Math Review

1 Taylor expansion

- Expand function $f(x+a)$ from small a around $a=0$.

$$
\begin{aligned}
f(x+a) & =f(x)+f^{\prime}(x) a+\frac{1}{2} f^{\prime \prime}(x) a^{2}+\cdots \\
& =\left.\sum_{j=0}^{\infty} \frac{a^{j}}{j!} \frac{d^{j}}{d x^{j}} f(x+a)\right|_{a=0}
\end{aligned}
$$

- Since $e^{\lambda x}=\exp (\lambda x)=\sum_{j=0}^{\infty} x^{j} \lambda^{j} / j$!

$$
\begin{equation*}
f(x+a)=\exp \left(a \frac{d}{d x}\right) f(x) \tag{1}
\end{equation*}
$$

2 Series expansions

For $|x|<1$,

$$
\begin{aligned}
\frac{1}{1+x} & =1-x+x^{2}-x^{3}+\cdots \\
\frac{1}{1-x} & =1+x+x^{2}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots \\
\ln (1+x) & =x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots
\end{aligned}
$$

3 Probability theory:

3.1 Discrete systems

Suppose have measurable E with n discrete values $E_{1}, E_{2}, \ldots, E_{n}$. Let

$$
\begin{aligned}
N & =\text { number of measurements } \\
N_{i} & =\text { number of measurements of } E_{i} .
\end{aligned}
$$

Then

$$
P_{i}=\text { Probability that } E_{i} \text { is measured }=\lim _{N \rightarrow \infty} \frac{N_{i}}{N} \equiv P\left(E_{i}\right)
$$

Properties:

1. $0 \leq P_{i} \leq 1$
2. $\sum_{i=1}^{n} P_{i}=1$

Averages:

$$
\begin{aligned}
\bar{E} & =\sum_{i=1}^{n} E_{i} P_{i} \\
\overline{E^{2}} & =\sum_{i=1}^{n} E_{i}^{2} P_{i} \\
\overline{H(E)} & =\sum_{i=1}^{n} H\left(E_{i}\right) P_{i}
\end{aligned}
$$

Variance of E:

$$
\begin{aligned}
\sigma_{E}^{2} & \equiv \overline{E^{2}}-(\bar{E})^{2} \\
& =\overline{\left(E_{i}-\bar{E}\right)^{2}}
\end{aligned}
$$

- σ_{E}^{2} measures the dispersion of the probability distribution: how spread out values are.
- In general, $\sigma_{E}^{2} \neq 0$ unless $P_{i}=\delta_{i j}$ for some j. This notation means:

$$
P_{i}=\left\{\begin{array}{cc}
1 & \text { if } i=j \tag{2}\\
0 & \text { otherwise }
\end{array} \quad \text { which implies } \bar{E}=E_{i}\right.
$$

- Tchebycheff Inequality:

$$
\begin{equation*}
\operatorname{Prob}(|E-\bar{E}| \geq \lambda \bar{E}) \leq \frac{\sigma_{E}^{2}}{\lambda^{2} \bar{E}^{2}} \tag{3}
\end{equation*}
$$

- Joint probability: Suppose N measurements of two properties E and G.

$$
\begin{aligned}
n_{i j} & =\text { number of measurements of } E_{i} \text { and } G_{j} \\
P_{i j} & =\lim _{N \rightarrow \infty} \frac{n_{i j}}{N} \equiv P\left(E_{i}, G_{j}\right) \equiv \text { joint probability. }
\end{aligned}
$$

Properties:

1. $\sum_{i . j} P\left(E_{i}, G_{j}\right)=1$.
2. $\sum_{i} P\left(E_{i}, G_{j}\right)=P\left(G_{j}\right)$.
3. $\sum_{j} P\left(E_{i}, G_{j}\right)=P\left(E_{i}\right)$.
4. If E_{i} and G_{j} are independent, then $P\left(E_{i}, G_{j}\right)=P\left(E_{i}\right) P\left(G_{j}\right)$.

3.2 Combinatorics

- Fact 1: The number of permutations of N distinguishable objects is N !
- Fact 2: The number of ways of assigning N distinct objects into r distinct containers is

$$
\begin{equation*}
t=\frac{N!}{\prod_{i=1}^{r} N_{i}!} \tag{4}
\end{equation*}
$$

where N_{i} is the number of objects in the i th container.

- Example: Number of ways of selecting k distinct objects from a larger set of n distinct objects is:

$$
\binom{n}{k} \equiv \frac{n!}{k!(n-k)!}
$$

- Coin Tossing: Let

$$
\begin{aligned}
n & =\text { Number of tosses } \\
k & =\text { Number of heads }
\end{aligned}
$$

then

$$
\begin{aligned}
P(k, n) & =\text { Probability of } k \text { heads in } n \text { tosses. } \\
& =\left(\frac{1}{2}\right)^{n}\binom{n}{k}
\end{aligned}
$$

- Suppose the probability of winning is p and q is the probability of losing. What is the probability of winning k times in n games? Determined by "Bernoulli" or "binomial" probability.

$$
\begin{equation*}
(p+q)^{n}=p^{n}+p^{n-1} q\binom{n}{n-1}+p^{n-2} q^{2}\binom{n}{n-2}+\cdots+q^{n} \tag{5}
\end{equation*}
$$

Results:

$$
\begin{align*}
P(k, n)=p^{k} q^{n-k} & \binom{n}{k} \tag{6}\\
\bar{k} & =n p \\
\overline{k^{2}} & =n p+n(n-1) p^{2} \\
\sigma_{k}^{2} & =n p q \\
\operatorname{Prob}(|k-\bar{k}| \geq \lambda \bar{k}) \leq \frac{q}{n p \lambda^{2}} &
\end{align*}
$$

- Note that distribution narrows with n. Typical behavior if $\bar{k} \sim n$.
- Generating Functions We define the generating function of a distribution $P(k, n)$ to be

$$
\begin{equation*}
F(x)=\sum_{k=0}^{n} P(k, n) x^{k} . \tag{7}
\end{equation*}
$$

Note that $F(1)=1$ since distribution is normalized. If

$$
\begin{equation*}
P(k, n)=p^{k} q^{n-k}\binom{n}{k} \quad \text { then } \quad F(x)=(q+p x)^{n} . \tag{8}
\end{equation*}
$$

Useful for calcuating moments of a distribution:

$$
\begin{aligned}
\bar{k} & =\left(x F^{\prime}(x)\right)_{x=1} \\
\overline{k^{l}} & =[\overbrace{\left(x \frac{d}{d x}\right) \cdots\left(x \frac{d}{d x}\right)}^{l \text { times }} F(x)]_{x=1}
\end{aligned}
$$

3.3 Continuous Systems

- Probability of measure an observable \mathbf{X} with values between $x, x+d x$ is $p(x) d x . p(x)$ is called the "probability density".
Properties:

1. Positive definite: $p(x) \geq 0$.
2. Normalized: $\int_{-\infty}^{\infty} d x p(x)=1$

- Averages:

$$
\begin{aligned}
\bar{x} & =\int_{-\infty}^{\infty} d x x p(x) \quad \overline{f(x)}=\int_{-\infty}^{\infty} d x f(x) p(x) \\
\sigma_{x}^{2} & =\overline{x^{2}}-\bar{x}^{2}=\int_{-\infty}^{\infty} d x\left(x^{2}-\bar{x}^{2}\right) p(x)
\end{aligned}
$$

- Example probability density: $p(x)=c e^{-\alpha x^{2}}$
- Properties:

$$
\begin{aligned}
& c=\sqrt{\frac{\alpha}{\pi}} \\
& \sigma_{x}^{2}=\frac{1}{2 \alpha}
\end{aligned}
$$

so

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} e^{-\frac{x^{2}}{2 \sigma_{x}^{2}}} .
$$

- What happens when $\sigma_{x}^{2} \rightarrow 0$? Infinitely narrow distribution, called a dirac delta function. Probability density has all the weight on one value.
- There are other representations of the dirac delta function: basically defined in such a way that one value receives all the weight.
- Delta functions: defined in a limiting sense.

$$
\begin{gathered}
\delta^{(\epsilon)}(x)=\left\{\begin{array}{cc}
\frac{1}{\epsilon} & -\frac{\epsilon}{2} \leq x \leq \frac{\epsilon}{2} \\
0 & |x|>\frac{\epsilon}{2}
\end{array} \quad \int_{-\infty}^{\infty} d x \delta^{(\epsilon)}(x)=\int_{-\epsilon / 2}^{\epsilon / 2} d x \frac{1}{\epsilon}=1 .\right. \\
\int_{-\infty}^{\infty} d x \delta^{(\epsilon)}(x) f(x) \approx f(0) \int_{-\infty}^{\infty} d x \delta^{(\epsilon)}(x)=f(0) \quad \text { if } \epsilon \ll 1 .
\end{gathered}
$$

- Function $f(x)$ essentially constant over infinitesimal interval.
- Definition of delta function: $\delta(x)=\lim _{\epsilon \rightarrow 0} \delta^{(\epsilon)}(x)$.
- Representations of delta function in limit $\epsilon \rightarrow 0$:

1. $\frac{1}{2 \epsilon} e^{-|x| / \epsilon}$
2. $\frac{1}{\pi} \frac{\epsilon}{x^{2}+\epsilon^{2}}$
3. $\frac{1}{\epsilon \sqrt{\pi}} e^{-x^{2} / \epsilon^{2}}$
4. $\frac{1}{\pi} \frac{\sin x / \epsilon}{x}$

- For any continuous function f of x, for all forms above we get

$$
\lim _{\epsilon \rightarrow 0} \int_{-\infty}^{\infty} d x \delta^{(\epsilon)}\left(x-x_{0}\right) f(x)=f\left(x_{0}\right)
$$

Some properties of the delta function

1. $\delta(-x)=\delta(x)$
2. $\delta(c x)=\frac{1}{|c|} \delta(x)$
3. $\delta[g(x)]=\sum_{j} \frac{\delta\left(x-x_{j}\right)}{\left|g^{\prime}\left(x_{j}\right)\right|}$ where $g\left(x_{j}\right)=0$ and $g^{\prime}\left(x_{j}\right) \neq 0$.
4. $g(x) \delta\left(x-x_{0}\right)=g\left(x_{0}\right) \delta\left(x-x_{0}\right)$
5. $\int_{-\infty}^{\infty} d x \delta(x-y) \delta(x-z)=\delta(y-z)$
6. $\int_{-\infty}^{\infty} d x \frac{d \delta\left(x-x_{0}\right)}{d x} f(x)=-\int_{-\infty}^{\infty} d x \delta\left(x-x_{0}\right) f^{\prime}(x)=-f^{\prime}\left(x_{0}\right)$
