
ASP.NET

ASP.NET

 i

About the Tutorial

ASP.NET is a web application framework developed and marketed by Microsoft to

allow programmers to build dynamic web sites. It allows you to use a full-featured

programming language such as C# or VB.NET to build web applications easily.

This tutorial covers all the basic elements of ASP.NET that a beginner would

require to get started.

Audience

This tutorial is prepared for the beginners to help them understand basic ASP.NET

programming. After completing this tutorial, you will find yourself at a moderate

level of expertise in ASP.NET programming from where you can take yourself to

next levels.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of

.NET programming language. As we are going to develop web-based applications

using ASP.NET web application framework, it will be good if you have an

understanding of other web technologies such as HTML, CSS, AJAX, etc.

Disclaimer & Copyright

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher. We strive to update the contents

of our website and tutorials as timely and as precisely as possible, however, the

contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides

no guarantee regarding the accuracy, timeliness or completeness of our website

or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

ASP.NET

 ii

Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Disclaimer & Copyright ... i

Contents .. ii

1. INTRODUCTION ... 1

What is ASP.NET? .. 1

ASP.NET Web Forms Model .. 1

The ASP.NET Component Model ... 2

Components of .Net Framework 3.5.. 2

2. ENVIRONMENT SETUP ... 5

The Visual Studio IDE .. 5

Working with Views and Windows .. 6

Adding Folders and Files to your wWebsite ... 6

Projects and Solutions ... 7

Building and Running a Project ... 7

3. LIFE CYCLE ... 8

ASP.NET Application Life Cycle .. 8

ASP.NET Page Life Cycle .. 8

ASP.NET Page Life Cycle Events ... 10

4. FIRST EXAMPLE .. 12

Page Directives .. 12

Code Section ... 12

Page Layout ... 13

Using Visual Studio IDE ... 14

ASP.NET

 iii

5. EVENT HANDLING .. 17

Event Arguments ... 17

Application and Session Events ... 17

Page and Control Events.. 17

Event Handling Using Controls .. 18

Default Events ... 19

6. SERVER SIDE .. 24

Server Object .. 24

Request Object .. 26

Response Object ... 28

7. SERVER CONTROLS .. 34

Properties of the Server Controls .. 35

Methods of the Server Controls .. 38

8. HTML SERVER .. 46

Advantages of using HTML Server Controls ... 46

9. CLIENT SIDE ... 52

Client Side Scripts .. 52

Client Side Source Code ... 53

10. BASIC CONTROLS ... 56

Button Controls ... 56

Text Boxes and Labels ... 57

Check Boxes and Radio Buttons .. 58

List Controls .. 58

The ListItemCollection Object ... 60

Radio Button list and Check Box List ... 62

Bulleted lists and Numbered Lists ... 63

ASP.NET

 iv

HyperLink Control ... 63

Image Control ... 64

11. DIRECTIVES .. 65

The Application Directive .. 65

The Assembly Directive ... 65

The Control Directive .. 66

The Implements Directive ... 67

The Import Directive ... 67

The Master Directive ... 67

The MasterType Directive ... 67

The OutputCache Directive ... 68

The Page Directive .. 68

The PreviousPageType Directive ... 69

The Reference Directive .. 69

The Register Directive ... 70

12. MANAGING STATE ... 71

View State ... 71

Control State ... 75

Session State ... 75

Application State ... 81

13. VALIDATORS .. 83

BaseValidator Class ... 83

RequiredFieldValidator Control ... 84

RangeValidator Control ... 84

CompareValidator Control .. 85

RegularExpressionValidator .. 85

CustomValidator ... 87

ASP.NET

 v

ValidationSummary... 88

Validation Groups ... 88

14. DATABASE ACCESS... 94

Retrieving and Displaying Data ... 94

15. ADO.NET .. 101

The DataSet Class .. 101

The DataTable Class .. 105

The DataRow Class .. 107

The DataAdapter Object .. 108

The DataReader Object ... 108

DbCommand and DbConnection Objects .. 108

16. FILE UPLOADING .. 113

17. AD ROTATORS ... 117

The Advertisement File ... 117

Properties and Events of the AdRotator Class ... 120

Working with AdRotator Control ... 121

18. CALENDARS ... 123

Properties and Events of the Calendar Control .. 123

Working with the Calendar Control ... 125

19. MULTI VIEWS... 130

Properties of View and MultiView Controls .. 130

20. PANEL CONTROLS .. 135

Working with the Panel Control .. 135

21. AJAX CONTROLS .. 142

The ScriptManager Control ... 142

The UpdatePanel Control .. 143

ASP.NET

 vi

The UpdateProgress Control ... 147

The Timer Control ... 148

22. DATA SOURCES .. 150

Data Source Views .. 151

The SqlDataSource Control .. 152

The ObjectDataSource Control .. 154

The AccessDataSource Control .. 157

23. DATA BINDING... 159

Simple Data Binding .. 160

Declarative Data Binding ... 161

24. CUSTOM CONTROLS .. 170

User Controls .. 170

Custom Controls .. 173

Working with Custom Controls ... 174

25. PERSONALIZATION .. 181

Understanding Profiles .. 181

Attributes for the <add> Element .. 184

Anonymous Personalization .. 185

26. ERROR HANDLING ... 186

Tracing .. 188

Error Handling ... 192

27. DEBUGGING .. 194

Breakpoints ... 194

The Debug Windows ... 197

28. LINQ .. 199

LINQ Operators ... 202

ASP.NET

 vii

29. SECURITY ... 207

Forms-Based Authentication ... 207

IIS Authentication: SSL .. 215

30. DATA CACHING .. 217

What is Caching? ... 217

Caching in ASP.NET ... 217

Output Caching ... 218

Data Caching ... 220

Object Caching .. 221

31. WEB SERVICES ... 225

Creating a Web Service ... 225

Consuming the Web Service .. 230

Creating the Proxy ... 233

32. MULTITHREADING ... 237

Creating Thread ... 237

Thread Life Cycle ... 237

Thread Priority .. 238

Thread : Properties and Methods .. 238

33. CONFIGURATION ... 246

Configuration Section Handler declarations .. 248

Application Settings .. 248

Connection Strings .. 249

System.Web Element .. 249

34. DEPLOYMENT .. 257

XCOPY Deployment ... 257

Copying a Website .. 257

ASP.NET

 viii

Creating a Setup Project .. 258

ASP.NET

 1

What is ASP.NET?

ASP.NET is a web development platform, which provides a programming model, a

comprehensive software infrastructure and various services required to build up

robust web applications for PC as well as mobile devices.

ASP.NET works on top of the HTTP protocol, and uses the HTTP commands and

policies to set a browser-to-server bilateral communication and cooperation.

ASP.NET is a part of Microsoft .Net platform. ASP.NET applications are compiled

codes, written using the extensible and reusable components or objects present in

.Net framework. These codes can use the entire hierarchy of classes in .Net

framework.

ASP.NET application codes can be written in any of the following languages:

 C#

 Visual Basic.Net

 Jscript

 J#

ASP.NET is used to produce interactive, data-driven web applications over the

internet. It consists of a large number of controls such as text boxes, buttons, and

labels for assembling, configuring, and manipulating code to create HTML pages.

ASP.NET Web Forms Model

ASP.NET web forms extend the event-driven model of interaction to the web

applications. The browser submits a web form to the web server and the server

returns a full markup page or HTML page in response.

All client side user activities are forwarded to the server for stateful processing. The

server processes the output of the client actions and triggers the reactions.

Now, HTTP is a stateless protocol. ASP.NET framework helps in storing the

information regarding the state of the application, which consists of:

 Page state

 Session state

The page state is the state of the client, i.e., the content of various input fields in the

web form. The session state is the collective information obtained from various pages

the user visited and worked with, i.e., the overall session state. To clear the concept,

let us take an example of a shopping cart:

1. INTRODUCTION

ASP.NET

 2

User adds items to a shopping cart. Items are selected from a page, say the items

page, and the total collected items and price are shown on a different page, say the

cart page. Only HTTP cannot keep track of all the information coming from various

pages. ASP.NET session state and server side infrastructure keeps track of the

information collected globally over a session.

ASP.NET runtime carries the page state to and from the server across page requests

while generating ASP.NET runtime codes, and incorporates the state of the server

side components in hidden fields.

This way, the server becomes aware of the overall application state and operates in

a two-tiered connected way.

The ASP.NET Component Model

The ASP.NET component model provides various building blocks of ASP.NET pages.

Basically it is an object model, which describes:

 Server side counterparts of almost all HTML elements or tags such as <form>
and <input>.

 Server controls, which help in developing complex user-interface. For example,
the Calendar control or the Gridview control.

ASP.NET is a technology, which works on the .Net framework that contains all web-

related functionalities. The .Net framework is made of an object-oriented hierarchy.

An ASP.NET web application is made of pages. When a user requests an ASP.NET

page, the IIS delegates the processing of the page to the ASP.NET runtime system.

The ASP.NET runtime transforms the .aspx page into an instance of a class, which

inherits from the base class page of the .Net framework. Therefore, each ASP.NET

page is an object and all its components i.e., the server-side controls are also objects.

Components of .Net Framework 3.5

Before going to the next session on Visual Studio.Net, let us go through the various

components of the .Net framework 3.5. The following table describes the components

of the .Net framework 3.5 and the job they perform:

Components and their Description

(1) Common Language Runtime or CLR

It performs memory management, exception handling, debugging, security

checking, thread execution, code execution, code safety, verification, and

compilation. The code that is directly managed by the CLR is called the managed

code. When the managed code is compiled, the compiler converts the source code

ASP.NET

 3

into a CPU independent intermediate language (IL) code. A Just-In-Time (JIT)

compiler compiles the IL code into native code, which is CPU specific.

(2) .Net Framework Class Library

It contains a huge library of reusable types, classes, interfaces, structures, and

enumerated values, which are collectively called types.

(3) Common Language Specification

It contains the specifications for the .Net supported languages and implementation

of language integration.

(4) Common Type System

It provides guidelines for declaring, using, and managing types at runtime, and

cross-language communication.

(5) Metadata and Assemblies

Metadata is the binary information describing the program, which is either stored

in a portable executable file (PE) or in the memory. Assembly is a logical unit

consisting of the assembly manifest, type metadata, IL code, and a set of resources

like image files.

(6) Windows Forms

Windows forms contain the graphical representation of any window displayed in

the application.

(7) ASP.NET and ASP.NET AJAX

ASP.NET is the web development model and AJAX is an extension of ASP.NET for

developing and implementing AJAX functionality. ASP.NET AJAX contains the

components that allow the developer to update data on a website without a

complete reload of the page.

(8) ADO.NET

It is the technology used for working with data and databases. It provides access

to data sources like SQL server, OLE DB, XML etc. The ADO.NET allows connection

to data sources for retrieving, manipulating, and updating data.

(9) Windows Workflow Foundation (WF)

It helps in building workflow-based applications in Windows. It contains activities,

workflow runtime, workflow designer, and a rules engine.

ASP.NET

 4

(10)Windows Presentation Foundation

It provides a separation between the user interface and the business logic. It helps

in developing visually stunning interfaces using documents, media, two and three

dimensional graphics, animations, and more.

(11) Windows Communication Foundation (WCF)

It is the technology used for building and executing connected systems.

(12) Windows CardSpace

It provides safety for accessing resources and sharing personal information on the

internet.

(13) LINQ

It imparts data querying capabilities to .Net languages using a syntax which is

similar to the tradition query language SQL.

ASP.NET

 5

ASP.NET provides an abstraction layer on top of HTTP on which the web applications

are built. It provides high-level entities such as classes and components within an

object-oriented paradigm.

The key development tool for building ASP.NET applications and front ends is Visual

Studio. In this tutorial, we work with Visual Studio 2008.

Visual Studio is an integrated development environment for writing, compiling, and

debugging the code. It provides a complete set of development tools for building

ASP.NET web applications, web services, desktop applications, and mobile

applications.

The Visual Studio IDE

The new project window allows choosing an application template from the available

templates.

When you start a new web site, ASP.NET provides the starting folders and files for

the site, including two files for the first web form of the site.

The file named Default.aspx contains the HTML and asp code that defines the form,

and the file named Default.aspx.cs (for C# coding) or the file named Default.aspx.vb

2. ENVIRONMENT SETUP

ASP.NET

 6

(for VB coding) contains the code in the language you have chosen and this code is

responsible for the actions performed on a form.

The primary window in the Visual Studio IDE is the Web Forms Designer window.

Other supporting windows are the Toolbox, the Solution Explorer, and the Properties

window. You use the designer to design a web form, to add code to the control on

the form so that the form works according to your need, you use the code editor.

Working with Views and Windows

 You can work with windows in the following ways:

 To change the Web Forms Designer from one view to another, click on the
Design or source button.

 To close a window, click on the close button on the upper right corner and to

redisplay, select it from the View menu.

 To hide a window, click on its Auto Hide button. The window then changes into

a tab. To display again, click the Auto Hide button again.

 To change the size of a window, just drag it.

Adding Folders and Files to your wWebsite

When a new web form is created, Visual Studio automatically generates the starting

HTML for the form and displays it in Source view of the web forms designer. The

Solution Explorer is used to add any other files, folders or any existing item on the

web site.

 To add a standard folder, right-click on the project or folder under which you

are going to add the folder in the Solution Explorer and choose New Folder.

ASP.NET

 7

 To add an ASP.NET folder, right-click on the project in the Solution Explorer

and select the folder from the list.

 To add an existing item to the site, right-click on the project or folder under

which you are going to add the item in the Solution Explorer and select from

the dialog box.

Projects and Solutions

A typical ASP.NET application consists of many items: the web content files (.aspx),

source files (.cs files), assemblies (.dll and .exe files), data source files (.mdb files),

references, icons, user controls and miscellaneous other files and folders. All these

files that make up the website are contained in a Solution.

When a new website is created, VB2008 automatically creates the solution and

displays it in the solution explorer.

Solutions may contain one or more projects. A project contains content files, source

files, and other files like data sources and image files. Generally, the contents of a

project are compiled into an assembly as an executable file (.exe) or a dynamic link

library (.dll) file.

Typically a project contains the following content files:

 Page file (.aspx)

 User control (.ascx)

 Web service (.asmx)

 Master page (.master)

 Site map (.sitemap)

 Website configuration file (.config)

Building and Running a Project

You can execute an application by:

 Selecting Start

 Selecting Start Without Debugging from the Debug menu,

 pressing F5

 Ctrl-F5

The program is built meaning, the .exe or the .dll files are generated by selecting a

command from the Build menu.

ASP.NET

 8

ASP.NET life cycle specifies how:

 ASP.NET processes pages to produce dynamic output

 The application and its pages are instantiated and processed

 ASP.NET compiles the pages dynamically

ASP.NET life cycle could be divided into two groups:

 Application Life Cycle

 Page Life Cycle

ASP.NET Application Life Cycle

The application life cycle has the following stages:

1. User makes a request for accessing application resource, a page. Browser
sends this request to the web server.

2. A unified pipeline receives the first request and the following events take place:

i. An object of the class ApplicationManager is created.

ii. An object of the class HostingEnvironment is created to provide

information regarding the resources.

iii. Top level items in the application are compiled.

3. Response objects are created. The application objects such as HttpContext,
HttpRequest and HttpResponse are created and initialized.

4. An instance of the HttpApplication object is created and assigned to the
request.

5. The request is processed by the HttpApplication class. Different events are

raised by this class for processing the request.

ASP.NET Page Life Cycle

When a page is requested, it is loaded into the server memory, processed, and sent

to the browser. Then it is unloaded from the memory. At each of these steps, methods

and events are available, which could be overridden according to the need of the

application. In other words, you can write your own code to override the default code.

The Page class creates a hierarchical tree of all the controls on the page. All the

components on the page, except the directives, are part of this control tree. You can

see the control tree by adding trace= "true" to the page directive. We will cover page

directives and tracing under 'directives' and ‘event handling'.

The page life cycle phases are:

3. LIFE CYCLE

ASP.NET

 9

 Initialization

 Instantiation of the controls on the page

 Restoration and maintenance of the state

 Execution of the event handler codes

 Page rendering

Understanding the page cycle helps in writing codes for making some specific thing

happen at any stage of the page life cycle. It also helps in writing custom controls

and initializing them at right time, populate their properties with view-state data and

run control behavior code.

Following are the different stages of an ASP.NET page:

Page request

When ASP.NET gets a page request, it decides whether to parse and compile the

page, or there would be a cached version of the page; accordingly the response is

sent.

Starting of page life cycle

At this stage, the Request and Response objects are set. If the request is an old

request or post back, the IsPostBack property of the page is set to true. The UICulture

property of the page is also set.

Page initialization

At this stage, the controls on the page are assigned unique ID by setting the UniqueID

property and the themes are applied. For a new request, postback data is loaded and

the control properties are restored to the view-state values.

Page load

At this stage, control properties are set using the view state and control state values.

Validation

Validate method of the validation control is called and on its successful execution,

the IsValid property of the page is set to true.

Postback event handling.

If the request is a postback (old request), the related event handler is invoked.

Page rendering

At this stage, view state for the page and all controls are saved. The page calls the

Render method for each control and the output of rendering is written to the

OutputStream class of the Response property of Page.

ASP.NET

 10

Unload

The rendered page is sent to the client and page properties, such as Response and

Request, are unloaded and all cleanup done.

ASP.NET Page Life Cycle Events

At each stage of the page life cycle, the page raises some events, which could be

coded. An event handler is basically a function or subroutine, bound to the event,

using declarative attributes such as Onclick or handle.

Following are the page life cycle events:

PreInit

PreInit is the first event in page life cycle. It checks the IsPostBack property and

determines whether the page is a postback. It sets the themes and master pages,

creates dynamic controls, and gets and sets profile property values. This event can

be handled by overloading the OnPreInit method or creating a Page_PreInit handler.

Init

Init event initializes the control property and the control tree is built. This event can

be handled by overloading the OnInit method or creating a Page_Init handler.

InitComplete

InitComplete event allows tracking of view state. All the controls turn on view-state

tracking.

LoadViewState

LoadViewState event allows loading view state information into the controls.

LoadPostData

During this phase, the contents of all the input fields are defined with the <form>

tag are processed.

PreLoad

PreLoad occurs before the post back data is loaded in the controls. This event can be

handled by overloading the OnPreLoad method or creating a Page_PreLoad handler.

Load

ASP.NET

 11

The Load event is raised for the page first and then recursively for all child controls.

The controls in the control tree are created. This event can be handled by overloading

the OnLoad method or creating a Page_Load handler.

LoadComplete

The loading process is completed, control event handlers are run, and page validation

takes place. This event can be handled by overloading the OnLoadComplete method

or creating a Page_LoadComplete handler.

PreRender

The PreRender event occurs just before the output is rendered. By handling this

event, pages and controls can perform any updates before the output is rendered.

PreRenderComplete

As the PreRender event is recursively fired for all child controls, this event ensures

the completion of the pre-rendering phase.

SaveStateComplete

State of control on the page is saved. Personalization, control state and view state

information is saved. The HTML markup is generated. This stage can be handled by

overriding the Render method or creating a Page_Render handler.

UnLoad

The UnLoad phase is the last phase of the page life cycle. It raises the UnLoad event

for all controls recursively and lastly for the page itself. Final cleanup is done and all

resources and references, such as database connections, are freed. This event can

be handled by modifying the OnUnLoad method or creating a Page_UnLoad handler.

ASP.NET

 12

An ASP.NET page is made up of a number of server controls along with HTML controls,

text, and images. Sensitive data from the page and the states of different controls

on the page are stored in hidden fields that form the context of that page request.

ASP.NET runtime controls the association between a page instance and its state. An

ASP.NET page is an object of the Page or inherited from it.

All the controls on the pages are also objects of the related control class inherited

from a parent Control class. When a page is run, an instance of the object page is

created along with all its content controls.

An ASP.NET page is also a server side file saved with the .aspx extension. It is

modular in nature and can be divided into the following core sections:

 Page Directives

 Code Section

 Page Layout

Page Directives

The page directives set up the environment for the page to run. The @Page directive

defines page-specific attributes used by ASP.NET page parser and compiler. Page

directives specify how the page should be processed, and which assumptions need

to be taken about the page.

It allows importing namespaces, loading assemblies, and registering new controls

with custom tag names and namespace prefixes.

Code Section

The code section provides the handlers for the page and control events along with

other functions required. We mentioned that, ASP.NET follows an object model. Now,

these objects raise events when some events take place on the user interface, like

a user clicks a button or moves the cursor. The kind of response these events need

to reciprocate is coded in the event handler functions. The event handlers are nothing

but functions bound to the controls.

The code section or the code behind file provides all these event handler routines,

and other functions used by the developer. The page code could be precompiled and

deployed in the form of a binary assembly.

4. FIRST EXAMPLE

ASP.NET

 13

Page Layout

The page layout provides the interface of the page. It contains the server controls,

text, inline JavaScript, and HTML tags.

The following code snippet provides a sample ASP.NET page explaining Page

directives, code section and page layout written in C#:

<!-- directives -->

<% @Page Language="C#" %>

<!-- code section -->

<script runat="server">

private void convertoupper(object sender, EventArgs e)

{

 string str = mytext.Value;

 changed_text.InnerHtml = str.ToUpper();

}

</script>

<!-- Layout -->

<html>

<head> <title> Change to Upper Case </title> </head>

<body>

<h3> Conversion to Upper Case </h3>

<form runat="server">

 <input runat="server" id="mytext" type="text" />

 <input runat="server" id="button1" type="submit"

 value="Enter..." OnServerClick="convertoupper"/>

<hr />

<h3> Results: </h3>

ASP.NET

 14

</form>

</body>

</html>

Copy this file to the web server root directory. Generally it is c:\inetput\wwwroot.

Open the file from the browser to execute it and it generates the following result:

Using Visual Studio IDE

Let us develop the same example using Visual Studio IDE. Instead of typing the code,

you can just drag the controls into the design view:

The content file is automatically developed. All you need to add is the Button1_Click

routine, which is as follows:

protected void Button1_Click(object sender, EventArgs e)

{

 string buf = TextBox1.Text;

 changed_text.InnerHtml = buf.ToUpper();

}

ASP.NET

 15

The content file code is as given:

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="firstexample._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:TextBox ID="TextBox1" runat="server" style="width:224px">

 </asp:TextBox>

 <asp:Button ID="Button1" runat="server" Text="Enter..."

 style="width:85px" onclick="Button1_Click" />

 <hr />

 <h3> Results: </h3>

 </div>

 </form>

</body>

</html>

ASP.NET

 16

Execute the example by right clicking on the design view and choosing 'View in

Browser' from the popup menu. This generates the following result:

ASP.NET

 17

An event is an action or occurrence such as a mouse click, a key press, mouse

movements, or any system-generated notification. A process communicates through

events. For example, interrupts are system-generated events. When events occur,

the application should be able to respond to it and manage it.

Events in ASP.NET are raised at the client machine and handled at the server

machine. For example, a user clicks a button displayed in the browser. A Click event

is raised. The browser handles this client-side event by posting it to the server.

The server has a subroutine describing what to do when the event is raised; it is

called the event-handler. Therefore, when the event message is transmitted to the

server, it checks whether the Click event has an associated event handler. If it has,

the event handler is executed.

Event Arguments

ASP.NET event handlers generally take two parameters and return void. The first

parameter represents the object raising the event and the second parameter is event

argument.

The general syntax of an event is:

private void EventName (object sender, EventArgs e);

Application and Session Events

The most important application events are:

 Application_Start - It is raised when the application/website is started

 Application_End - It is raised when the application/website is stopped.

Similarly, the most used Session events are:

 Session_Start - It is raised when a user first requests a page from the
application.

 Session_End - It is raised when the session ends.

Page and Control Events

Common page and control events are:

 DataBinding – It is raised when a control binds to a data source.

5. EVENT HANDLING

ASP.NET

 18

 Disposed – It is raised when the page or the control is released.

 Error - It is a page event, occurs when an unhandled exception is thrown.

 Init – It is raised when the page or the control is initialized.

 Load – It is raised when the page or a control is loaded.

 PreRender – It is raised when the page or the control is to be rendered.

 Unload – It is raised when the page or control is unloaded from memory.

Event Handling Using Controls

All ASP.NET controls are implemented as classes, and they have events which are

fired when a user performs a certain action on them. For example, when a user clicks

a button the 'Click' event is generated. For handling events, there are in-built

attributes and event handlers. Event handler is coded to respond to an event and

take appropriate action on it.

By default, Visual Studio creates an event handler by including a Handles clause on

the Sub procedure. This clause names the control and event that the procedure

handles.

The ASP tag for a button control:

<asp:Button ID="btnCancel" runat="server" Text="Cancel" />

The event handler for the Click event:

Protected Sub btnCancel_Click(ByVal sender As Object,

 ByVal e As System.EventArgs)

 Handles btnCancel.Click

End Sub

An event can also be coded without Handles clause. Then, the handler must be named

according to the appropriate event attribute of the control.

The ASP tag for a button control:

<asp:Button ID="btnCancel" runat="server" Text="Cancel"

 Onclick="btnCancel_Click" />

The event handler for the Click event:

Protected Sub btnCancel_Click(ByVal sender As Object,

 ByVal e As System.EventArgs)

ASP.NET

 19

End Sub

The common control events are:

Event Attribute Controls

Click OnClick Button, image button, link

button, image map

Command OnCommand Button, image button, link

button

TextChanged OnTextChanged Text box

SelectedIndexChanged OnSelectedIndexChanged Drop-down list, list box, radio

button list, check box list.

CheckedChanged OnCheckedChanged Check box, radio button

Some events cause the form to be posted back to the server immediately, these are

called the postback events. For example, the click event such as Button.Click.

Some events are not posted back to the server immediately, these are called non-

postback events. For example, the change events or selection events such as

TextBox.TextChanged or CheckBox.CheckedChanged. The nonpostback events could

be made to post back immediately by setting their AutoPostBack property to true.

Default Events

The default event for the Page object is Load event. Similarly, every control has a

default event. For example, default event for the button control is the Click event.

The default event handler could be created in Visual Studio, just by double clicking

the control in design view. The following table shows some of the default events for

common controls:

Control Default Event

AdRotator AdCreated

BulletedList Click

Button Click

ASP.NET

 20

Calender SelectionChanged

CheckBox CheckedChanged

CheckBoxList SelectedIndexChanged

DataGrid SelectedIndexChanged

DataList SelectedIndexChanged

DropDownList SelectedIndexChanged

HyperLink Click

ImageButton Click

ImageMap Click

LinkButton Click

ListBox SelectedIndexChanged

Menu MenuItemClick

RadioButton CheckedChanged

RadioButtonList SelectedIndexChanged

Example

This example includes a simple page with a label control and a button control on it.

As the page events such as Page_Load, Page_Init, Page_PreRender etc. take place,

it sends a message, which is displayed by the label control. When the button is

clicked, the Button_Click event is raised and that also sends a message to be

displayed on the label.

Create a new website and drag a label control and a button control on it from the

control tool box. Using the properties window, set the IDs of the controls as

.lblmessage. and .btnclick respectively. Set the Text property of the Button control

as 'Click'.

The markup file (.aspx):

ASP.NET

 21

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="eventdemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="lblmessage" runat="server" >

 </asp:Label>

 <asp:Button ID="btnclick" runat="server" Text="Click"

 onclick="btnclick_Click" />

 </div>

 </form>

</body>

</html>

Double click on the design view to move to the code behind file. The Page_Load event

is automatically created without any code in it. Write down the following self-

explanatory code lines:

using System;

ASP.NET

 22

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

namespace eventdemo

{

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 lblmessage.Text += "Page load event handled.
";

 if (Page.IsPostBack)

 {

 lblmessage.Text += "Page post back event handled.
";

 }

 }

 protected void Page_Init(object sender, EventArgs e)

 {

 lblmessage.Text += "Page initialization event handled.
";

 }

ASP.NET

 23

 protected void Page_PreRender(object sender, EventArgs e)

 {

 lblmessage.Text += "Page prerender event handled.
";

 }

 protected void btnclick_Click(object sender, EventArgs e)

 {

 lblmessage.Text += "Button click event handled.
";

 }

 }

}

Execute the page. The label shows page load, page initialization, and the page pre-

render events. Click the button to see effect:

ASP.NET

 24

We have studied the page life cycle and how a page contains various controls. The

page itself is instantiated as a control object. All web forms are basically instances of

the ASP.NET Page class. The page class has the following extremely useful properties

that correspond to intrinsic objects:

 Session

 Application

 Cache

 Request

 Response

 Server

 User

 Trace

We will discuss each of these objects in due time. In this tutorial, we will explore the

Server object, the Request object, and the Response object.

Server Object

The Server object in ASP.NET is an instance of the System.Web.HttpServerUtility

class. The HttpServerUtility class provides numerous properties and methods to

perform various jobs.

Properties and Methods of the Server object

The methods and properties of the HttpServerUtility class are exposed through the

intrinsic Server object provided by ASP.NET.

The following table provides a list of the properties:

Property Description

MachineName Name of server computer

ScriptTimeOut Gets and sets the request time-out value in seconds.

The following table provides a list of some important methods:

6. SERVER SIDE

ASP.NET

 25

Method Description

CreateObject(String)
Creates an instance of the COM object identified

by its ProgID (Programmatic ID)

CreateObject(Type)
Creates an instance of the COM object identified

by its Type.

Equals(Object)
Determines whether the specified object is equal

to the current object.

Execute(String)
Executes the handler for the specified virtual

path in the context of the current request.

Execute(String, Boolean) Executes the handler for the specified virtual

path in the context of the current request and

specifies whether to clear the QueryString and

Form collections.

GetLastError Returns the previous exception.

GetType Gets the Type of the current instance.

HtmlEncode
Changes an ordinary string into a string with

legal HTML characters.

HtmlDecode Converts an Html string into an ordinary string

ToString
Returns a String that represents the current

Object

Transfer(String)

For the current request, terminates execution of

the current page and starts execution of a new

page by using the specified URL path of the

page.

UrlDecode Converts an URL string into an ordinary string

UrlEncodeToken
Works same as UrlEncode, but on a byte array

that contains Base64-encoded data

ASP.NET

 26

UrlDecodeToken
Works same as UrlDecode, but on a byte array

that contains Base64-encoded data

MapPath
Return the physical path that corresponds to a

specified virtual file path on the server

Transfer
Transfers execution to another web page in the

current application

Request Object

The request object is an instance of the System.Web.HttpRequest class. It represents

the values and properties of the HTTP request that makes the page loading into the

browser.

The information presented by this object is wrapped by the higher level abstractions

(the web control model). However, this object helps in checking some information

such as the client browser and cookies.

Properties and Methods of the Request Object

The following table provides some noteworthy properties of the Request object:

Property Description

AcceptTypes Gets a string array of client-supported MIME accept types.

ApplicationPath Gets the ASP.NET application's virtual application root

path on the server.

Browser Gets or sets information about the requesting client's

browser capabilities.

ContentEncoding Gets or sets the character set of the entity-body.

ContentLength Specifies the length, in bytes, of content sent by the client.

ContentType Gets or sets the MIME content type of the incoming

request.

Cookies Gets a collection of cookies sent by the client.

ASP.NET

 27

FilePath Gets the virtual path of the current request.

Files Gets the collection of files uploaded by the client, in

multipart MIME format.

Form Gets a collection of form variables.

Headers Gets a collection of HTTP headers.

HttpMethod Gets the HTTP data transfer method (such as GET, POST,

or HEAD) used by the client.

InputStream Gets the contents of the incoming HTTP entity body.

IsSecureConnection Gets a value indicating whether the HTTP connection uses

secure sockets (that is, HTTPS).

QueryString Gets the collection of HTTP query string variables.

RawUrl Gets the raw URL of the current request.

RequestType Gets or sets the HTTP data transfer method (GET or POST)

used by the client.

ServerVariables Gets a collection of Web server variables.

TotalBytes Gets the number of bytes in the current input stream.

Url Gets information about the URL of the current request.

UrlReferrer Gets information about the URL of the client's previous

request that is linked to the current URL.

UserAgent Gets the raw user agent string of the client browser.

UserHostAddress Gets the IP host address of the remote client.

UserHostName Gets the DNS name of the remote client.

UserLanguages Gets a sorted string array of client language preferences.

ASP.NET

 28

The following table provides a list of some important methods:

Method Description

BinaryRead Performs a binary read of a specified number of bytes

from the current input stream.

Equals(Object) Determines whether the specified object is equal to the

current object. (Inherited from Object.)

GetType Gets the Type of the current instance.

MapImageCoordinates Maps an incoming image-field form parameter to

appropriate x-coordinate and y-coordinate values.

MapPath(String) Maps the specified virtual path to a physical path.

SaveAs Saves an HTTP request to disk.

ToString Returns a String that represents the current object

ValidateInput Causes validation to occur for the collections accessed

through the Cookies, Form, and QueryString properties.

Response Object

The Response object represents the server's response to the client request. It is an

instance of the System.Web.HttpResponse class.

In ASP.NET, the response object does not play any vital role in sending HTML text to

the client, because the server-side controls have nested object oriented methods for

rendering themselves.

However, the HttpResponse object still provides some important functionalities, like

the cookie feature and the Redirect() method. The Response.Redirect() method

allows transferring the user to another page, inside as well as outside the application.

It requires a round trip.

Properties and Methods of the Response Object

The following table provides some noteworthy properties of the Response object:

ASP.NET

 29

Property Description

Buffer Gets or sets a value indicating whether to buffer the output

and send it after the complete response is finished processing.

BufferOutput Gets or sets a value indicating whether to buffer the output

and send it after the complete page is finished processing.

Charset Gets or sets the HTTP character set of the output stream.

ContentEncoding Gets or sets the HTTP character set of the output stream.

ContentType Gets or sets the HTTP MIME type of the output stream.

Cookies Gets the response cookie collection.

Expires Gets or sets the number of minutes before a page cached on

a browser expires.

ExpiresAbsolute Gets or sets the absolute date and time at which to remove

cached information from the cache

HeaderEncoding Gets or sets an encoding object that represents the encoding

for the current header output stream.

Headers Gets the collection of response headers.

IsClientConnected Gets a value indicating whether the client is still connected to

the server.

Output Enables output of text to the outgoing HTTP response stream.

OutputStream Enables binary output to the outgoing HTTP content body.

RedirectLocation Gets or sets the value of the Http Location header.

Status Sets the status line that is returned to the client.

StatusCode Gets or sets the HTTP status code of the output returned to

the client.

ASP.NET

 30

StatusDescription Gets or sets the HTTP status string of the output returned to

the client.

SubStatusCode Gets or sets a value qualifying the status code of the response.

SuppressContent Gets or sets a value indicating whether to send HTTP content

to the client.

The following table provides a list of some important methods:

Method Description

AddHeader Adds an HTTP header to the output stream. AddHeader is

provided for compatibility with earlier versions of ASP.

AppendCookie Infrastructure adds an HTTP cookie to the intrinsic cookie

collection.

AppendHeader Adds an HTTP header to the output stream.

AppendToLog Adds custom log information to the Internet Information

Services (IIS) log file.

BinaryWrite Writes a string of binary characters to the HTTP output

stream.

ClearContent Clears all content output from the buffer stream.

Close Closes the socket connection to a client.

End Sends all currently buffered output to the client, stops

execution of the page, and raises the EndRequest event.

Equals(Object) Determines whether the specified Object is equal to the

current Object

Flush Sends all currently buffered output to the client.

GetType Gets the Type of the current instance.

ASP.NET

 31

Pics Appends a HTTP PICS-Label header to the output stream.

Redirect(String) Redirects a request to a new URL and specifies the new URL.

Redirect(String,

Boolean)

Redirects a client to a new URL. Specifies the new URL and

whether execution of the current page should terminate.

SetCookie Updates an existing cookie in the cookie collection.

ToString Returns a String that represents the current Object.

TransmitFile(String) Writes the specified file directly to an HTTP response output

stream, without buffering it in memory.

Write(Char) Writes a character to an HTTP response output stream.

Write(Object) Writes an object to an HTTP response stream.

Write(String) Writes a string to an HTTP response output stream.

WriteFile(String) Writes the contents of the specified file directly to an HTTP

response output stream as a file block.

WriteFile(String,

Boolean)

Writes the contents of the specified file directly to an HTTP

response output stream as a memory block.

Example

The following simple example has a text box control where the user can enter name,

a button to send the information to the server, and a label control to display the URL

of the client computer.

The content file:

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="server_side._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

ASP.NET

 32

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 Enter your name:

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

 <asp:Button ID="Button1" runat="server"

 OnClick="Button1_Click" Text="Submit" />

 <asp:Label ID="Label1" runat="server"/>

 </div>

 </form>

</body>

</html>

The code behind Button1_Click:

protected void Button1_Click(object sender, EventArgs e)

{

 if (!String.IsNullOrEmpty(TextBox1.Text))

 {

 // Access the HttpServerUtility methods through

 // the intrinsic Server object.

 Label1.Text = "Welcome, " +

 Server.HtmlEncode(TextBox1.Text) +

ASP.NET

 33

 ".
 The url is " +

 Server.UrlEncode(Request.Url.ToString());

 }

 }

Run the page to see the following result:

ASP.NET

 34

Controls are small building blocks of the graphical user interface, which include text

boxes, buttons, check boxes, list boxes, labels, and numerous other tools. Using

these tools, the users can enter data, make selections and indicate their preferences.

Controls are also used for structural jobs, like validation, data access, security,

creating master pages, and data manipulation.

ASP.NET uses five types of web controls:

 HTML controls

 HTML Server controls

 ASP.NET Server controls

 ASP.NET Ajax Server controls

 User controls and custom controls

ASP.NET server controls are the primary controls used in ASP.NET. These controls

can be grouped into the following categories:

 Validation controls - These are used to validate user input and they work by

running client-side script.

 Data source controls - These controls provides data binding to different data

sources.

 Data view controls - These are various lists and tables, which can bind to

data from data sources for displaying.

 Personalization controls - These are used for personalization of a page
according to the user preferences, based on user information.

 Login and security controls - These controls provide user authentication.

 Master pages - These controls provide consistent layout and interface

throughout the application.

 Navigation controls - These controls help in navigation. For example,
menus, tree view etc.

 Rich controls - These controls implement special features. For example,
AdRotator, FileUpload, and Calendar control.

The syntax for using server controls is:

<asp:controlType ID ="ControlID"

 runat="server"

 Property1=value1 [Property2=value2] />

7. SERVER CONTROLS

ASP.NET

 35

In addition, visual studio has the following features to help produce error-free coding:

 Dragging and dropping of controls in design view

 IntelliSense feature that displays and auto-completes the properties

 The properties window to set the property values directly

Properties of the Server Controls

ASP.NET server controls with a visual aspect are derived from the WebControl class

and inherit all the properties, events, and methods of this class.

The WebControl class itself and some other server controls that are not visually

rendered are derived from the System.Web.UI.Control class. For example,

PlaceHolder control or XML control.

ASP.NET server controls inherit all properties, events, and methods of the WebControl

and System.Web.UI.Control class.

The following table shows the inherited properties common to all server controls:

Property Description

AccessKey
Pressing this key with the Alt key moves focus to the

control

Attributes

It is the collection of arbitrary attributes (for rendering

only) that do not correspond to properties on the

control.

BackColor Background color.

BindingContainer The control that contains this control's data binding.

BorderColor Border color.

BorderStyle Border style.

BorderWidth Border width.

CausesValidation Indicates if it causes validation.

ChildControlCreated
It indicates whether the server control's child controls

have been created.

ASP.NET

 36

ClientID Control ID for HTML markup.

Context
The HttpContext object associated with the server

control.

Controls Collection of all controls contained within the control.

ControlStyle The style of the Web server control.

CssClass CSS class

DataItemContainer
Gets a reference to the naming container if the naming

container implements IDataItemContainer.

DataKeysContainer
Gets a reference to the naming container if the naming

container implements IDataKeysControl.

DesignMode
It indicates whether the control is being used on a

design surface.

DisabledCssClass
Gets or sets the CSS class to apply to the rendered

HTML element when the control is disabled.

Enabled Indicates whether the control is grayed out.

EnableTheming Indicates whether theming applies to the control.

EnableViewState
Indicates whether the view state of the control is

maintained.

Events Gets a list of event handler delegates for the control.

Font Font.

Forecolor Foreground color.

HasAttributes Indicates whether the control has attributes set.

HasChildViewState
Indicates whether the current server control's child

controls have any saved view-state settings.

ASP.NET

 37

Height Height in pixels or %.

ID Identifier for the control.

IsChildControlStateClear

ed

Indicates whether controls contained within this control

have control state.

IsEnabled Gets a value indicating whether the control is enabled

IsTrackingViewState
It indicates whether the server control is saving changes

to its view state.

IsViewStateEnabled
It indicates whether view state is enabled for this

control.

LoadViewStateById
It indicates whether the control participates in loading

its view state by ID instead of index.

Page Page containing the control.

Parent Parent control.

RenderingCompatibility
It specifies the ASP.NET version that the rendered HTML

will be compatible with.

Site
The container that hosts the current control when

rendered on a design surface.

SkinID Gets or sets the skin to apply to the control.

Style

Gets a collection of text attributes that will be rendered

as a style attribute on the outer tag of the Web server

control.

TabIndex Gets or sets the tab index of the Web server control.

TagKey
Gets the HtmlTextWriterTag value that corresponds to

this Web server control.

TagName Gets the name of the control tag.

ASP.NET

 38

TemplateControl The template that contains this control.

TemplateSourceDirectory
Gets the virtual directory of the page or control

containing this control.

ToolTip
Gets or sets the text displayed when the mouse pointer

hovers over the web server control.

UniqueID Unique identifier

ViewState

Gets a dictionary of state information that saves and

restores the view state of a server control across

multiple requests for the same page.

ViewStateIgnoreCase
It indicates whether the StateBag object is case-

insensitive.

ViewStateMode Gets or sets the view-state mode of this control.

Visible It indicates whether a server control is visible.

Width Gets or sets the width of the Web server control.

Methods of the Server Controls

The following table provides the methods of the server controls:

Method Description

AddAttributesToRender
Adds HTML attributes and styles that need to be

rendered to the specified HtmlTextWriterTag.

AddedControl
Called after a child control is added to the Controls

collection of the control object.

AddParsedSubObject

Notifies the server control that an element, either XML

or HTML, was parsed, and adds the element to the

server control's control collection.

ASP.NET

 39

ApplyStyleSheetSkin
Applies the style properties defined in the page style

sheet to the control.

ClearCachedClientID Infrastructure. Sets the cached ClientID value to null.

ClearChildControlState
Deletes the control-state information for the server

control's child controls.

ClearChildState
Deletes the view-state and control-state information

for all the server control's child controls.

ClearChildViewState
Deletes the view-state information for all the server

control's child controls.

CreateChildControls Used in creating child controls.

CreateControlCollection
Creates a new ControlCollection object to hold the

child controls.

CreateControlStyle
Creates the style object that is used to implement all

style related properties.

DataBind
Binds a data source to the server control and all its

child controls.

DataBind(Boolean)

Binds a data source to the server control and all its

child controls with an option to raise the DataBinding

event.

DataBindChildren
Binds a data source to the server control's child

controls.

Dispose
Enables a server control to perform final clean up

before it is released from memory.

EnsureChildControls
Determines whether the server control contains child

controls. If it does not, it creates child controls.

EnsureID
Creates an identifier for controls that do not have an

identifier.

ASP.NET

 40

Equals(Object)
Determines whether the specified object is equal to

the current object.

Finalize

Allows an object to attempt to free resources and

perform other cleanup operations before the object is

reclaimed by garbage collection.

FindControl(String)
Searches the current naming container for a server

control with the specified id parameter.

FindControl(String, Int32)
Searches the current naming container for a server

control with the specified id and an integer

Focus Sets input focus to a control.

GetDesignModeState Gets design-time data for a control.

GetType Gets the type of the current instance.

GetUniqueIDRelativeTo
Returns the prefixed portion of the UniqueID property

of the specified control.

HasControls
Determines if the server control contains any child

controls.

HasEvents
Indicates whether events are registered for the control

or any child controls.

IsLiteralContent
Determines if the server control holds only literal

content.

LoadControlState Restores control-state information.

LoadViewState Restores view-state information.

MapPathSecure
Retrieves the physical path that a virtual path, either

absolute or relative, maps to.

MemberwiseClone Creates a shallow copy of the current object.

ASP.NET

 41

MergeStyle

Copies any nonblank elements of the specified style to

the web control, but does not overwrite any existing

style elements of the control.

OnBubbleEvent
Determines whether the event for the server control is

passed up the page's UI server control hierarchy.

OnDataBinding Raises the data binding event.

OnInit Raises the Init event.

OnLoad Raises the Load event.

OnPreRender Raises the PreRender event.

OnUnload Raises the Unload event.

OpenFile Gets a Stream used to read a file.

RemovedControl
Called after a child control is removed from the

controls collection of the control object.

Render Renders the control to the specified HTML writer.

RenderBeginTag
Renders the HTML opening tag of the control to the

specified writer.

RenderChildren

Outputs the contents of a server control's children to

a provided HtmlTextWriter object, which writes the

contents to be rendered on the client.

RenderContents
Renders the contents of the control to the specified

writer.

RenderControl(HtmlTextW

riter)

Outputs server control content to a provided

HtmlTextWriter object and stores tracing information

about the control if tracing is enabled.

RenderEndTag
Renders the HTML closing tag of the control into the

specified writer.

ASP.NET

 42

ResolveAdapter
Gets the control adapter responsible for rendering the

specified control.

SaveControlState

Saves any server control state changes that have

occurred since the time the page was posted back to

the server.

SaveViewState
Saves any state that was modified after the

TrackViewState method was invoked.

SetDesignModeState Sets design-time data for a control.

ToString Returns a string that represents the current object.

TrackViewState

Causes the control to track changes to its view state

so that they can be stored in the object's view state

property.

Example

Let us look at a particular server control - a tree view control. A Tree view control

comes under navigation controls. Other Navigation controls are: Menu control and

SiteMapPath control.

Add a tree view control on the page. Select Edit Nodes... from the tasks. Edit each of

the nodes using the Tree view node editor as shown:

ASP.NET

 43

Once you have created the nodes, it looks like the following in design view:

The AutoFormat... task allows you to format the tree view as shown:

Add a label control and a text box control on the page and name them lblmessage

and txtmessage respectively.

Write a few lines of code to ensure that when a particular node is selected, the label

control displays the node text and the text box displays all child nodes under it, if

any. The code behind the file should look like this:

ASP.NET

 44

using System;

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

namespace eventdemo

{

 public partial class treeviewdemo : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 txtmessage.Text = " ";

 }

 protected void TreeView1_SelectedNodeChanged(object sender, EventArgs e)

 {

 txtmessage.Text = " ";

 lblmessage.Text = "Selected node changed to: " +

 TreeView1.SelectedNode.Text;

 TreeNodeCollection childnodes = TreeView1.SelectedNode.ChildNodes;

 if(childnodes != null)

ASP.NET

 45

 {

 txtmessage.Text = " ";

 foreach (TreeNode t in childnodes)

 {

 txtmessage.Text += t.Value;

 }

 }

 }

 }

}

Execute the page to see the effects. You will be able to expand and collapse the

nodes.

ASP.NET

 46

The HTML server controls are basically the standard HTML controls enhanced to

enable server side processing. The HTML controls such as the header tags, anchor

tags, and input elements are not processed by the server but are sent to the browser

for display.

They are specifically converted to a server control by adding the attribute

runat="server" and adding an id attribute to make them available for server-side

processing.

For example, consider the HTML input control:

<input type="text" size="40">

It could be converted to a server control, by adding the runat and id attribute:

<input type="text" id="testtext" size="40" runat="server">

Advantages of using HTML Server Controls

Although ASP.NET server controls can perform every job accomplished by the HTML

server controls, the later controls are useful in the following cases:

 Using static tables for layout purposes.

 Converting a HTML page to run under ASP.NET.

The following table describes the HTML server controls:

Control Name HTML tag

HtmlHead <head>element

HtmlInputButton <input type=button|submit|reset>

HtmlInputCheckbox <input type=checkbox>

HtmlInputFile <input type = file>

HtmlInputHidden <input type = hidden>

HtmlInputImage <input type = image>

8. HTML SERVER

ASP.NET

 47

HtmlInputPassword <input type = password>

HtmlInputRadioButton <input type = radio>

HtmlInputReset <input type = reset>

HtmlText <input type = text|password>

HtmlImage element

HtmlLink <link> element

HtmlAnchor <a> element

HtmlButton <button> element

HtmlButton <button> element

HtmlForm <form> element

HtmlTable <table> element

HtmlTableCell <td> and <th>

HtmlTableRow <tr> element

HtmlTitle <title> element

HtmlSelect <select> element

HtmlGenericControl All HTML controls not listed

Example

The following example uses a basic HTML table for layout. It uses text boxes for

getting input from the users such as name, address, city, state, etc. It also has a

button control, which is clicked to get the user data displayed in the last row of the

table.

The page should look like this in the design view:

ASP.NET

 48

The code for the content page shows the use of the HTML table element for layout.

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="htmlserver._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title>Untitled Page</title>

<style type="text/css">

 .style1

 {

 width: 156px;

 }

 .style2

 {

 width: 332px;

ASP.NET

 49

 }

</style>

</head>

<body>

<form id="form1" runat="server">

<div>

<table style="width: 54%;">

<tr>

<td class="style1">Name:</td>

<td class="style2">

<asp:TextBox ID="txtname" runat="server" style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<td class="style1">Street</td>

<td class="style2">

<asp:TextBox ID="txtstreet" runat="server" style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<td class="style1">City</td>

<td class="style2">

<asp:TextBox ID="txtcity" runat="server" style="width:230px">

</asp:TextBox>

</td>

</tr>

ASP.NET

 50

<tr>

<td class="style1">State</td>

<td class="style2">

<asp:TextBox ID="txtstate" runat="server" style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<td class="style1"> </td>

<td class="style2"></td>

</tr>

<tr>

<td class="style1"></td>

<td ID="displayrow" runat ="server" class="style2">

</td>

</tr>

</table>

</div>

<asp:Button ID="Button1" runat="server"

 onclick="Button1_Click" Text="Click" />

</form>

</body>

</html>

The code behind the button control:

protected void Button1_Click(object sender, EventArgs e)

{

 string str = "";

 str += txtname.Text + "
";

ASP.NET

 51

 str += txtstreet.Text + "
";

 str += txtcity.Text + "
";

 str += txtstate.Text + "
";

 displayrow.InnerHtml = str;

}

Observe the following:

 The standard HTML tags have been used for the page layout.

 The last row of the HTML table is used for data display. It needed server side

processing, so an ID attribute and the runat attribute has been added to it.

ASP.NET

 52

ASP.NET client side coding has two aspects:

 Client side script: It runs on the browser and in turn speeds up the execution
of page. For example, client side data validation which can catch invalid data

and warn the user accordingly without making a round trip to the server.

 Client side source code: ASP.NET pages generate this. For example, the

HTML source code of an ASP.NET page contains a number of hidden fields and
automatically injected blocks of JavaScript code, which keeps information like
view state or does other jobs to make the page work.

Client Side Scripts

All ASP.NET server controls allow calling client side code written using JavaScript or

VBScript. Some ASP.NET server controls use client side scripting to provide response

to the users without posting back to the server.For example, the validation controls.

Apart from these scripts, the Button control has a property OnClientClick, which

allows executing client-side script, when the button is clicked.

The traditional and server HTML controls have the following events that can execute

a script when they are raised:

Event Description

onblur When the control loses focus

onfocus When the control receives focus

onclick When the control is clicked

onchange When the value of the control changes

onkeydown When the user presses a key

onkeypress When the user presses an alphanumeric key

onkeyup When the user releases a key

onmouseover When the user moves the mouse pointer over the control

9. CLIENT SIDE

ASP.NET

 53

onserverclick It raises the ServerClick event of the control, when the

control is clicked

Client Side Source Code

We have already discussed that ASP.NET pages are generally written in two files:

 The content file or the markup file (.aspx)

 The code-behind file

The content file contains the HTML or ASP.NET control tags and literals to form the

structure of the page. The code behind file contains the class definition. At runtime,

the content file is parsed and transformed into a page class.

This class, along with the class definition in the code file, and system generated code,

together make the executable code (assembly) that processes all posted data,

generates response, and sends it back to the client.

Consider the simple page:

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="clientside._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

 <asp:Button ID="Button1" runat="server"

 OnClick="Button1_Click" Text="Click" />

 </div>

 <hr />

 <h3><asp:Label ID="Msg" runat="server" Text=""></asp:Label>

 </h3>

ASP.NET

 54

 </form>

</body>

</html>

When this page is run on the browser, the View Source option shows the HTML page

sent to the browser by the ASP.NET runtime:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head><title>

 Untitled Page

</title></head>

<body>

<form name="form1" method="post" action="Default.aspx" id="form1">

<div>

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"

value="/wEPDwUKMTU5MTA2ODYwOWRk31NudGDgvhhA7joJum9Qn5RxU2M=" />

</div>

<div>

<input type="hidden" name="__EVENTVALIDATION"

id="__EVENTVALIDATION"

value="/wEWAwKpjZj0DALs0bLrBgKM54rGBhHsyM61rraxE+KnBTCS8cd1QDJ/"/>

</div>

<div>

<input name="TextBox1" type="text" id="TextBox1" />

<input type="submit" name="Button1" value="Click" id="Button1" />

</div>

<hr />

<h3></h3>

</form>

</body>

ASP.NET

 55

</html>

If you go through the code properly, you can see that first two <div> tags contain

the hidden fields which store the view state and validation information.

ASP.NET

 56

In this chapter, we will discuss the basic controls available in ASP.NET.

Button Controls

ASP .Net provides three types of button control:

 Button - It displays text within a rectangular area

 Link button - It displays text that looks like a hyperlink

 Image button – It displays an image.

When a user clicks a button, two events are raised: Click and Command.

Basic syntax of button control:

<asp:Button ID="Button1" runat="server"

 onclick="Button1_Click" Text="Click" />

Common properties of the button control:

Property Description

Text The text displayed on the button. This is for button and link

button controls only.

ImageUrl For image button control only. The image to be displayed

for the button.

AlternateText For image button control only. The text to be displayed if

the browser cannot display the image.

CausesValidation Determines whether page validation occurs when a user

clicks the button. The default is true.

CommandName A string value that is passed to the command event when

a user clicks the button.

CommandArgument A string value that is passed to the command event when

a user clicks the button.

10. BASIC CONTROLS

ASP.NET

 57

PostBackUrl The URL of the page that is requested when the user clicks

the button.

Text Boxes and Labels

Text box controls are typically used to accept input from the user. A text box control

can accept one or more lines of text depending upon the settings of the TextMode

attribute.

Label controls provide an easy way to display text which can be changed from one

execution of a page to the next. If you want to display text that does not change,

you use the literal text.

Basic syntax of text control:

<asp:TextBox ID="txtstate" runat="server" ></asp:TextBox

Common properties of the text box and labels:

Property Description

TextMode Specifies the type of text box. SingleLine creates a standard text

box, MultiLIne creates a text box that accepts more than one line of

text and the Password causes the characters that are entered to be

masked. The default is SingleLine.

Text The text content of the text box.

MaxLength The maximum number of characters that can be entered into the

text box.

Wrap It determines whether or not text wraps automatically for multi-line

text box; default is true.

ReadOnly Determines whether the user can change the text in the box; default

is false, i.e., the user can change the text.

Columns The width of the text box in characters. The actual width is

determined based on the font that is used for the text entry.

Rows The height of a multi-line text box in lines. The default value is 0,

means a single line text box.

ASP.NET

 58

The mostly used attribute for a label control is 'Text', which implies the text displayed

on the label.

Check Boxes and Radio Buttons

A check box displays a single option that the user can either check or uncheck and

radio buttons present a group of options from which the user can select just one

option.

To create a group of radio buttons, you specify the same name for the GroupName

attribute of each radio button in the group. If more than one group is required in a

single form, then specify a different group name for each group.

If you want check box or radio button to be selected when the form is initially

displayed, set its Checked attribute to true. If the Checked attribute is set to true for

multiple radio buttons in a group, then only the last one is considered as true.

Basic syntax of check box:

<asp:CheckBox ID= "chkoption" runat= "Server">

</asp:CheckBox>

Basic syntax of radio button:

<asp:RadioButton ID= "rdboption" runat= "Server">

</asp: RadioButton>

Common properties of check boxes and radio buttons:

Property Description

Text The text displayed next to the check box or radio button.

Checked Specifies whether it is selected or not, default is false.

GroupName Name of the group the control belongs to.

List Controls

ASP.NET provides the following controls:

 Drop-down list

 List box

 Radio button list

ASP.NET

 59

 Check box list

 Bulleted list

These control let a user choose from one or more items from the list. List boxes and

drop-down lists contain one or more list items. These lists can be loaded either by

code or by the ListItem collection editor.

Basic syntax of list box control:

<asp:ListBox ID="ListBox1"

 runat="server"

 AutoPostBack="True"

 OnSelectedIndexChanged="ListBox1_SelectedIndexChanged">

</asp:ListBox>

Basic syntax of drop-down list control:

<asp:DropDownList ID="DropDownList1"

 runat="server"

 AutoPostBack="True"

 OnSelectedIndexChanged="DropDownList1_SelectedIndexChanged">

</asp:DropDownList>

Common properties of list box and drop-down lists:

Property Description

Items The collection of ListItem objects that represents the items in the

control. This property returns an object of type ListItemCollection.

Rows Specifies the number of items displayed in the box. If actual list

contains more rows than displayed then a scroll bar is added.

ASP.NET

 60

SelectedIndex The index of the currently selected item. If more than one item is

selected, then the index of the first selected item. If no item is

selected, the value of this property is -1.

SelectedValue The value of the currently selected item. If more than one item is

selected, then the value of the first selected item. If no item is

selected, the value of this property is an empty string ("").

SelectionMode Indicates whether a list box allows single selections or multiple

selections.

Common properties of each list item objects:

Property Description

Text The text displayed for the item.

Selected Indicates whether the item is selected.

Value A string value associated with the item.

It is important to notes that:

 To work with the items in a drop-down list or list box, you use the Items

property of the control. This property returns a ListItemCollection object which
contains all the items of the list.

 The SelectedIndexChanged event is raised when the user selects a different

item from a drop-down list or list box.

The ListItemCollection Object

The ListItemCollection object is a collection of ListItem objects. Each ListItem object

represents one item in the list. Items in a ListItemCollection are numbered from 0.

When the items into a list box are loaded using strings like:

lstcolor.Items.Add("Blue"), then both the Text and Value properties of the list item

are set to the string value you specify. To set it differently you must create a list item

object and then add that item to the collection.

The ListItem Collection Editor is used to add item to a drop-down list or list box. This

is used to create a static list of items. To display the collection editor, select edit item

from the smart tag menu, or select the control and then click the ellipsis button from

the Item property in the properties window.

ASP.NET

 61

Common properties of ListItemCollection:

Property Description

Item(integer) A ListItem object that represents the item at the

specified index.

Count The number of items in the collection.

Common methods of ListItemCollection:

Methods Description

Add(string) Adds a new item at the end of the collection and

assigns the string parameter to the Text property of

the item.

Add(ListItem) Adds a new item at the end of the collection.

Insert(integer, string) Inserts an item at the specified index location in the

collection and assigns string parameter to the text

property of the item.

Insert(integer, ListItem) Inserts the item at the specified index location in the

collection.

Remove(string) Removes the item with the text value same as the

string.

Remove(ListItem) Removes the specified item.

RemoveAt(integer) Removes the item at the specified index as the

integer.

Clear Removes all the items of the collection.

FindByValue(string) Returns the item whose value is same as the string.

FindByValue(Text) Returns the item whose text is same as the string.

ASP.NET

 62

Radio Button list and Check Box List

A radio button list presents a list of mutually exclusive options. A check box list

presents a list of independent options. These controls contain a collection of ListItem

objects that could be referred to through the Items property of the control.

Basic syntax of radio button list:

<asp:RadioButtonList ID="RadioButtonList1"

 runat="server"

 AutoPostBack="True"

 OnSelectedIndexChanged="RadioButtonList1_SelectedIndexChanged">

</asp:RadioButtonList>

Basic syntax of check box list:

<asp:CheckBoxList ID="CheckBoxList1"

 runat="server"

 AutoPostBack="True"

 OnSelectedIndexChanged="CheckBoxList1_SelectedIndexChanged">

</asp:CheckBoxList>

Common properties of check box and radio button list:

Property Description

RepeatLayout This attribute specifies whether the table tags or the normal

html flow to use while formatting the list when it is rendered.

The default is Table.

RepeatDirection It specifies the direction in which the controls to be

repeated. The values available are Horizontal and Vertical.

Default is Vertical.

RepeatColumns It specifies the number of columns to use when repeating

the controls; default is 0.

ASP.NET

 63

Bulleted lists and Numbered Lists

The bulleted list control creates bulleted lists or numbered lists. These controls

contain a collection of ListItem objects that could be referred to through the Items

property of the control.

Basic syntax of a bulleted list:

<asp:BulletedList ID="BulletedList1" runat="server">

</asp:BulletedList>

Common properties of bulleted list:

Property Description

BulletStyle This property specifies the style and looks of the bullets, or

numbers.

RepeatDirection It specifies the direction in which the controls to be

repeated. The values available are Horizontal and Vertical.

Default is Vertical.

RepeatColumns It specifies the number of columns to use when repeating

the controls; default is 0.

HyperLink Control

The HyperLink control is like the HTML <a> element.

Basic syntax for a hyperlink control:

<asp:HyperLink ID="HyperLink1" runat="server">

 HyperLink

</asp:HyperLink>

It has the following important properties:

Property Description

ImageUrl Path of the image to be displayed by the control.

NavigateUrl Target link URL.

ASP.NET

 64

Text The text to be displayed as the link.

Target The window or frame which loads the linked page.

Image Control

The image control is used for displaying images on the web page, or some alternative

text, if the image is not available.

Basic syntax for an image control:

<asp:Image ID="Image1" runat="server">

It has the following important properties:

Property Description

AlternateText Alternate text to be displayed in absence of the image.

ImageAlign Alignment options for the control.

ImageUrl Path of the image to be displayed by the control.

ASP.NET

 65

ASP.NET directives are instructions to specify optional settings, such as registering a

custom control and page language. These settings describe how the web forms

(.aspx) or user controls (.ascx) pages are processed by the .Net framework.

The syntax for declaring a directive is:

<%@ directive_name attribute=value [attribute=value] %>

In this section, we will just introduce the ASP.NET directives and we will use most of

these directives throughout the tutorials.

The Application Directive

The Application directive defines application-specific attributes. It is provided at the

top of the global.aspx file.

The basic syntax of Application directive is:

<%@ Application Language="C#" %>

The attributes of the Application directive are:

Attributes Description

Inherits The name of the class from which to inherit

Description The text description of the application. Parsers and

compilers ignore this.

Language The language used in code blocks.

The Assembly Directive

The Assembly directive links an assembly to the page or the application at parse

time. This could appear either in the global.asax file for application-wide linking, in

the page file, or a user control file for linking to a page or user control.

The basic syntax of Assembly directive is:

11. DIRECTIVES

ASP.NET

 66

<%@ Assembly Name ="myassembly" %>

The attributes of the Assembly directive are:

Attributes Description

Name The name of the assembly to be linked

Src The path to the source file to be linked and compiled

dynamically

The Control Directive

The control directive is used with the user controls and appears in the user control

(.ascx) files.

The basic syntax of Control directive is:

<%@ Control Language="C#" EnableViewState="false" %>

The attributes of the Control directive are:

Attributes Description

AutoEventWireup The Boolean value that enables or disables automatic

association of events to handlers.

ClassName The file name for the control.

Debug The Boolean value that enables or disables compiling with

debug symbols

Description The text description of the control page, ignored by

compiler.

EnableViewState The Boolean value that indicates whether view state is

maintained across page requests

Explicit For VB language, tells the compiler to use option explicit

mode

Inherits The class from which the control page inherits.

ASP.NET

 67

Language The language for code and script.

Src The filename for the code-behind class.

Strict For VB language, tells the compiler to use the option strict

mode.

The Implements Directive

The Implement directive indicates that the web page, master page or user control

page must implement the specified .Net framework interface.

The basic syntax for implements directive is:

<%@ Implements Interface="interface_name" %>

The Import Directive

The Import directive imports a namespace into a web page, user control page of

application. If the Import directive is specified in the global.asax file, then it is applied

to the entire application. If it is in a page of user control page, then it is applied to

that page or control.

The basic syntax for import directive is:

<%@ namespace="System.Drawing" %>

The Master Directive

The Master directive specifies a page file as being the mater page.

The basic syntax of MasterPage directive is:

<%@ MasterPage Language="C#" AutoEventWireup="true"

 CodeFile="SiteMater.master.cs" Inherits="SiteMaster" %>

The MasterType Directive

The MasterType directive assigns a class name to the Master property of a page, to

make it strongly typed.

The basic syntax of MasterType directive is:

ASP.NET

 68

<%@ MasterType attribute="value"[attribute="value" ...] %>

The OutputCache Directive

The OutputCache directive controls the output caching policies of a web page or a

user control.

The basic syntax of OutputCache directive is:

<%@ OutputCache Duration="15" VaryByParam="None" %>

The Page Directive

The Page directive defines the attributes specific to the page file for the page parser

and the compiler.

The basic syntax of Page directive is:

<%@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default" Trace="true" %>

The attributes of the Page directive are:

Attributes Description

AutoEventWireup The Boolean value that enables or disables page events that

are being automatically bound to methods; for example,

Page_Load.

Buffer The Boolean value that enables or disables HTTP response

buffering.

ClassName The class name for the page.

ClientTarget The browser for which the server controls should render

content.

CodeFile The name of the code behind file.

Debug The Boolean value that enables or disables compilation with

debug symbols.

ASP.NET

 69

Description The text description of the page, ignored by the parser.

EnableSessionState It enables, disables, or makes session state read-only.

EnableViewState The Boolean value that enables or disables view state across

page requests.

ErrorPage URL for redirection if an unhandled page exception occurs.

Inherits The name of the code behind or other class.

Language The programming language for code.

Src The file name of the code behind class.

Trace It enables or disables tracing.

TraceMode It indicates how trace messages are displayed, and sorted by

time or category.

Transaction It indicates if transactions are supported.

ValidateRequest The Boolean value that indicates whether all input data is

validated against a hardcoded list of values.

The PreviousPageType Directive

The PreviousPageType directive assigns a class to a page, so that the page is strongly

typed.

The basic syntax for a sample PreviousPagetype directive is:

<%@ PreviousPageType attribute="value"[attribute="value" ...] %>

The Reference Directive

The Reference directive indicates that another page or user control should be

compiled and linked to the current page.

The basic syntax of Reference directive is:

ASP.NET

 70

<%@ Reference Page ="somepage.aspx" %>

The Register Directive

The Register derivative is used for registering the custom server controls and user

controls.

The basic syntax of Register directive is:

<%@ Register Src="~/footer.ascx" TagName="footer"

 TagPrefix="Tfooter" %>

ASP.NET

 71

 Hyper Text Transfer Protocol (HTTP) is a stateless protocol. When the client

disconnects from the server, the ASP.NET engine discards the page objects. This way,

each web application can scale up to serve numerous requests simultaneously

without running out of server memory.

However, there needs to be some technique to store the information between

requests and to retrieve it when required. This information i.e., the current value of

all the controls and variables for the current user in the current session is called the

State.

ASP.NET manages four types of states:

 View State

 Control State

 Session State

 Application State

View State

The view state is the state of the page and all its controls. It is automatically

maintained across posts by ASP.NET framework.

When a page is sent back to the client, the changes in the properties of the page and

its controls are determined, and stored in the value of a hidden input field named

_VIEWSTATE. When the page is again posted back, the _VIEWSTATE field is sent to

the server with the HTTP request.

The view state could be enabled or disabled for:

 The entire application by setting the EnableViewState property in the

<pages> section of web.config file.

 A page by setting the EnableViewState attribute of the Page directive, as

<%@ Page Language="C#" EnableViewState="false" %>

 A control by setting the Control.EnableViewState property.

It is implemented using a view state object defined by the StateBag class which

defines a collection of view state items. The state bag is a data structure containing

attribute-value pairs, stored as strings associated with objects.

The StateBag class has the following properties:

Properties Description

12. MANAGING STATE

ASP.NET

 72

Item(name) The value of the view state item with the specified name.

This is the default property of the StateBag class.

Count The number of items in the view state collection.

Keys Collection of keys for all the items in the collection.

Values Collection of values for all the items in the collection.

The StateBag class has the following methods:

Methods Description

Add(name, value) Adds an item to the view state collection and existing item

is updated.

Clear Removes all the items from the collection.

Equals(Object) Determines whether the specified object is equal to the

current object.

Finalize Allows it to free resources and perform other cleanup

operations.

GetEnumerator Returns an enumerator that iterates over all the key/value

pairs of the StateItem objects stored in the StateBag

object.

GetType Gets the type of the current instance.

IsItemDirty Checks a StateItem object stored in the StateBag object

to evaluate whether it has been modified.

Remove(name) Removes the specified item.

SetDirty Sets the state of the StateBag object as well as the Dirty

property of each of the StateItem objects contained by it.

SetItemDirty Sets the Dirty property for the specified StateItem object

in the StateBag object.

ASP.NET

 73

ToString Returns a string representing the state bag object.

Example

The following example demonstrates the concept of storing view state. Let us keep a

counter, which is incremented each time the page is posted back by clicking a button

on the page. A label control shows the value in the counter.

The markup file code is as follows:

<%@ Page Language="C#"

 AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="statedemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <h3>View State demo</h3>

 Page Counter:

 <asp:Label ID="lblCounter" runat="server" />

 <asp:Button ID="btnIncrement" runat="server"

 Text="Add Count"

 onclick="btnIncrement_Click" />

 </div>

ASP.NET

 74

 </form>

</body>

</html>

The code behind file for the example is shown here:

public partial class _Default : System.Web.UI.Page

{

 public int counter

 {

 get

 {

 if (ViewState["pcounter"] != null)

 {

 return ((int)ViewState["pcounter"]);

 }

 else

 {

 return 0;

 }

 }

 set

 {

 ViewState["pcounter"] = value;

 }

 }

 protected void Page_Load(object sender, EventArgs e)

 {

 lblCounter.Text = counter.ToString();

ASP.NET

 75

 counter++;

 }

}

It would produce the following result:

Control State

Control state cannot be modified, accessed directly, or disabled.

Session State

When a user connects to an ASP.NET website, a new session object is created. When

session state is turned on, a new session state object is created for each new request.

This session state object becomes part of the context and it is available through the

page.

Session state is generally used for storing application data such as inventory, supplier

list, customer record, or shopping cart. It can also keep information about the user

and his preferences, and keep the track of pending operations.

Sessions are identified and tracked with a 120-bit SessionID, which is passed from

client to server and back as cookie or a modified URL. The SessionID is globally

unique and random.

The session state object is created from the HttpSessionState class, which defines a

collection of session state items.

The HttpSessionState class has the following properties:

Properties Description

SessionID The unique session identifier.

Item(name) The value of the session state item with the specified name.

This is the default property of the HttpSessionState class.

Count The number of items in the session state collection.

ASP.NET

 76

TimeOut Gets and sets the amount of time, in minutes, allowed

between requests before the session-state provider

terminates the session.

The HttpSessionState class has the following methods:

Methods Description

Add(name, value) Adds an item to the session state collection.

Clear Removes all the items from session state collection.

Remove(name) Removes the specified item from the session state

collection.

RemoveAll Removes all keys and values from the session-state

collection.

RemoveAt Deletes an item at a specified index from the session-state

collection.

The session state object is a name-value pair to store and retrieve some information

from the session state object. You could use the following code for the same:

void StoreSessionInfo()

{

 String fromuser = TextBox1.Text;

 Session["fromuser"] = fromuser;

}

void RetrieveSessionInfo()

{

 String fromuser = Session["fromuser"];

 Label1.Text = fromuser;

}

ASP.NET

 77

The above code stores only strings in the Session dictionary object, however, it can

store all the primitive data types and arrays composed of primitive data types, as

well as the DataSet, DataTable, HashTable, and Image objects, as well as any user-

defined class that inherits from the ISerializable object.

Example

The following example demonstrates the concept of storing session state. There are

two buttons on the page, a text box to enter string and a label to display the text

stored from last session.

The mark up file code is as follows:

<%@ Page Language="C#"

 AutoEventWireup="true"

 CodeFile="Default.aspx.cs"

 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <table style="width: 568px; height: 103px">

 <tr>

 <td style="width: 209px">

 <asp:Label ID="lblstr" runat="server"

 Text="Enter a String" style="width:94px">

ASP.NET

 78

 </asp:Label>

 </td>

 <td style="width: 317px">

 <asp:TextBox ID="txtstr" runat="server" style="width:227px">

 </asp:TextBox>

 </td>

 </tr>

 <tr>

 <td style="width: 209px"></td>

 <td style="width: 317px"></td>

 </tr>

 <tr>

 <td style="width: 209px">

 <asp:Button ID="btnnrm" runat="server"

 Text="No action button" style="width:128px" />

 </td>

 <td style="width: 317px">

 <asp:Button ID="btnstr" runat="server"

 OnClick="btnstr_Click" Text="Submit the String" />

 </td>

 </tr>

 <tr>

 <td style="width: 209px">

 </td>

 <td style="width: 317px">

 </td>

 </tr>

 <tr>

ASP.NET

 79

 <td style="width: 209px">

 <asp:Label ID="lblsession" runat="server"

 style="width:231px">

 </asp:Label>

 </td>

 <td style="width: 317px">

 </td>

 </tr>

 <tr>

 <td style="width: 209px">

 <asp:Label ID="lblshstr" runat="server">

 </asp:Label>

 </td>

 <td style="width: 317px">

 </td>

 </tr>

 </table>

 </div>

 </form>

</body>

</html>

It should look like the following in design view:

ASP.NET

 80

The code behind file is given here:

public partial class _Default : System.Web.UI.Page

{

 String mystr;

 protected void Page_Load(object sender, EventArgs e)

 {

 this.lblshstr.Text = this.mystr;

 this.lblsession.Text = (String)this.Session["str"];

 }

 protected void btnstr_Click(object sender, EventArgs e)

 {

 this.mystr = this.txtstr.Text;

 this.Session["str"] = this.txtstr.Text;

 this.lblshstr.Text = this.mystr;

 this.lblsession.Text = (String)this.Session["str"];

 }

}

Execute the file and observe how it works:

ASP.NET

 81

Application State

TheASP.NET application is the collection of all web pages, code and other files within

a single virtual directory on a web server. When information is stored in application

state, it is available to all the users.

To provide for the use of application state, ASP.NET creates an application state

object for each application from the HTTPApplicationState class and stores this object

in server memory. This object is represented by class file global.asax.

Application State is mostly used to store hit counters and other statistical data, global

application data like tax rate, discount rate etc. and to keep the track of users visiting

the site.

The HttpApplicationState class has the following properties:

Properties Description

Item(name) The value of the application state item with the specified

name. This is the default property of the

HttpApplicationState class.

Count The number of items in the application state collection.

The HttpApplicationState class has the following methods:

Methods Description

Add(name, value) Adds an item to the application state collection.

Clear Removes all the items from the application state collection.

ASP.NET

 82

Remove(name) Removes the specified item from the application state

collection.

RemoveAll Removes all objects from an HttpApplicationState collection.

RemoveAt Removes an HttpApplicationState object from a collection

by index.

Lock() Locks the application state collection so only the current

user can access it.

Unlock() Unlocks the application state collection so all the users can

access it.

Application state data is generally maintained by writing handlers for the events:

 Application_Start

 Application_End

 Application_Error

 Session_Start

 Session_End

The following code snippet shows the basic syntax for storing application state

information:

Void Application_Start(object sender, EventArgs e)

{

 Application["startMessage"] = "The application has started.";

}

Void Application_End(object sender, EventArgs e)

{

 Application["endtMessage"] = "The application has ended.";

ASP.NET

 83

ASP.NET validation controls validate the user input data to ensure that useless,

unauthenticated, or contradictory data don’t get stored.

ASP.NET provides the following validation controls:

 RequiredFieldValidator

 RangeValidator

 CompareValidator

 RegularExpressionValidator

 CustomValidator

 ValidationSummary

BaseValidator Class

The validation control classes are inherited from the BaseValidator class hence they

inherit its properties and methods. Therefore, it would help to take a look at the

properties and the methods of this base class, which are common for all the validation

controls:

Members Description

ControlToValidate Indicates the input control to validate.

Display Indicates how the error message is shown.

EnableClientScript Indicates whether client side validation will take.

Enabled Enables or disables the validator.

ErrorMessage Indicates error string.

Text Error text to be shown if validation fails.

IsValid Indicates whether the value of the control is valid.

SetFocusOnError It indicates whether in case of an invalid control, the focus

should switch to the related input control.

13. VALIDATORS

ASP.NET

 84

ValidationGroup The logical group of multiple validators, where this control

belongs.

Validate() This method revalidates the control and updates the IsValid

property.

RequiredFieldValidator Control

The RequiredFieldValidator control ensures that the required field is not empty. It is

generally tied to a text box to force input into the text box.

The syntax of the control is as given:

<asp:RequiredFieldValidator ID="rfvcandidate"

 runat="server" ControlToValidate ="ddlcandidate"

 ErrorMessage="Please choose a candidate"

 InitialValue="Please choose a candidate">

</asp:RequiredFieldValidator>

RangeValidator Control

The RangeValidator control verifies that the input value falls within a predetermined

range.

It has three specific properties:

Properties Description

Type It defines the type of the data. The available values are:

Currency, Date, Double, Integer, and String.

MinimumValue It specifies the minimum value of the range.

MaximumValue It specifies the maximum value of the range.

The syntax of the control is as given:

<asp:RangeValidator ID="rvclass"

 runat="server"

 ControlToValidate="txtclass"

ASP.NET

 85

 ErrorMessage="Enter your class (6 - 12)"

 MaximumValue="12"

 MinimumValue="6" Type="Integer">

</asp:RangeValidator>

CompareValidator Control

The CompareValidator control compares a value in one control with a fixed value or

a value in another control.

It has the following specific properties:

Properties Description

Type It specifies the data type.

ControlToCompare It specifies the value of the input control to compare with.

ValueToCompare It specifies the constant value to compare with.

Operator It specifies the comparison operator, the available values

are: Equal, NotEqual, GreaterThan, GreaterThanEqual,

LessThan, LessThanEqual, and DataTypeCheck.

The basic syntax of the control is as follows:

<asp:CompareValidator ID="CompareValidator1"

 runat="server"

 ErrorMessage="CompareValidator">

</asp:CompareValidator>

RegularExpressionValidator

The RegularExpressionValidator control allows validating the input text by matching

against a pattern of a regular expression. The regular expression is set in the

ValidationExpression property.

The following table summarizes the commonly used syntax constructs for regular

expressions:

ASP.NET

 86

Character Escapes Description

\b Matches a backspace

\t Matches a tab

\r Matches a carriage return

\v Matches a vertical tab

\f Matches a form feed

\n Matches a new line

\ Escape character

Apart from single character match, a class of characters could be specified that can

be matched, called the metacharacters.

Metacharacters Description

. Matches any character except \n.

[abcd] Matches any character in the set.

[^abcd] Excludes any character in the set.

[2-7a-mA-M] Matches any character specified in the range.

\w Matches any alphanumeric character and underscore.

\W Matches any non-word character.

\s Matches whitespace characters like, space, tab, new line

etc.

\S Matches any non-whitespace character.

ASP.NET

 87

\d Matches any decimal character.

\D Matches any non-decimal character.

Quantifiers could be added to specify number of times a character could appear.

Quantifier Description

* Zero or more matches

+ One or more matches

? Zero or one matches

{N} N matches

{N,} N or more matches

{N,M} Between N and M matches

The syntax of the control is as given:

<asp:RegularExpressionValidator ID="string"

 runat="server"

 ErrorMessage="string"

 ValidationExpression="string"

 ValidationGroup="string">

</asp:RegularExpressionValidator>

CustomValidator

The CustomValidator control allows writing application specific custom validation

routines for both the client side and the server side validation.

The client side validation is accomplished through the ClientValidationFunction

property. The client side validation routine should be written in a scripting language,

such as JavaScript or VBScript, which the browser can understand.

ASP.NET

 88

The server side validation routine must be called from the control’s ServerValidate

event handler. The server side validation routine should be written in any .Net

language, like C# or VB.Net.

The basic syntax for the control is as given:

<asp:CustomValidator ID="CustomValidator1"

 runat="server"

 ClientValidationFunction=.cvf_func.

 ErrorMessage="CustomValidator">

</asp:CustomValidator>

ValidationSummary

The ValidationSummary control does not perform any validation but shows a

summary of all errors in the page. The summary displays the values of the

ErrorMessage property of all validation controls that failed validation.

The following two mutually inclusive properties list out the error message:

 ShowSummary: shows the error messages in specified format.

 ShowMessageBox: shows the error messages in a separate window.

The syntax for the control is as given:

<asp:ValidationSummary ID="ValidationSummary1"

 runat="server"

 DisplayMode = "BulletList"

 ShowSummary = "true"

 HeaderText="Errors:" />

Validation Groups

Complex pages have different groups of information provided in different panels. In

such situation, a need might arise for performing validation separately for separate

group. This kind of situation is handled using validation groups.

To create a validation group, you should put the input controls and the validation

controls into the same logical group by setting their ValidationGroup property.

Example

ASP.NET

 89

The following example describes a form to be filled up by all the students of a school,

divided into four houses, for electing the school president. Here, we use the validation

controls to validate the user input.

This is the form in design view:

The content file code is as given:

<form id="form1" runat="server">

<table style="width: 66%;">

<tr>

<td class="style1" colspan="3" align="center">

<asp:Label ID="lblmsg"

 Text="President Election Form : Choose your president"

 runat="server" />

</td>

</tr>

<tr>

ASP.NET

 90

<td class="style3">

Candidate:

</td>

<td class="style2">

<asp:DropDownList ID="ddlcandidate" runat="server" style="width:239px">

<asp:ListItem>Please Choose a Candidate</asp:ListItem>

<asp:ListItem>M H Kabir</asp:ListItem>

<asp:ListItem>Steve Taylor</asp:ListItem>

<asp:ListItem>John Abraham</asp:ListItem>

<asp:ListItem>Venus Williams</asp:ListItem>

</asp:DropDownList>

</td>

<td>

<asp:RequiredFieldValidator ID="rfvcandidate"

 runat="server" ControlToValidate ="ddlcandidate"

 ErrorMessage="Please choose a candidate"

 InitialValue="Please choose a candidate">

</asp:RequiredFieldValidator>

</td>

</tr>

<tr>

<td class="style3">

House:</td>

<td class="style2">

<asp:RadioButtonList ID="rblhouse"

 runat="server"

 RepeatLayout="Flow">

<asp:ListItem>Red</asp:ListItem>

ASP.NET

 91

<asp:ListItem>Blue</asp:ListItem>

<asp:ListItem>Yellow</asp:ListItem>

<asp:ListItem>Green</asp:ListItem>

</asp:RadioButtonList>

</td>

<td>

<asp:RequiredFieldValidator ID="rfvhouse"

 runat="server"

 ControlToValidate="rblhouse"

 ErrorMessage="Enter your house name">

</asp:RequiredFieldValidator>

</td>

</tr>

<tr>

<td class="style3">

Class:</td>

<td class="style2">

<asp:TextBox ID="txtclass" runat="server"></asp:TextBox>

</td>

<td>

<asp:RangeValidator ID="rvclass"

 runat="server" ControlToValidate="txtclass"

 ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"

 MinimumValue="6" Type="Integer">

</asp:RangeValidator>

</td>

</tr>

ASP.NET

 92

<tr>

<td class="style3">

Email:</td>

<td class="style2">

<asp:TextBox ID="txtemail" runat="server" style="width:250px">

</asp:TextBox>

</td>

<td>

<asp:RegularExpressionValidator ID="remail"

 runat="server"

 ControlToValidate="txtemail" ErrorMessage="Enter your email"

ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

</asp:RegularExpressionValidator>

</td>

</tr>

<tr>

<td class="style3" align="center" colspan="3">

<asp:Button ID="btnsubmit" runat="server" onclick="btnsubmit_Click"

style="text-align: center" Text="Submit" style="width:140px" />

</td>

</tr>

</table>

<asp:ValidationSummary ID="ValidationSummary1"

 runat="server"

 DisplayMode ="BulletList"

 ShowSummary ="true"

 HeaderText="Errors:" />

</form>

ASP.NET

 93

The code behind the submit button:

protected void btnsubmit_Click(object sender, EventArgs e)

{

 if (Page.IsValid)

 {

 lblmsg.Text = "Thank You";

 }

 else

 {

 lblmsg.Text = "Fill up all the fields";

 }

}

ASP.NET

 94

ASP.NET allows the following sources of data to be accessed and used:

 Databases (e.g., Access, SQL Server, Oracle, MySQL)

 XML documents

 Business Objects

 Flat files

ASP.NET hides the complex processes of data access and provides much higher level

of classes and objects through which data is accessed easily. These classes hide all

complex coding for connection, data retrieving, data querying, and data

manipulation.

ADO.NET is the technology that provides the bridge between various ASP.NET control

objects and the backend data source. In this tutorial, we will look at data access and

working with the data in brief.

Retrieving and Displaying Data

It takes two types of data controls to retrieve and display data in ASP.NET:

 A data source control - It manages the connection to the data, selection of
data, and other jobs such as paging and caching of data etc.

 A data view control - It binds and displays the data and allows data
manipulation.

We will discuss the data binding and data source controls in detail later. In this

section, we will use a SqlDataSource control to access data and a GridView control to

display and manipulate data in this chapter.

We will also use an Access database, which contains the details about .Net books

available in the market. Name of our database is ASPDotNetStepByStep.mdb and we

will use the data table DotNetReferences.

The table has the following columns: ID, Title, AuthorFirstName, AuthorLastName,

Topic, and Publisher.

Here is a snapshot of the data table:

14. DATABASE ACCESS

ASP.NET

 95

Let us directly move to action, take the following steps:

(1) Create a web site and add a SqlDataSourceControl on the web form.

(2) Click on the Configure Data Source option.

ASP.NET

 96

(3) Click on the New Connection button to establish connection with a database.

(4) Once the connection is set up, you may save it for further use. At the next step,

you are asked to configure the select statement:

(5) Select the columns and click next to complete the steps. Observe the WHERE…,

ORDER BY…, and the Advanced… buttons. These buttons allow you to provide the

ASP.NET

 97

where clause, order by clause, and specify the insert, update, and delete commands

of SQL respectively. This way, you can manipulate the data.

(6) Add a GridView control on the form. Choose the data source and format the

control using AutoFormat option.

(7) After this, the formatted GridView control displays the column headings, and the

application is ready to execute.

ASP.NET

 98

(8) Finally execute the application.

The content file code is as given:

<%@ Page Language="C#"

 AutoEventWireup="true"

 CodeBehind="dataaccess.aspx.cs"

 Inherits="datacaching.WebForm1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title>Untitled Page</title>

</head>

<body>

<form id="form1" runat="server">

<div>

<asp:SqlDataSource ID="SqlDataSource1"

ASP.NET

 99

 runat="server"

 ConnectionString=

 "<%$ ConnectionStrings:ASPDotNetStepByStepConnectionString%>"

 ProviderName=

 "<%$ ConnectionStrings:

 ASPDotNetStepByStepConnectionString.ProviderName %>"

 SelectCommand="SELECT [Title], [AuthorLastName],

 [AuthorFirstName], [Topic]

 FROM [DotNetReferences]">

</asp:SqlDataSource>

<asp:GridView ID="GridView1"

 runat="server"

 AutoGenerateColumns="False"

 CellPadding="4"

 DataSourceID="SqlDataSource1"

 ForeColor="#333333"

 GridLines="None">

<RowStyle BackColor="#F7F6F3" ForeColor="#333333" />

<Columns>

<asp:BoundField DataField="Title" HeaderText="Title"

SortExpression="Title" />

<asp:BoundField DataField="AuthorLastName"

HeaderText="AuthorLastName"

SortExpression="AuthorLastName" />

<asp:BoundField DataField="AuthorFirstName"

HeaderText="AuthorFirstName"

SortExpression="AuthorFirstName" />

<asp:BoundField DataField="Topic"

ASP.NET

 100

HeaderText="Topic" SortExpression="Topic" />

</Columns>

<FooterStyle BackColor="#5D7B9D"

Font-Bold="True" ForeColor="White" />

<PagerStyle BackColor="#284775"

ForeColor="White" HorizontalAlign="Center" />

<SelectedRowStyle BackColor="#E2DED6"

Font-Bold="True" ForeColor="#333333" />

<HeaderStyle BackColor="#5D7B9D" Font-Bold="True"

ForeColor="White" />

<EditRowStyle BackColor="#999999" />

<AlternatingRowStyle BackColor="White" ForeColor="#284775" />

</asp:GridView>

</div>

</form>

</body>

</html>

ASP.NET

 101

The ADO.NET provides a bridge between the front end controls and the back end

database. The ADO.NET objects encapsulate all the data access operations and the

controls interact with these objects to display data, thus hiding the details of

movement of data.

The following figure shows the ADO.NET objects at a glance:

The DataSet Class

The dataset represents a subset of the database. It does not have a continuous

connection to the database. To update the database a reconnection is required. The

DataSet contains DataTable objects and DataRelation objects. The DataRelation

objects represent the relationship between two tables.

Following table shows some important properties of the DataSet class:

Properties Description

15. ADO.NET

ASP.NET

 102

CaseSensitive Indicates whether string comparisons within the data tables

are case-sensitive.

Container Gets the container for the component.

DataSetName Gets or sets the name of the current data set.

DefaultViewManager Returns a view of data in the data set.

DesignMode Indicates whether the component is currently in design

mode.

EnforceConstraints Indicates whether constraint rules are followed when

attempting any update operation.

Events Gets the list of event handlers that are attached to this

component.

ExtendedProperties Gets the collection of customized user information

associated with the DataSet.

HasErrors Indicates if there are any errors.

IsInitialized Indicates whether the DataSet is initialized.

Locale Gets or sets the locale information used to compare strings

within the table.

Namespace Gets or sets the namespace of the DataSet.

Prefix Gets or sets an XML prefix that aliases the namespace of

the DataSet.

Relations Returns the collection of DataRelation objects.

Tables Returns the collection of DataTable objects.

ASP.NET

 103

The following table shows some important methods of the DataSet class:

Methods Description

AcceptChanges Accepts all changes made since the

DataSet was loaded or this method

was called.

BeginInit Begins the initialization of the

DataSet. The initialization occurs at

run time.

Clear Clears data.

Clone Copies the structure of the DataSet,

including all DataTable schemas,

relations, and constraints. Does not

copy any data.

Copy Copies both structure and data.

CreateDataReader() Returns a DataTableReader with one

result set per DataTable, in the

same sequence as the tables appear

in the Tables collection.

CreateDataReader(DataTable[]) Returns a DataTableReader with one

result set per DataTable.

EndInit Ends the initialization of the data

set.

Equals(Object) Determines whether the specified

Object is equal to the current

Object.

Finalize Free resources and perform other

cleanups.

GetChanges Returns a copy of the DataSet with

all changes made since it was loaded

or the AcceptChanges method was

called.

ASP.NET

 104

GetChanges(DataRowState) Gets a copy of DataSet with all

changes made since it was loaded or

the AcceptChanges method was

called, filtered by DataRowState.

GetDataSetSchema Gets a copy of XmlSchemaSet for

the DataSet.

GetObjectData Populates a serialization information

object with the data needed to

serialize the DataSet.

GetType Gets the type of the current

instance.

GetXML Returns the XML representation of

the data.

GetXMLSchema Returns the XSD schema for the

XML representation of the data.

HasChanges() Gets a value indicating whether the

DataSet has changes, including

new, deleted, or modified rows.

HasChanges(DataRowState) Gets a value indicating whether the

DataSet has changes, including

new, deleted, or modified rows,

filtered by DataRowState.

IsBinarySerialized Inspects the format of the serialized

representation of the DataSet.

Load(IDataReader, LoadOption, DataTable[]) Fills a DataSet with values from a

data source using the supplied

IDataReader, using an array of

DataTable instances to supply the

schema and namespace

information.

Load(IDataReader, LoadOption, String[]) Fills a DataSet with values from a

data source using the supplied

IDataReader, using an array of

ASP.NET

 105

strings to supply the names for the

tables within the DataSet.

Merge() Merges the data with data from

another DataSet. This method has

different overloaded forms.

ReadXML() Reads an XML schema and data into

the DataSet. This method has

different overloaded forms.

ReadXMLSchema(0) Reads an XML schema into the

DataSet. This method has different

overloaded forms.

RejectChanges Rolls back all changes made since

the last call to AcceptChanges.

WriteXML() Writes an XML schema and data

from the DataSet. This method has

different overloaded forms.

WriteXMLSchema() Writes the structure of the DataSet

as an XML schema. This method has

different overloaded forms.

The DataTable Class

The DataTable class represents the tables in the database. It has the following

important properties; most of these properties are read only properties except the

PrimaryKey property:

Properties Description

ChildRelations Returns the collection of child relationship.

Columns Returns the Columns collection.

Constraints Returns the Constraints collection.

DataSet Returns the parent DataSet.

ASP.NET

 106

DefaultView Returns a view of the table.

ParentRelations Returns the ParentRelations collection.

PrimaryKey Gets or sets an array of columns as the primary key for the

table.

Rows Returns the Rows collection.

The following table shows some important methods of the DataTable class:

Methods Description

AcceptChanges Commits all changes since the last AcceptChanges.

Clear Clears all data from the table.

GetChanges Returns a copy of the DataTable with all changes made since

the AcceptChanges method was called.

GetErrors Returns an array of rows with errors.

ImportRows Copies a new row into the table.

LoadDataRow Finds and updates a specific row, or creates a new one, if

not found any.

Merge Merges the table with another DataTable.

NewRow Creates a new DataRow.

RejectChanges Rolls back all changes made since the last call to

AcceptChanges.

Reset Resets the table to its original state.

Select Returns an array of DataRow objects.

ASP.NET

 107

The DataRow Class

The DataRow object represents a row in a table. It has the following important

properties:

Properties Description

HasErrors Indicates if there are any errors.

Items Gets or sets the data stored in a specific column.

ItemArrays Gets or sets all the values for the row.

Table Returns the parent table.

The following table shows some important methods of the DataRow class:

Methods Description

AcceptChanges Accepts all changes made since this method was called.

BeginEdit Begins edit operation.

CancelEdit Cancels edit operation.

Delete Deletes the DataRow.

EndEdit Ends the edit operation.

GetChildRows Gets the child rows of this row.

GetParentRow Gets the parent row.

GetParentRows Gets parent rows of DataRow object.

RejectChanges Rolls back all changes made since the last call to

AcceptChanges.

ASP.NET

 108

The DataAdapter Object

The DataAdapter object acts as a mediator between the DataSet object and the

database. This helps the Dataset to contain data from multiple databases or other

data source.

The DataReader Object

The DataReader object is an alternative to the DataSet and DataAdapter combination.

This object provides a connection oriented access to the data records in the database.

These objects are suitable for read-only access, such as populating a list and then

breaking the connection.

DbCommand and DbConnection Objects

The DbConnection object represents a connection to the data source. The connection

could be shared among different command objects.

The DbCommand object represents the command or a stored procedure sent to the

database from retrieving or manipulating data.

Example

So far, we have used tables and databases already existing in our computer. In this

example, we will create a table, add column, rows and data into it and display the

table using a GridView object.

The source file code is as given:

<%@ Page Language="C#"

 AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="createdatabase._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

ASP.NET

 109

<body>

 <form id="form1" runat="server">

 <div>

 <asp:GridView ID="GridView1" runat="server">

 </asp:GridView>

 </div>

 </form>

</body>

</html>

The code behind file is as given:

namespace createdatabase

{

 public partial class _Default : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 DataSet ds = CreateDataSet();

 GridView1.DataSource = ds.Tables["Student"];

 GridView1.DataBind();

 }

 }

 private DataSet CreateDataSet()

 {

 //creating a DataSet object for tables

ASP.NET

 110

 DataSet dataset = new DataSet();

 // creating the student table

 DataTable Students = CreateStudentTable();

 dataset.Tables.Add(Students);

 return dataset;

 }

 private DataTable CreateStudentTable()

 {

 DataTable Students = new DataTable("Student");

 // adding columns

 AddNewColumn(Students, "System.Int32", "StudentID");

 AddNewColumn(Students, "System.String", "StudentName");

 AddNewColumn(Students, "System.String", "StudentCity");

 // adding rows

 AddNewRow(Students, 1, "M H Kabir", "Kolkata");

 AddNewRow(Students, 1, "Shreya Sharma", "Delhi");

 AddNewRow(Students, 1, "Rini Mukherjee", "Hyderabad");

 AddNewRow(Students, 1, "Sunil Dubey", "Bikaner");

 AddNewRow(Students, 1, "Rajat Mishra", "Patna");

 return Students;

 }

 private void AddNewColumn(DataTable table,

 string columnType,

ASP.NET

 111

 string columnName)

 {

 DataColumn column = table.Columns.Add(columnName,

 Type.GetType(columnType));

 }

 //adding data into the table

 private void AddNewRow(DataTable table, int id,

 string name, string city)

 {

 DataRow newrow = table.NewRow();

 newrow["StudentID"] = id;

 newrow["StudentName"] = name;

 newrow["StudentCity"] = city;

 table.Rows.Add(newrow);

 }

 }

}

When you execute the program, observe the following:

 The application first creates a data set and binds it with the grid view control

using the DataBind() method of the GridView control.

 The Createdataset() method is a user defined function, which creates a new
DataSet object and then calls another user defined method

CreateStudentTable() to create the table and add it to the Tables collection of
the data set.

 The CreateStudentTable() method calls the user defined methods
AddNewColumn() and AddNewRow() to create the columns and rows of the
table as well as to add data to the rows.

When the page is executed, it returns the rows of the table as shown:

ASP.NET

 112

ASP.NET

 113

ASP.NET has two controls that allow users to upload files to the web server. Once the

server receives the posted file data, the application can save it, check it, or ignore it.

The following controls allow the file uploading:

 HtmlInputFile - an HTML server control

 FileUpload - and ASP.NET web control

Both controls allow file uploading, but the FileUpload control automatically sets the

encoding of the form, whereas the HtmlInputFile does not do so.

In this tutorial, we use the FileUpload control. The FileUpload control allows the user

to browse for and select the file to be uploaded, providing a browse button and a text

box for entering the filename.

Once the user has entered the filename in the text box by typing the name or

browsing, the SaveAs method of the FileUpload control can be called to save the file

to the disk.

The basic syntax of FileUpload is:

<asp:FileUpload ID= "Uploader" runat = "server" />

The FileUpload class is derived from the WebControl class, and inherits all its

members. Apart from those, the FileUpload class has the following read-only

properties:

Properties Description

FileBytes Returns an array of the bytes in a file to be uploaded.

FileContent Returns the stream object pointing to the file to be uploaded.

FileName Returns the name of the file to be uploaded.

HasFile Specifies whether the control has a file to upload.

PostedFile Returns a reference to the uploaded file.

The posted file is encapsulated in an object of type HttpPostedFile, which could be

accessed through the PostedFile property of the FileUpload class.

The HttpPostedFile class has the following frequently used properties:

16. FILE UPLOADING

ASP.NET

 114

Properties Description

ContentLength Returns the size of the uploaded file in bytes.

ContentType Returns the MIME type of the uploaded file.

FileName Returns the full filename.

InputStream Returns a stream object pointing to the uploaded file.

Example

The following example demonstrates the FileUpload control and its properties. The

form has a FileUpload control along with a save button and a label control for

displaying the file name, file type, and file length.

In the design view, the form looks as follows:

The content file code is as given:

<body>

<form id="form1" runat="server">

<div>

<h3> File Upload:</h3>

 <asp:FileUpload ID="FileUpload1" runat="server" />

ASP.NET

 115

 <asp:Button ID="btnsave" runat="server"

 onclick="btnsave_Click" Text="Save"

 style="width:85px" />

 <asp:Label ID="lblmessage" runat="server" />

</div>

</form>

</body>

The code behind the save button is as given:

protected void btnsave_Click(object sender, EventArgs e)

{

 StringBuilder sb = new StringBuilder();

 if (FileUpload1.HasFile)

 {

 try

 {

 sb.AppendFormat(" Uploading file: {0}", FileUpload1.FileName);

 //saving the file

 FileUpload1.SaveAs("<c:\\SaveDirectory>" + FileUpload1.FileName);

 //Showing the file information

 sb.AppendFormat("
 Save As: {0}", FileUpload1.PostedFile.FileName);

 sb.AppendFormat("
 File type: {0}", FileUpload1.PostedFile.ContentType);

 sb.AppendFormat("
 File length: {0}",

 FileUpload1.PostedFile.ContentLength);

 sb.AppendFormat("
 File name: {0}", FileUpload1.PostedFile.FileName);

 }

 catch (Exception ex)

 {

ASP.NET

 116

 sb.Append("
 Error
");

 sb.AppendFormat("Unable to save file
 {0}", ex.Message);

 }

 }

 else

 {

 lblmessage.Text = sb.ToString();

 }

}

Note the following:

 The StringBuilder class is derived from System.IO namespace, so it needs to

be included.

 The try and catch blocks are used for catching errors, and display the error
message.

ASP.NET

 117

The AdRotator control randomly selects banner graphics from a list, which is specified

in an external XML schedule file. This external XML schedule file is called the

advertisement file.

The AdRotator control allows you to specify the advertisement file and the type of

window that the link should follow in the AdvertisementFile and the Target property

respectively.

The basic syntax of adding an AdRotator is as follows:

<asp:AdRotator runat = "server"

 AdvertisementFile = "adfile.xml"

 Target = "_blank" />

Before going into the details of the AdRotator control and its properties, let us look

into the construction of the advertisement file.

The Advertisement File

The advertisement file is an XML file, which contains the information about the

advertisements to be displayed.

Extensible Markup Language (XML) is a W3C standard for text document markup. It

is a text-based markup language that enables you to store data in a structured format

by using meaningful tags. The term 'extensible' implies that you can extend your

ability to describe a document by defining meaningful tags for the application.

XML is not a language in itself like HTML, but a set of rules for creating new markup

languages. It is a meta-markup language. It allows developers to create custom tag

sets for special uses. It structures, stores, and transports the information.

Following is an example of XML file:

<BOOK>

<NAME> Learn XML </NAME>

<AUTHOR> Samuel Peterson </AUTHOR>

<PUBLISHER> NSS Publications </PUBLISHER>

<PRICE> $30.00</PRICE>

</BOOK>

17. AD ROTATORS

ASP.NET

 118

Like all XML files, the advertisement file needs to be a structured text file with well-

defined tags delineating the data. There are the following standard XML elements

that are commonly used in the advertisement file:

Element Description

Advertisements Encloses the advertisement file.

Ad Delineates separate ad.

ImageUrl The path of image that will be displayed.

NavigateUrl The link that will be followed when the user clicks the ad.

AlternateText The text that will be displayed instead of the picture if it

cannot be displayed.

Keyword Keyword identifying a group of advertisements. This is used

for filtering.

Impressions The number indicating how often an advertisement will

appear.

Height Height of the image to be displayed.

Width Width of the image to be displayed.

Apart from these tags, customs tags with custom attributes could also be included.

The following code illustrates an advertisement file ads.xml:

<Advertisements>

<Ad>

<ImageUrl>rose1.jpg</ImageUrl>

<NavigateUrl>http://www.1800flowers.com</NavigateUrl>

<AlternateText>

 Order flowers, roses, gifts and more

</AlternateText>

<Impressions>20</Impressions>

ASP.NET

 119

<Keyword>flowers</Keyword>

</Ad>

<Ad>

<ImageUrl>rose2.jpg</ImageUrl>

<NavigateUrl>http://www.babybouquets.com.au</NavigateUrl>

<AlternateText>Order roses and flowers</AlternateText>

<Impressions>20</Impressions>

<Keyword>gifts</Keyword>

</Ad>

<Ad>

<ImageUrl>rose3.jpg</ImageUrl>

<NavigateUrl>http://www.flowers2moscow.com</NavigateUrl>

<AlternateText>Send flowers to Russia</AlternateText>

<Impressions>20</Impressions>

<Keyword>russia</Keyword>

</Ad>

<Ad>

<ImageUrl>rose4.jpg</ImageUrl>

<NavigateUrl>http://www.edibleblooms.com</NavigateUrl>

<AlternateText>Edible Blooms</AlternateText>

<Impressions>20</Impressions>

<Keyword>gifts</Keyword>

</Ad>

</Advertisements>

ASP.NET

 120

Properties and Events of the AdRotator Class

The AdRotator class is derived from the WebControl class and inherits its properties.

Apart from those, the AdRotator class has the following properties:

Properties Description

AdvertisementFile The path to the advertisement file.

AlternateTextFeild The element name of the field where alternate text is

provided. The default value is AlternateText.

DataMember The name of the specific list of data to be bound when

advertisement file is not used.

DataSource Control from where it would retrieve data.

DataSourceID Id of the control from where it would retrieve data.

Font Specifies the font properties associated with the

advertisement banner control.

ImageUrlField The element name of the field where the URL for the image

is provided. The default value is ImageUrl.

KeywordFilter For displaying the keyword based ads only.

NavigateUrlField The element name of the field where the URL to navigate to

is provided. The default value is NavigateUrl.

Target The browser window or frame that displays the content of

the page linked.

UniqueID Obtains the unique, hierarchically qualified identifier for the

AdRotator control.

ASP.NET

 121

Following are the important events of the AdRotator class:

Events Description

AdCreated It is raised once per round trip to the server after creation

of the control, but before the page is rendered

DataBinding Occurs when the server control binds to a data source.

DataBound Occurs after the server control binds to a data source.

Disposed Occurs when a server control is released from memory,

which is the last stage of the server control lifecycle when

an ASP.NET page is requested.

Init Occurs when the server control is initialized, which is the

first step in its lifecycle.

Load Occurs when the server control is loaded into the Page

object.

PreRender Occurs after the Control object is loaded but prior to

rendering.

Unload Occurs when the server control is unloaded from memory.

Working with AdRotator Control

Create a new web page and place an AdRotator control on it.

<form id="form1" runat="server">

<div>

 <asp:AdRotator ID="AdRotator1"

 runat="server" AdvertisementFile ="~/ads.xml"

 onadcreated="AdRotator1_AdCreated" />

</div>

ASP.NET

 122

</form>

The ads.xml file and the image files should be located in the root directory of the web

site.

Try to execute the above application and observe that each time the page is reloaded,

the ad is changed.

ASP.NET

 123

The calendar control is a functionally rich web control, which provides the following

capabilities:

 Displaying one month at a time

 Selecting a day, a week or a month

 Selecting a range of days

 Moving from month to month

 Controlling the display of the days programmatically

The basic syntax of a calendar control is:

<asp:Calender ID = "Calendar1" runat = "server"></asp:Calender>

Properties and Events of the Calendar Control

The calendar control has many properties and events, using which you can customize

the actions and display of the control. The following table provides some important

properties of the Calendar control:

Properties Description

Caption Gets or sets the caption for the calendar control.

CaptionAlign Gets or sets the alignment for the caption.

CellPadding Gets or sets the number of spaces between the data and the

cell border.

CellSpacing Gets or sets the space between cells.

DayHeaderStyle Gets the style properties for the section that displays the

day of the week.

DayNameFormat Gets or sets format of days of the week.

DayStyle Gets the style properties for the days in the displayed

month.

18. CALENDARS

ASP.NET

 124

FirstDayOfWeek Gets or sets the day of week to display in the first column.

NextMonthText Gets or sets the text for next month navigation control. The

default value is >.

NextPrevFormat Gets or sets the format of the next and previous month

navigation control.

OtherMonthDayStyle Gets the style properties for the days on the Calendar

control that are not in the displayed month.

PrevMonthText Gets or sets the text for previous month navigation control.

The default value is <.

SelectedDate Gets or sets the selected date.

SelectedDates Gets a collection of DateTime objects representing the

selected dates.

SelectedDayStyle Gets the style properties for the selected dates.

SelectionMode Gets or sets the selection mode that specifies whether the

user can select a single day, a week or an entire month.

SelectMonthText Gets or sets the text for the month selection element in the

selector column.

SelectorStyle Gets the style properties for the week and month selector

column.

SelectWeekText Gets or sets the text displayed for the week selection

element in the selector column.

ShowDayHeader Gets or sets the value indicating whether the heading for

the days of the week is displayed.

ShowGridLines Gets or sets the value indicating whether the gridlines would

be shown.

ShowNextPrevMonth Gets or sets a value indicating whether next and previous

month navigation elements are shown in the title section.

ASP.NET

 125

ShowTitle Gets or sets a value indicating whether the title section is

displayed.

TitleFormat Gets or sets the format for the title section.

Titlestyle Get the style properties of the title heading for the Calendar

control.

TodayDayStyle Gets the style properties for today's date on the Calendar

control.

TodaysDate Gets or sets the value for today’s date.

UseAccessibleHeader Gets or sets a value that indicates whether to render the

table header <th> HTML element for the day headers

instead of the table data <td> HTML element.

VisibleDate Gets or sets the date that specifies the month to display.

WeekendDayStyle Gets the style properties for the weekend dates on the

Calendar control.

The Calendar control has the following three most important events that allow the

developers to program the calendar control. They are:

Events Description

SelectionChanged It is raised when a day, a week or an entire month is

selected.

DayRender It is raised when each data cell of the calendar control is

rendered.

VisibleMonthChanged It is raised when user changes a month.

Working with the Calendar Control

Putting a bare-bone calendar control without any code behind file provides a workable

calendar to a site, which shows the months and days of the year. It also allows

navigation to next and previous months.

ASP.NET

 126

Calendar controls allow the users to select a single day, a week, or an entire month.

This is done by using the SelectionMode property. This property has the following

values:

Properties Description

Day To select a single day.

DayWeek To select a single day or an entire week.

DayWeekMonth To select a single day, a week, or an entire month.

None Nothing can be selected.

The syntax for selecting days:

<asp:Calender ID = "Calendar1"

 runat = "server"

 SelectionMode="DayWeekMonth">

</asp:Calender>

When the selection mode is set to the value DayWeekMonth, an extra column with

the > symbol appears for selecting the week, and a >> symbol appears to the left of

the day’s name for selecting the month.

ASP.NET

 127

Example

The following example demonstrates selecting a date and displays the date in a label:

The content file code is as follows:

<%@ Page Language="C#"

 AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="calendardemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

ASP.NET

 128

 <h3> Your Birthday:</h3>

 <asp:Calendar ID="Calendar1"

 runat="server"

 SelectionMode="DayWeekMonth"

 onselectionchanged="Calendar1_SelectionChanged">

 </asp:Calendar>

 </div>

 <p>Todays date is:

 <asp:Label ID="lblday" runat="server"></asp:Label>

 </p>

 <p>Your Birday is:

 <asp:Label ID="lblbday" runat="server"></asp:Label>

 </p>

 </form>

</body>

</html>

The event handler for the event SelectionChanged:

protected void Calendar1_SelectionChanged(object sender, EventArgs e)

{

 lblday.Text = Calendar1.TodaysDate.ToShortDateString();

 lblbday.Text = Calendar1.SelectedDate.ToShortDateString();

}

ASP.NET

 129

When the file is run, it should produce the following output:

ASP.NET

 130

MultiView and View controls allow you to divide the content of a page into different

groups, displaying only one group at a time. Each View control manages one group

of content and all the View controls are held together in a MultiView control.

The MultiView control is responsible for displaying one View control at a time. The

View displayed is called the active view.

The syntax of MultiView control is:

<asp:MultView ID= "MultiView1" runat= "server"></asp:MultiView>

The syntax of View control is:

<asp:View ID= "View1" runat= "server"></asp:View>

However, the View control cannot exist on its own. It would render error if you try to

use it stand-alone. It is always used with a Multiview control as:

<asp:MultView ID= "MultiView1" runat= "server">

<asp:View ID= "View1" runat= "server"> </asp:View>

</asp:MultiView>

Properties of View and MultiView Controls

Both View and MultiView controls are derived from Control class and inherit all its

properties, methods, and events. The most important property of the View control is

Visible property of type Boolean, which sets the visibility of a view.

The MultiView control has the following important properties:

Properties Description

Views Collection of View controls within the MultiView.

ActiveViewIndex A zero based index that denotes the active view. If no

view is active, then the index is -1.

The CommandName attribute of the button control associated with the navigation of

the MultiView control are associated with some related field of the MultiView control.

19. MULTI VIEWS

ASP.NET

 131

For example, if a button control with CommandName value as NextView is associated

with the navigation of the multiview, it automatically navigates to the next view when

the button is clicked.

The following table shows the default command names of the above properties:

Properties Description

NextViewCommandName NextView

PreviousViewCommandName PrevView

SwitchViewByIDCommandName SwitchViewByID

SwitchViewByIndexCommandName SwitchViewByIndex

The important methods of the multiview control are:

Methods Description

SetActiveview Sets the active view

GetActiveview Retrieves the active view

Every time a view is changed, the page is posted back to the server and a number of

events are raised. Some important events are:

Events Description

ActiveViewChanged Raised when a view is changed

Activate Raised by the active view

Deactivate Raised by the inactive view

Apart from the above-mentioned properties, methods and events, multiview control

inherits the members of the control and object class.

Example

The example page has three views. Each view has two button for navigating through

the views.

ASP.NET

 132

The content file code is as follows:

<%@ Page Language="C#"

 AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="multiviewdemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title>Untitled Page</title>

</head>

<body>

<form id="form1" runat="server">

<div>

<h2>MultiView and View Controls</h2>

 <asp:DropDownList ID="DropDownList1"

 runat="server"

 onselectedindexchanged="DropDownList1_SelectedIndexChanged">

</asp:DropDownList>

<hr />

<asp:MultiView ID="MultiView1"

 runat="server"

 ActiveViewIndex="2"

 onactiveviewchanged="MultiView1_ActiveViewChanged" >

<asp:View ID="View1" runat="server">

ASP.NET

 133

<h3>This is view 1</h3>

<asp:Button CommandName="NextView" ID="btnnext1"

 runat="server" Text = "Go To Next" />

<asp:Button CommandArgument="View3"

 CommandName="SwitchViewByID" ID="btnlast"

 runat="server" Text = "Go To Last" />

</asp:View>

<asp:View ID="View2" runat="server">

<h3>This is view 2</h3>

<asp:Button CommandName="NextView" ID="btnnext2"

 runat="server" Text = "Go To Next" />

<asp:Button CommandName="PrevView" ID="btnprevious2"

 runat="server" Text = "Go To Previous View" />

</asp:View>

<asp:View ID="View3" runat="server">

<h3> This is view 3</h3>

<asp:Calendar ID="Calender1" runat="server"></asp:Calendar>

<asp:Button CommandArgument="0"

 CommandName="SwitchViewByIndex" ID="btnfirst"

 runat="server" Text = "Go To Next" />

<asp:Button CommandName="PrevView" ID="btnprevious"

ASP.NET

 134

runat="server" Text = "Go To Previous View" />

</asp:View>

</asp:MultiView>

</div>

</form>

</body>

</html>

Observe the following:

The MultiView.ActiveViewIndex determines which view will be shown. This is the only

view rendered on the page. The default value for the ActiveViewIndex is -1, when no

view is shown. Since the ActiveViewIndex is defined as 2 in the example, it shows

the third view, when executed.

ASP.NET

 135

The Panel control works as a container for other controls on the page. It controls the

appearance and visibility of the controls it contains. It also allows generating controls

programmatically.

The basic syntax of panel control is as follows:

<asp:Panel ID= "Panel1" runat = "server"></asp:Panel>

The Panel control is derived from the WebControl class. Hence it inherits all the

properties, methods and events of the same. It does not have any method or event

of its own. However it has the following properties of its own:

Properties Description

BackImageUrl URL of the background image of the panel.

DefaultButton Gets or sets the identifier for the default button that is

contained in the Panel control.

Direction Text direction in the panel.

GroupingText Allows grouping of text as a field.

HorizontalAlign Horizontal alignment of the content in the panel.

ScrollBars Specifies visibility and location of scrollbars within the

panel.

Wrap Allows text wrapping.

Working with the Panel Control

Let us start with a simple scrollable panel of specific height and width and a border

style. The ScrollBars property is set to both the scrollbars, hence both the scrollbars

are rendered.

The source file has the following code for the panel tag:

20. PANEL CONTROLS

ASP.NET

 136

<asp:Panel ID="Panel1" runat="server"

 BorderColor="#990000"

 BorderStyle="Solid"

 Borderstyle="width:1px"

 Height="116px"

 ScrollBars="Both"

 style="width:278px">

This is a scrollable panel.

<asp:Button ID="btnpanel"

 runat="server"

 Text="Button"

 style="width:82px" />

</asp:Panel>

The panel is rendered as follows:

Example

The following example demonstrates dynamic content generation. The user provides

the number of label controls and textboxes to be generated on the panel. The controls

are generated programmatically.

Change the properties of the panel using the properties window. When you select a

control on the design view, the properties window displays the properties of that

particular control and allows you to make changes without typing.

ASP.NET

 137

The source file for the example is as follows:

<form id="form1" runat="server">

<div>

<asp:Panel ID="pnldynamic"

 runat="server"

 BorderColor="#990000"

 BorderStyle="Solid"

 Borderstyle="width:1px"

 Height="150px"

 ScrollBars="Auto"

 style="width:60%"

 BackColor="#CCCCFF"

 Font-Names="Courier"

 HorizontalAlign="Center">

This panel shows dynamic control generation:

</asp:Panel>

ASP.NET

 138

</div>

<table style="width: 51%;">

<tr>

<td class="style2">No of Labels:</td>

<td class="style1">

<asp:DropDownList ID="ddllabels" runat="server">

<asp:ListItem>0</asp:ListItem>

<asp:ListItem>1</asp:ListItem>

<asp:ListItem>2</asp:ListItem>

<asp:ListItem>3</asp:ListItem>

<asp:ListItem>4</asp:ListItem>

</asp:DropDownList>

</td>

</tr>

<tr>

<td class="style2"> </td>

<td class="style1"> </td>

</tr>

<tr>

<td class="style2">No of Text Boxes :</td>

<td class="style1">

<asp:DropDownList ID="ddltextbox" runat="server">

<asp:ListItem>0</asp:ListItem>

<asp:ListItem Value="1"></asp:ListItem>

<asp:ListItem>2</asp:ListItem>

<asp:ListItem>3</asp:ListItem>

<asp:ListItem Value="4"></asp:ListItem>

ASP.NET

 139

</asp:DropDownList>

</td>

</tr>

<tr>

<td class="style2"> </td>

<td class="style1"> </td>

</tr>

<tr>

<td class="style2">

<asp:CheckBox ID="chkvisible"

 runat="server"

 Text="Make the Panel Visible" />

</td>

<td class="style1">

<asp:Button ID="btnrefresh"

 runat="server"

 Text="Refresh Panel"

 style="width:129px" />

</td>

</tr>

</table>

</form>

The code behind the Page_Load event is responsible for generating the controls

dynamically:

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

ASP.NET

 140

 {

 //make the panel visible

 pnldynamic.Visible = chkvisible.Checked;

 //generating the lable controls:

 int n = Int32.Parse(ddllabels.SelectedItem.Value);

 for (int i = 1; i <= n; i++)

 {

 Label lbl = new Label();

 lbl.Text = "Label" + (i).ToString();

 pnldynamic.Controls.Add(lbl);

 pnldynamic.Controls.Add(new LiteralControl("
"));

 }

 //generating the text box controls:

 int m = Int32.Parse(ddltextbox.SelectedItem.Value);

 for (int i = 1; i <= m; i++)

 {

 TextBox txt = new TextBox();

 txt.Text = "Text Box" + (i).ToString();

 pnldynamic.Controls.Add(txt);

 pnldynamic.Controls.Add(new LiteralControl("
"));

 }

 }

}

When executed, the panel is rendered as:

ASP.NET

 141

ASP.NET

 142

AJAX stands for Asynchronous JavaScript and XML. This is a cross platform

technology which speeds up response time. The AJAX server controls add script to

the page which is executed and processed by the browser.

However like other ASP.NET server controls, these AJAX server controls also can have

methods and event handlers associated with them, which are processed on the server

side.

The control toolbox in the Visual Studio IDE contains a group of controls called the

'AJAX Extensions'

The ScriptManager Control

The ScriptManager control is the most important control and must be present on the

page for other controls to work.

It has the basic syntax:

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

If you create an 'Ajax Enabled site' or add an 'AJAX Web Form' from the 'Add Item'

dialog box, the web form automatically contains the script manager control. The

ScriptManager control takes care of the client-side script for all the server side

controls.

21. AJAX CONTROLS

ASP.NET

 143

The UpdatePanel Control

The UpdatePanel control is a container control and derives from the Control class. It

acts as a container for the child controls within it and does not have its own interface.

When a control inside it triggers a post back, the UpdatePanel intervenes to initiate

the post asynchronously and update just that portion of the page.

For example, if a button control is inside the update panel and it is clicked, only the

controls within the update panel will be affected, the controls on the other parts of

the page will not be affected. This is called the partial post back or the asynchronous

post back.

Example

Add an AJAX web form in your application. It contains the script manager control by

default. Insert an update panel. Place a button control along with a label control

within the update panel control. Place another set of button and label outside the

panel.

The design view looks as follows:

The source file is as follows:

<form id="form1" runat="server">

<div>

<asp:ScriptManager ID="ScriptManager1" runat="server" />

ASP.NET

 144

</div>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<asp:Button ID="btnpartial" runat="server"

 onclick="btnpartial_Click" Text="Partial PostBack"/>

<asp:Label ID="lblpartial" runat="server"></asp:Label>

</ContentTemplate>

</asp:UpdatePanel>

<p>

 </p>

<p>

Outside the Update Panel</p>

<p>

<asp:Button ID="btntotal" runat="server"

 onclick="btntotal_Click" Text="Total PostBack" />

</p>

<asp:Label ID="lbltotal" runat="server"></asp:Label>

</form>

Both the button controls have same code for the event handler:

string time = DateTime.Now.ToLongTimeString();

lblpartial.Text = "Showing time from panel" + time;

lbltotal.Text = "Showing time from outside" + time;

Observe that when the page is executed, if the total post back button is clicked, it

updates time in both the labels but if the partial post back button is clicked, it only

updates the label within the update panel.

ASP.NET

 145

A page can contain multiple update panels with each panel containing other controls

like a grid and displaying different part of data.

When a total post back occurs, the update panel content is updated by default. This

default mode could be changed by changing the UpdateMode property of the control.

Let us look at other properties of the update panel.

Properties of the UpdatePanel Control

The following table shows the properties of the update panel control:

Properties Description

ChildrenAsTriggers This property indicates whether the post backs are

coming from the child controls, which cause the update

panel to refresh.

ContentTemplate It is the content template and defines what appears in

the update panel when it is rendered.

ContentTemplateContainer Retrieves the dynamically created template- container

object and used for adding child controls

programmatically.

IsInPartialRendering Indicates whether the panel is being updated as part of

the partial post back.

RenderMode Shows the render modes. The available modes are

Block and Inline.

ASP.NET

 146

UpdateMode Gets or sets the rendering mode by determining some

conditions.

Triggers Defines the collection trigger objects each

corresponding to an event causing the panel to refresh

automatically.

Methods of the UpdatePanel Control

The following table shows the methods of the update panel control:

Methods Description

CreateContentTemplateContainer Creates a Control object that acts as a container

for child controls that define the UpdatePanel

control's content.

CreateControlCollection Returns the collection of all controls that are

contained in the UpdatePanel control.

Initialize Initializes the UpdatePanel control trigger

collection if partial-page rendering is enabled.

Update Causes an update of the content of an

UpdatePanel control.

The behavior of the update panel depends upon the values of the UpdateMode

property and ChildrenAsTriggers property.

UpdateMode ChildrenAsTriggers Effect

Always False Illegal parameters.

Always True UpdatePanel refreshes if whole page

refreshes or a child control on it posts

back.

Conditional False UpdatePanel refreshes if whole page

refreshes or a triggering control outside it

initiates a refresh.

ASP.NET

 147

Conditional True UpdatePanel refreshes if whole page

refreshes or a child control on it posts back

or a triggering control outside it initiates a

refresh.

The UpdateProgress Control

The UpdateProgress control provides a sort of feedback on the browser while one or

more update panel controls are being updated. For example, while a user logs in or

waits for server response while performing some database oriented job.

It provides a visual acknowledgement like "Loading page...", indicating the work is in

progress.

The syntax for the UpdateProgress control is:

<asp:UpdateProgress ID="UpdateProgress1"

 runat="server"

 DynamicLayout="true"

 AssociatedUpdatePanelID="UpdatePanel1" >

<ProgressTemplate>

 Loading...

</ProgressTemplate>

</asp:UpdateProgress>

The above snippet shows a simple message within the ProgressTemplate tag.

However, it could be an image or other relevant controls. The UpdateProgress control

displays for every asynchronous postback unless it is assigned to a single update

panel using the AssociatedUpdatePanelID property.

Properties of the UpdateProgress Control

The following table shows the properties of the update progress control:

Properties Description

AssociatedUpdatePanelID Gets and sets the ID of the update panel with which this

control is associated.

Attributes Gets or sets the cascading style sheet (CSS) attributes of

the UpdateProgress control.

ASP.NET

 148

DisplayAfter Gets and sets the time in milliseconds after which the

progress template is displayed. The default is 500.

DynamicLayout Indicates whether the progress template is dynamically

rendered.

ProgressTemplate Indicates the template displayed during an asynchronous

post back which takes more time than the DisplayAfter

time.

Methods of the UpdateProgress Control

The following table shows the methods of the update progress control:

Methods Description

GetScriptDescriptors Returns a list of components, behaviors, and client controls

that are required for the UpdateProgress control's client

functionality.

GetScriptReferences Returns a list of client script library dependencies for the

UpdateProgress control.

The Timer Control

The timer control is used to initiate the post back automatically. This could be done

in two ways:

(1) Setting the Triggers property of the UpdatePanel control:

<Triggers>

<asp:AsyncPostBackTrigger

 ControlID="btnpanel2"

 EventName="Click" />

</Triggers>

(2) Placing a timer control directly inside the UpdatePanel to act as a child control

trigger. A single timer can be the trigger for multiple UpdatePanels.

<asp:UpdatePanel ID="UpdatePanel1"

 runat="server"

ASP.NET

 149

 UpdateMode="Always">

<ContentTemplate>

<asp:Timer ID="Timer1" runat="server" Interval="1000">

</asp:Timer>

<asp:Label ID="Label1" runat="server"

 Height="101px" style="width:304px">

</asp:Label>

</ContentTemplate>

</asp:UpdatePanel>

ASP.NET

 150

A data source control interacts with the data-bound controls and hides the complex

data binding processes. These are the tools that provide data to the data bound

controls and support execution of operations like insertions, deletions, sorting, and

updates.

Each data source control wraps a particular data provider-relational databases, XML

documents, or custom classes and helps in:

 Managing connection

 Selecting data

 Managing presentation aspects like paging, caching, etc.

 Manipulating data

There are many data source controls available in ASP.NET for accessing data from

SQL Server, from ODBC or OLE DB servers, from XML files, and from business objects.

Based on type of data, these controls could be divided into two categories:

 Hierarchical data source controls

 Table-based data source controls

The data source controls used for hierarchical data are:

 XMLDataSource – It allows binding to XML files and strings with or without
schema information.

 SiteMapDataSource – It allows binding to a provider that supplies site map

information.

The data source controls used for tabular data are:

Data source

controls

Description

SqlDataSource It represents a connection to an ADO.NET data provider that

returns SQL data, including data sources accessible via OLEDB

and QDBC.

ObjectDataSource It allows binding to a custom .Net business object that returns

data.

LinqdataSource It allows binding to the results of a Linq-to-SQL query.

(supported by ASP.NET 3.5 only)

AccessDataSource It represents connection to a Microsoft Access database.

22. DATA SOURCES

ASP.NET

 151

Data Source Views

Data source views are objects of the DataSourceView class, which represent a

customized view of data for different data operations such as sorting, filtering, etc.

The DataSourceView class serves as the base class for all data source view classes,

which define the capabilities of data source controls.

The following table provides the properties of the DataSourceView class:

Properties Description

CanDelete Indicates whether deletion is allowed on the

underlying data source.

CanInsert Indicates whether insertion is allowed on the

underlying data source.

CanPage Indicates whether paging is allowed on the

underlying data source.

CanRetrieveTotalRowCount Indicates whether total row count information is

available.

CanSort Indicates whether the data could be sorted.

CanUpdate Indicates whether updates are allowed on the

underlying data source.

Events Gets a list of event-handler delegates for the data

source view.

Name Name of the view.

The following table provides the methods of the DataSourceView class:

Methods Description

CanExecute Determines whether the specified command

can be executed.

ASP.NET

 152

ExecuteCommand Executes the specific command.

ExecuteDelete Performs a delete operation on the list of data

that the DataSourceView object represents.

ExecuteInsert Performs an insert operation on the list of data

that the DataSourceView object represents.

ExecuteSelect Gets a list of data from the underlying data

storage.

ExecuteUpdate Performs an update operation on the list of

data that the DataSourceView object

represents.

Delete Performs a delete operation on the data

associated with the view.

Insert Performs an insert operation on the data

associated with the view.

Select Returns the queried data.

Update Performs an update operation on the data

associated with the view.

OnDataSourceViewChanged Raises the DataSourceViewChanged event.

RaiseUnsupportedCapabilitiesError Called by the

RaiseUnsupportedCapabilitiesError method to

compare the capabilities requested for an

ExecuteSelect operation against those that

the view supports.

The SqlDataSource Control

The SqlDataSource control represents a connection to a relational database such as

SQL Server or Oracle database, or data accessible through OLEDB or Open Database

Connectivity (ODBC). Connection to data is made through two important properties

ConnectionString and ProviderName.

The following code snippet provides the basic syntax of the control:

ASP.NET

 153

<asp:SqlDataSource runat="server" ID="MySqlSource"

ProviderName='<%$ ConnectionStrings:LocalNWind.ProviderName %>'

ConnectionString='<%$ ConnectionStrings:LocalNWind %>'

SelectionCommand= "SELECT * FROM EMPLOYEES" />

<asp:GridView ID="GridView1" runat="server"

 DataSourceID="MySqlSource" />

Configuring various data operations on the underlying data depends upon the various

properties (property groups) of the data source control.

The following table provides the related sets of properties of the SqlDataSource

control, which provides the programming interface of the control:

Property Group Description

DeleteCommand,

DeleteParameters,

DeleteCommandType

Gets or sets the SQL statement, parameters, and type for

deleting rows in the underlying data.

FilterExpression,

FilterParameters

Gets or sets the data filtering string and parameters.

InsertCommand,

InsertParameters,

InsertCommandType

Gets or sets the SQL statement, parameters, and type for

inserting rows in the underlying database.

SelectCommand,

SelectParameters,

SelectCommandType

Gets or sets the SQL statement, parameters, and type for

retrieving rows from the underlying database.

SortParameterName Gets or sets the name of an input parameter that the

command's stored procedure will use to sort data.

UpdateCommand,

UpdateParameters,

Gets or sets the SQL statement, parameters, and type for

updating rows in the underlying data store.

ASP.NET

 154

UpdateCommandType

The following code snippet shows a data source control enabled for data

manipulation:

<asp:SqlDataSource runat="server" ID= "MySqlSource"

ProviderName='<%$ ConnectionStrings:LocalNWind.ProviderName %>'

ConnectionString=' <%$ ConnectionStrings:LocalNWind %>'

SelectCommand= "SELECT * FROM EMPLOYEES"

UpdateCommand= "UPDATE EMPLOYEES SET LASTNAME=@lame"

DeleteCommand= "DELETE FROM EMPLOYEES WHERE EMPLOYEEID=@eid"

FilterExpression= "EMPLOYEEID > 10">

.....

.....

</asp:SqlDataSource>

The ObjectDataSource Control

The ObjectDataSource Control enables user-defined classes to associate the output

of their methods to data bound controls. The programming interface of this class is

almost same as the SqlDataSource control.

Following are two important aspects of binding business objects:

 The bindable class should have a default constructor, it should be stateless,
and have methods that can be mapped to select, update, insert, and delete

semantics.

 The object must update one item at a time, batch operations are not
supported.

Let us go directly to an example to work with this control. The student class is the

class to be used with an object data source. This class has three properties: a student

id, name, and city. It has a default constructor and a GetStudents method for

retrieving data.

The student class:

public class Student

{

ASP.NET

 155

 public int StudentID { get; set; }

 public string Name { get; set; }

 public string City { get; set; }

 public Student()

 { }

 public DataSet GetStudents()

 {

 DataSet ds = new DataSet();

 DataTable dt = new DataTable("Students");

 dt.Columns.Add("StudentID", typeof(System.Int32));

 dt.Columns.Add("StudentName", typeof(System.String));

 dt.Columns.Add("StudentCity", typeof(System.String));

 dt.Rows.Add(new object[] { 1, "M. H. Kabir", "Calcutta" });

 dt.Rows.Add(new object[] { 2, "Ayan J. Sarkar", "Calcutta" });

 ds.Tables.Add(dt);

 return ds;

 }

}

Take the following steps to bind the object with an object data source and retrieve

data:

 Create a new web site.

 Add a class (Students.cs) to it by right clicking the project from the Solution
Explorer, adding a class template, and placing the above code in it.

 Build the solution so that the application can use the reference to the class.

 Place an object data source control in the web form.

 Configure the data source by selecting the object.

ASP.NET

 156

 Select a data method(s) for different operations on data. In this example, there
is only one method.

 Place a data bound control such as grid view on the page and select the object
data source as its underlying data source.

ASP.NET

 157

 At this stage, the design view should look like the following:

 Run the project, it retrieves the hard coded tuples from the students class.

The AccessDataSource Control

The AccessDataSource control represents a connection to an Access database. It is

based on the SqlDataSource control and provides simpler programming interface.

The following code snippet provides the basic syntax for the data source:

<asp:AccessDataSource ID="AccessDataSource1"

 runat="server"

 DataFile="~/App_Data/ASPDotNetStepByStep.mdb"

 SelectCommand="SELECT * FROM [DotNetReferences]">

</asp:AccessDataSource>

The AccessDataSource control opens the database in read-only mode. However, it

can also be used for performing insert, update, or delete operations. This is done

using the ADO.NET commands and parameter collection.

ASP.NET

 158

Updates are problematic for Access databases from within an ASP.NET application

because an Access database is a plain file and the default account of the ASP.NET

application might not have the permission to write to the database file.

ASP.NET

 159

Every ASP.NET web form control inherits the DataBind method from its parent Control

class, which gives it an inherent capability to bind data to at least one of its

properties. This is known as simple data binding or inline data binding.

Simple data binding involves attaching any collection (item collection) which

implements the IEnumerable interface, or the DataSet and DataTable classes to the

DataSource property of the control.

On the other hand, some controls can bind records, lists, or columns of data into their

structure through a DataSource control. These controls derive from the

BaseDataBoundControl class. This is called declarative data binding.

The data source controls help the data-bound controls implement functionalities such

as sorting, paging, and editing data collections.

The BaseDataBoundControl is an abstract class, which is inherited by two more

abstract classes:

 DataBoundControl

 HierarchicalDataBoundControl

The abstract class DataBoundControl is again inherited by two more abstract classes:

 ListControl

 CompositeDataBoundControl

The controls capable of simple data binding are derived from the ListControl abstract

class and these controls are:

 BulletedList

 CheckBoxList

 DropDownList

 ListBox

 RadioButtonList

The controls capable of declarative data binding (a more complex data binding) are

derived from the abstract class CompositeDataBoundControl. These controls are:

 DetailsView

 FormView

 GridView

 RecordList

23. DATA BINDING

ASP.NET

 160

Simple Data Binding

Simple data binding involves the read-only selection lists. These controls can bind to

an array list or fields from a database. Selection lists takes two values from the

database or the data source; one value is displayed by the list and the other is

considered as the value corresponding to the display.

Let us take up a small example to understand the concept. Create a web site with a

bulleted list and a SqlDataSource control on it. Configure the data source control to

retrieve two values from your database (we use the same DotNetReferences table as

in the previous chapter).

Choosing a data source for the bulleted list control involves:

 Selecting the data source control

 Selecting a field to display, which is called the data field

 Selecting a field for the value

When the application is executed, check that the entire title column is bound to the

bulleted list and displayed.

ASP.NET

 161

Declarative Data Binding

We have already used declarative data binding in the previous tutorial using GridView

control. The other composite data bound controls capable of displaying and

manipulating data in a tabular manner are the DetailsView, FormView, and RecordList

control.

In the next tutorial, we will look into the technology for handling database, i.e,

ADO.NET.

However, the data binding involves the following objects:

 A dataset that stores the data retrieved from the database.

 The data provider, which retrieves data from the database by using a command
over a connection.

 The data adapter that issues the select statement stored in the command
object; it is also capable of update the data in a database by issuing Insert,

Delete, and Update statements.

ASP.NET

 162

Relation between the data binding objects:

Example

Let us take the following steps:

Step (1): Create a new website. Add a class named booklist by right-clicking on the

solution name in the Solution Explorer and choosing the item 'Class' from the 'Add

Item' dialog box. Name it as booklist.cs.

using System;

using System.Data;

using System.Configuration;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

ASP.NET

 163

namespace databinding

{

 public class booklist

 {

 protected String bookname;

 protected String authorname;

 public booklist(String bname, String aname)

 {

 this.bookname = bname;

 this.authorname = aname;

 }

 public String Book

 {

 get

 {

 return this.bookname;

 }

 set

 {

 this.bookname = value;

 }

 }

 public String Author

 {

 get

 {

ASP.NET

 164

 return this.authorname;

 }

 set

 {

 this.authorname = value;

 }

 }

 }

}

Step (2): Add four list controls on the page – a list box control, a radio button list, a

check box list, and a drop down list and four labels along with these list controls. The

page should look like this in design view:

The source file should look as the following:

<form id="form1" runat="server">

<div>

<table style="width: 559px">

<tr>

<td style="width: 228px; height: 157px;">

<asp:ListBox ID="ListBox1" runat="server" AutoPostBack="True"

ASP.NET

 165

OnSelectedIndexChanged="ListBox1_SelectedIndexChanged">

</asp:ListBox></td>

<td style="height: 157px">

<asp:DropDownList ID="DropDownList1" runat="server"

AutoPostBack="True"

OnSelectedIndexChanged="DropDownList1_SelectedIndexChanged">

</asp:DropDownList>

</td>

</tr>

<tr>

<td style="width: 228px; height: 40px;">

<asp:Label ID="lbllistbox" runat="server"></asp:Label>

</td>

<td style="height: 40px">

<asp:Label ID="lbldrpdown" runat="server">

</asp:Label>

</td>

</tr>

<tr>

<td style="width: 228px; height: 21px">

</td>

<td style="height: 21px">

</td>

</tr>

<tr>

<td style="width: 228px; height: 21px">

<asp:RadioButtonList ID="RadioButtonList1" runat="server" AutoPostBack="True"

OnSelectedIndexChanged="RadioButtonList1_SelectedIndexChanged">

</asp:RadioButtonList></td>

<td style="height: 21px">

<asp:CheckBoxList ID="CheckBoxList1" runat="server" AutoPostBack="True"

OnSelectedIndexChanged="CheckBoxList1_SelectedIndexChanged">

</asp:CheckBoxList></td>

</tr>

<tr>

ASP.NET

 166

<td style="width: 228px; height: 21px">

<asp:Label ID="lblrdlist" runat="server">

</asp:Label></td>

<td style="height: 21px">

<asp:Label ID="lblchklist" runat="server">

</asp:Label></td>

</tr>

</table>

</div>

</form>

Step (3): Finally, write the following code behind routines of the application:

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 IList bklist = createbooklist();

 if (!this.IsPostBack)

 {

 this.ListBox1.DataSource = bklist;

 this.ListBox1.DataTextField = "Book";

 this.ListBox1.DataValueField = "Author";

 this.DropDownList1.DataSource = bklist;

 this.DropDownList1.DataTextField = "Book";

 this.DropDownList1.DataValueField = "Author";

 this.RadioButtonList1.DataSource = bklist;

 this.RadioButtonList1.DataTextField = "Book";

 this.RadioButtonList1.DataValueField = "Author";

 this.CheckBoxList1.DataSource = bklist;

 this.CheckBoxList1.DataTextField = "Book";

 this.CheckBoxList1.DataValueField = "Author";

ASP.NET

 167

 this.DataBind();

 }

 }

 protected IList createbooklist()

 {

 ArrayList allbooks = new ArrayList();

 booklist bl;

 bl = new booklist("UNIX CONCEPTS", "SUMITABHA DAS");

 allbooks.Add(bl);

 bl = new booklist("PROGRAMMING IN C", "RICHI KERNIGHAN");

 allbooks.Add(bl);

 bl = new booklist("DATA STRUCTURE", "TANENBAUM");

 allbooks.Add(bl);

 bl = new booklist("NETWORKING CONCEPTS", "FOROUZAN");

 allbooks.Add(bl);

 bl = new booklist("PROGRAMMING IN C++", "B. STROUSTROUP");

 allbooks.Add(bl);

 bl = new booklist("ADVANCED JAVA", "SUMITABHA DAS");

 allbooks.Add(bl);

 return allbooks;

 }

 protected void ListBox1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lbllistbox.Text = this.ListBox1.SelectedValue;

 }

 protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lbldrpdown.Text = this.DropDownList1.SelectedValue;

ASP.NET

 168

 }

 protected void RadioButtonList1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lblrdlist.Text = this.RadioButtonList1.SelectedValue;

 }

 protected void CheckBoxList1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lblchklist.Text = this.CheckBoxList1.SelectedValue;

 }

}

Observe the following:

 The booklist class has two properties: bookname and authorname.

 The createbooklist method is a user defined method that creates an array of

booklist objects named allbooks.

 The Page_Load event handler ensures that a list of books is created. The list

is of IList type, which implements the IEnumerable interface and capable of
being bound to the list controls. The page load event handler binds the IList
object 'bklist' with the list controls. The bookname property is to be displayed

and the authorname property is considered as the value.

 When the page is run, if the user selects a book, its name is selected and

displayed by the list controls whereas the corresponding labels display the
author name, which is the corresponding value for the selected index of the
list control.

ASP.NET

 169

ASP.NET

 170

ASP.NET allows the users to create controls. These user defined controls are

categorized into:

 User controls

 Custom controls

User Controls

User controls behaves like miniature ASP.NET pages or web forms, which could be

used by many other pages. These are derived from the System.Web.UI.UserControl

class. These controls have the following characteristics:

 They have an .ascx extension.

 They may not contain any <html>, <body>, or <form> tags.

 They have a Control directive instead of a Page directive.

To understand the concept, let us create a simple user control, which will work as

footer for the web pages. To create and use the user control, take the following steps:

1. Create a new web application.

2. Right click on the project folder on the Solution Explorer and choose Add New

Item.

3. Select Web User Control from the Add New Item dialog box and name it
footer.ascx. Initially, the footer.ascx contains only a Control directive.

<%@ Control Language="C#" AutoEventWireup="true"

 CodeBehind="footer.ascx.cs"

24. CUSTOM CONTROLS

ASP.NET

 171

 Inherits="customcontroldemo.footer" %>

4. Add the following code to the file:

<table>

<tr>

<td align="center"> Copyright ©2010 TutorialPoints Ltd.</td>

</tr>

<tr>

<td align="center"> Location: Hyderabad, A.P </td>

</tr>

</table>

To add the user control to your web page, you must add the Register directive and

an instance of the user control to the page. The following code shows the content

file:

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="customcontroldemo._Default" %>

<%@ Register Src="~/footer.ascx"

 TagName="footer" TagPrefix="Tfooter" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

ASP.NET

 172

 <asp:Label ID="Label1" runat="server"

 Text="Welcome to ASP.Net Tutorials "></asp:Label>

 <asp:Button ID="Button1" runat="server"

 onclick="Button1_Click" Text="Copyright Info" />

 </div>

 <Tfooter:footer ID="footer1" runat="server" />

 </form>

</body>

</html>

When executed, the page shows the footer and this control could be used in all the

pages of your website.

Observe the following:

(1) The Register directive specifies a tag name as well as tag prefix for the control.

<%@ Register Src="~/footer.ascx" TagName="footer"

 TagPrefix="Tfooter" %>

(2) The following tag name and prefix should be used while adding the user control

on the page:

<Tfooter:footer ID="footer1" runat="server" />

ASP.NET

 173

Custom Controls

Custom controls are deployed as individual assemblies. They are compiled into a

Dynamic Link Library (DLL) and used as any other ASP.NET server control. They could

be created in either of the following way:

 By deriving a custom control from an existing control.

 By composing a new custom control combing two or more existing controls.

 By deriving from the base control class.

To understand the concept, let us create a custom control, which will simply render

a text message on the browser. To create this control, take the following steps:

Create a new website. Right click the solution (not the project) at the top of the tree

in the Solution Explorer.

In the New Project dialog box, select ASP.NET Server Control from the project

templates.

The above step adds a new project and creates a complete custom control to the

solution, called ServerControl1. In this example, let us name the project

CustomControls. To use this control, this must be added as a reference to the web

site before registering it on a page. To add a reference to the existing project, right

click on the project (not the solution), and click Add Reference.

ASP.NET

 174

Select the CustomControls project from the Projects tab of the Add Reference dialog

box. The Solution Explorer should show the reference.

To use the control on a page, add the Register directive just below the @Page

directive:

<%@ Register Assembly="CustomControls"

 Namespace="CustomControls"

 TagPrefix="ccs" %>

 Further, you can use the control, similar to any other controls.

<form id="form1" runat="server">

 <div>

 <ccs:ServerControl1 runat="server"

 Text = "I am a Custom Server Control" />

 </div>

</form>

When executed, the Text property of the control is rendered on the browser as

shown:

Working with Custom Controls

In the previous example, the value for the Text property of the custom control was

set. ASP.NET added this property by default, when the control was created. The

following code behind file of the control reveals this.

ASP.NET

 175

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Linq;

using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace CustomControls

{

 [DefaultProperty("Text")]

 [ToolboxData("<{0}:ServerControl1

 runat=server></{0}:ServerControl1>")]

 public class ServerControl1 : WebControl

 {

 [Bindable(true)]

 [Category("Appearance")]

 [DefaultValue("")]

 [Localizable(true)]

 public string Text

 {

 get

 {

 String s = (String)ViewState["Text"];

 return ((s == null) ? "[" + this.ID + "]" : s);

 }

 set

ASP.NET

 176

 {

 ViewState["Text"] = value;

 }

 }

 protected override void RenderContents(HtmlTextWriter output)

 {

 output.Write(Text);

 }

 }

}

The above code is automatically generated for a custom control. Events and methods

could be added to the custom control class.

Example

Let us expand the previous custom control named SeverControl1. Let us give it a

method named ‘checkpalindrome’, which gives it a power to check for palindromes.

Palindromes are words/literals that spell the same when reversed. For example,

Malayalam, madam, saras, etc. Extend the code for the custom control, which should

look as:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Linq;

using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace CustomControls

{

ASP.NET

 177

 [DefaultProperty("Text")]

 [ToolboxData("<{0}:ServerControl1

 runat=server></{0}:ServerControl1>")]

 public class ServerControl1 : WebControl

 {

 [Bindable(true)]

 [Category("Appearance")]

 [DefaultValue("")]

 [Localizable(true)]

 public string Text

 {

 get

 {

 String s = (String)ViewState["Text"];

 return ((s == null) ? "[" + this.ID + "]" : s);

 }

 set

 {

 ViewState["Text"] = value;

 }

 }

 protected override void RenderContents(HtmlTextWriter output)

 {

 if (this.checkpanlindrome())

 {

 output.Write("This is a palindrome:
");

 output.Write("");

 output.Write("");

ASP.NET

 178

 output.Write(Text);

 output.Write("");

 output.Write("");

 }

 else

 {

 output.Write("This is not a palindrome:
");

 output.Write("");

 output.Write("");

 output.Write(Text);

 output.Write("");

 output.Write("");

 }

 }

 protected bool checkpanlindrome()

 {

 if (this.Text != null)

 {

 String str = this.Text;

 String strtoupper = Text.ToUpper();

 char[] rev = strtoupper.ToCharArray();

 Array.Reverse(rev);

 String strrev = new String(rev);

 if (strtoupper == strrev)

 {

 return true;

 }

 else{

ASP.NET

 179

 return false;

 }

 }

 else

 {

 return false;

 }

 }

 }

}

When you change the code for the control, you must build the solution by clicking

Build -> Build Solution, so that the changes are reflected in your project. Add a text

box and a button control to the page, so that the user can provide a text, it is checked

for palindrome, when the button is clicked.

<form id="form1" runat="server">

<div>

 Enter a word:

 <asp:TextBox ID="TextBox1" runat="server" style="width:198px">

 </asp:TextBox>

 <asp:Button ID="Button1" runat="server"

 onclick="Button1_Click"

 Text="Check Palindrome" style="width:132px" />

 <ccs:ServerControl1 ID="ServerControl11"

 runat="server" Text = "" />

ASP.NET

 180

</div>

</form>

The Click event handler for the button simply copies the text from the text box to the

text property of the custom control.

protected void Button1_Click(object sender, EventArgs e)

{

 this.ServerControl11.Text = this.TextBox1.Text;

}

When executed, the control successfully checks palindromes.

Observe the following:

(1) When you add a reference to the custom control, it is added to the toolbox and

you can directly use it from the toolbox similar to any other control.

(2) The RenderContents method of the custom control class is overridden here as

you can add your own methods and events.

(3) The RenderContents method takes a parameter of HtmlTextWriter type, which is

responsible for rendering on the browser.

ASP.NET

 181

Websites are designed for repeated visits from the users. Personalization allows a

site to remember the user identity and other information details, and it presents an

individualistic environment to each user.

ASP.NET provides services for personalizing a website to suit a particular client's taste

and preference.

Understanding Profiles

ASP.NET personalization service is based on user profile. User profile defines the kind

of information about the user that the site needs. For example, name, age, address,

date of birth, and phone number.

This information is defined in the web.config file of the application and ASP.NET

runtime reads and uses it. This job is done by the personalization providers.

The user profiles obtained from user data is stored in a default database created by

asP.NET. You can create your own database for storing profiles. The profile data

definition is stored in the configuration file web.config.

Example

Let us create a sample site, where we want our application to remember user details

like name, address, date of birth etc. Add the profile details in the web.config file

within the <system.web> element.

<configuration>

<system.web>

<profile>

 <properties>

 <add name="Name" type ="String"/>

 <add name="Birthday" type ="System.DateTime"/>

 <group name="Address">

 <add name="Street"/>

 <add name="City"/>

 <add name="State"/>

 <add name="Zipcode"/>

25. PERSONALIZATION

ASP.NET

 182

 </group>

 </properties>

 </profile>

</system.web>

</configuration>

When the profile is defined in the web.config file, the profile could be used through

the Profile property found in the current HttpContext and also available via page.

Add the text boxes to take the user input as defined in the profile and add a button

for submitting the data:

Update Page_load to display profile information:

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

ASP.NET

 183

using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!this.IsPostBack)

 {

 ProfileCommon pc=this.Profile.GetProfile(Profile.UserName);

 if (pc != null)

 {

 this.txtname.Text = pc.Name;

 this.txtaddr.Text = pc.Address.Street;

 this.txtcity.Text = pc.Address.City;

 this.txtstate.Text = pc.Address.State;

 this.txtzip.Text = pc.Address.Zipcode;

 this.Calendar1.SelectedDate = pc.Birthday;

 }

 }

 }

}

Write the following handler for the Submit button, for saving the user data into the

profile:

protected void btnsubmit_Click(object sender, EventArgs e)

{

 ProfileCommon pc=this.Profile.GetProfile(Profile.UserName);

 if (pc != null)

 {

ASP.NET

 184

 pc.Name = this.txtname.Text;

 pc.Address.Street = this.txtaddr.Text;

 pc.Address.City = this.txtcity.Text;

 pc.Address.State = this.txtstate.Text;

 pc.Address.Zipcode = this.txtzip.Text;

 pc.Birthday = this.Calendar1.SelectedDate;

 pc.Save();

 }

}

When the page is executed for the first time, the user needs to enter the information.

However, next time the user details would be automatically loaded.

Attributes for the <add> Element

Apart from the name and type attributes that we have used, there are other attributes

to the <add> element. Following table illustrates some of these attributes:

Attributes Description

Name The name of the property.

Type By default the type is string but it allows any fully qualified class

name as data type.

serializeAs The format to use when serializing this value.

readOnly A read only profile value cannot be changed, by default this

property is false.

defaultValue A default value that is used if the profile does not exist or does

not have information.

allowAnonymous A Boolean value indicating whether this property can be used

with the anonymous profiles.

Provider The profiles provider that should be used to manage just this

property.

ASP.NET

 185

Anonymous Personalization

Anonymous personalization allows the user to personalize the site before identifying

themselves. For example, Amazon.com allows the user to add items in the shopping

cart before they log in. To enable this feature, the web.config file could be configured

as:

<anonymousIdentification enabled ="true"

cookieName=".ASPXANONYMOUSUSER"

cookieTimeout="120000"

cookiePath="/"

cookieRequiresSSL="false"

cookieSlidingExpiration="true"

cookieprotection="Encryption"

coolieless="UseDeviceProfile"/>

ASP.NET

 186

Error handling in ASP.NET has three aspects:

 Tracing - tracing the program execution at page level or application level.

 Error handling - handling standard errors or custom errors at page level or

application level.

 Debugging - stepping through the program, setting break points to analyze

the code.

In this chapter, we will discuss tracing and error handling and in the next chapter,

we will discuss debugging.

To understand the concepts, create the following sample application. It has a label

control, a dropdown list, and a link. The dropdown list loads an array list of famous

quotes and the selected quote is shown in the label below. It also has a hyperlink

which points to a nonexistent link.

<%@ Page Language="C#"

 AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="errorhandling._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Tracing, debugging and error handling</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="lblheading" runat="server"

 Text="Tracing, Debuggin and Error Handling">

 </asp:Label>

 <asp:DropDownList ID="ddlquotes"

26. ERROR HANDLING

ASP.NET

 187

 runat="server" AutoPostBack="True"

 onselectedindexchanged="ddlquotes_SelectedIndexChanged">

 </asp:DropDownList>

 <asp:Label ID="lblquotes" runat="server">

 </asp:Label>

 <asp:HyperLink ID="HyperLink1" runat="server"

 NavigateUrl="mylink.htm">Link to:</asp:HyperLink>

 </div>

 </form>

</body>

</html>

The code behind file:

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 string[,] quotes =

 {

 {"Imagination is more important than Knowledge.", "Albert Einsten"},

 {"Assume a virtue, if you have it not", "Shakespeare"},

 {"A man cannot be comfortable without his own approval", "Mark

Twain"},

 {"Beware the young doctor and the old barber", "Benjamin Franklin"},

 {"Whatever begun in anger ends in shame", "Benjamin Franklin"}

 };

 for (int i=0; i<quotes.GetLength(0); i++)

 ddlquotes.Items.Add(new ListItem(quotes[i,0],

 quotes[i,1]));

 }

ASP.NET

 188

 }

 protected void ddlquotes_SelectedIndexChanged(object sender, EventArgs e)

 {

 if (ddlquotes.SelectedIndex != -1)

 {

 lblquotes.Text = String.Format("{0}, Quote: {1}",

 ddlquotes.SelectedItem.Text, ddlquotes.SelectedValue);

 }

 }

}

Tracing

To enable page-level tracing, you need to modify the Page directive and add a Trace

attribute as shown:

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="errorhandling._Default"

 Trace ="true" %>

Now when you execute the file, you get the tracing information:

ASP.NET

 189

It provides the following information at the top:

 Session ID

 Status Code

 Time of Request

 Type of Request

 Request and Response Encoding

The status code sent from the server each time the page is requested shows the

name and time of error if any. The following table shows the common HTTP status

codes:

Number Description

Informational (100 - 199)

100 Continue

101 Switching protocols

Successful (200 - 299)

200 OK

204 No content

Redirection (300 - 399)

301 Moved permanently

305 Use proxy

307 Temporary redirect

Client Errors (400 - 499)

400 Bad request

402 Payment required

404 Not found

ASP.NET

 190

408 Request timeout

417 Expectation failed

Server Errors (500 - 599)

500 Internal server error

503 Service unavailable

505 HTTP version not supported

Under the top level information, there is Trace log, which provides details of page life

cycle. It provides elapsed time in seconds since the page was initialized.

The next section is control tree, which lists all controls on the page in a hierarchical

manner:

ASP.NET

 191

Last in the Session and Application state summaries, cookies, and headers collections

followed by list of all server variables.

The Trace object allows you to add custom information to the trace output. It has

two methods to accomplish this: the Write method and the Warn method.

Change the Page_Load event handler to check the Write method:

protected void Page_Load(object sender, EventArgs e)

{

 Trace.Write("Page Load");

 if (!IsPostBack)

 {

 Trace.Write("Not Post Back, Page Load");

 string[,] quotes =

 }

}

Run to observe the effects:

To check the Warn method, let us forcibly enter some erroneous code in the selected

index changed event handler:

try

{

 int a = 0;

 int b = 9 / a;

}

catch (Exception e)

ASP.NET

 192

{

 Trace.Warn("UserAction", "processing 9/a", e);

}

Try-Catch is a C# programming construct. The try block holds any code that may or

may not produce error and the catch block catches the error. When the program is

run, it sends the warning in the trace log.

Application level tracing applies to all the pages in the web site. It is implemented by

putting the following code lines in the web.config file:

<system.web>

<trace enabled="true" />

</system.web>

Error Handling

Although ASP.NET can detect all runtime errors, still some subtle errors may still be

there. Observing the errors by tracing is meant for the developers, not for the users.

Hence, to intercept such occurrence, you can add error handing settings in the

web.config file of the application. It is application-wide error handling. For example,

you can add the following lines in the web.config file:

<configuration>

 <system.web>

 <customErrors mode="RemoteOnly"

 defaultRedirect="GenericErrorPage.htm">

<error statusCode="403" redirect="NoAccess.htm" />

<error statusCode="404" redirect="FileNotFound.htm" />

</customErrors>

</system.web>

<configuration>

The <customErrors> section has the possible attributes:

ASP.NET

 193

 Mode: It enables or disables custom error pages. It has the three possible
values:

 On: displays the custom pages.

 Off: displays ASP.NET error pages (yellow pages).

 remoteOnly: It displays custom errors to client, display ASP.NET errors locally.

 defaultRedirect: It contains the URL of the page to be displayed in case of
unhandled errors.

To put different custom error pages for different type of errors, the <error> sub tags

are used, where different error pages are specified, based on the status code of the

errors.

To implement page level error handling, the Page directive could be modified:

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="errorhandling._Default"

 Trace ="true"

 ErrorPage="PageError.htm" %>

Because ASP.NET Debugging is an important subject in itself, so we would discuss it

in the next chapter separately.

ASP.NET

 194

Debugging allows the developers to see how the code works in a step-by-step

manner, how the values of the variables change, how the objects are created and

destroyed, etc.

When the site is executed for the first time, Visual Studio displays a prompt asking

whether it should be enabled for debugging:

When debugging is enabled, the following lines of codes are shown in the web.config:

<system.web>

 <compilation debug="true">

 <assemblies>

 </assemblies>

 </compilation>

</system.web>

The Debug toolbar provides all the tools available for debugging:

Breakpoints

Breakpoints specifies the runtime to run a specific line of code and then stop

execution so that the code could be examined and perform various debugging jobs

27. DEBUGGING

ASP.NET

 195

such as changing the value of the variables, step through the codes, moving in and

out of functions and methods etc.

To set a breakpoint, right click on the code and choose insert break point. A red dot

appears on the left margin and the line of code is highlighted as shown:

Next when you execute the code, you can observe its behavior.

At this stage, you can step through the code, observe the execution flow and examine

the value of the variables, properties, objects, etc.

You can modify the properties of the breakpoint from the Properties menu obtained

by right clicking the breakpoint glyph:

The location dialog box shows the location of the file, line number and the character

number of the selected code. The condition menu item allows you to enter a valid

expression, which is evaluated when the program execution reaches the breakpoint:

ASP.NET

 196

The Hit Count menu item displays a dialog box that shows the number of times the

break point has been executed.

Clicking on any option presented by the drop down list opens an edit field where a

target hit count is entered. This is particularly helpful in analyzing loop constructs in

code.

ASP.NET

 197

The Filter menu item allows setting a filter for specifying machines, processes, or

threads or any combination, for which the breakpoint will be effective.

The When Hit menu item allows you to specify what to do when the break point is

hit.

The Debug Windows

Visual Studio provides the following debug windows, each of which shows some

program information. The following table lists the windows:

Window Description

Immediate Displays variables and expressions.

ASP.NET

 198

Autos Displays all variables in the current and previous

statements.

Locals Displays all variables in the current context.

Watch Displays up to four different sets of variables.

Call Stack Displays all methods in the call stack.

Threads Displays and control threads.

ASP.NET

 199

Most applications are data-centric, however most of the data repositories are

relational databases. Over the years, designers and developers have designed

applications based on object models.

The objects are responsible for connecting to the data access components - called

the Data Access Layer (DAL). Here we have three points to consider:

 All the data needed in an application are not stored in the same source. The

source could be a relation database, some business object, XML file, or a web
service.

 Accessing in-memory object is simpler and less expensive than accessing data
from a database or XML file.

 The data accessed are not used directly, but needs to be sorted, ordered,

grouped, altered etc.

Hence if there is one tool that makes all kind of data access easy that allows joining

data from such disparate data sources and perform standard data processing

operations, in few lines of codes, it would be of great help.

LINQ or Language-Integrated Query is such a tool. LINQ is set of extensions to the

.Net Framework 3.5 and its managed languages that set the query as an object. It

defines a common syntax and a programming model to query different types of data

using a common language.

The relational operators like Select, Project, Join, Group, Partition, Set operations

etc., are implemented in LINQ and the C# and VB compilers in the .Net framework

3.5, which support the LINQ syntax makes it possible to work with a configured data

store without resorting to ASP.NET.

For example, querying the Customers table in the Northwind database, using LINQ

query in C#, the code would be:

var data = from c in dataContext.Customers

where c.Country == "Spain"

select c;

Where:

 The 'from' keyword logically loops through the contents of the collection.

 The expression with the 'where' keyword is evaluated for each object in the
collection.

 The 'select' statement selects the evaluated object to add to the list being
returned.

28. LINQ

ASP.NET

 200

 The 'var' keyword is for variable declaration. Since the exact type of the
returned object is not known, it indicates that the information will be inferred

dynamically.

LINQ query can be applied to any data-bearing class that inherits from

IEnumerable<T>, here T is any data type, for example, List<Book>.

Let us look at an example to understand the concept. The example uses the following

class: Books.cs

public class Books

{

 public string ID {get; set;}

 public string Title { get; set; }

 public decimal Price { get; set; }

 public DateTime DateOfRelease { get; set; }

 public static List<Books> GetBooks()

 {

 List<Books> list = new List<Books>();

 list.Add(new Books { ID = "001",

 Title = "Programming in C#",

 Price = 634.76m,

 DateOfRelease = Convert.ToDateTime("2010-02-05") });

 list.Add(new Books { ID = "002",

 Title = "Learn Jave in 30 days",

 Price = 250.76m,

 DateOfRelease = Convert.ToDateTime("2011-08-15") });

 list.Add(new Books { ID = "003",

 Title = "Programming in ASP.Net 4.0",

 Price = 700.00m,

ASP.NET

 201

 DateOfRelease = Convert.ToDateTime("2011-02-05") });

 list.Add(new Books { ID = "004",

 Title = "VB.Net Made Easy",

 Price = 500.99m,

 DateOfRelease = Convert.ToDateTime("2011-12-31") });

 list.Add(new Books { ID = "005",

 Title = "Programming in C",

 Price = 314.76m,

 DateOfRelease = Convert.ToDateTime("2010-02-05") });

 list.Add(new Books { ID = "006",

 Title = "Programming in C++",

 Price = 456.76m,

 DateOfRelease = Convert.ToDateTime("2010-02-05") });

 list.Add(new Books { ID = "007",

 Title = "Datebase Developement",

 Price = 1000.76m,

 DateOfRelease = Convert.ToDateTime("2010-02-05") });

 return list;

 }

}

The web page using this class has a simple label control, which displays the titles of

the books. The Page_Load event creates a list of books and returns the titles by using

LINQ query:

public partial class simplequery : System.Web.UI.Page

ASP.NET

 202

{

 protected void Page_Load(object sender, EventArgs e)

 {

 List<Books> books = Books.GetBooks();

 var booktitles = from b in books select b.Title;

 foreach (var title in booktitles)

 lblbooks.Text += String.Format("{0}
", title);

 }

}

When the page is executed, the label displays the results of the query:

The above LINQ expression:

var booktitles =

from b in books

select b.Title;

Is equivalent to the following SQL query:

SELECT Title from Books

LINQ Operators

Apart from the operators used so far, there are several other operators, which

implement all query clauses. Let us look at some of the operators and clauses.

ASP.NET

 203

The Join clause

The 'join clause' in SQL is used for joining two data tables and displays a data set

containing columns from both the tables. LINQ is also capable of that. To check this,

add another class named Saledetails.cs in the previous project:

public class Salesdetails

{

 public int sales { get; set; }

 public int pages { get; set; }

 public string ID {get; set;}

 public static IEnumerable<Salesdetails> getsalesdetails()

 {

 Salesdetails[] sd =

 {

 new Salesdetails { ID = "001", pages=678, sales = 110000},

 new Salesdetails { ID = "002", pages=789, sales = 60000},

 new Salesdetails { ID = "003", pages=456, sales = 40000},

 new Salesdetails { ID = "004", pages=900, sales = 80000},

 new Salesdetails { ID = "005", pages=456, sales = 90000},

 new Salesdetails { ID = "006", pages=870, sales = 50000},

 new Salesdetails { ID = "007", pages=675, sales = 40000},

 };

 return sd.OfType<Salesdetails>();

 }

}

Add the codes in the Page_Load event handler to query on both the tables using the

join clause:

protected void Page_Load(object sender, EventArgs e)

{

ASP.NET

 204

 IEnumerable<Books> books = Books.GetBooks();

 IEnumerable<Salesdetails> sales = Salesdetails.getsalesdetails();

 var booktitles = from b in books

 join s in sales

 on b.ID equals s.ID

 select new { Name = b.Title, Pages = s.pages };

 foreach (var title in booktitles)

 lblbooks.Text += String.Format("{0}
", title);

}

The resulting page is as shown:

The Where clause

The 'where clause' allows adding some conditional filters to the query. For example,

if you want to see the books, where the number of pages are more than 500, change

the Page_Load event handler to:

var booktitles = from b in books

 join s in sales

 on b.ID equals s.ID

 where s.pages > 500

 select new { Name = b.Title, Pages = s.pages };

The query returns only those rows, where the number of pages is more than 500:

ASP.NET

 205

Orderby and Orderbydescending Clauses

These clauses allow sorting the query results. To query the titles, number of pages

and price of the book, sorted by the price, write the following code in the Page_Load

event handler:

var booktitles = from b in books

 join s in sales

 on b.ID equals s.ID

 orderby b.Price

 select new { Name = b.Title,

 Pages = s.pages, Price = b.Price};

The returned tuples are:

The Let clause

The let clause allows defining a variable and assigning it a value calculated from the

data values. For example, to calculate the total sale from the above two sales, you

need to calculate:

ASP.NET

 206

TotalSale = Price of the Book * Sales

To achieve this, add the following code snippets in the Page_Load event handler:

The let clause allows defining a variable and assigning it a value calculated from the

data values. For example, to calculate the total sale from the above two sales, you

need to calculate:

var booktitles = from b in books

 join s in sales

 on b.ID equals s.ID

 let totalprofit = (b.Price * s.sales)

 select new { Name = b.Title, TotalSale = totalprofit};

The resulting query page is as shown:

ASP.NET

 207

Implementing security in a site has the following aspects:

 Authentication It is the process of ensuring the user’s identity and
authenticity. ASP.NET allows four types of authentications:

o Windows Authentication

o Forms Authentication

o Passport Authentication

o Custom Authentication

 Authorization: It is the process of defining and allotting specific roles to

specific users.

 Confidentiality: It involves encrypting the channel between the client

browser and the web server.

 Integrity: It involves maintaining the integrity of data. For example,
implementing digital signature.

Forms-Based Authentication

Traditionally, forms-based authentication involves editing the web.config file and

adding a login page with appropriate authentication code.

The web.config file could be edited and the following codes written on it:

<system.web>

<authentication mode="Forms">

 <forms loginUrl ="login.aspx"/>

</authentication>

<authorization>

 <deny users="?"/>

 </authorization>

</system.web>

...

...

29. SECURITY

ASP.NET

 208

</configuration>

The login.aspx page mentioned in the above code snippet could have the following

code behind file with the usernames and passwords for authentication hard coded

into it.

protected bool authenticate(String uname, String pass)

{

 if(uname == "Tom")

 {

 if(pass == "tom123")

 return true;

 }

 if(uname == "Dick")

 {

 if(pass == "dick123")

 return true;

 }

 if(uname == "Harry")

 {

 if(pass == "har123")

 return true;

 }

 return false;

}

public void OnLogin(Object src, EventArgs e)

{

 if (authenticate(txtuser.Text, txtpwd.Text))

 {

 FormsAuthentication.RedirectFromLoginPage(txtuser.Text, chkrem.Checked);

ASP.NET

 209

 }

 else

 {

 Response.Write("Invalid user name or password");

 }

}

Observe that the FormsAuthentication class is responsible for the process of

authentication.

However, Visual Studio allows you to implement user creation, authentication, and

authorization with seamless ease without writing any code, through the Web Site

Administration tool. This tool allows creating users and roles.

Apart from this, ASP.NET comes with readymade login controls set, which has

controls performing all the jobs for you.

Implementing Forms-Based Security

To set up forms-based authentication, you need the following:

 A database of users to support the authentication process

 A website that uses the database

 User accounts

 Roles

 Restriction of users and group activities

 A default page to display the login status of the users and other information.

 A login page to allow users to log in, retrieve password, or change password

To create users, take the following steps:

Step (1): Choose Website -> ASP.NET Configuration to open the Web Application

Administration Tool.

Step (2): Click on the Security tab.

ASP.NET

 210

Step (3): Select the authentication type to ‘Forms based authentication’ by selecting

the ‘From the Internet’ radio button.

Step (4): Click on ’Create Users’ link to create some users. If you already had created

roles, you could assign roles to the user, right at this stage.

Step (5): Create a web site and add the following pages:

 Welcome.aspx

ASP.NET

 211

 Login.aspx

 CreateAccount.aspx

 PasswordRecovery.aspx

 ChangePassword.aspx

Step (6): Place a LoginStatus control on the Welcome.aspx from the login section of

the toolbox. It has two templates: LoggedIn and LoggedOut.

In LoggedOut template, there is a login link and in the LoggedIn template, there is a

logout link on the control. You can change the login and logout text properties of the

control from the Properties window.

Step (7): Place a LoginView control from the toolbox below the LoginStatus control.

Here, you can put texts and other controls (hyperlinks, buttons etc.), which are

displayed based on whether the user is logged in or not.

This control has two view templates: Anonymous template and LoggedIn template.

Select each view and write some text for the users to be displayed for each template.

The text should be placed on the area marked red.

Step (8): The users for the application are created by the developer. You might want

to allow a visitor to create a user account. For this, add a link beneath the LoginView

control, which should link to the CreateAccount.aspx page.

ASP.NET

 212

Step (9): Place a CreateUserWizard control on the create account page. Set the

ContinueDestinationPageUrl property of this control to Welcome.aspx.

Step (10): Create the Login page. Place a Login control on the page. The LoginStatus

control automatically links to the Login.aspx. To change this default, make the

following changes in the web.config file.

For example, if you want to name your log in page as signup.aspx, add the following

lines to the <authentication> section of the web.config:

<configuration>

<system.web>

<authentication mode="Forms">

 <forms loginUrl ="signup.aspx"

 defaultUrl = Welcome.aspx />

</authentication>

</system.web>

</configuration>

Step (11): Users often forget passwords. The PasswordRecovery control helps the

user gain access to the account. Select the Login control. Open its smart tag and click

‘Convert to Template’.

Customize the UI of the control to place a hyperlink control under the login button,

which should link to the PassWordRecovery.aspx.

ASP.NET

 213

Step (12): Place a PasswordRecovery control on the password recovery page. This

control needs an email server to send the passwords to the users.

Step (13): Create a link to the ChangePassword.aspx page in the LoggedIn template

of the LoginView control in Welcome.aspx.

ASP.NET

 214

Step (14): Place a ChangePassword control on the change password page. This

control also has two views.

Now run the application and observe different security operations.

To create roles, go back to the Web Application Administration Tools and click on the

Security tab. Click on ‘Create Roles’ and crate some roles for the application.

Click on the ‘Manage Users’ link and assign roles to the users.

ASP.NET

 215

IIS Authentication: SSL

The Secure Socket Layer or SSL is the protocol used to ensure a secure connection.

With SSL enabled, the browser encrypts all data sent to the server and decrypts all

data coming from the server. At the same time, the server encrypts and decrypts all

data to and from browser.

The URL for a secure connection starts with HTTPS instead of HTTP. A small lock is

displayed by a browser using a secure connection. When a browser makes an initial

attempt to communicate with a server over a secure connection using SSL, the server

authenticates itself by sending its digital certificate.

To use the SSL, you need to buy a digital secure certificate from a trusted Certification

Authority (CA) and install it in the web server. Following are some of the trusted and

reputed certification authorities:

 www.verisign.com

 www.geotrust.com

 www.thawte.com

SSL is built into all major browsers and servers. To enable SSL, you need to install

the digital certificate. The strength of various digital certificates varies depending

upon the length of the key generated during encryption. More the length, more secure

is the certificate, hence the connection.

Strength Description

ASP.NET

 216

40 - bit Supported by most browsers but easy to break

56 - bit Stronger than 40-bit

128 - bit Extremely difficult to break but all the browsers do not

support it.

ASP.NET

 217

What is Caching?

Caching is a technique of storing frequently used data/information in memory, so

that, when the same data/information is needed next time, it could be directly

retrieved from the memory instead of being generated by the application.

Caching is extremely important for performance boosting in ASP.NET, as the pages

and controls are dynamically generated here. It is especially important for data

related transactions, as these are expensive in terms of response time.

Caching places frequently used data in quickly accessed media such as the random

access memory of the computer. The ASP.NET runtime includes a key-value map of

CLR objects called cache. This resides with the application and is available via the

HttpContext and System.Web.UI.Page.

In some respect, caching is similar to storing the state objects. However, the storing

information in state objects is deterministic, i.e., you can count on the data being

stored there, and caching of data is nondeterministic.

The data will not be available in the following cases:

 If its lifetime expires,

 If the application releases its memory,

 If caching does not take place for some reason.

You can access items in the cache using an indexer and may control the lifetime of

objects in the cache and set up links between the cached objects and their physical

sources.

Caching in ASP.NET

ASP.NET provides the following different types of caching:

 Output Caching: Output cache stores a copy of the finally rendered HTML
pages or part of pages sent to the client. When the next client requests for this

page, instead of regenerating the page, a cached copy of the page is sent, thus
saving time.

 Data Caching: Data caching means caching data from a data source. As long
as the cache is not expired, a request for the data is fulfilled from the cache.
When the cache is expired, fresh data is obtained by the data source and the

cache is refilled.

 Object Caching: Object caching is caching the objects on a page, such as

data-bound controls. The cached data is stored in server memory.

30. DATA CACHING

ASP.NET

 218

 Class Caching: Web pages or web services are compiled into a page class in
the assembly, when run for the first time. Then the assembly is cached in the

server. Next time when a request is made for the page or service, the cached
assembly is referred to. When the source code is changed, the CLR recompiles

the assembly.

 Configuration Caching: Application wide configuration information is stored
in a configuration file. Configuration caching stores the configuration

information in the server memory.

In this tutorial, we consider output caching, data caching, and object caching.

Output Caching

Rendering a page may involve some complex processes such as, database access,

rendering complex controls etc. Output caching allows bypassing the round trips to

server by caching data in memory. Even the whole page could be cached.

The OutputCache directive is responsible of output caching. It enables output caching

and provides certain control over its behavior.

Syntax for OutputCache directive:

<%@ OutputCache Duration="15" VaryByParam="None" %>

Put this directive under the page directive. This tells the environment to cache the

page for 15 seconds. The following event handler for page load would help in testing

that the page was really cached.

protected void Page_Load(object sender, EventArgs e)

{

 Thread.Sleep(10000);

 Response.Write("This page was generated and cache at:" +

 DateTime.Now.ToString());

}

The Thread.Sleep() method stops the process thread for the specified time. In this

example, the thread is stopped for 10 seconds, so when the page is loaded for first

time, it takes 10 seconds. However, next time you refresh the page it does not take

any time, as the page is retrieved from the cache without being loaded.

The OutputCache directive has the following attributes, which helps in controlling the

behavior of the output cache:

Attribute Values Description

ASP.NET

 219

DiskCacheable true/false Specifies that output could be written to a disk

based cache.

NoStore true/false Specifies that the "no store" cache control

header is sent or not.

CacheProfile String name Name of a cache profile as to be stored in

web.config.

VaryByParam None

*

Param- name

Semicolon delimited list of string specifies query

string values in a GET request or variable in a

POST request.

VaryByHeader *

Header names

Semicolon delimited list of strings specifies

headers that might be submitted by a client.

VaryByCustom Browser

Custom string

Tells ASP.NET to vary the output cache by

browser name and version or by a custom

string.

Location Any

Client

Downstream

Server

None

Any: page may be cached anywhere.

Client: cached content remains at browser.

Downstream: cached content stored in

downstream and server both.

Server: cached content saved only on server.

None: disables caching.

Duration Number Number of seconds the page or control is

cached.

Let us add a text box and a button to the previous example and add this event handler

for the button.

protected void btnmagic_Click(object sender, EventArgs e)

{

 Response.Write("

");

ASP.NET

 220

 Response.Write("<h2> Hello, " + this.txtname.Text + "</h2>");

}

Change the OutputCache directive:

<%@ OutputCache Duration="60" VaryByParam="txtname" %>

When the program is executed, ASP.NET caches the page on the basis of the name

in the text box.

Data Caching

The main aspect of data caching is caching the data source controls. We have already

discussed that the data source controls represent data in a data source, like a

database or an XML file. These controls derive from the abstract class

DataSourceControl and have the following inherited properties for implementing

caching:

 CacheDuration - It sets the number of seconds for which the data source will

cache data.

 CacheExpirationPolicy - It defines the cache behavior when the data in cache
has expired.

 CacheKeyDependency - It identifies a key for the controls that auto-expires
the content of its cache when removed.

 EnableCaching - It specifies whether or not to cache the data.

Example

To demonstrate data caching, create a new website and add a new web form on it.

Add a SqlDataSource control with the database connection already used in the data
access tutorials.

For this example, add a label to the page, which would show the response time for

the page.

<asp:Label ID="lbltime" runat="server"></asp:Label>

Apart from the label, the content page is same as in the data access tutorial. Add an
event handler for the page load event:

protected void Page_Load(object sender, EventArgs e)

{

 lbltime.Text = String.Format("Page posted at: {0}",

 DateTime.Now.ToLongTimeString());

ASP.NET

 221

}

The designed page should look as shown:

When you execute the page for the first time, nothing different happens, the label

shows that, each time you refresh the page, the page is reloaded and the time shown

on the label changes.

Next, set the EnableCaching attribute of the data source control to be 'true' and set

the Cacheduration attribute to '60'. It will implement caching and the cache will expire

every 60 seconds.

The timestamp changes with every refresh, but if you change the data in the table

within these 60 seconds, it is not shown before the cache expires.

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

ConnectionString="<%$ ConnectionStrings:

ASPDotNetStepByStepConnectionString %>"

ProviderName="<%$ ConnectionStrings:

ASPDotNetStepByStepConnectionString.ProviderName %>"

SelectCommand="SELECT * FROM [DotNetReferences]"

EnableCaching="true" CacheDuration = "60">

</asp:SqlDataSource>

Object Caching

Object caching provides more flexibility than other cache techniques. You can use

object caching to place any object in the cache. The object can be of any type - a

ASP.NET

 222

data type, a web control, a class, a dataset object, etc. The item is added to the

cache simply by assigning a new key name, shown as follows:

Cache["key"] = item;

ASP.NET also provides the Insert() method for inserting an object to the cache. This

method has four overloaded versions. Let us see them:

Overload Description

Cache.Insert((key, value); Inserts an item into the cache with the key name and

value with default priority and expiration.

Cache.Insert(key, value,

dependencies);

Inserts an item into the cache with key, value, default

priority, expiration and a CacheDependency name that

links to other files or items so that when these change

the cache item remains no longer valid.

Cache.Insert(key, value,

dependencies,

absoluteExpiration,

slidingExpiration);

This indicates an expiration policy along with the above

issues.

Cache.Insert(key, value,

dependencies,

absoluteExpiration,

slidingExpiration, priority,

onRemoveCallback);

This along with the parameters also allows you to set a

priority for the cache item and a delegate that, points

to a method to be invoked when the item is removed.

Sliding expiration is used to remove an item from the cache when it is not used for

the specified time span. The following code snippet stores an item with a sliding

expiration of 10 minutes with no dependencies.

Cache.Insert("my_item", obj, null, DateTime.MaxValue,

 TimeSpan.FromMinutes(10));

Example

Create a page with just a button and a label. Write the following code in the page

load event:

protected void Page_Load(object sender, EventArgs e)

{

 if (this.IsPostBack)

ASP.NET

 223

 {

 lblinfo.Text += "Page Posted Back.
";

 }

 else

 {

 lblinfo.Text += "page Created.
";

 }

 if (Cache["testitem"] == null)

 {

 lblinfo.Text += "Creating test item.
";

 DateTime testItem = DateTime.Now;

 lblinfo.Text += "Storing test item in cache ";

 lblinfo.Text += "for 30 seconds.
";

 Cache.Insert("testitem", testItem, null,

 DateTime.Now.AddSeconds(30), TimeSpan.Zero);

 }

 else

 {

 lblinfo.Text += "Retrieving test item.
";

 DateTime testItem = (DateTime)Cache["testitem"];

 lblinfo.Text += "Test item is: " + testItem.ToString();

 lblinfo.Text += "
";

 }

 lblinfo.Text += "
";

}

When the page is loaded for the first time, it says:

Page Created.

Creating test item.

ASP.NET

 224

Storing test item in cache for 30 seconds.

If you click on the button again within 30 seconds, the page is posted back but the

label control gets its information from the cache as shown:

Page Posted Back.

Retrieving test item.

Test item is: 14-07-2010 01:25:04

ASP.NET

 225

A web service is a web-based functionality accessed using the protocols of the web

to be used by the web applications. There are three aspects of web service

development:

 Creating the web service

 Creating a proxy

 Consuming the web service

Creating a Web Service

A web service is a web application which is basically a class consisting of methods

that could be used by other applications. It also follows a code-behind architecture

such as the ASP.NET web pages, although it does not have a user interface.

To understand the concept, let us create a web service to provide stock price

information. The clients can query about the name and price of a stock based on the

stock symbol. To keep this example simple, the values are hardcoded in a two-

dimensional array. This web service has three methods:

 A default HelloWorld method

 A GetName Method

 A GetPrice Method

Take the following steps to create the web service:

Step (1): Select File -> New -> Web Site in Visual Studio, and then select ASP.NET

Web Service.

Step (2): A web service file called Service.asmx and its code behind file, Service.cs

is created in the App_Code directory of the project.

Step (3): Change the names of the files to StockService.asmx and StockService.cs.

Step (4): The .asmx file has simply a WebService directive on it:

<%@ WebService Language="C#"

 CodeBehind="~/App_Code/StockService.cs"

 Class="StockService" %>

Step (5): Open the StockService.cs file, the code generated in it is the basic Hello

World service. The default web service code behind file looks like the following:

using System;

31. WEB SERVICES

ASP.NET

 226

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Xml.Linq;

namespace StockService

{

 /// <summary>

 /// Summary description for Service1

 /// <summary>

 [WebService(Namespace = "http://tempuri.org/")]

 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

 [ToolboxItem(false)]

 // To allow this Web Service to be called from script,

 // using ASP.NET AJAX, uncomment the following line.

 // [System.Web.Script.Services.ScriptService]

 public class Service1 : System.Web.Services.WebService

 {

 [WebMethod]

 public string HelloWorld()

 {

 return "Hello World";

 }

 }

}

ASP.NET

 227

Step (6): Change the code behind file to add the two dimensional array of strings

for stock symbol, name and price and two web methods for getting the stock

information.

using System;

using System.Linq;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Xml.Linq;

[WebService(Namespace = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

// To allow this Web Service to be called from script,

// using ASP.NET AJAX, uncomment the following line.

// [System.Web.Script.Services.ScriptService]

public class StockService : System.Web.Services.WebService

{

 public StockService () {

 //Uncomment the following if using designed components

 //InitializeComponent();

 }

 string[,] stocks =

 {

 {"RELIND", "Reliance Industries", "1060.15"},

 {"ICICI", "ICICI Bank", "911.55"},

 {"JSW", "JSW Steel", "1201.25"},

 {"WIPRO", "Wipro Limited", "1194.65"},

 {"SATYAM", "Satyam Computers", "91.10"}

 };

ASP.NET

 228

 [WebMethod]

 public string HelloWorld() {

 return "Hello World";

 }

 [WebMethod]

 public double GetPrice(string symbol)

 {

 //it takes the symbol as parameter and returns price

 for (int i = 0; i < stocks.GetLength(0); i++)

 {

 if (String.Compare(symbol, stocks[i, 0], true) == 0)

 return Convert.ToDouble(stocks[i, 2]);

 }

 return 0;

 }

 [WebMethod]

 public string GetName(string symbol)

 {

 // It takes the symbol as parameter and

 // returns name of the stock

 for (int i = 0; i < stocks.GetLength(0); i++)

 {

 if (String.Compare(symbol, stocks[i, 0], true) == 0)

 return stocks[i, 1];

 }

 return "Stock Not Found";

 }

ASP.NET

 229

}

Step (7): Running the web service application gives a web service test page, which

allows testing the service methods.

ASP.NET

 230

Step (8): Click on a method name, and check whether it runs properly.

Step (9): For testing the GetName method, provide one of the stock symbols, which

are hard coded, it returns the name of the stock

Consuming the Web Service

For using the web service, create a web site under the same solution. This could be

done by right clicking on the Solution name in the Solution Explorer. The web page

calling the web service should have a label control to display the returned results and

two button controls one for post back and another for calling the service.

The content file for the web application is as follows:

<%@ Page Language="C#"

 AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="wsclient._Default" %>

ASP.NET

 231

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title>Untitled Page</title>

</head>

<body>

<form id="form1" runat="server">

 <div>

 <h3>Using the Stock Service</h3>

 <asp:Label ID="lblmessage" runat="server"></asp:Label>

 <asp:Button ID="btnpostback" runat="server"

 onclick="Button1_Click"

 Text="Post Back" style="width:132px" />

 <asp:Button ID="btnservice" runat="server"

 onclick="btnservice_Click"

 Text="Get Stock" style="width:99px" />

 </div>

</form>

</body>

</html>

ASP.NET

 232

The code behind file for the web application is as follows:

using System;

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

//this is the proxy

using localhost;

namespace wsclient

{

 public partial class _Default : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 lblmessage.Text = "First Loading Time: " +

 DateTime.Now.ToLongTimeString();

 }

ASP.NET

 233

 else

 {

 lblmessage.Text = "PostBack at: " +

 DateTime.Now.ToLongTimeString();

 }

 }

 protected void btnservice_Click(object sender, EventArgs e)

 {

 StockService proxy = new StockService();

 lblmessage.Text = String.Format("Current SATYAM Price:{0}",

 proxy.GetPrice("SATYAM").ToString());

 }

 }

}

Creating the Proxy

A proxy is a stand-in for the web service codes. Before using the web service, a proxy

must be created. The proxy is registered with the client application. Then the client

application makes the calls to the web service as it were using a local method.

The proxy takes the calls, wraps it in proper format and sends it as a SOAP request

to the server. SOAP stands for Simple Object Access Protocol. This protocol is used

for exchanging web service data.

When the server returns the SOAP package to the client, the proxy decodes

everything and presents it to the client application.

Before calling the web service using the btnservice_Click, a web reference should be

added to the application. This creates a proxy class transparently, which is used by

the btnservice_Click event.

protected void btnservice_Click(object sender, EventArgs e)

{

 StockService proxy = new StockService();

ASP.NET

 234

 lblmessage.Text = String.Format("Current SATYAM Price: {0}",

 proxy.GetPrice("SATYAM").ToString());

}

Take the following steps for creating the proxy:

Step (1): Right click on the web application entry in the Solution Explorer and click

on 'Add Web Reference'.

ASP.NET

 235

Step (2): Select 'Web Services in this solution'. It returns the StockService reference.

Step (3): Clicking on the service opens the test web page. By default the proxy

created is called 'localhost', you can rename it. Click on 'Add Reference' to add the

proxy to the client application.

Include the proxy in the code behind file by adding:

 using localhost;

ASP.NET

 236

ASP.NET

 237

A thread is defined as the execution path of a program. Each thread defines a unique

flow of control. If your application involves complicated and time consuming

operations such as database access or some intense I/O operations, then it is often

helpful to set different execution paths or threads, with each thread performing a

particular job.

Threads are lightweight processes. One common example of use of thread is

implementation of concurrent programming by modern operating systems. Use of

threads saves wastage of CPU cycle and increases efficiency of an application.

So far we compiled programs where a single thread runs as a single process which is

the running instance of the application. However, this way the application can

perform one job at a time. To make it execute multiple tasks at a time, it could be

divided into smaller threads.

In .Net, the threading is handled through the ‘System.Threading’ namespace.

Creating a variable of the System.Threading.Thread type allows you to create a new

thread to start working with. It allows you to create and access individual threads in

a program.

Creating Thread

A thread is created by creating a Thread object, giving its constructor a ThreadStart

reference.

ThreadStart childthreat = new ThreadStart(childthreadcall);

Thread Life Cycle

The life cycle of a thread starts when an object of the System.Threading.Thread class

is created and ends when the thread is terminated or completes execution.

Following are the various states in the life cycle of a thread:

 The Unstarted State: It is the situation when the instance of the thread is
created but the Start method is not called.

 The Ready State: It is the situation when the thread is ready to execute and
waiting CPU cycle.

 The Not Runnable State: a thread is not runnable, when:

o Sleep method has been called

o Wait method has been called

o Blocked by I/O operations

32. MULTITHREADING

ASP.NET

 238

 The Dead State: It is the situation when the thread has completed execution
or has been aborted.

Thread Priority

The Priority property of the Thread class specifies the priority of one thread with

respect to other. The .Net runtime selects the ready thread with the highest priority.

The priorities could be categorized as:

 Above normal

 Below normal

 Highest

 Lowest

 Normal

Once a thread is created, its priority is set using the Priority property of the thread

class.

NewThread.Priority = ThreadPriority.Highest;

Thread : Properties and Methods

The Thread class has the following important properties:

Property Description

CurrentContext Gets the current context in which the thread is executing.

CurrentCulture Gets or sets the culture for the current thread.

CurrentPrinciple Gets or sets the thread's current principal for role-based

security.

CurrentThread Gets the currently running thread.

CurrentUICulture Gets or sets the current culture used by the Resource

Manager to look up culture-specific resources at run time.

ExecutionContext Gets an ExecutionContext object that contains information

about the various contexts of the current thread.

ASP.NET

 239

IsAlive Gets a value indicating the execution status of the current

thread.

IsBackground Gets or sets a value indicating whether or not a thread is a

background thread.

IsThreadPoolThread Gets a value indicating whether or not a thread belongs to

the managed thread pool.

ManagedThreadId Gets a unique identifier for the current managed thread.

Name Gets or sets the name of the thread.

Priority Gets or sets a value indicating the scheduling priority of a

thread.

ThreadState Gets a value containing the states of the current thread.

The Thread class has the following important methods:

Methods Description

Abort Raises a ThreadAbortException in the thread on which it

is invoked, to begin the process of terminating the thread.

Calling this method usually terminates the thread.

AllocateDataSlot Allocates an unnamed data slot on all the threads. For

better performance, use fields that are marked with the

ThreadStaticAttribute attribute instead.

AllocateNamedDataSlot Allocates a named data slot on all threads. For better

performance, use fields that are marked with the

ThreadStaticAttribute attribute instead.

BeginCriticalRegion Notifies a host that execution is about to enter a region of

code in which the effects of a thread abort or unhandled

exception might jeopardize other tasks in the application

domain.

ASP.NET

 240

BeginThreadAffinity Notifies a host that managed code is about to execute

instructions that depend on the identity of the current

physical operating system thread.

EndCriticalRegion Notifies a host that execution is about to enter a region of

code in which the effects of a thread abort or unhandled

exception are limited to the current task.

EndThreadAffinity Notifies a host that managed code has finished executing

instructions that depend on the identity of the current

physical operating system thread.

FreeNamedDataSlot Eliminates the association between a name and a slot, for

all threads in the process. For better performance, use

fields that are marked with the ThreadStaticAttribute

attribute instead.

GetData Retrieves the value from the specified slot on the current

thread, within the current thread's current domain. For

better performance, use fields that are marked with the

ThreadStaticAttribute attribute instead.

GetDomain Returns the current domain in which the current thread is

running.

GetDomainID Returns a unique application domain identifier.

GetNamedDataSlot Looks up a named data slot. For better performance, use

fields that are marked with the ThreadStaticAttribute

attribute instead.

Interrupt Interrupts a thread that is in the WaitSleepJoin thread

state.

Join Blocks the calling thread until a thread terminates, while

continuing to perform standard COM and SendMessage

pumping. This method has different overloaded forms.

MemoryBarrier Synchronizes memory access as follows: The processor

executing the current thread cannot reorder instructions

in such a way that memory accesses prior to the call to

MemoryBarrier execute after memory accesses that follow

the call to MemoryBarrier.

ASP.NET

 241

ResetAbort Cancels an Abort requested for the current thread.

SetData Sets the data in the specified slot on the currently running

thread, for that thread's current domain. For better

performance, use fields marked with the

ThreadStaticAttribute attribute instead.

Start Starts a thread.

Sleep Makes the thread pause for a period of time.

SpinWait Causes a thread to wait the number of times defined by

the iterations parameter.

VolatileRead() Reads the value of a field. The value is the latest written

by any processor in a computer, regardless of the number

of processors or the state of processor cache. This method

has different overloaded forms.

VolatileWrite() Writes a value to a field immediately, so that the value is

visible to all processors in the computer. This method has

different overloaded forms.

Yield Causes the calling thread to yield execution to another

thread that is ready to run on the current processor. The

operating system selects the thread to yield to.

Example

The following example illustrates the uses of the Thread class. The page has a label

control for displaying messages from the child thread. The messages from the main

program are directly displayed using the Response.Write() method. Hence they

appear on the top of the page.

The source file is as follows:

<%@ Page Language="C#"

 AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="threaddemo._Default" %>

ASP.NET

 242

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <h3>Thread Example</h3>

 </div>

 <asp:Label ID="lblmessage" runat="server" Text="Label">

 </asp:Label>

 </form>

</body>

</html>

The code behind file is as follows:

using System;

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

ASP.NET

 243

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

using System.Threading;

namespace threaddemo

{

 public partial class _Default : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 ThreadStart childthreat = new ThreadStart(childthreadcall);

 Response.Write("Child Thread Started
");

 Thread child = new Thread(childthreat);

 child.Start();

 Response.Write(

 "Main sleeping for 2 seconds.......
");

 Thread.Sleep(2000);

 Response.Write(

 "
Main aborting child thread
");

 child.Abort();

 }

 public void childthreadcall()

 {

 try{

 lblmessage.Text = "
Child thread started
";

 lblmessage.Text += "Child Thread: Coiunting to 10";

ASP.NET

 244

 for(int i =0; i<10; i++)

 {

 Thread.Sleep(500);

 lblmessage.Text += "
 in Child thread </br>";

 }

 lblmessage.Text += "
 child thread finished";

 }

 catch(ThreadAbortException e)

 {

 lblmessage.Text += "
 child thread - exception";

 }

 finally{

 lblmessage.Text += "
 child thread

 - unable to catch the exception";

 }

 }

 }

}

Observe the following:

 When the page is loaded, a new thread is started with the reference of the

method childthreadcall(). The main thread activities are displayed directly on
the web page.

 The second thread runs and sends messages to the label control.

 The main thread sleeps for 2000 ms, during which the child thread executes.

 The child thread runs till it is aborted by the main thread. It raises the

ThreadAbortException and is terminated.

 Control returns to the main thread.

When executed, the program sends the following messages:

ASP.NET

 245

ASP.NET

 246

The behavior of an ASP.NET application is affected by different settings in the

configuration files:

 machine.config

 web.config

The machine.config file contains default and the machine-specific value for all

supported settings. The machine settings are controlled by the system administrator

and applications are generally not given access to this file.

An application however, can override the default values by creating web.config files

in its roots folder. The web.config file is a subset of the machine.config file.

If the application contains child directories, it can define a web.config file for each

folder. Scope of each configuration file is determined in a hierarchical top-down

manner.

Any web.config file can locally extend, restrict, or override any settings defined on

the upper level.

Visual Studio generates a default web.config file for each project. An application can

execute without a web.config file, however, you cannot debug an application without

a web.config file.

The following figure shows the Solution Explorer for the sample example used in the

web services tutorial:

33. CONFIGURATION

ASP.NET

 247

In this application, there are two web.config files for two projects i.e., the web service

and the web site calling the web service.

The web.config file has the configuration element as the root node. Information inside

this element is grouped into two main areas: the configuration section-handler

declaration area, and the configuration section settings area.

The following code snippet shows the basic syntax of a configuration file:

<configuration>

 <!-- Configuration section-handler declaration area. -->

 <configSections>

 <section name="section1" type="section1Handler" />

 <section name="section2" type="section2Handler" />

 </configSections>

 <!-- Configuration section settings area. -->

 <section1>

 <s1Setting1 attribute1="attr1" />

 </section1>

 <section2>

ASP.NET

 248

 <s2Setting1 attribute1="attr1" />

 </section2>

 <system.web>

 <authentication mode="Windows" />

 </system.web>

</configuration>

Configuration Section Handler declarations

The configuration section handlers are contained within the <configSections> tags.

Each configuration handler specifies name of a configuration section, contained within

the file, which provides some configuration data. It has the following basic syntax:

<configSections>

 <section />

 <sectionGroup />

 <remove />

 <clear/>

</configSections>

It has the following elements:

 Clear - It removes all references to inherited sections and section groups.

 Remove - It removes a reference to an inherited section and section group.

 Section - It defines an association between a configuration section handler

and a configuration element.

 Section group - It defines an association between a configuration section
handler and a configuration section.

Application Settings

The application settings allow storing application-wide name-value pairs for read-only

access. For example, you can define a custom application setting as:

<configuration>

 <appSettings>

 <add key="Application Name" value="MyApplication" />

ASP.NET

 249

 </appSettings>

</configuration>

For example, you can also store the name of a book and its ISBN number:

<configuration>

 <appSettings>

 <add key="appISBN" value="0-273-68726-3" />

 <add key="appBook" value="Corporate Finance" />

 </appSettings>

</configuration>

Connection Strings

The connection strings show which database connection strings are available to the

website. For example:

<connectionStrings>

 <add name="ASPDotNetStepByStepConnectionString"

 connectionString="Provider=Microsoft.Jet.OLEDB.4.0;

 Data Source=E:\\projects\datacaching\ /

 datacaching\App_Data\ASPDotNetStepByStep.mdb"

 providerName="System.Data.OleDb" />

 <add name="booksConnectionString"

 connectionString="Provider=Microsoft.Jet.OLEDB.4.0;

 Data Source=C:\ \databinding\App_Data\books.mdb"

 providerName="System.Data.OleDb" />

</connectionStrings>

System.Web Element

The system.web element specifies the root element for the ASP.NET configuration

section and contains configuration elements that configure ASP.NET Web applications

and control how the applications behave.

ASP.NET

 250

It holds most of the configuration elements needed to be adjusted in common

applications. The basic syntax for the element is as given:

<system.web>

 <anonymousIdentification>

 <authentication>

 <authorization>

 <browserCaps>

 <caching>

 <clientTarget>

 <compilation>

 <customErrors>

 <deployment>

 <deviceFilters>

 <globalization>

 <healthMonitoring>

 <hostingEnvironment>

 <httpCookies>

 <httpHandlers>

 <httpModules>

 <httpRuntime>

 <identity>

 <machineKey>

 <membership>

 <mobileControls>

 <pages>

 <processModel>

 <profile>

 <roleManager>

 <securityPolicy>

ASP.NET

 251

 <sessionPageState>

 <sessionState>

 <siteMap>

 <trace>

 <trust>

 <urlMappings>

 <webControls>

 <webParts>

 <webServices>

 <xhtmlConformance>

</system.web>

The following table provides brief description of some of common sub elements of

the system.web element:

AnonymousIdentification

This is required to identify users who are not authenticated when authorization is

required.

Authentication

It configures the authentication support. The basic syntax is as given:

<authentication mode="[Windows|Forms|Passport|None]">

 <forms>...</forms>

 <passport/>

</authentication>

Authorization

It configures the authorization support. The basic syntax is as given:

<authorization>

 <allow .../>

 <deny .../>

</authorization>

ASP.NET

 252

Caching

It configures the cache settings. The basic syntax is as given:

<caching>

 <cache>...</cache>

 <outputCache>...</outputCache>

 <outputCacheSettings>...</outputCacheSettings>

 <sqlCacheDependency>...</sqlCacheDependency>

</caching>

CustomErrors

It defines custom error messages. The basic syntax is as given:

<customErrors defaultRedirect="url" mode="On|Off|RemoteOnly">

 <error. . ./>

</customErrors>

Deployment

It defines configuration settings used for deployment. The basic syntax is as follows:

<deployment retail="true|false" />

HostingEnvironment

It defines configuration settings for hosting environment. The basic syntax is as

follows:

<hostingEnvironment

 idleTimeout="HH:MM:SS"

 shadowCopyBinAssemblies="true|false"

 shutdownTimeout="number"

 urlMetadataSlidingExpiration="HH:MM:SS"

/>

Identity

It configures the identity of the application. The basic syntax is as given:

ASP.NET

 253

<identity impersonate="true|false"

 userName="domain\username"

 password="<secure password>"/>

MachineKey

It configures keys to use for encryption and decryption of Forms authentication cookie

data.

It also allows configuring a validation key that performs message authentication

checks on view-state data and forms authentication tickets. The basic syntax is:

<machineKey

 validationKey="AutoGenerate,IsolateApps" [String]

 decryptionKey="AutoGenerate,IsolateApps" [String]

 validation="HMACSHA256" [SHA1 | MD5 | 3DES | AES | HMACSHA256 |

 HMACSHA384 | HMACSHA512 | alg:algorithm_name]

 decryption="Auto" [Auto | DES | 3DES | AES | alg:algorithm_name]

/>

Membership

This configures parameters of managing and authenticating user accounts. The basic

syntax is:

<membership

 defaultProvider="provider name"

 userIsOnlineTimeWindow="number of minutes"

 hashAlgorithmType="SHA1">

 <providers>...</providers>

</membership>

Pages

It provides page-specific configurations. The basic syntax is:

<pages

ASP.NET

 254

 asyncTimeout="number"

 autoEventWireup="[True|False]"

 buffer="[True|False]"

 clientIDMode="[AutoID|Predictable|Static]"

 compilationMode="[Always|Auto|Never]"

 controlRenderingCompatibilityVersion="[3.5|4.0]"

 enableEventValidation="[True|False]"

 enableSessionState="[True|False|ReadOnly]"

 enableViewState="[True|False]"

 enableViewStateMac="[True|False]"

 maintainScrollPositionOnPostBack="[True|False]"

 masterPageFile="file path"

 maxPageStateFieldLength="number"

 pageBaseType="typename, assembly"

 pageParserFilterType="string"

 smartNavigation="[True|False]"

 styleSheetTheme="string"

 theme="string"

 userControlBaseType="typename"

 validateRequest="[True|False]"

 viewStateEncryptionMode="[Always|Auto|Never]"

>

 <controls>...</controls>

 <namespaces>...</namespaces>

 <tagMapping>...</tagMapping>

 <ignoreDeviceFilters>...</ignoreDeviceFilters>

</pages>

Profile

ASP.NET

 255

It configures user profile parameters. The basic syntax is:

<profile

 enabled="true|false"

 inherits="fully qualified type reference"

 automaticSaveEnabled="true|false"

 defaultProvider="provider name">

 <properties>...</properties>

 <providers>...</providers>

</profile>

RoleManager

It configures settings for user roles. The basic syntax is:

<roleManager

 cacheRolesInCookie="true|false"

 cookieName="name"

 cookiePath="/"

 cookieProtection="All|Encryption|Validation|None"

 cookieRequireSSL="true|false "

 cookieSlidingExpiration="true|false "

 cookieTimeout="number of minutes"

 createPersistentCookie="true|false"

 defaultProvider="provider name"

 domain="cookie domain">

 enabled="true|false"

 maxCachedResults="maximum number of role names cached"

 <providers>...</providers>

</roleManager>

SecurityPolicy

It configures the security policy. The basic syntax is:

ASP.NET

 256

<securityPolicy>

 <trustLevel />

</securityPolicy>

UrlMappings

It defines mappings to hide the original URL and provide a more user friendly URL.

The basic syntax is:

<urlMappings enabled="true|false">

 <add.../>

 <clear />

 <remove.../>

</urlMappings>

WebControls

It provides the name of shared location for client scripts. The basic syntax is:

<webControls clientScriptsLocation="String" />

WebServices

This configures the web services.

ASP.NET

 257

There are two categories of ASP.NET deployment:

 Local deployment: In this case, the entire application is contained within a
virtual directory and all the contents and assemblies are contained within it

and available to the application.

 Global deployment: In this case, assemblies are available to every

application running on the server.

There are different techniques used for deployment, however, we will discuss the

following most common and easiest ways of deployment:

 XCOPY deployment

 Copying a Website

 Creating a set up project

XCOPY Deployment

XCOPY deployment means making recursive copies of all the files to the target folder

on the target machine. You can use any of the commonly used techniques:

 FTP transfer

 Using Server management tools that provide replication on a remote site

 MSI installer application

XCOPY deployment simply copies the application file to the production server and

sets a virtual directory there. You need to set a virtual directory using the Internet

Information Manager Microsoft Management Console (MMC snap-in).

Copying a Website

The Copy Web Site option is available in Visual Studio. It is available from the Website

-> Copy Web Site menu option. This menu item allows copying the current web site

to another local or remote location. It is a sort of integrated FTP tool.

Using this option, you connect to the target destination, select the desired copy

mode:

 Overwrite

 Source to Target Files

 Sync UP Source And Target Projects

Then proceed with copying the files physically. Unlike the XCOPY deployment, this

process of deployment is done from Visual Studio environment. However, there are

following problems with both the above deployment methods:

34. DEPLOYMENT

ASP.NET

 258

 You pass on your source code.

 There is no pre-compilation and related error checking for the files.

 The initial page load will be slow.

Creating a Setup Project

In this method, you use Windows Installer and package your web applications so it

is ready to deploy on the production server. Visual Studio allows you to build

deployment packages. Let us test this on one of our existing project, say the data

binding project.

Open the project and take the following steps:

Step (1): Select File -> Add -> New Project with the website root directory

highlighted in the Solution Explorer.

Step (2): Select Setup and Deployment, under Other Project Types. Select Setup

Wizard.

ASP.NET

 259

Step (3): Choosing the default location ensures that the set up project will be located

in its own folder under the root directory of the site. Click on okay to get the first

splash screen of the wizard.

Step (4): Choose a project type. Select 'Create a setup for a web application'.

ASP.NET

 260

Step (5): Next, the third screen asks to choose project outputs from all the projects

in the solution. Check the check box next to 'Content Files from...'

Step (6): The fourth screen allows including other files like ReadMe. However, in our

case there is no such file. Click on finish.

ASP.NET

 261

Step (7): The final screen displays a summary of settings for the set up project.

Step (8): The Set up project is added to the Solution Explorer and the main design

window shows a file system editor.

ASP.NET

 262

Step (9): Next step is to build the setup project. Right-click on the project name in

the Solution Explorer and select Build.

Step (10): When build is completed, you get the following message in the Output

window:

Two files are created by the build process:

 Setup.exe

 Setup-databinding.msi

You need to copy these files to the server. Double-click the setup file to install the

content of the .msi file on the local machine.

