k − 1)!
.

Now the result follows from Theorem 4.2, (5.3), and Proposition 5.1.

Part 2. As a result of Proposition 3.1,

bg,n =
∫

Mg,n

B(X)dX =
∫

Mg,n

lim
L→∞

bX(L)
L6g−6+2n

dX.

On the other hand, for any X ∈ Tg,n,

bX(L) =
∑

η∈Sg,n

s̃X(L, η),

where for η = η1 ∪ . . . ∪ ηk ∈ Sg,n

s̃X(L, η) =
∑

γ=
∑

aiηi∈MLg,n(Z)

sX(L, γ).

Given η̃ = (η1, . . . , ηk), and a ∈ Nk, let a · η̃ =
k∑

i=1
ai · ηi ∈ MLg,n(Z). It is

easy to check that Sym(a · η̃) ⊂ Sym(η̂), and

|{a1 ∈ Nk | ∃ g ∈ Modg,n a1 · η̃ = g (a · η̃)}| =
|Sym(η̂)|

|Sym(a · η̃)| .

Therefore, we have

s̃X(L, η) =
∑
a∈Nk

|Sym(a · η̃)|
|Sym(η̂)| sX(L,a · η̃).

Hence,

bg,n =
∑

η∈Sg,n

∫
Mg,n

lim
L→∞

s̃X(L, η)
L6g−6+2n

dX.

Now (3.20) allows us to use Lebesgue’s dominated convergence theorem. As a
result, we get∫

Mg,n

lim
L→∞

s̃X(L, η)
L6g−6+2n

dX =
∑
a∈Nk

|Sym(a · η̃)|
|Sym(η̂)| lim

L→∞
P (L,a · η̃)
L6g−6+2n

=
∑
a∈Nk

|Sym(a · η̃)|
|Sym(η̂)| c(a · η̃).

Now the result follows from (5.5). See [Mirz1] for more details.
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Note that by Theorem 4.2, for |s| = 3g − 3 − k, bη̂(2s1, . . . , 2sk) ∈ Q>0.
On the other hand, ζ(2i) ∈ π2i · Q. Hence we get:

Corollary 5.4. For any g, n, with 2g − 2 + n > 0, bg,n is a rational
multiple of π6g−6+2n.

In the simplest case when g = n = 1, |S1,1| = 1, and

b1,1 = ζ(2) =
π2

6
.

6. Counting different types of simple closed curves

In this section we use the ergodicity of the action of the mapping class
group on the space of measured laminations to obtain the following results:

Theorem 6.1. For any rational multi-curve γ and X ∈ Tg,n,

sX(L, γ) ∼ B(X)
bg,n

c(γ) L6g−6+2n,

as L → ∞.

Note that bg,n and c(γ) (defined by equations (3.4) and (5.2)) are both
constants independent of X and L; see Theorem 5.3. Therefore, we get:

Corollary 6.2. For any X ∈ Tg,n, as L → ∞
sX(L, γ1)
sX(L, γ2)

→ c(γ1)
c(γ2)

.

Since there are only finitely many isotopy classes of simple closed curves
on Sg,n up to the action of the mapping class group, the following result is
immediate:

Corollary 6.3. The number of simple closed geodesics of length ≤ L on
X ∈ Mg,n has the asymptotic behavior

sX(L) ∼ n(X)L6g−6+2n

as L → ∞, where n : Mg,n → R+ is proper and continuous.

Discrete measures on MLg,n. Any γ ∈ MLg,n(Z), defines a sequence of
discrete measures on MLg,n, {μT,γ}, such that for any open set U ⊂ MLg,n

μT,γ(U) =
#(T · U ∩ Modg,n ·γ)

T 6g−6+2n
.

There is a close relation between the asymptotic behavior of this sequence of
measures and counting different types of simple closed geodesics. First, we
prove the following result on the asymptotic behavior of μT,γ as T → ∞:
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Theorem 6.4. For any rational multi-curve γ, as T → ∞

μT,γ
w∗
−→ c(γ)

bg,n
· μTh,(6.1)

where μTh is the Thurston volume form on MLg,n.

Remarks. 1. Let Y be a closed orientable surface of genus g with bounded
negative curvature. Then each homotopy class of closed curves contains a
unique closed geodesic. Consider the space ML(Y ) of measured geodesic lam-
inations on Y and let �γ(Y ) be the geodesic length of γ on Y . The length func-
tion extends to a continuous function on ML(Y ). Moreover, ML(Y ) ∼= MLg.
Since Theorem 6.4 is independent of the Riemannian metric on the surface,
both Theorem 6.1 and Corollary 6.2 hold for Y .

2. Using the same method, one can check that the results of Theorem 6.1
and Corollary 6.2 also hold for any hyperbolic surface X ∈ Mg,n(L1, . . . , Ln)
with geodesic boundary components.

Proof of Theorem 6.4. It is enough to prove the result for integral multi-
curves. The argument has three main steps:

Step 1. Given X0 ∈ Tg,n, by Proposition 3.6, and (3.20) we have

μT,γ(L · BX0) =
sX0(L T, γ)
T 6g−6+2n

≤ C(X0, L),

where C(X0, L) is a constant depending only on X0 and L. In particular it is
independent of T . On the other hand, given a compact subset K ⊂ MLg,n,
there exists L such that K ⊂ L · BX0 . As a result, we have

lim sup
T→∞

μT,γ(K) < ∞.

Therefore, any subsequence of {μT,γ} contains a weakly-convergent subse-
quence.

Step 2. We show that any weak limit of the sequence {μT,γ} is a multiple
of the measure μTh. Assume that

μTi,γ → νJ(6.2)

as Ti ∈ J → ∞. We show that νJ belongs to the Lebesgue measure class; that
is for any V ⊂ MLg,n with μTh(V ) = 0, we have νJ(V ) = 0. Let U ⊂ MLg,n

be a convex open set in a train track chart. Using Proposition 3.1, we have:

νJ(U) ≤ lim inf
i→∞

μTi,γ(U) ≤ lim
i→∞

b(Ti, U)

T 6g−6+2n
i

= μTh(U).(6.3)

Since we can approximate V with open subsets of MLg,n satisfying (6.3), the
measure νJ belongs to the Lebesgue measure class. Then the ergodicity of the
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action of the mapping class group on MLg,n (Theorem 2.2) implies that

νJ = kJ μTh.

Step 3. Finally, we show vJ = k · μTh, where k is independent of the
subsequence J . Note that for any X ∈ Tg,n, sX(T, γ) = μT,γ(BX). Equation
(6.2) implies:

sX(Ti, γ)

T 6g−6+2n
i

→ kJ · B(X)(6.4)

as i → ∞. Now we integrate both sides of (6.4) over Mg,n. By using (3.20),
Corollary 5.2, and (5.2), we get

kJ · bg,n = kJ ·
∫

Mg,n

B(X) dX =
∫

Mg,n

lim
i→∞

sX(Ti, γ)

T 6g−6+2n
i

dX

= lim
i→∞

∫
Mg,n

sX(Ti, γ)

T 6g−6+2n
i

dX = lim
i→∞

P (Ti, γ)

T 6g−6+2n
i

= c(γ).

On the other hand, by Theorem 3.3, bg,n < ∞. Therefore,

kJ =
c(γ)
bg,n

is independent of J , and hence

μT,γ → c(γ)
bg,n

· μTh.

Proof of Theorem 6.1. Since ∂BX has measure zero, equation (6.1)
implies that

μT,γ(BX) → c(γ)
bg,n

· μTh(BX).

Now the result is immediate since

μT,γ(BX) =
#(L · BX ∩ Modg,n ·γ)

L6g−6+2n
=

sX(L, γ)
L6g−6+2n

.

Examples. Here we explicitly calculate the frequencies of different types
of simple closed curves in some simple cases.

(1) First, we consider the case of g = 2. Then by equation (4.6), for any
nonseparating simple closed curve α1

Vol(M(S2(α1), �α1 = x)) = V1,2(x, x) =
1
48

(2π2 + x2)(6π2 + x2).
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Since N(α1) = 2 and M(α1) = 0, the leading coefficient of P (L, α1) is
equal to 1

2×48×6 . Equation (5.5) implies that

c(α1) =
1

2 × 48 × 6
.

Similarly, by equation (4.5), for any separating simple closed curve α2,

Vol(M(S2(α2), �α2 = x)) = V1,1(x) × V1,1(x) = (
x2

24
+

π2

6
)2.

In this case, M(α2) = 1, and N(α2) = 2. By equation (5.5)

c(α2) =
1

24 × 24 × 6
.

Hence, Corollary 6.2 implies that

lim
L→∞

sX(L, α1)
sX(L, α2)

=
c(α1)
c(α2)

= 6.

Roughly speaking, on a surface of genus 2, a long, random connected,
simple, closed geodesic is separating with probability 1

7 .

(2) Let βi be a connected simple closed curve on S0,n satisfying

S0,n(βi) ∼= S0,i+1 ∪ S0,n−i+1.

Then as in Section 4, the coefficient of L2n−4
1 in V0,n+1(L1, ..., Ln, Ln+1)

equals 1
2n−2(n−2)! . In this case, N(βi) = |Sym(βi)| = 1. Hence, by (5.5),

we have
c(βi) =

1
2n−4(i − 2)! (n − i − 2)! (2n − 6)

.

Hence, given X ∈ T0,n

sX(L, βi)
sX(L, βj)

→
(
n−4
i−2

)
(
n−4
j−2

)
as L → ∞.

(3) Let γi be a separating connected simple closed curve on a surface of genus
g that cuts the surface into two parts of genus i and g− i. For simplicity,
we assume that g > 2i > 2. In this case, N(γi) = 1 and M(γi) = 0. Also,

Vol(M(Sg(γi), �γi
= x)) = Vi,1(x) × Vg−i,1(x).

On the other hand, by (4.7) the leading term of the polynomial Vg,1(L)
is equal to

L6g−4

(3g − 2)! g! 24g23g−2
.
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Now since |Sym(γi)| = 1, by (5.5) the frequency of a simple closed curve
of type γi is equal to

c(γi) =
1

23g−224g i!(g − i)! (3g − 2)!(3(g − i) − 2)!(6g − 6)
.

For X ∈ Tg, we have

lim
L→∞

sX(L, γi)
bX(L)

=
c(γi)
bg

.
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