
 

 

 

  



UML 

 

i 

 

About the Tutorial 

UML (Unified Modeling Language) is a standard language for specifying, visualizing, 

constructing, and documenting the artifacts of software systems. UML was created by the 

Object Management Group (OMG) and UML 1.0 specification draft was proposed to the 

OMG in January 1997. 

It was initially started to capture the behavior of complex software and non-software 

system and now it has become an OMG standard. This tutorial gives a complete 

understanding on UML.  

 

Audience 

This tutorial has been prepared for beginners to help them understand the fundamentals 

of UML. After completing this tutorial you will find yourself at a moderate level of expertise 

from where you can take yourself to the next levels. 

 

Prerequisites 

No specific skill is required as a prerequisite to understand the learning material in this 

tutorial. The reader must be enthusiastic to acquire knowledge on UML. 

 

Copyright & Disclaimer 

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 

 

 

 

 

 

 

mailto:contact@tutorialspoint.com


UML 

 

ii 

 

Table of Contents 

About the Tutorial ............................................................................................................................................ i 
Audience ........................................................................................................................................................... i 
Prerequisites ..................................................................................................................................................... i 
Copyright & Disclaimer ..................................................................................................................................... i 
Table of Contents ............................................................................................................................................ ii 

1. UML ─ Overview ....................................................................................................................................... 1 
Goals of UML ................................................................................................................................................... 1 
A Conceptual Model of UML ........................................................................................................................... 2 
Object-Oriented Concepts ............................................................................................................................... 2 
OO Analysis and Design ................................................................................................................................... 3 
Role of UML in OO Design ............................................................................................................................... 4 

2. UML ─ Building Blocks ............................................................................................................................... 5 
Things .............................................................................................................................................................. 5 
Relationships ................................................................................................................................................... 7 
UML Diagrams ................................................................................................................................................. 8 

3. UML ─ Architecture ................................................................................................................................... 9 

4. UML ─ Modeling Types ........................................................................................................................... 10 
Structural Modeling ....................................................................................................................................... 10 
Behavioral Modeling ..................................................................................................................................... 10 
Architectural Modeling .................................................................................................................................. 10 

5. UML ─ Basic Notations ............................................................................................................................ 11 
Class Notation ................................................................................................................................................ 11 
Object Notation ............................................................................................................................................. 12 
Interface Notation ......................................................................................................................................... 13 
Collaboration Notation .................................................................................................................................. 13 
Use Case Notation ......................................................................................................................................... 14 
Actor Notation ............................................................................................................................................... 14 
Initial State Notation ..................................................................................................................................... 14 
Final State Notation ....................................................................................................................................... 15 
Active Class Notation ..................................................................................................................................... 15 
Component Notation ..................................................................................................................................... 15 
Node Notation ............................................................................................................................................... 16 
Interaction Notation ...................................................................................................................................... 17 
State Machine Notation ................................................................................................................................ 18 
Package Notation .......................................................................................................................................... 18 
Note Notation ................................................................................................................................................ 19 
Dependency Notation ................................................................................................................................... 19 
Association Notation ..................................................................................................................................... 20 
Generalization Notation ................................................................................................................................ 20 
Extensibility Notation .................................................................................................................................... 21 

 

 



UML 

 

iii 

 

6. UML ─ Standard Diagrams ...................................................................................................................... 22 
Structural Diagrams ....................................................................................................................................... 22 
Behavioral Diagrams ...................................................................................................................................... 23 

7. UML ─ Class Diagram .............................................................................................................................. 26 
Purpose of Class Diagrams ............................................................................................................................ 26 
How to Draw a Class Diagram? ...................................................................................................................... 26 
Where to Use Class Diagrams? ...................................................................................................................... 28 

8. UML ─ Object Diagrams .......................................................................................................................... 29 
Purpose of Object Diagrams .......................................................................................................................... 29 
How to Draw an Object Diagram? ................................................................................................................. 29 
Where to Use Object Diagrams? ................................................................................................................... 31 

9. UML ─ Component Diagrams .................................................................................................................. 32 
Purpose of Component Diagrams ................................................................................................................. 32 
How to Draw a Component Diagram? ........................................................................................................... 32 
Where to Use Component Diagrams? ........................................................................................................... 34 

10. UML ─ Deployment Diagrams ................................................................................................................. 35 
Purpose of Deployment Diagrams ................................................................................................................. 35 
How to Draw a Deployment Diagram? .......................................................................................................... 35 
Where to Use Deployment Diagrams? .......................................................................................................... 36 

11. UML ─ Use Case Diagrams ....................................................................................................................... 38 
Purpose of Use Case Diagrams ...................................................................................................................... 38 
How to Draw a Use Case Diagram? ............................................................................................................... 39 
Where to Use a Use Case Diagram? .............................................................................................................. 40 

12. UML ─ Interaction Diagrams ................................................................................................................... 41 
Purpose of Interaction Diagrams ................................................................................................................... 41 
How to Draw an Interaction Diagram? .......................................................................................................... 41 
Where to Use Interaction Diagrams? ............................................................................................................ 43 

13. UML ─ Statechart Diagrams .................................................................................................................... 44 
Purpose of Statechart Diagrams .................................................................................................................... 44 
How to Draw a Statechart Diagram? ............................................................................................................. 44 
Where to Use Statechart Diagrams? ............................................................................................................. 45 

14. UML ─ Activity Diagrams ......................................................................................................................... 47 
Purpose of Activity Diagrams ........................................................................................................................ 47 
How to Draw an Activity Diagram? ............................................................................................................... 47 
Where to Use Activity Diagrams? .................................................................................................................. 49 

UML 2.0 .................................................................................................................................... 50 

15. UML 2.0 ─ Overview ................................................................................................................................ 51 
New Dimensions in UML 2.0 ......................................................................................................................... 51 
Modeling Diagrams in UML 2.0 ..................................................................................................................... 52 

 



UML 

 

1 

 

UML is a standard language for specifying, visualizing, constructing, and documenting the 

artifacts of software systems. 

UML was created by the Object Management Group (OMG) and UML 1.0 specification draft 

was proposed to the OMG in January 1997. 

OMG is continuously making efforts to create a truly industry standard. 

 UML stands for Unified Modeling Language.  

 

 UML is different from the other common programming languages such as C++, 

Java, COBOL, etc.  

 

 UML is a pictorial language used to make software blueprints. 

 

 UML can be described as a general purpose visual modeling language to visualize, 

specify, construct, and document software system.  

 

 Although UML is generally used to model software systems, it is not limited within 

this boundary. It is also used to model non-software systems as well. For example, 

the process flow in a manufacturing unit, etc. 

UML is not a programming language but tools can be used to generate code in various 

languages using UML diagrams. UML has a direct relation with object oriented analysis and 

design. After some standardization, UML has become an OMG standard. 

Goals of UML 

A picture is worth a thousand words, this idiom absolutely fits describing UML. Object-

oriented concepts were introduced much earlier than UML. At that point of time, there 

were no standard methodologies to organize and consolidate the object-oriented 

development. It was then that UML came into picture. 

There are a number of goals for developing UML but the most important is to define some 

general purpose modeling language, which all modelers can use and it also needs to be 

made simple to understand and use. 

UML diagrams are not only made for developers but also for business users, common 

people, and anybody interested to understand the system. The system can be a software 

or non-software system. Thus it must be clear that UML is not a development method 

rather it accompanies with processes to make it a successful system. 

In conclusion, the goal of UML can be defined as a simple modeling mechanism to model 

all possible practical systems in today’s complex environment. 

 

 

 

1. UML ─ Overview 



UML 

 

2 

 

A Conceptual Model of UML 

To understand the conceptual model of UML, first we need to clarify what is a conceptual 

model? and why a conceptual model is required? 

 A conceptual model can be defined as a model which is made of concepts and their 

relationships. 

 

 A conceptual model is the first step before drawing a UML diagram. It helps to 

understand the entities in the real world and how they interact with each other. 

As UML describes the real-time systems, it is very important to make a conceptual model 

and then proceed gradually. The conceptual model of UML can be mastered by learning 

the following three major elements: 

 UML building blocks 

 Rules to connect the building blocks 

 Common mechanisms of UML 

Object-Oriented Concepts 

UML can be described as the successor of object-oriented (OO) analysis and design. 

An object contains both data and methods that control the data. The data represents the 

state of the object. A class describes an object and they also form a hierarchy to model 

the real-world system. The hierarchy is represented as inheritance and the classes can 

also be associated in different ways as per the requirement. 

Objects are the real-world entities that exist around us and the basic concepts such as 

abstraction, encapsulation, inheritance, and polymorphism all can be represented using 

UML. 

UML is powerful enough to represent all the concepts that exist in object-oriented analysis 

and design. UML diagrams are representation of object-oriented concepts only. Thus, 

before learning UML, it becomes important to understand OO concept in detail. 

Following are some fundamental concepts of the object-oriented world: 

 Objects: Objects represent an entity and the basic building block. 

 

 Class: Class is the blueprint of an object. 

 

 Abstraction: Abstraction represents the behavior of a real world entity. 

 

 Encapsulation: Encapsulation is the mechanism of binding the data together and 

hiding them from the outside world. 

 

 Inheritance: Inheritance is the mechanism of making new classes from existing 

ones. 

 

 Polymorphism: It defines the mechanism to exist in different forms. 



UML 

 

3 

 

OO Analysis and Design 

OO can be defined as an investigation and to be more specific, it is the investigation of 

objects. Design means collaboration of identified objects. 

Thus, it is important to understand the OO analysis and design concepts. The most 

important purpose of OO analysis is to identify objects of a system to be designed. This 

analysis is also done for an existing system. Now an efficient analysis is only possible when 

we are able to start thinking in a way where objects can be identified. After identifying the 

objects, their relationships are identified and finally the design is produced. 

The purpose of OO analysis and design can described as: 

 Identifying the objects of a system. 

 Identifying their relationships. 

 Making a design, which can be converted to executables using OO languages. 

There are three basic steps where the OO concepts are applied and implemented. The 

steps can be defined as 

OO Analysis --> OO Design --> OO implementation using OO languages 

 

The above three points can be described in detail as: 

 During OO analysis, the most important purpose is to identify objects and describe 

them in a proper way. If these objects are identified efficiently, then the next job 

of design is easy. The objects should be identified with responsibilities. 

Responsibilities are the functions performed by the object. Each and every object 

has some type of responsibilities to be performed. When these responsibilities are 

collaborated, the purpose of the system is fulfilled. 

 

 The second phase is OO design. During this phase, emphasis is placed on the 

requirements and their fulfilment. In this stage, the objects are collaborated 

according to their intended association. After the association is complete, the 

design is also complete. 

 

 The third phase is OO implementation. In this phase, the design is implemented 

using OO languages such as Java, C++, etc. 

 

 

 

 

 

 



UML 

 

4 

 

Role of UML in OO Design 

UML is a modeling language used to model software and non-software systems. Although 

UML is used for non-software systems, the emphasis is on modeling OO software 

applications. Most of the UML diagrams discussed so far are used to model different 

aspects such as static, dynamic, etc. Now whatever be the aspect, the artifacts are nothing 

but objects. 

If we look into class diagram, object diagram, collaboration diagram, interaction diagrams 

all would basically be designed based on the objects. 

Hence, the relation between OO design and UML is very important to understand. The OO 

design is transformed into UML diagrams according to the requirement. Before 

understanding the UML in detail, the OO concept should be learned properly. Once the OO 

analysis and design is done, the next step is very easy. The input from OO analysis and 

design is the input to UML diagrams. 

 

 

 

 



UML 

 

5 

 

As UML describes the real-time systems, it is very important to make a conceptual model 

and then proceed gradually. The conceptual model of UML can be mastered by learning 

the following three major elements: 

 UML building blocks 

 Rules to connect the building blocks 

 Common mechanisms of UML 

This chapter describes all the UML building blocks. The building blocks of UML can be 

defined as: 

 Things 

 Relationships 

 Diagrams 

Things 

Things are the most important building blocks of UML. Things can be: 

 Structural 

 Behavioral 

 Grouping 

 Annotational 

Structural Things 

Structural things define the static part of the model. They represent the physical and 

conceptual elements. Following are the brief descriptions of the structural things. 

Class: Class represents a set of objects having similar responsibilities. 

 

Interface: Interface defines a set of operations, which specify the responsibility of a class. 

 

 

2. UML ─ Building Blocks 



UML 

 

6 

 

Collaboration: Collaboration defines an interaction between elements. 

 

Use case: Use case represents a set of actions performed by a system for a specific goal. 

 

Component: Component describes the physical part of a system. 

 

Node: A node can be defined as a physical element that exists at run time. 

 

Behavioral Things 

A behavioral thing consists of the dynamic parts of UML models. Following are the 

behavioral things: 

Interaction: Interaction is defined as a behavior that consists of a group of messages 

exchanged among elements to accomplish a specific task. 

 

State machine: State machine is useful when the state of an object in its life cycle is 

important. It defines the sequence of states an object goes through in response to events. 

Events are external factors responsible for state change. 

 

 

 



UML 

 

7 

 

Grouping Things 

Grouping things can be defined as a mechanism to group elements of a UML model 

together. There is only one grouping thing available: 

Package: Package is the only one grouping thing available for gathering structural and 

behavioral things. 

 

Annotational Things 

Annotational things can be defined as a mechanism to capture remarks, descriptions, 

and comments of UML model elements. Note: It is the only one Annotational thing 

available. A note is used to render comments, constraints, etc. of an UML element. 

 

Relationships 

Relationship is another most important building block of UML. It shows how the elements 

are associated with each other and this association describes the functionality of an 

application. 

There are four kinds of relationships available. 

Dependency 

Dependency is a relationship between two things in which change in one element also 

affects the other. 

 

Association 

Association is basically a set of links that connects the elements of a UML model. It also 

describes how many objects are taking part in that relationship. 

 

 



UML 

 

8 

 

Generalization 

Generalization can be defined as a relationship which connects a specialized element with 

a generalized element. It basically describes the inheritance relationship in the world of 

objects. 

 

Realization 

Realization can be defined as a relationship in which two elements are connected. One 

element describes some responsibility, which is not implemented and the other one 

implements them. This relationship exists in case of interfaces. 

 

UML Diagrams 

UML diagrams are the ultimate output of the entire discussion. All the elements, 

relationships are used to make a complete UML diagram and the diagram represents a 

system. 

The visual effect of the UML diagram is the most important part of the entire process. All 

the other elements are used to make it complete. 

UML includes the following nine diagrams, the details of which are described in the 

subsequent chapters. 

 Class diagram 

 Object diagram 

 Use case diagram 

 Sequence diagram 

 Collaboration diagram 

 Activity diagram 

 Statechart diagram 

 Deployment diagram 

 Component diagram 

 

 

 



UML 

 

9 

 

Any real-world system is used by different users. The users can be developers, testers, 

business people, analysts, and many more. Hence, before designing a system, the 

architecture is made with different perspectives in mind. The most important part is to 

visualize the system from the perspective of different viewers. The better we understand 

the better we can build the system. 

UML plays an important role in defining different perspectives of a system. These 

perspectives are: 

 Design 

 Implementation 

 Process 

 Deployment 

The center is the Use Case view which connects all these four. A Use Case represents 

the functionality of the system. Hence, other perspectives are connected with use case. 

Design of a system consists of classes, interfaces, and collaboration. UML provides class 

diagram, object diagram to support this. 

Implementation defines the components assembled together to make a complete 

physical system. UML component diagram is used to support the implementation 

perspective. 

Process defines the flow of the system. Hence, the same elements as used in Design are 

also used to support this perspective. 

Deployment represents the physical nodes of the system that forms the hardware. UML 

deployment diagram is used to support this perspective. 

 

 

 

3. UML ─ Architecture 



UML 

 

10 

 

It is very important to distinguish between the UML model. Different diagrams are used 

for different types of UML modeling. There are three important types of UML modeling. 

Structural Modeling 

Structural modeling captures the static features of a system. They consist of the following: 

 Classes diagram 

 Objects diagram 

 Deployment diagram 

 Package diagram 

 Composite structure diagram 

 Component diagram 

Structural model represents the framework for the system and this framework is the place 

where all other components exist. Hence, the class diagram, component diagram and 

deployment diagrams are part of structural modeling. They all represent the elements and 

the mechanism to assemble them. 

The structural model never describes the dynamic behavior of the system. Class diagram 

is the most widely used structural diagram. 

Behavioral Modeling 

Behavioral model describes the interaction in the system. It represents the interaction 

among the structural diagrams. Behavioral modeling shows the dynamic nature of the 

system. They consist of the following: 

 Activity diagram 

 Interaction diagram 

 Use case diagram 

All the above show the dynamic sequence of flow in a system. 

Architectural Modeling 

Architectural model represents the overall framework of the system. It contains both 

structural and behavioral elements of the system. Architectural model can be defined as 

the blueprint of the entire system. Package diagram comes under architectural modeling. 

 

 

4. UML ─ Modeling Types 



UML 

 

11 

 

UML is popular for its diagrammatic notations. We all know that UML is for visualizing, 

specifying, constructing and documenting the components of software and non-software 

systems. Hence, visualization is the most important part which needs to be understood 

and remembered. 

UML notations are the most important elements in modeling. Efficient and appropriate use 

of notations is very important for making a complete and meaningful model. The model is 

useless, unless its purpose is depicted properly. 

Hence, learning notations should be emphasized from the very beginning. Different 

notations are available for things and relationships. UML diagrams are made using the 

notations of things and relationships. Extensibility is another important feature which 

makes UML more powerful and flexible. 

The chapter describes basic UML notations in detail. This is just an extension to the UML 

building block section discussed in Chapter Two. 

Structural Things 

Graphical notations used in structural things are most widely used in UML. These are 

considered as the nouns of UML models. Following are the list of structural things. 

 Classes 

 Object 

 Interface 

 Collaboration 

 Use case 

 Active classes 

 Components 

 Nodes 

Class Notation 

UML class is represented by the following figure. The diagram is divided into four parts. 

 The top section is used to name the class. 

 The second one is used to show the attributes of the class. 

 The third section is used to describe the operations performed by the class. 

 The fourth section is optional to show any additional components. 

5. UML ─ Basic Notations 



UML 

 

12 

 

 
 

Classes are used to represent objects. Objects can be anything having properties and 

responsibility. 

Object Notation 

The object is represented in the same way as the class. The only difference is 

the name which is underlined as shown in the following figure. 

 

As the object is an actual implementation of a class, which is known as the instance of a 

class. Hence, it has the same usage as the class. 

 

 

 

 

 



UML 

 

13 

 

Interface Notation 

Interface is represented by a circle as shown in the following figure. It has a name which 

is generally written below the circle. 

 

Interface is used to describe the functionality without implementation. Interface is just like 

a template where you define different functions, not the implementation. When a class 

implements the interface, it also implements the functionality as per requirement. 

Collaboration Notation 

Collaboration is represented by a dotted eclipse as shown in the following figure. It has a 

name written inside the eclipse. 

 

Collaboration represents responsibilities. Generally, responsibilities are in a group. 

 

 

 

 



UML 

 

14 

 

Use Case Notation 

Use case is represented as an eclipse with a name inside it. It may contain additional 

responsibilities. 

 

Use case is used to capture high level functionalities of a system. 

Actor Notation 

An actor can be defined as some internal or external entity that interacts with the system. 

 

An actor is used in a use case diagram to describe the internal or external entities. 

Initial State Notation 

Initial state is defined to show the start of a process. This notation is used in almost all 

diagrams. 

 

The usage of Initial State Notation is to show the starting point of a process. 



UML 

 

15 

 

Final State Notation 

Final state is used to show the end of a process. This notation is also used in almost all 

diagrams to describe the end. 

 

The usage of Final State Notation is to show the termination point of a process. 

 

Active Class Notation 

Active class looks similar to a class with a solid border. Active class is generally used to 

describe the concurrent behavior of a system. 

 

Active class is used to represent the concurrency in a system. 

Component Notation 

A component in UML is shown in the following figure with a name inside. Additional 

elements can be added wherever required. 

 

Component is used to represent any part of a system for which UML diagrams are made. 

 

 

 



UML 

 

16 

 

Node Notation 

A node in UML is represented by a square box as shown in the following figure with a 

name. A node represents the physical component of the system. 

 

Node is used to represent the physical part of a system such as the server, network, etc. 

Behavioral Things 

Dynamic parts are one of the most important elements in UML. UML has a set of powerful 

features to represent the dynamic part of software and non-software systems. These 

features include interactions and state machines. 

Interactions can be of two types: 

 Sequential (Represented by sequence diagram) 

 Collaborative (Represented by collaboration diagram) 

 

 

 

 

 

 

 

 

 

 

 

 



UML 

 

17 

 

Interaction Notation 

Interaction is basically a message exchange between two UML components. The following 

diagram represents different notations used in an interaction. 

 

Interaction is used to represent the communication among the components of a system. 

 

 

 

 

 

 

 



UML 

 

18 

 

State Machine Notation 

State machine describes the different states of a component in its life cycle. The notations 

are described in the following diagram. 

 

State machine is used to describe different states of a system component. The state can 

be active, idle, or any other depending upon the situation. 

Grouping Things 

Organizing the UML models is one of the most important aspects of the design. In UML, 

there is only one element available for grouping and that is package. 

Package Notation 

Package notation is shown in the following figure and is used to wrap the components of 

a system. 

 



UML 

 

19 

 

Annotational Things 

In any diagram, explanation of different elements and their functionalities are very 

important. Hence, UML has notes notation to support this requirement. 

Note Notation 

This notation is shown in the following figure. These notations are used to provide 

necessary information of a system. 

 

Relationships 

A model is not complete unless the relationships between elements are described properly. 

The Relationship gives a proper meaning to a UML model. Following are the different types 

of relationships available in UML. 

 Dependency 

 Association 

 Generalization 

 Extensibility 

Dependency Notation 

Dependency is an important aspect in UML elements. It describes the dependent elements 

and the direction of dependency. 

Dependency is represented by a dotted arrow as shown in the following figure. The arrow 

head represents the independent element and the other end represents the dependent 

element. 

 

Dependency is used to represent the dependency between two elements of a system. 



UML 

 

20 

 

Association Notation 

Association describes how the elements in a UML diagram are associated. In simple words, 

it describes how many elements are taking part in an interaction. 

Association is represented by a dotted line with (without) arrows on both sides. The two 

ends represent two associated elements as shown in the following figure. The multiplicity 

is also mentioned at the ends (1, *, etc.) to show how many objects are associated. 

 

Association is used to represent the relationship between two elements of a system. 

Generalization Notation 

Generalization describes the inheritance relationship of the object-oriented world. It is a 

parent and child relationship. 

Generalization is represented by an arrow with a hollow arrow head as shown in the 

following figure. One end represents the parent element and the other end represents the 

child element. 

 

Generalization is used to describe parent-child relationship of two elements of a system. 

 

 

 

 

 

 

 

 

 



UML 

 

21 

 

Extensibility Notation 

All the languages (programming or modeling) have some mechanism to extend its 

capabilities such as syntax, semantics, etc. UML also has the following mechanisms to 

provide extensibility features. 

 Stereotypes (Represents new elements) 

 Tagged values (Represents new attributes) 

 Constraints (Represents the boundaries) 

 
 

Extensibility notations are used to enhance the power of the language. It is basically 

additional elements used to represent some extra behavior of the system. These extra 

behaviors are not covered by the standard available notations. 

 

 

 



UML 

 

22 

 

In the previous chapters, we have discussed about the building blocks and other necessary 

elements of UML. Now we need to understand where to use those elements. 

The elements are like components which can be associated in different ways to make a 

complete UML picture, which is known as diagram. Thus, it is very important to understand 

the different diagrams to implement the knowledge in real-life systems. 

Any complex system is best understood by making some kind of diagrams or pictures. 

These diagrams have a better impact on our understanding. If we look around, we will 

realize that the diagrams are not a new concept but it is used widely in different forms in 

different industries. 

We prepare UML diagrams to understand the system in a better and simple way. A single 

diagram is not enough to cover all the aspects of the system. UML defines various kinds 

of diagrams to cover most of the aspects of a system. 

You can also create your own set of diagrams to meet your requirements. Diagrams are 

generally made in an incremental and iterative way. 

There are two broad categories of diagrams and they are again divided into sub-

categories: 

 Structural Diagrams 

 Behavioral Diagrams 

Structural Diagrams 

The structural diagrams represent the static aspect of the system. These static aspects 

represent those parts of a diagram, which forms the main structure and are therefore 

stable. 

These static parts are represented by classes, interfaces, objects, components, and nodes. 

The four structural diagrams are: 

 Class diagram 

 Object diagram 

 Component diagram 

 Deployment diagram 

Class Diagram 

Class diagrams are the most common diagrams used in UML. Class diagram consists of 

classes, interfaces, associations, and collaboration. Class diagrams basically represent the 

object-oriented view of a system, which is static in nature. 

 

 

6. UML ─ Standard Diagrams 



UML 

 

23 

 

Active class is used in a class diagram to represent the concurrency of the system. 

Class diagram represents the object orientation of a system. Hence, it is generally used 

for development purpose. This is the most widely used diagram at the time of system 

construction. 

Object Diagram 

Object diagrams can be described as an instance of class diagram. Thus, these diagrams 

are more close to real-life scenarios where we implement a system. 

Object diagrams are a set of objects and their relationship is just like class diagrams. They 

also represent the static view of the system. 

The usage of object diagrams is similar to class diagrams but they are used to build 

prototype of a system from a practical perspective. 

Component Diagram 

Component diagrams represent a set of components and their relationships. These 

components consist of classes, interfaces, or collaborations. Component diagrams 

represent the implementation view of a system. 

During the design phase, software artifacts (classes, interfaces, etc.) of a system are 

arranged in different groups depending upon their relationship. Now, these groups are 

known as components. 

Finally, it can be said component diagrams are used to visualize the implementation. 

Deployment Diagram 

Deployment diagrams are a set of nodes and their relationships. These nodes are physical 

entities where the components are deployed. 

Deployment diagrams are used for visualizing the deployment view of a system. This is 

generally used by the deployment team. 

Note: If the above descriptions and usages are observed carefully then it is very clear that 

all the diagrams have some relationship with one another. Component diagrams are 

dependent upon the classes, interfaces, etc. which are part of class/object diagram. Again, 

the deployment diagram is dependent upon the components, which are used to make 

component diagrams. 

Behavioral Diagrams 

Any system can have two aspects, static and dynamic. So, a model is considered as 

complete when both the aspects are fully covered. 

Behavioral diagrams basically capture the dynamic aspect of a system. Dynamic aspect 

can be further described as the changing/moving parts of a system. 

 

 

 



UML 

 

24 

 

UML has the following five types of behavioral diagrams: 

 Use case diagram 

 Sequence diagram 

 Collaboration diagram 

 Statechart diagram 

 Activity diagram 

Use Case Diagram 

Use case diagrams are a set of use cases, actors, and their relationships. They represent 

the use case view of a system. 

A use case represents a particular functionality of a system. Hence, use case diagram is 

used to describe the relationships among the functionalities and their internal/external 

controllers. These controllers are known as actors. 

Sequence Diagram 

A sequence diagram is an interaction diagram. From the name, it is clear that the diagram 

deals with some sequences, which are the sequence of messages flowing from one object 

to another. 

Interaction among the components of a system is very important from implementation 

and execution perspective. Sequence diagram is used to visualize the sequence of calls in 

a system to perform a specific functionality. 

Collaboration Diagram 

Collaboration diagram is another form of interaction diagram. It represents the structural 

organization of a system and the messages sent/received. Structural organization consists 

of objects and links. 

The purpose of collaboration diagram is similar to sequence diagram. However, the specific 

purpose of collaboration diagram is to visualize the organization of objects and their 

interaction. 

Statechart Diagram 

Any real-time system is expected to be reacted by some kind of internal/external events. 

These events are responsible for state change of the system. 

Statechart diagram is used to represent the event driven state change of a system. It 

basically describes the state change of a class, interface, etc. 

State chart diagram is used to visualize the reaction of a system by internal/external 

factors. 

 

 

 



UML 

 

25 

 

Activity Diagram 

Activity diagram describes the flow of control in a system. It consists of activities and links. 

The flow can be sequential, concurrent, or branched. 

Activities are nothing but the functions of a system. Numbers of activity diagrams are 

prepared to capture the entire flow in a system. 

Activity diagrams are used to visualize the flow of controls in a system. This is prepared 

to have an idea of how the system will work when executed. 

Note: Dynamic nature of a system is very difficult to capture. UML has provided features 

to capture the dynamics of a system from different angles. Sequence diagrams and 

collaboration diagrams are isomorphic, hence they can be converted from one another 

without losing any information. This is also true for Statechart and activity diagram. 

 

 



UML 

 

26 

 

Class diagram is a static diagram. It represents the static view of an application. Class 

diagram is not only used for visualizing, describing, and documenting different aspects of 

a system but also for constructing executable code of the software application. 

Class diagram describes the attributes and operations of a class and also the constraints 

imposed on the system. The class diagrams are widely used in the modeling of object-

oriented systems because they are the only UML diagrams, which can be mapped directly 

with object-oriented languages. 

Class diagram shows a collection of classes, interfaces, associations, collaborations, and 

constraints. It is also known as a structural diagram. 

Purpose of Class Diagrams 

The purpose of class diagram is to model the static view of an application. Class diagrams 

are the only diagrams which can be directly mapped with object-oriented languages and 

thus widely used at the time of construction. 

UML diagrams like activity diagram, sequence diagram can only give the sequence flow of 

the application, however class diagram is a bit different. It is the most popular UML 

diagram in the coder community. 

The purpose of the class diagram can be summarized as: 

 Analysis and design of the static view of an application. 

 Describe responsibilities of a system. 

 Base for component and deployment diagrams. 

 Forward and reverse engineering. 

How to Draw a Class Diagram? 

Class diagrams are the most popular UML diagrams used for construction of software 

applications. It is very important to learn the drawing procedure of class diagram. 

Class diagrams have a lot of properties to consider while drawing but here the diagram 

will be considered from a top level view. 

Class diagram is basically a graphical representation of the static view of the system and 

represents different aspects of the application. A collection of class diagrams represent the 

whole system. 

The following points should be remembered while drawing a class diagram: 

 The name of the class diagram should be meaningful to describe the aspect of the 

system. 

 

 Each element and their relationships should be identified in advance. 

 

7. UML ─ Class Diagram 



UML 

 

27 

 

 

 Responsibility (attributes and methods) of each class should be clearly identified. 

 

 For each class, minimum number of properties should be specified, as unnecessary 

properties will make the diagram complicated. 

 

 Use notes whenever required to describe some aspect of the diagram. At the end 

of the drawing it should be understandable to the developer/coder. 

 

 Finally, before making the final version, the diagram should be drawn on plain 

paper and reworked as many times as possible to make it correct. 

The following diagram is an example of an Order System of an application. It describes a 

particular aspect of the entire application. 

 First of all, Order and Customer are identified as the two elements of the system. 

They have a one-to-many relationship because a customer can have multiple 

orders. 

 

 Order class is an abstract class and it has two concrete classes (inheritance 

relationship) SpecialOrder and NormalOrder. 

 

 The two inherited classes have all the properties as the Order class. In addition, 

they have additional functions like dispatch () and receive (). 

The following class diagram has been drawn considering all the points mentioned above. 

 



UML 

 

28 

 

Where to Use Class Diagrams? 

Class diagram is a static diagram and it is used to model the static view of a system. The 

static view describes the vocabulary of the system. 

Class diagram is also considered as the foundation for component and deployment 

diagrams. Class diagrams are not only used to visualize the static view of the system but 

they are also used to construct the executable code for forward and reverse engineering 

of any system. 

Generally, UML diagrams are not directly mapped with any object-oriented programming 

languages but the class diagram is an exception. 

Class diagram clearly shows the mapping with object-oriented languages such as Java, 

C++, etc. From practical experience, class diagram is generally used for construction 

purpose. 

In a nutshell it can be said, class diagrams are used for: 

 Describing the static view of the system. 

 Showing the collaboration among the elements of the static view. 

 Describing the functionalities performed by the system. 

 Constructing software applications using object-oriented languages. 



UML 

 

29 

 

Object diagrams are derived from class diagrams so object diagrams are dependent upon 

class diagrams. 

Object diagrams represent an instance of a class diagram. The basic concepts are similar 

for class diagrams and object diagrams. Object diagrams also represent the static view of 

a system but this static view is a snapshot of the system at a particular moment. 

Object diagrams are used to render a set of objects and their relationships as an instance. 

Purpose of Object Diagrams 

The purpose of a diagram should be understood clearly to implement it practically. The 

purposes of object diagrams are similar to class diagrams. 

The difference is that a class diagram represents an abstract model consisting of classes 

and their relationships. However, an object diagram represents an instance at a particular 

moment, which is concrete in nature. 

It means the object diagram is closer to the actual system behavior. The purpose is to 

capture the static view of a system at a particular moment. 

The purpose of the object diagram can be summarized as: 

 Forward and reverse engineering 

 Object relationships of a system 

 Static view of an interaction 

 Understand object behavior and their relationship from a practical perspective 

How to Draw an Object Diagram? 

We have already discussed that an object diagram is an instance of a class diagram. It 

implies that an object diagram consists of instances of things used in a class diagram. 

So both diagrams are made of same basic elements but in different form. In class diagram 

elements are in abstract form to represent the blue print and in object diagram the 

elements are in concrete form to represent the real world object. 

To capture a particular system, numbers of class diagrams are limited. However, if we 

consider object diagrams then we can have unlimited number of instances, which are 

unique in nature. Only those instances are considered, which have an impact on the 

system. 

 

 

 

 

8. UML ─ Object Diagrams 



UML 

 

30 

 

From the above discussion, it is clear that a single object diagram cannot capture all the 

necessary instances or rather cannot specify all the objects of a system. Hence, the 

solution is: 

 First, analyze the system and decide which instances have important data and 

association. 

 

 Second, consider only those instances, which will cover the functionality. 

 

 Third, make some optimization as the number of instances are unlimited. 

Before drawing an object diagram, the following things should be remembered and 

understood clearly: 

 Object diagrams consist of objects. 

 The link in object diagram is used to connect objects. 

 Objects and links are the two elements used to construct an object diagram. 

After this, the following things are to be decided before starting the construction of the 

diagram: 

 The object diagram should have a meaningful name to indicate its purpose. 

 The most important elements are to be identified. 

 The association among objects should be clarified. 

 Values of different elements need to be captured to include in the object diagram. 

 Add proper notes at points where more clarity is required. 

The following diagram is an example of an object diagram. It represents the Order 

management system which we have discussed in the chapter Class Diagram. The following 

diagram is an instance of the system at a particular time of purchase. It has the following 

objects. 

 Customer 

 Order 

 SpecialOrder 

 NormalOrder 

Now the customer object (C) is associated with three order objects (O1, O2, and O3). 

These order objects are associated with special order and normal order objects (S1, S2, 

and N1). The customer has the following three orders with different numbers (12, 32 and 

40) for the particular time considered. 

The customer can increase the number of orders in future and in that scenario the object 

diagram will reflect that. If order, special order, and normal order objects are observed 

then you will find that they have some values. 

For orders, the values are 12, 32, and 40 which implies that the objects have these values 

for a particular moment (here the particular time when the purchase is made is considered 

as the moment) when the instance is captured. 



UML 

 

31 

 

The same is true for special order and normal order objects which have number of orders 

as 20, 30, and 60. If a different time of purchase is considered, then these values will 

change accordingly. 

The following object diagram has been drawn considering all the points mentioned above. 

 

Where to Use Object Diagrams? 

Object diagrams can be imagined as the snapshot of a running system at a particular 

moment. Let us consider an example of a running train. 

Now, if you take a snap of the running train then you will find a static picture of it having 

the following: 

 A particular state which is running. 

 

 A particular number of passengers. which will change if the snap is taken in a 

different time. 

Here, we can imagine the snap of the running train is an object having the above values. 

And this is true for any real-life simple or complex system.  

In a nutshell, it can be said that object diagrams are used for: 

 Making the prototype of a system. 

 Reverse engineering. 

 Modeling complex data structures. 

 Understanding the system from a practical perspective. 

 

 



UML 

 

32 

 

Component diagrams are different in terms of nature and behavior. Component diagrams 

are used to model the physical aspects of a system. Now the question is, what are these 

physical aspects? Physical aspects are the elements such as executables, libraries, files, 

documents, etc. which reside in a node. 

Component diagrams are used to visualize the organization and relationships among 

components in a system. These diagrams are also used to make executable systems. 

Purpose of Component Diagrams 

Component diagram is a special kind of diagram in UML. The purpose is also different from 

all other diagrams discussed so far. It does not describe the functionality of the system 

but it describes the components used to make those functionalities. 

Thus from that point of view, component diagrams are used to visualize the physical 

components in a system. These components are libraries, packages, files, etc. 

Component diagrams can also be described as a static implementation view of a system. 

Static implementation represents the organization of the components at a particular 

moment. 

A single component diagram cannot represent the entire system but a collection of 

diagrams is used to represent the whole. 

The purpose of the component diagram can be summarized as: 

 Visualize the components of a system. 

 Construct executables by using forward and reverse engineering. 

 Describe the organization and relationships of the components. 

How to Draw a Component Diagram? 

Component diagrams are used to describe the physical artifacts of a system. This artifact 

includes files, executables, libraries, etc. 

The purpose of this diagram is different. Component diagrams are used during the 

implementation phase of an application. However, it is prepared well in advance to 

visualize the implementation details. 

Initially, the system is designed using different UML diagrams and then when the artifacts 

are ready, component diagrams are used to get an idea of the implementation. 

This diagram is very important as without it the application cannot be implemented 

efficiently. A well-prepared component diagram is also important for other aspects such 

as application performance, maintenance, etc. 

 

 

9. UML ─ Component Diagrams 



UML 

 

33 

 

Before drawing a component diagram, the following artifacts are to be identified clearly: 

 Files used in the system. 

 Libraries and other artifacts relevant to the application. 

 Relationships among the artifacts. 

After identifying the artifacts, the following points need to be kept in mind. 

 Use a meaningful name to identify the component for which the diagram is to be 

drawn. 

 

 Prepare a mental layout before producing the using tools. 

 

 Use notes for clarifying important points. 

Following is a component diagram for order management system. Here, the artifacts are 

files. The diagram shows the files in the application and their relationships. In actual, the 

component diagram also contains dlls, libraries, folders, etc. 

In the following diagram, four files are identified and their relationships are produced. 

Component diagram cannot be matched directly with other UML diagrams discussed so far 

as it is drawn for completely different purpose. 

The following component diagram has been drawn considering all the points mentioned 

above. 

 

 



UML 

 

34 

 

Where to Use Component Diagrams? 

We have already described that component diagrams are used to visualize the static 

implementation view of a system. Component diagrams are special type of UML diagrams 

used for different purposes. 

These diagrams show the physical components of a system. To clarify it, we can say that 

component diagrams describe the organization of the components in a system. 

Organization can be further described as the location of the components in a system. 

These components are organized in a special way to meet the system requirements. 

As we have already discussed, those components are libraries, files, executables, etc. 

Before implementing the application, these components are to be organized. This 

component organization is also designed separately as a part of project execution. 

Component diagrams are very important from implementation perspective. Thus, the 

implementation team of an application should have a proper knowledge of the component 

details. 

Component diagrams can be used to: 

 Model the components of a system. 

 Model the database schema. 

 Model the executables of an application. 

 Model the system's source code. 

 

 



UML 

 

35 

 

Deployment diagrams are used to visualize the topology of the physical components of a 

system, where the software components are deployed. 

Deployment diagrams are used to describe the static deployment view of a system. 

Deployment diagrams consist of nodes and their relationships. 

Purpose of Deployment Diagrams 

The term Deployment itself describes the purpose of the diagram. Deployment diagrams 

are used for describing the hardware components, where software components are 

deployed. Component diagrams and deployment diagrams are closely related. 

Component diagrams are used to describe the components and deployment diagrams 

shows how they are deployed in hardware. 

UML is mainly designed to focus on the software artifacts of a system. However, these two 

diagrams are special diagrams used to focus on software and hardware components. 

Most of the UML diagrams are used to handle logical components but deployment diagrams 

are made to focus on the hardware topology of a system. Deployment diagrams are used 

by the system engineers. 

The purpose of deployment diagrams can be described as: 

 Visualize the hardware topology of a system. 

 Describe the hardware components used to deploy software components. 

 Describe the runtime processing nodes. 

How to Draw a Deployment Diagram? 

Deployment diagram represents the deployment view of a system. It is related to the 

component diagram because the components are deployed using the deployment 

diagrams. A deployment diagram consists of nodes. Nodes are nothing but physical 

hardware used to deploy the application. 

Deployment diagrams are useful for system engineers. An efficient deployment diagram 

is very important as it controls the following parameters: 

 Performance 

 Scalability 

 Maintainability 

 Portability 

Before drawing a deployment diagram, the following artifacts should be identified: 

 Nodes 

 Relationships among nodes 

10. UML ─ Deployment Diagrams 



UML 

 

36 

 

Following is a sample deployment diagram to provide an idea of the deployment view of 

order management system. Here, we have shown nodes as: 

 Monitor 

 Modem 

 Caching server 

 Server 

The application is assumed to be a web-based application, which is deployed in a clustered 

environment using server 1, server 2, and server 3. The user connects to the application 

using the Internet. The control flows from the caching server to the clustered environment. 

The following deployment diagram has been drawn considering all the points mentioned 

above. 

 

Where to Use Deployment Diagrams? 

Deployment diagrams are mainly used by system engineers. These diagrams are used to 

describe the physical components (hardware), their distribution, and association.  

Deployment diagrams can be visualized as the hardware components/nodes on which the 

software components reside. 

Software applications are developed to model complex business processes. Efficient 

software applications are not sufficient to meet the business requirements. Business 

requirements can be described as the need to support the increasing number of users, 

quick response time, etc. 



UML 

 

37 

 

To meet these types of requirements, hardware components should be designed efficiently 

and in a cost-effective way. 

Now-a-days software applications are very complex in nature. Software applications can 

be standalone, web-based, distributed, mainframe-based and many more. Hence, it is 

very important to design the hardware components efficiently. 

Deployment diagrams can be used: 

 To model the hardware topology of a system. 

 To model the embedded system. 

 To model the hardware details for a client/server system. 

 To model the hardware details of a distributed application. 

 For Forward and Reverse engineering. 

 

 



UML 

 

38 

 

To model a system, the most important aspect is to capture the dynamic behavior. 

Dynamic behavior means the behavior of the system when it is running/operating. 

Only static behavior is not sufficient to model a system rather dynamic behavior is more 

important than static behavior. In UML, there are five diagrams available to model the 

dynamic nature and use case diagram is one of them. Now as we have to discuss that the 

use case diagram is dynamic in nature, there should be some internal or external factors 

for making the interaction. 

These internal and external agents are known as actors. Use case diagrams consists of 

actors, use cases and their relationships. The diagram is used to model the 

system/subsystem of an application. A single use case diagram captures a particular 

functionality of a system. 

Hence to model the entire system, a number of use case diagrams are used. 

Purpose of Use Case Diagrams 

The purpose of use case diagram is to capture the dynamic aspect of a system. However, 

this definition is too generic to describe the purpose, as other four diagrams (activity, 

sequence, collaboration, and Statechart) also have the same purpose. We will look into 

some specific purpose, which will distinguish it from other four diagrams. 

Use case diagrams are used to gather the requirements of a system including internal and 

external influences. These requirements are mostly design requirements. Hence, when a 

system is analyzed to gather its functionalities, use cases are prepared and actors are 

identified. 

When the initial task is complete, use case diagrams are modelled to present the outside 

view. 

In brief, the purposes of use case diagrams can be said to be as follows: 

 Used to gather the requirements of a system. 

 Used to get an outside view of a system. 

 Identify the external and internal factors influencing the system. 

 Show the interaction among the requirements are actors. 

 

 

 

 

11. UML ─ Use Case Diagrams 



UML 

 

39 

 

How to Draw a Use Case Diagram? 

Use case diagrams are considered for high level requirement analysis of a system. When 

the requirements of a system are analyzed, the functionalities are captured in use cases. 

We can say that use cases are nothing but the system functionalities written in an 

organized manner. The second thing which is relevant to use cases are the actors. Actors 

can be defined as something that interacts with the system. 

Actors can be a human user, some internal applications, or may be some external 

applications. When we are planning to draw a use case diagram, we should have the 

following items identified. 

 Functionalities to be represented as use case 

 Actors 

 Relationships among the use cases and actors 

Use case diagrams are drawn to capture the functional requirements of a system. After 

identifying the above items, we have to use the following guidelines to draw an efficient 

use case diagram. 

 The name of a use case is very important. The name should be chosen in such a 

way so that it can identify the functionalities performed. 

 

 Give a suitable name for actors. 

 

 Show relationships and dependencies clearly in the diagram. 

 

 Do not try to include all types of relationships, as the main purpose of the diagram 

is to identify the requirements. 

 

 Use notes whenever required to clarify some important points. 

Following is a sample use case diagram representing the order management system. 

Hence, if we look into the diagram then we will find three use cases (Order, 

SpecialOrder, and NormalOrder) and one actor which is the customer. 

The SpecialOrder and NormalOrder use cases are extended from Order use case. Hence, 

they have extended relationship. Another important point is to identify the system 

boundary, which is shown in the picture. The actor Customer lies outside the system as it 

is an external user of the system. 



UML 

 

40 

 

 

Where to Use a Use Case Diagram? 

As we have already discussed there are five diagrams in UML to model the dynamic view 

of a system. Now each and every model has some specific purpose to use. Actually these 

specific purposes are different angles of a running system. 

To understand the dynamics of a system, we need to use different types of diagrams. Use 

case diagram is one of them and its specific purpose is to gather system requirements and 

actors. 

Use case diagrams specify the events of a system and their flows. But use case diagram 

never describes how they are implemented. Use case diagram can be imagined as a black 

box where only the input, output, and the function of the black box is known. 

These diagrams are used at a very high level of design. This high level design is refined 

again and again to get a complete and practical picture of the system. A well-structured 

use case also describes the pre-condition, post condition, and exceptions. These extra 

elements are used to make test cases when performing the testing. 

Although use case is not a good candidate for forward and reverse engineering, still they 

are used in a slightly different way to make forward and reverse engineering. The same is 

true for reverse engineering. Use case diagram is used differently to make it suitable for 

reverse engineering. 

In forward engineering, use case diagrams are used to make test cases and in reverse 

engineering use cases are used to prepare the requirement details from the existing 

application. 

Use case diagrams can be used for: 

 Requirement analysis and high level design 

 Model the context of a system 

 Reverse engineering 

 Forward engineering 



UML 

 

41 

 

From the term Interaction, it is clear that the diagram is used to describe some type of 

interactions among the different elements in the model. This interaction is a part of 

dynamic behavior of the system. 

This interactive behavior is represented in UML by two diagrams known as Sequence 

diagram and Collaboration diagram. The basic purpose of both the diagrams are 

similar. 

Sequence diagram emphasizes on time sequence of messages and collaboration diagram 

emphasizes on the structural organization of the objects that send and receive messages. 

Purpose of Interaction Diagrams 

The purpose of interaction diagrams is to visualize the interactive behavior of the system. 

Visualizing the interaction is a difficult task. Hence, the solution is to use different types 

of models to capture the different aspects of the interaction. 

Sequence and collaboration diagrams are used to capture the dynamic nature but from a 

different angle. 

The purpose of interaction diagram is: 

 To capture the dynamic behavior of a system. 

 To describe the message flow in the system. 

 To describe the structural organization of the objects. 

 To describe interaction among objects. 

How to Draw an Interaction Diagram? 

As we have already discussed, the purpose of interaction diagrams is to capture the 

dynamic aspect of a system. So to capture the dynamic aspect, we need to understand 

what a dynamic aspect is and how it is visualized. Dynamic aspect can be defined as the 

snapshot of the running system at a particular moment. 

We have two types of interaction diagrams in UML. One is the sequence diagram and the 

other is the collaboration diagram. The sequence diagram captures the time sequence of 

the message flow from one object to another and the collaboration diagram describes the 

organization of objects in a system taking part in the message flow. 

Following things are to be identified clearly before drawing the interaction diagram: 

 Objects taking part in the interaction 

 Message flows among the objects 

 The sequence in which the messages are flowing 

 Object organization 

12. UML ─ Interaction Diagrams 



UML 

 

42 

 

Following are two interaction diagrams modeling the order management system. The first 

diagram is a sequence diagram and the second is a collaboration diagram. 

The Sequence Diagram 

The sequence diagram has four objects (Customer, Order, SpecialOrder and 

NormalOrder). 

The following diagram shows the message sequence for SpecialOrder object and the same 

can be used in case of NormalOrder object. It is important to understand the time 

sequence of message flows. The message flow is nothing but a method call of an object. 

The first call is sendOrder () which is a method of Order object. The next call is confirm 

() which is a method of SpecialOrder object and the last call is Dispatch () which is a 

method of SpecialOrder object. The following diagram mainly describes the method calls 

from one object to another, and this is also the actual scenario when the system is running. 

 

The Collaboration Diagram 

The second interaction diagram is the collaboration diagram. It shows the object 

organization as seen in the following diagram. In the collaboration diagram, the method 

call sequence is indicated by some numbering technique. The number indicates how the 

methods are called one after another. We have taken the same order management system 

to describe the collaboration diagram. 

Method calls are similar to that of a sequence diagram. However, difference being the 

sequence diagram does not describe the object organization, whereas the collaboration 

diagram shows the object organization. 



UML 

 

43 

 

To choose between these two diagrams, emphasis is placed on the type of requirement. 

If the time sequence is important, then the sequence diagram is used. If organization is 

required, then collaboration diagram is used. 

 

Where to Use Interaction Diagrams? 

We have already discussed that interaction diagrams are used to describe the dynamic 

nature of a system. Now, we will look into the practical scenarios where these diagrams 

are used. To understand the practical application, we need to understand the basic nature 

of sequence and collaboration diagram. 

The main purpose of both the diagrams are similar as they are used to capture the dynamic 

behavior of a system. However, the specific purpose is more important to clarify and 

understand. 

Sequence diagrams are used to capture the order of messages flowing from one object to 

another. Collaboration diagrams are used to describe the structural organization of the 

objects taking part in the interaction. A single diagram is not sufficient to describe the 

dynamic aspect of an entire system, so a set of diagrams are used to capture it as a whole. 

Interaction diagrams are used when we want to understand the message flow and the 

structural organization. Message flow means the sequence of control flow from one object 

to another. Structural organization means the visual organization of the elements in a 

system. 

Interaction diagrams can be used: 

 To model the flow of control by time sequence 

 To model the flow of control by structural organizations 

 For forward engineering 

 For reverse engineering 



UML 

 

44 

 

The name of the diagram itself clarifies the purpose of the diagram and other details. It 

describes different states of a component in a system. The states are specific to a 

component/object of a system. 

A Statechart diagram describes a state machine. State machine can be defined as a 

machine which defines different states of an object and these states are controlled by 

external or internal events. 

Activity diagram explained in the next chapter, is a special kind of a Statechart diagram. 

As Statechart diagram defines the states, it is used to model the lifetime of an object. 

Purpose of Statechart Diagrams 

Statechart diagram is one of the five UML diagrams used to model the dynamic nature of 

a system. They define different states of an object during its lifetime and these states are 

changed by events. Statechart diagrams are useful to model the reactive systems. 

Reactive systems can be defined as a system that responds to external or internal events. 

Statechart diagram describes the flow of control from one state to another state. States 

are defined as a condition in which an object exists and it changes when some event is 

triggered. The most important purpose of Statechart diagram is to model lifetime of an 

object from creation to termination. 

Statechart diagrams are also used for forward and reverse engineering of a system. 

However, the main purpose is to model the reactive system. 

Following are the main purposes of using Statechart diagrams: 

 To model the dynamic aspect of a system. 

 To model the lifetime of a reactive system. 

 To describe different states of an object during its lifetime. 

 Define a state machine to model the states of an object. 

How to Draw a Statechart Diagram? 

Statechart diagram is used to describe the states of different objects in its life cycle. 

Emphasis is placed on the state changes upon some internal or external events. These 

states of objects are important to analyze and implement them accurately. 

Statechart diagrams are very important for describing the states. States can be identified 

as the condition of objects when a particular event occurs. 

Before drawing a Statechart diagram we should clarify the following points: 

 Identify the important objects to be analyzed 

 Identify the states 

 Identify the events 

13. UML ─ Statechart Diagrams 



UML 

 

45 

 

Following is an example of a Statechart diagram where the state of Order object is 

analyzed. 

The first state is an idle state from where the process starts. The next states are arrived 

for events like send request, confirm request, and dispatch order. These events are 

responsible for the state changes of order object. 

During the life cycle of an object (here order object) it goes through the following states 

and there may be some abnormal exits. This abnormal exit may occur due to some 

problem in the system. When the entire life cycle is complete, it is considered as a 

complete transaction as shown in the following figure. The initial and final state of an 

object is also shown in the following figure. 

 

Where to Use Statechart Diagrams? 

From the above discussion, we can define the practical applications of a Statechart 

diagram. Statechart diagrams are used to model the dynamic aspect of a system like other 

four diagrams discussed in this tutorial. However, it has some distinguishing characteristics 

for modeling the dynamic nature. 

Statechart diagram defines the states of a component and these state changes are 

dynamic in nature. Its specific purpose is to define the state changes triggered by events. 

Events are internal or external factors influencing the system. 

Statechart diagrams are used to model the states and also the events operating on the 

system. When implementing a system, it is very important to clarify different states of an 

object during its life time and Statechart diagrams are used for this purpose. When these 

states and events are identified, they are used to model it and these models are used 

during the implementation of the system. 



UML 

 

46 

 

If we look into the practical implementation of Statechart diagram, then it is mainly used 

to analyze the object states influenced by events. This analysis is helpful to understand 

the system behavior during its execution. 

The main usage can be described as: 

 To model the object states of a system. 

 To model the reactive system. Reactive system consists of reactive objects. 

 To identify the events responsible for state changes. 

 Forward and reverse engineering. 

 

 

 



UML 

 

47 

 

Activity diagram is another important diagram in UML to describe the dynamic aspects of 

the system. 

Activity diagram is basically a flowchart to represent the flow from one activity to another 

activity. The activity can be described as an operation of the system. 

The control flow is drawn from one operation to another. This flow can be sequential, 

branched, or concurrent. Activity diagrams deal with all type of flow control by using 

different elements such as fork, join, etc. 

Purpose of Activity Diagrams 

The basic purposes of activity diagrams is similar to other four diagrams. It captures the 

dynamic behavior of the system. Other four diagrams are used to show the message flow 

from one object to another but activity diagram is used to show message flow from one 

activity to another. 

Activity is a particular operation of the system. Activity diagrams are not only used for 

visualizing the dynamic nature of a system, but they are also used to construct the 

executable system by using forward and reverse engineering techniques. The only missing 

thing in the activity diagram is the message part. 

It does not show any message flow from one activity to another. Activity diagram is 

sometimes considered as the flowchart. Although the diagrams look like a flowchart, they 

are not. It shows different flows such as parallel, branched, concurrent, and single. 

The purpose of an activity diagram can be described as: 

 Draw the activity flow of a system. 

 Describe the sequence from one activity to another. 

 Describe the parallel, branched, and concurrent flow of the system. 

How to Draw an Activity Diagram? 

Activity diagrams are mainly used as a flowchart that consists of activities performed by 

the system. Activity diagrams are not exactly flowcharts as they have some additional 

capabilities. These additional capabilities include branching, parallel flow, swimlane, etc. 

Before drawing an activity diagram, we must have a clear understanding about the 

elements used in activity diagram. The main element of an activity diagram is the activity 

itself. An activity is a function performed by the system. After identifying the activities, we 

need to understand how they are associated with constraints and conditions. 

 

 

 

14. UML ─ Activity Diagrams 



UML 

 

48 

 

Before drawing an activity diagram, we should identify the following elements: 

 Activities 

 Association 

 Conditions 

 Constraints 

Once the above-mentioned parameters are identified, we need to make a mental layout 

of the entire flow. This mental layout is then transformed into an activity diagram. 

Following is an example of an activity diagram for order management system. In the 

diagram, four activities are identified which are associated with conditions. One important 

point should be clearly understood that an activity diagram cannot be exactly matched 

with the code. The activity diagram is made to understand the flow of activities and is 

mainly used by the business users. 

Following diagram is drawn with the four main activities: 

 Send order by the customer 

 Receipt of the order 

 Confirm the order 

 Dispatch the order 

After receiving the order request, condition checks are performed to check if it is normal 

or special order. After the type of order is identified, dispatch activity is performed and 

that is marked as the termination of the process. 

 



UML 

 

49 

 

Where to Use Activity Diagrams? 

The basic usage of activity diagram is similar to other four UML diagrams. The specific 

usage is to model the control flow from one activity to another. This control flow does not 

include messages. 

Activity diagram is suitable for modeling the activity flow of the system. An application can 

have multiple systems. Activity diagram also captures these systems and describes the 

flow from one system to another. This specific usage is not available in other diagrams. 

These systems can be database, external queues, or any other system. 

We will now look into the practical applications of the activity diagram. From the above 

discussion, it is clear that an activity diagram is drawn from a very high level. So it gives 

high level view of a system. This high level view is mainly for business users or any other 

person who is not a technical person. 

This diagram is used to model the activities which are nothing but business requirements. 

The diagram has more impact on business understanding rather than on implementation 

details. 

Activity diagram can be used for: 

 Modeling workflow by using activities. 

 Modeling business requirements. 

 High level understanding of the system's functionalities. 

 Investigating business requirements at a later stage. 

 

 

 

 

 

 

 

 

 

 

 



UML 

 

50 

 

UML 2.0 



UML 

 

51 

 

UML 2.0 is totally a different dimension in the world of Unified Modeling Language. It is 

more complex and extensive in nature. The extent of documentation has also increased 

compared to UML 1.5 version. UML 2.0 has added new features so that its usage can be 

more extensive. 

UML 2.0 adds the definition of formal and completely defined semantics. This new 

possibility can be utilized for the development of models and the corresponding systems 

can be generated from these models. However, to utilize this new dimension, a 

considerable effort has to be made to acquire knowledge. 

New Dimensions in UML 2.0 

The structure and documentation of UML was completely revised in the latest version of 

UML 2.0. There are now two documents available that describe UML: 

 UML 2.0 Infrastructure defines the basic constructs of the language on which UML 

is based. This section is not directly relevant to the users of UML. This is directed 

more towards the developers of modeling tools. This area is not in the scope of this 

tutorial. 

 

 UML 2.0 Superstructure defines the user constructs of UML 2.0. It means those 

elements of UML that the users will use at the immediate level. This is the main 

focus for the user community of UML. 

This revision of UML was created to fulfil a goal to restructure and refine UML so that 

usability, implementation, and adaptation are simplified. 

UML infrastructure is used to: 

 Provide a reusable meta-language core. This is used to define UML itself. 

 Provide mechanisms to adjustment the language. 

UML superstructure is used to: 

 Provide better support for component-based development. 

 

 Improve constructs for the specification of architecture. 

 

 Provide better options for the modeling of behavior. 

The important point to note is the major divisions described above. These divisions are 

used to increase the usability of UML and define a clear understanding of its usage. 

There is another dimension which is already proposed in this new version. It is a proposal 

for a completely new Object Constraint Language (OCL) and Diagram Interchange. These 

features all together form the complete UML 2.0 package. 

15. UML 2.0 ─ Overview 



UML 

 

52 

 

Modeling Diagrams in UML 2.0 

Modeling Interactions 

The interaction diagrams described in UML 2.0 is different than the earlier versions. 

However, the basic concept remains the same as the earlier version. The major difference 

is the enhancement and additional features added to the diagrams in UML 2.0. 

UML 2.0 models object interaction in the following four different ways. 

 Sequence diagram is a time dependent view of the interaction between objects 

to accomplish a behavioral goal of the system. The time sequence is similar to the 

earlier version of sequence diagram. An interaction may be designed at any level 

of abstraction within the system design, from subsystem interactions to instance-

level. 

 

 Communication diagram is a new name added in UML 2.0. Communication 

diagram is a structural view of the messaging between objects, taken from the 

Collaboration diagram concept of UML 1.4 and earlier versions. This can be defined 

as a modified version of collaboration diagram. 

 

 Interaction Overview diagram is also a new addition in UML 2.0. An Interaction 

Overview diagram describes a high-level view of a group of interactions combined 

into a logic sequence, including flow-control logic to navigate between the 

interactions. 

 

 Timing diagram is also added in UML 2.0. It is an optional diagram designed to 

specify the time constraints on the messages sent and received in the course of an 

interaction. 

From the above description, it is important to note that the purpose of all the diagrams 

are to send/receive messages. The handling of these messages are internal to the objects. 

Hence, the objects also have options to receive and send messages, and here comes 

another important aspect called interface. Now these interfaces are responsible for 

accepting and sending messages to one another. 

It can thus be concluded that the interactions in UML 2.0 are described in a different way 

and that is the reason why the new diagram names have come into picture. If we analyze 

the new diagrams then it is clear that all the diagrams are created based upon the 

interaction diagrams described in the earlier versions. The only difference is the additional 

features added in UML 2.0 to make the diagrams more efficient and purpose oriented. 

Modeling Collaborations 

As we have already discussed, collaboration is used to model common interactions 

between objects. We can say that collaboration is an interaction where a set of messages 

are handled by a set of objects having pre-defined roles. 

The important point to note is the difference between the collaboration diagram in the 

earlier version and in UML 2.0 version. To distinguish, the name of the collaboration 

diagram has been changed in UML 2.0. In UML 2.0, it is named as Communication 

diagram. 



UML 

 

53 

 

Consequently, collaboration is defined as a class with attributes (properties) and behavior 

(operations). Compartments on the collaboration class can be user defined and may be 

used for interactions (Sequence diagrams) and structural elements (Composite Structure 

diagram). 

Following figure models the Observer design pattern as collaboration between an object 

in the role of an observable item and any number of objects as the observers. 

 

Modeling Communication 

Communication diagram is slightly different than the collaboration diagrams of the earlier 

versions. We can say it is a scaled back version of the earlier UML versions. The 

distinguishing factor of the communication diagram is the link between objects. 

This is a visual link and it is missing in the sequence diagram. In the sequence diagram, 

only the messages passed between the objects are shown even if there is no link between 

them. 

Communication diagram is used to prevent the modeler from making this mistake by using 

an Object diagram format as the basis for messaging. Each object on a Communication 

diagram is called an object lifeline. 

The message types in a Communication diagram are the same as in a Sequence diagram. 

Communication diagram may model synchronous, asynchronous, return, lost, found, and 

object-creation messages. 

Following figure shows an Object diagram with three objects and two links that form the 

basis for the Communication diagram. Each object on a Communication diagram is called 

an object lifeline. 

 



UML 

 

54 

 

Modeling an Interaction Overview 

In practical usage, a sequence diagram is used to model a single scenario. A number of 

sequence diagrams are used to complete the entire application. Hence, while modeling a 

single scenario, it is possible to forget the total process and this can introduce errors. 

To solve this issue, the new interaction overview diagram combines the flow of control 

from an activity diagram and messaging specification from the sequence diagram. 

Activity diagram uses activities and object flows to describe a process. The Interaction 

Overview diagram uses interactions and interaction occurrences. The lifelines and 

messages found in Sequence diagrams appear only within the interactions or interaction 

occurrences. However, the lifelines (objects) that participate in the Interaction Overview 

diagram may be listed along with the diagram name. 

Following figure shows an interaction overview diagram with decision diamonds, frames, 

and termination point. 

 

Modeling a Timing Diagram 

The name of this diagram itself describes the purpose of the diagram. It basically deals 

with the time of the events over its entire lifecycle. 

A timing diagram can therefore be defined as a special purpose interaction diagram made 

to focus on the events of an object in its life time. It is basically a mixture of state machine 

and interaction diagram. The timing diagram uses the following timelines: 

 State timeline 

 General value timeline 



UML 

 

55 

 

A lifeline in a Timing diagram forms a rectangular space within the content area of a frame. 

It is typically aligned horizontally to read from the left to right. Multiple lifelines may be 

stacked within the same frame to model the interaction between them. 

 

Summary 

UML 2.0 is an enhanced version where the new features are added to make it more usable 

and efficient. There are two major categories in UML 2.0, one is UML super structure and 

another is UML infrastructure. Although the new diagrams are based on the old concepts, 

they still have some additional features. 

UML 2.0 offers four interaction diagrams, the Sequence diagram, Communication diagram, 

Interaction Overview diagram, and an optional Timing diagram. All four diagrams utilize 

the frame notation to enclose an interaction. The use of frames support the reuse of 

interactions as interaction occurrences. 

 

 

 

 


