Math 417 - Sections 53 \& 54 Solutions

1. To find the Maclaurin Series for $f(z)=z \cosh \left(z^{2}\right)$, we start with the Maclaurin Series for $\cosh z$ on p . 187:

$$
\cosh z=\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!} \quad(|z|<\infty)
$$

Substituting z with z^{2}, we have:

$$
\cosh \left(z^{2}\right)=\sum_{n=0}^{\infty} \frac{\left(z^{2}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{z^{4 n}}{(2 n)!} \quad(|z|<\infty)
$$

Multiplying by z, we have the Maclaurin Series for $f(z)$:

$$
z \cosh \left(z^{2}\right)=z \sum_{n=0}^{\infty} \frac{z^{4 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{z^{4 n+1}}{(2 n)!} \quad(|z|<\infty)
$$

3. For the function:

$$
f(z)=\frac{z}{z^{4}+9}=\frac{z}{9} \cdot \frac{1}{1+\left(z^{4} / 9\right)}
$$

we know that the Maclaurin Series converges for

$$
\left|\frac{z^{4}}{9}\right|<1 \quad \Rightarrow \quad|z|<9^{1 / 4}=\sqrt{3}
$$

Using the geometric series expansion, we have:

$$
\begin{aligned}
f(z) & =\frac{z}{9} \cdot \frac{1}{1-\left(-z^{4} / 9\right)} \\
& =\frac{z}{9}\left[1-\frac{z^{4}}{9}+\left(\frac{z^{4}}{9}\right)^{2}-\ldots\right] \\
& =\frac{z}{9}-\frac{z^{5}}{9^{2}}+\frac{z^{9}}{9^{3}}-\frac{z^{13}}{9^{4}}+\ldots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{4 n+1}}{9^{n+1}} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{4 n+1}}{3^{2 n+2}} \quad(|z|<\sqrt{3})
\end{aligned}
$$

6. To find the Maclaurin Series for $f(z)=\sin \left(z^{2}\right)$, we start with the Maclaurin Series of $\sin z$:

$$
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots
$$

and replace z with z^{2} :

$$
\sin \left(z^{2}\right)=z^{2}-\frac{z^{6}}{3!}+\frac{z^{10}}{5!}-\frac{z^{14}}{7!}+\ldots
$$

Note that the Maclaurin Series does not contain terms with odd powers, even powers that are multiples of 4 , and the constant term. Therefore,

$$
f^{(4 n)}(0)=0 \quad \text { and } \quad f^{(2 n+1)}(0)=0 \quad(n=0,1,2, \ldots)
$$

