

Perl

i

About the Tutorial

Perl is a programming language developed by Larry Wall, especially designed for text

processing. It stands for Practical Extraction and Report Language. It runs on a

variety of platforms, such as Windows, Mac OS, and the various versions of UNIX.

This tutorial provides a complete understanding on Perl.

Audience

This reference has been prepared for beginners to help them understand the basic to

advanced concepts related to Perl Scripting languages.

Prerequisites

Before you start practicing with various types of examples given in this reference, we are

making an assumption that you have prior exposure to C programming and Unix Shell.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Perl

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

PART 1: PERL – BASICS .. 1

1. Perl ─ Introduction .. 2
What is Perl? .. 2
Perl Features .. 2
Perl and the Web ... 3
Perl is Interpreted .. 3

2. Perl ─ Environment ... 4
Unix and Linux Installation .. 5
Running Perl .. 6

3. Perl ─ Syntax Overview ... 9
Script Mode Programming .. 9

4. Perl ─ Data Types .. 15
Numeric Literals... 15
String Literals ... 16

5. Perl ─ Variables ... 19
Creating Variables ... 19

6. Perl ─ Scalars ... 23
Scalar Operations .. 25

7. Perl ─ Arrays ... 28

8. Perl ─ Hashes .. 39

9. Perl ─ If…Else... 45
if statement ... 46
if...else statement .. 48
if...elsif...else statement .. 50
unless statement ... 51
unless...else statement .. 53
unless...elsif..else statement ... 55
switch statement ... 56
The ? : Operator .. 59

10. Perl ─ Loops .. 61
while loop .. 62

Perl

iii

until loop ... 64
for loop .. 66
foreach loop .. 68
do...while loop ... 70
nested loops .. 71
Loop Control Statements ... 74
next statement .. 74
last statement .. 77
continue statement ... 80
redo statement .. 82
goto statement .. 83
The Infinite Loop .. 86

11. Perl ─ Operators .. 87
What is an Operator? .. 87
Perl Arithmetic Operators ... 87
Perl Equality Operators ... 89
Perl Assignment Operators.. 94
Perl Bitwise Operators ... 96
Perl Logical Operators ... 98
Quote-like Operators ... 100
Miscellaneous Operators ... 101
Perl Operators Precedence.. 103

12. Perl ─ Date and Time ... 106
GMT Time .. 107
Format Date & Time .. 107
Epoch time ... 108
POSIX Function strftime() .. 109

13. Perl ─ Subroutines ... 112
Define and Call a Subroutine ... 112
Passing Arguments to a Subroutine .. 113
Passing Lists to Subroutines .. 114
Passing Hashes to Subroutines .. 114
Returning Value from a Subroutine ... 115
Private Variables in a Subroutine .. 116
Temporary Values via local() ... 117
State Variables via state() .. 118
Subroutine Call Context ... 119

14. Perl ─ References .. 121
Create References ... 121
Dereferencing .. 122
Circular References .. 123
References to Functions .. 124

Perl

iv

15. Perl ─ Formats ... 126
Define a Format ... 126
Using the Format ... 127
Define a Report Header ... 128
Number of Lines on a Page .. 131
Define a Report Footer .. 131

16. Perl ─ File I/O .. 132
Opening and Closing Files .. 132
Open Function ... 132
Sysopen Function .. 134
Close Function ... 135
The <FILEHANDL> Operator .. 135
getc Function ... 136
read Function .. 136
print Function .. 136
Copying Files .. 137
Renaming a file .. 137
Deleting an Existing File ... 138
Positioning inside a File ... 138
File Information ... 139

17. Perl ─ Directories .. 142
Display all the Files .. 142
Create new Directory .. 144
Remove a directory ... 144
Change a Directory .. 144

18. Perl ─ Error Handling ... 145
The if statement .. 145
The unless Function ... 145
The ternary Operator .. 146
The warn Function ... 146
The die Function .. 146
Errors within Modules ... 146
The carp Function .. 147
The cluck Function ... 148
The croak Function .. 149
The confess Function ... 149

19. Perl ─ Special Variables ... 151
Special Variable Types ... 152
Global Scalar Special Variables .. 152
Global Array Special Variables ... 156
Global Hash Special Variables .. 157
Global Special Filehandles ... 157
Global Special Constants ... 157
Regular Expression Special Variables .. 158
Filehandle Special Variables .. 158

Perl

v

20. Perl ─ Coding Standard .. 160

21. Perl ─ Regular Expressions .. 163
The Match Operator .. 163
Match Operator Modifiers .. 165
Matching Only Once .. 165
Regular Expression Variables ... 166
The Substitution Operator ... 166
Substitution Operator Modifiers ... 167
The Translation Operator .. 167
Translation Operator Modifiers ... 168
More Complex Regular Expressions .. 169
Matching Boundaries .. 172
Selecting Alternatives .. 172
Grouping Matching .. 173
The \G Assertion .. 174
Regular-expression Examples .. 175

22. Perl ─ Sending Email .. 180
Using sendmail Utility .. 180
Using MIME::Lite Module .. 181
Using SMTP Server... 184

PART 2: PERL – ADVANCED TOPICS ... 185

23. Perl ─ Socket Programming ... 186
What is a Socket? .. 186
Server Side Socket Calls ... 187
Client Side Socket Calls .. 189
Client - Server Example.. 190

24. Perl ─ OOP in Perl .. 193
Object Basics.. 193
Defining a Class .. 193
Creating and Using Objects ... 194
Defining Methods .. 195
Inheritance .. 197
Method Overriding .. 199
Default Autoloading .. 201
Destructors and Garbage Collection .. 202
Object Oriented Perl Example ... 203

25. Perl ─ Database Access .. 206
Database Connection .. 207
INSERT Operation .. 208
READ Operation ... 209
UPDATE Operation .. 210
DELETE Operation .. 211

Perl

vi

COMMIT Operation ... 212
ROLLBACK Operation ... 212
Begin Transaction .. 212
AutoCommit Option .. 213
Automatic Error Handling .. 213
Disconnecting Database .. 213
Some Other DBI Functions .. 214
Methods Common to All Handles ... 216

26. Perl ─ CGI Programming .. 218
What is CGI ? ... 218
Web Browsing ... 218
CGI Architecture Diagram .. 219
Web Server Support and Configuration .. 219
First CGI Program... 219
Understanding HTTP Header ... 220
CGI Environment Variables .. 221
GET and POST Methods ... 223
Passing Information using GET Method .. 223
Simple URL Example : Get Method .. 224
Simple FORM Example: GET Method .. 225
Passing Information using POST Method .. 225
Passing Checkbox Data to CGI Program .. 227
Passing Radio Button Data to CGI Program ... 229
Passing Text Area Data to CGI Program... 230
Passing Drop Down Box Data to CGI Program ... 232
Using Cookies in CGI .. 233
CGI Modules and Libraries ... 235

27. Perl ─ Packages and Modules .. 237
What are Packages? .. 237
BEGIN and END Blocks ... 238
What are Perl Modules? .. 239
The Require Function .. 239
The Use Function ... 240
Create the Perl Module Tree ... 241
Installing Perl Module .. 242

28. Perl ─ Process Management .. 243
Backstick Operator .. 243
The system() Function ... 244
The fork() Function .. 245
The kill() Function .. 247

29. Perl ─ Embedded Documentation ... 248
What is POD? ... 249
POD Examples.. 250

Perl

1

Part 1: Perl – Basics

Perl

2

Perl is a general-purpose programming language originally developed for text

manipulation and now used for a wide range of tasks including system administration, web

development, network programming, GUI development, and more.

What is Perl?

 Perl is a stable, cross platform programming language.

 Though Perl is not officially an acronym but few people used it as Practical

Extraction and Report Language.

 It is used for mission critical projects in the public and private sectors.

 Perl is an Open Source software, licensed under its Artistic License, or the GNU

General Public License (GPL).

 Perl was created by Larry Wall.

 Perl 1.0 was released to usenet's alt.comp.sources in 1987.

 At the time of writing this tutorial, the latest version of perl was 5.16.2.

 Perl is listed in the Oxford English Dictionary.

PC Magazine announced Perl as the finalist for its 1998 Technical Excellence Award in the

Development Tool category.

Perl Features

 Perl takes the best features from other languages, such as C, awk, sed, sh, and

BASIC, among others.

 Perls database integration interface DBI supports third-party databases including

Oracle, Sybase, Postgres, MySQL and others.

 Perl works with HTML, XML, and other mark-up languages.

 Perl supports Unicode.

 Perl is Y2K compliant.

 Perl supports both procedural and object-oriented programming.

 Perl interfaces with external C/C++ libraries through XS or SWIG.

 Perl is extensible. There are over 20,000 third party modules available from the

Comprehensive Perl Archive Network (CPAN).

 The Perl interpreter can be embedded into other systems.

1. Perl ─ Introduction

Perl

3

Perl and the Web

 Perl used to be the most popular web programming language due to its text

manipulation capabilities and rapid development cycle.

 Perl is widely known as " the duct-tape of the Internet".

 Perl can handle encrypted Web data, including e-commerce transactions.

 Perl can be embedded into web servers to speed up processing by as much as

2000%.

 Perl's mod_perl allows the Apache web server to embed a Perl interpreter.

 Perl's DBI package makes web-database integration easy.

Perl is Interpreted

Perl is an interpreted language, which means that your code can be run as is, without a

compilation stage that creates a non portable executable program.

Traditional compilers convert programs into machine language. When you run a Perl

program, it's first compiled into a byte code, which is then converted (as the program

runs) into machine instructions. So it is not quite the same as shells, or Tcl, which

are strictly interpreted without an intermediate representation.

It is also not like most versions of C or C++, which are compiled directly into a machine

dependent format. It is somewhere in between, along with Python and awk and Emacs .elc

files.

Perl

4

Before we start writing our Perl programs, let's understand how to setup our Perl

environment. Perl is available on a wide variety of platforms:

 Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX etc.)

 Win 9x/NT/2000/

 WinCE

 Macintosh (PPC, 68K)

 Solaris (x86, SPARC)

 OpenVMS

 Alpha (7.2 and later)

 Symbian

 Debian GNU/kFreeBSD

 MirOS BSD

 And many more...

This is more likely that your system will have perl installed on it. Just try giving the

following command at the $ prompt:

$perl -v

If you have perl installed on your machine, then you will get a message something as

follows:

This is perl 5, version 16, subversion 2 (v5.16.2) built for i686-linux

Copyright 1987-2012, Larry Wall

Perl may be copied only under the terms of either the Artistic License
or the

GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on

this system using "man perl" or "perldoc perl". If you have access to
the

2. Perl ─ Environment

Perl

5

Internet, point your browser at http://www.perl.org/, the Perl Home
Page.

If you do not have perl already installed, then proceed to the next section.

Getting Perl Installation

The most up-to-date and current source code, binaries, documentation, news, etc. are

available at the official website of Perl.

Perl Official Website : http://www.perl.org/

You can download Perl documentation from the following site.

Perl Documentation Website : http://perldoc.perl.org

Install Perl

Perl distribution is available for a wide variety of platforms. You need to download only the

binary code applicable for your platform and install Perl.

If the binary code for your platform is not available, you need a C compiler to compile the

source code manually. Compiling the source code offers more flexibility in terms of choice

of features that you require in your installation.

Here is a quick overview of installing Perl on various platforms.

Unix and Linux Installation

Here are the simple steps to install Perl on Unix/Linux machine.

 Open a Web browser and go to http://www.perl.org/get.html.

 Follow the link to download zipped source code available for Unix/Linux.

 Download perl-5.x.y.tar.gz file and issue the following commands at $ prompt.

$tar -xzf perl-5.x.y.tar.gz

$cd perl-5.x.y

$./Configure -de

$make

$make test

$make install

NOTE: Here $ is a Unix prompt where you type your command, so make sure you are not

typing $ while typing the above mentioned commands.

This will install Perl in a standard location /usr/local/bin, and its libraries are installed in

/usr/local/lib/perlXX, where XX is the version of Perl that you are using.

Perl

6

It will take a while to compile the source code after issuing the make command. Once

installation is done, you can issue perl -v command at $ prompt to check perl installation.

If everything is fine, then it will display message like we have shown above.

Windows Installation

Here are the steps to install Perl on Windows machine.

 Follow the link for the Strawberry Perl installation on Windows

http://strawberryperl.com.

 Download either 32bit or 64bit version of installation.

 Run the downloaded file by double-clicking it in Windows Explorer. This brings up

the Perl install wizard, which is really easy to use. Just accept the default settings,

wait until the installation is finished, and you're ready to roll!

Macintosh Installation

In order to build your own version of Perl, you will need 'make', which is part of the Apples

developer tools usually supplied with Mac OS install DVDs. You do not need the latest

version of Xcode (which is now charged for) in order to install make.

Here are the simple steps to install Perl on Mac OS X machine.

 Open a Web browser and go to http://www.perl.org/get.html.

 Follow the link to download zipped source code available for Mac OS X.

 Download perl-5.x.y.tar.gz file and issue the following commands at $ prompt.

$tar -xzf perl-5.x.y.tar.gz

$cd perl-5.x.y

$./Configure -de

$make

$make test

$make install

This will install Perl in a standard location /usr/local/bin, and its libraries are installed in

/usr/local/lib/perlXX, where XX is the version of Perl that you are using.

Running Perl

The following are the different ways to start Perl.

1. Interactive Interpreter

Perl

7

You can enter perl and start coding right away in the interactive interpreter by starting it

from the command line. You can do this from Unix, DOS, or any other system, which

provides you a command-line interpreter or shell window.

$perl -e <perl code> # Unix/Linux

or

C:>perl -e <perl code> # Windows/DOS

Here is the list of all the available command line options:

Option Description

-d[:debugger] Runs program under debugger

-Idirectory Specifies @INC/#include directory

-T Enables tainting checks

-t Enables tainting warnings

-U Allows unsafe operations

-w Enables many useful warnings

-W Enables all warnings

-X Disables all warnings

-e program Runs Perl script sent in as program

file Runs Perl script from a given file

2. Script from the Command-line

A Perl script is a text file, which keeps perl code in it and it can be executed at the command

line by invoking the interpreter on your application, as in the following:

$perl script.pl # Unix/Linux

Perl

8

or

C:>perl script.pl # Windows/DOS

3. Integrated Development Environment

You can run Perl from a graphical user interface (GUI) environment as well. All you need

is a GUI application on your system that supports Perl. You can download Padre, the Perl

IDE. You can also use Eclipse Plugin EPIC - Perl Editor and IDE for Eclipse if you are

familiar with Eclipse.

Before proceeding to the next chapter, make sure your environment is properly setup and

working perfectly fine. If you are not able to setup the environment properly then you can

take help from your system admininstrator.

Al the examples given in subsequent chapters have been executed with v5.16.2 version

available on the CentOS flavor of Linux.

Perl

9

Perl borrows syntax and concepts from many languages: awk, sed, C, Bourne Shell,

Smalltalk, Lisp and even English. However, there are some definite differences between

the languages. This chapter is designd to quickly get you up to speed on the syntax that

is expected in Perl.

A Perl program consists of a sequence of declarations and statements, which run from the

top to the bottom. Loops, subroutines, and other control structures allow you to jump

around within the code. Every simple statement must end with a semicolon (;).

Perl is a free-form language: you can format and indent it however you like. Whitespace

serves mostly to separate tokens, unlike languages like Python where it is an important

part of the syntax, or Fortran where it is immaterial.

First Perl Program

Interactive Mode Programming

You can use Perl interpreter with -e option at command line, which let’s you execute Perl

statements from the command line. Let's try something at $ prompt as follows:

$perl -e 'print "Hello World\n"'

This execution will produce the following result:

Hello, world

Script Mode Programming

Assuming you are already on $ prompt, let's open a text file hello.pl using vi or vim editor

and put the following lines inside your file.

#!/usr/bin/perl

This will print "Hello, World"

print "Hello, world\n";

Here /usr/bin/perl is actual the perl interpreter binary. Before you execute your script,

be sure to change the mode of the script file and give execution priviledge, generally a

setting of 0755 works perfectly and finally you execute the above script as follows:

$chmod 0755 hello.pl

3. Perl ─ Syntax Overview

Perl

10

$./hello.pl

This execution will produce the following result:

Hello, world

You can use parentheses for functions arguments or omit them according to your personal

taste. They are only required occasionally to clarify the issues of precedence. Following

two statements produce the same result.

print("Hello, world\n");

print "Hello, world\n";

Perl File Extension

A Perl script can be created inside of any normal simple-text editor program. There are

several programs available for every type of platform. There are many programs designd

for programmers available for download on the web.

As a Perl convention, a Perl file must be saved with a .pl or .PL file extension in order to

be recognized as a functioning Perl script. File names can contain numbers, symbols, and

letters but must not contain a space. Use an underscore (_) in places of spaces.

Comments in Perl

Comments in any programming language are friends of developers. Comments can be

used to make program user friendly and they are simply skipped by the interpreter without

impacting the code functionality. For example, in the above program, a line starting with

hash # is a comment.

Simply saying comments in Perl start with a hash symbol and run to the end of the line:

This is a comment in perl

Lines starting with = are interpreted as the start of a section of embedded documentation

(pod), and all subsequent lines until the next =cut are ignored by the compiler. Following

is the example:

#!/usr/bin/perl

This is a single line comment

print "Hello, world\n";

=begin comment

This is all part of multiline comment.

Perl

11

You can use as many lines as you like

These comments will be ignored by the

compiler until the next =cut is encountered.

=cut

This will produce the following result:

Hello, world

Whitespaces in Perl

A Perl program does not care about whitespaces. Following program works perfectly fine:

#!/usr/bin/perl

print "Hello, world\n";

But if spaces are inside the quoted strings, then they would be printed as is. For example:

#!/usr/bin/perl

This would print with a line break in the middle

print "Hello

 world\n";

This will produce the following result:

Hello

 world

All types of whitespace like spaces, tabs, newlines, etc. are equivalent for the interpreter

when they are used outside of the quotes. A line containing only whitespace, possibly with

a comment, is known as a blank line, and Perl totally ignores it.

Single and Double Quotes in Perl

You can use double quotes or single quotes around literal strings as follows:

#!/usr/bin/perl

Perl

12

print "Hello, world\n";

print 'Hello, world\n';

This will produce the following result:

Hello, world

Hello, world\n$

There is an important difference in single and double quotes. Only double

quotes interpolate variables and special characters such as newlines \n, whereas single

quote does not interpolate any variable or special character. Check below example where

we are using $a as a variable to store a value and later printing that value:

#!/usr/bin/perl

$a = 10;

print "Value of a = $a\n";

print 'Value of a = $a\n';

This will produce the following result:

Value of a = 10

Value of a = $a\n$

"Here" Documents

You can store or print multiline text with a great comfort. Even you can make use of

variables inside the "here" document. Below is a simple syntax, check carefully there must

be no space between the << and the identifier.

An identifier may be either a bare word or some quoted text like we used EOF below. If

identifier is quoted, the type of quote you use determines the treatment of the text inside

the here docoment, just as in regular quoting. An unquoted identifier works like double

quotes.

#!/usr/bin/perl

$a = 10;

$var = <<"EOF";

Perl

13

This is the syntax for here document and it will continue

until it encounters a EOF in the first line.

This is case of double quote so variable value will be

interpolated. For example value of a = $a

EOF

print "$var\n";

$var = <<'EOF';

This is case of single quote so variable value will not be

interpolated. For example value of a = $a

EOF

print "$var\n";

This will produce the following result:

This is the syntax for here document and it will continue

until it encounters a EOF in the first line.

This is case of double quote so variable value will be

interpolated. For example value of a = 10

This is case of single quote so variable value will be

interpolated. For example value of a = $a

Escaping Characters

Perl uses the backslash (\) character to escape any type of character that might interfere

with our code. Let's take one example where we want to print double quote and $ sign:

#!/usr/bin/perl

$result = "This is \"number\"";

print "$result\n";

print "\$result\n";

This will produce the following result:

This is "number"

$result

Perl

14

Perl Identifiers

A Perl identifier is a name used to identify a variable, function, class, module, or other

object. A Perl variable name starts with either $, @ or % followed by zero or more letters,

underscores, and digits (0 to 9).

Perl does not allow punctuation characters such as @, $, and % within identifiers. Perl is

a case sensitive programming language. Thus $Manpower and $manpower are two

different identifiers in Perl.

Perl

15

Perl is a loosely typed language and there is no need to specify a type for your data while

using in your program. The Perl interpreter will choose the type based on the context of

the data itself.

Perl has three basic data types: scalars, arrays of scalars, and hashes of scalars, also

known as associative arrays. Here is a little detail about these data types.

S.N. Types and Description

1 Scalar:

Scalars are simple variables. They are preceded by a dollar sign ($). A scalar is

either a number, a string, or a reference. A reference is actually an address of a
variable, which we will see in the upcoming chapters.

2 Arrays:

Arrays are ordered lists of scalars that you access with a numeric index, which
starts with 0. They are preceded by an "at" sign (@).

3 Hashes:

Hashes are unordered sets of key/value pairs that you access using the keys as

subscripts. They are preceded by a percent sign (%).

Numeric Literals

Perl stores all the numbers internally as either signed integers or double-precision floating-

point values. Numeric literals are specified in any of the following floating-point or integer

formats:

Type Value

Integer 1234

Negative integer -100

Floating point 2000

Scientific notation 16.12E14

4. Perl ─ Data Types

Perl

16

Hexadecimal 0xffff

Octal 0577

String Literals

Strings are sequences of characters. They are usually alphanumeric values delimited by

either single (') or double (") quotes. They work much like UNIX shell quotes where you

can use single quoted strings and double quoted strings.

Double-quoted string literals allow variable interpolation, and single-quoted strings are

not. There are certain characters when they are proceeded by a back slash, have special

meaning and they are used to represent like newline (\n) or tab (\t).

You can embed newlines or any of the following Escape sequences directly in your double

quoted strings:

Escape sequence Meaning

\\ Backslash

\' Single quote

\" Double quote

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\0nn Creates Octal formatted numbers

Perl

17

\xnn Creates Hexideciamal formatted numbers

\cX Controls characters, x may be any character

\u Forces next character to uppercase

\l Forces next character to lowercase

\U Forces all following characters to uppercase

\L Forces all following characters to lowercase

\Q Backslash all following non-alphanumeric characters

\E End \U, \L, or \Q

Example

Let's see again how strings behave with single quotation and double quotation. Here we

will use string escapes mentioned in the above table and will make use of the scalar

variable to assign string values.

#!/usr/bin/perl

This is case of interpolation.

$str = "Welcome to \ntutorialspoint.com!";

print "$str\n";

This is case of non-interpolation.

$str = 'Welcome to \ntutorialspoint.com!';

print "$str\n";

Only W will become upper case.

$str = "\uwelcome to tutorialspoint.com!";

print "$str\n";

Whole line will become capital.

Perl

18

$str = "\UWelcome to tutorialspoint.com!";

print "$str\n";

A portion of line will become capital.

$str = "Welcome to \Ututorialspoint\E.com!";

print "$str\n";

Backsalash non alpha-numeric including spaces.

$str = "\QWelcome to tutorialspoint's family";

print "$str\n";

This will produce the following result:

Welcome to

tutorialspoint.com!

Welcome to \ntutorialspoint.com!

Welcome to tutorialspoint.com!

WELCOME TO TUTORIALSPOINT.COM!

Welcome to TUTORIALSPOINT.com!

Welcome\ to\ tutorialspoint\'s\ family

Perl

19

Variables are the reserved memory locations to store values. This means that when you

create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what

can be stored in the reserved memory. Therefore, by assigning different data types to

variables, you can store integers, decimals, or strings in these variables.

We have learnt that Perl has the following three basic data types:

 Scalars

 Arrays

 Hashes

Accordingly, we are going to use three types of variables in Perl. A scalar variable will

precede by a dollar sign ($) and it can store either a number, a string, or a reference. An

array variable will precede by sign @ and it will store ordered lists of scalars. Finaly,

the Hash variable will precede by sign % and will be used to store sets of key/value pairs.

Perl maintains every variable type in a separate namespace. So you can, without fear of

conflict, use the same name for a scalar variable, an array, or a hash. This means that

$foo and @foo are two different variables.

Creating Variables

Perl variables do not have to be explicitly declared to reserve memory space. The

declaration happens automatically when you assign a value to a variable. The equal sign

(=) is used to assign values to variables.

Keep a note that this is mandatory to declare a variable before we use it if we use use

strict statement in our program.

The operand to the left of the = operator is the name of the variable, and the operand to

the right of the = operator is the value stored in the variable. For example:

$age = 25; # An integer assignment

$name = "John Paul"; # A string

$salary = 1445.50; # A floating point

Here 25, "John Paul" and 1445.50 are the values assigned

to $age, $name and $salaryvariables, respectively. Shortly we will see how we can assign

values to arrays and hashes.

Scalar Variables

5. Perl ─ Variables

Perl

20

A scalar is a single unit of data. That data might be an integer number, floating point, a

character, a string, a paragraph, or an entire web page. Simply saying it could be anything,

but only a single thing.

Here is a simple example of using scalar variables:

#!/usr/bin/perl

$age = 25; # An integer assignment

$name = "John Paul"; # A string

$salary = 1445.50; # A floating point

print "Age = $age\n";

print "Name = $name\n";

print "Salary = $salary\n";

This will produce the following result:

Age = 25

Name = John Paul

Salary = 1445.5

Array Variables

An array is a variable that stores an ordered list of scalar values. Array variables are

preceded by an "at" (@) sign. To refer to a single element of an array, you will use the

dollar sign ($) with the variable name followed by the index of the element in square

brackets.

Here is a simple example of using array variables:

#!/usr/bin/perl

@ages = (25, 30, 40);

@names = ("John Paul", "Lisa", "Kumar");

print "\$ages[0] = $ages[0]\n";

print "\$ages[1] = $ages[1]\n";

print "\$ages[2] = $ages[2]\n";

print "\$names[0] = $names[0]\n";

print "\$names[1] = $names[1]\n";

Perl

21

print "\$names[2] = $names[2]\n";

Here we used escape sign (\) before the $ sign just to print it. Other Perl will understand

it as a variable and will print its value. When exected, this will produce the following result:

$ages[0] = 25

$ages[1] = 30

$ages[2] = 40

$names[0] = John Paul

$names[1] = Lisa

$names[2] = Kumar

Hash Variables

A hash is a set of key/value pairs. Hash variables are preceded by a percent (%) sign.

To refer to a single element of a hash, you will use the hash variable name followed by

the "key" associated with the value in curly brackets.

Here is a simple example of using hash variables:

#!/usr/bin/perl

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40);

print "\$data{'John Paul'} = $data{'John Paul'}\n";

print "\$data{'Lisa'} = $data{'Lisa'}\n";

print "\$data{'Kumar'} = $data{'Kumar'}\n";

This will produce the following result:

$data{'John Paul'} = 45

$data{'Lisa'} = 30

$data{'Kumar'} = 40

Variable Context

Perl treats same variable differently based on Context, i.e., situation where a variable is

being used. Let's check the following example:

#!/usr/bin/perl

Perl

22

@names = ('John Paul', 'Lisa', 'Kumar');

@copy = @names;

$size = @names;

print "Given names are : @copy\n";

print "Number of names are : $size\n";

This will produce the following result:

Given names are : John Paul Lisa Kumar

Number of names are : 3

Here @names is an array, which has been used in two different contexts. First we copied

it into anyother array, i.e., list, so it returned all the elements assuming that context is

list context. Next we used the same array and tried to store this array in a scalar, so in

this case it returned just the number of elements in this array assuming that context is

scalar context. Following table lists down the various contexts:

S.N. Context and Description

1 Scalar:

Assignment to a scalar variable evaluates the right-hand side in a scalar context.

2 List:

Assignment to an array or a hash evaluates the right-hand side in a list context.

3 Boolean:

Boolean context is simply any place where an expression is being evaluated to
see whether it's true or false.

4 Void:

This context not only doesn't care what the return value is, it doesn't even want

a return value.

5 Interpolative:

This context only happens inside quotes, or things that work like quotes.

Perl

23

A scalar is a single unit of data. That data might be an integer number, floating point, a

character, a string, a paragraph, or an entire web page.

Here is a simple example of using scalar variables:

#!/usr/bin/perl

$age = 25; # An integer assignment

$name = "John Paul"; # A string

$salary = 1445.50; # A floating point

print "Age = $age\n";

print "Name = $name\n";

print "Salary = $salary\n";

This will produce the following result:

Age = 25

Name = John Paul

Salary = 1445.5

Numeric Scalars

A scalar is most often either a number or a string. Following example demonstrates the

usage of various types of numeric scalars:

#!/usr/bin/perl

$integer = 200;

$negative = -300;

$floating = 200.340;

$bigfloat = -1.2E-23;

377 octal, same as 255 decimal

$octal = 0377;

6. Perl ─ Scalars

Perl

24

FF hex, also 255 decimal

$hexa = 0xff;

print "integer = $integer\n";

print "negative = $negative\n";

print "floating = $floating\n";

print "bigfloat = $bigfloat\n";

print "octal = $octal\n";

print "hexa = $hexa\n";

This will produce the following result:

integer = 200

negative = -300

floating = 200.34

bigfloat = -1.2e-23

octal = 255

hexa = 255

String Scalars

Following example demonstrates the usage of various types of string scalars. Notice the

difference between single quoted strings and double quoted strings:

#!/usr/bin/perl

$var = "This is string scalar!";

$quote = 'I m inside single quote - $var';

$double = "This is inside single quote - $var";

$escape = "This example of escape -\tHello, World!";

print "var = $var\n";

print "quote = $quote\n";

print "double = $double\n";

print "escape = $escape\n";

This will produce the following result:

Perl

25

var = This is string scalar!

quote = I m inside single quote - $var

double = This is inside single quote - This is string scalar!

escape = This example of escape - Hello, World!

Scalar Operations

You will see a detail of various operators available in Perl in a separate chapter, but here

we are going to list down few numeric and string operations.

#!/usr/bin/perl

$str = "hello" . "world"; # Concatenates strings.

$num = 5 + 10; # adds two numbers.

$mul = 4 * 5; # multiplies two numbers.

$mix = $str . $num; # concatenates string and number.

print "str = $str\n";

print "num = $num\n";

print "mix = $mix\n";

This will produce the following result:

str = helloworld

num = 15

mix = helloworld15

Multiline Strings

If you want to introduce multiline strings into your programs, you can use the standard

single quotes as below:

#!/usr/bin/perl

$string = 'This is

a multiline

string';

print "$string\n";

This will produce the following result:

Perl

26

This is

a multiline

string

You can use "here" document syntax as well to store or print multilines as below:

#!/usr/bin/perl

print <<EOF;

This is

a multiline

string

EOF

This will also produce the same result:

This is

a multiline

string

V-Strings

A literal of the form v1.20.300.4000 is parsed as a string composed of characters with the

specified ordinals. This form is known as v-strings.

A v-string provides an alternative and more readable way to construct strings, rather than

use the somewhat less readable interpolation form "\x{1}\x{14}\x{12c}\x{fa0}".

They are any literal that begins with a v and is followed by one or more dot-separated

elements. For example:

#!/usr/bin/perl

$smile = v9786;

$foo = v102.111.111;

$martin = v77.97.114.116.105.110;

print "smile = $smile\n";

print "foo = $foo\n";

print "martin = $martin\n";

This will also produce the same result:

Perl

27

smile = a?o

foo = foo

martin = Martin

Wide character in print at /tmp/135911788320439.pl line 7.

Special Literals

So far you must have a feeling about string scalars and its concatenation and interpolation

opration. So let me tell you about three special literals __FILE__, __LINE__, and

__PACKAGE__ represent the current filename, line number, and package name at that

point in your program.

They may be used only as separate tokens and will not be interpolated into strings. Check

the below example:

#!/usr/bin/perl

print "File name ". __FILE__ . "\n";

print "Line Number " . __LINE__ ."\n";

print "Package " . __PACKAGE__ ."\n";

they cannot be interpolated

print "__FILE__ __LINE__ __PACKAGE__\n";

This will produce the following result:

File name hello.pl

Line Number 4

Package main

__FILE__ __LINE__ __PACKAGE__

Perl

28

An array is a variable that stores an ordered list of scalar values. Array variables are

preceded by an "at" (@) sign. To refer to a single element of an array, you will use the

dollar sign ($) with the variable name followed by the index of the element in square

brackets.

Here is a simple example of using the array variables:

#!/usr/bin/perl

@ages = (25, 30, 40);

@names = ("John Paul", "Lisa", "Kumar");

print "\$ages[0] = $ages[0]\n";

print "\$ages[1] = $ages[1]\n";

print "\$ages[2] = $ages[2]\n";

print "\$names[0] = $names[0]\n";

print "\$names[1] = $names[1]\n";

print "\$names[2] = $names[2]\n";

Here we have used the escape sign (\) before the $ sign just to print it. Other Perl will

understand it as a variable and will print its value. When exected, this will produce the

following result:

$ages[0] = 25

$ages[1] = 30

$ages[2] = 40

$names[0] = John Paul

$names[1] = Lisa

$names[2] = Kumar

In Perl, List and Array terms are often used as if they're interchangeable. But the list is

the data, and the array is the variable.

Array Creation

7. Perl ─ Arrays

Perl

29

Array variables are prefixed with the @ sign and are populated using either parentheses

or the qw operator. For example:

@array = (1, 2, 'Hello');

@array = qw/This is an array/;

The second line uses the qw// operator, which returns a list of strings, separating the

delimited string by white space. In this example, this leads to a four-element array; the

first element is 'this' and last (fourth) is 'array'. This means that you can use different lines

as follows:

@days = qw/Monday

Tuesday

...

Sunday/;

You can also populate an array by assigning each value individually as follows:

$array[0] = 'Monday';

...

$array[6] = 'Sunday';

Accessing Array Elements

When accessing individual elements from an array, you must prefix the variable with a

dollar sign ($) and then append the element index within the square brackets after the

name of the variable. For example:

#!/usr/bin/perl

@days = qw/Mon Tue Wed Thu Fri Sat Sun/;

print "$days[0]\n";

print "$days[1]\n";

print "$days[2]\n";

print "$days[6]\n";

print "$days[-1]\n";

print "$days[-7]\n";

Perl

30

This will produce the following result:

Mon

Tue

Wed

Sun

Sun

Mon

Array indices start from zero, so to access the first element you need to give 0 as indices.

You can also give a negative index, in which case you select the element from the end,

rather than the beginning, of the array. This means the following:

print $days[-1]; # outputs Sun

print $days[-7]; # outputs Mon

Sequential Number Arrays

Perl offers a shortcut for sequential numbers and letters. Rather than typing out each

element when counting to 100 for example, we can do something like as follows:

#!/usr/bin/perl

@var_10 = (1..10);

@var_20 = (10..20);

@var_abc = (a..z);

print "@var_10\n"; # Prints number from 1 to 10

print "@var_20\n"; # Prints number from 10 to 20

print "@var_abc\n"; # Prints number from a to z

Here double dot (..) is called range operator. This will produce the following result:

1 2 3 4 5 6 7 8 9 10

10 11 12 13 14 15 16 17 18 19 20

a b c d e f g h i j k l m n o p q r s t u v w x y z

Array Size

Perl

31

The size of an array can be determined using the scalar context on the array - the returned

value will be the number of elements in the array:

@array = (1,2,3);

print "Size: ",scalar @array,"\n";

The value returned will always be the physical size of the array, not the number of valid

elements. You can demonstrate this, and the difference between scalar @array and

$#array, using this fragment is as follows:

#!/uer/bin/perl

@array = (1,2,3);

$array[50] = 4;

$size = @array;

$max_index = $#array;

print "Size: $size\n";

print "Max Index: $max_index\n";

This will produce the following result:

Size: 51

Max Index: 50

There are only four elements in the array that contains information, but the array is 51

elements long, with a highest index of 50.

Adding and Removing Elements in Array

Perl provides a number of useful functions to add and remove elements in an array. You

may have a question what is a function? So far you have used print function to print

various values. Similarly there are various other functions or sometime called sub-

routines, which can be used for various other functionalities.

S.N. Types and Description

1 push @ARRAY, LIST

Pushes the values of the list onto the end of the array.

2 pop @ARRAY

Perl

32

Pops off and returns the last value of the array.

3 shift @ARRAY

Shifts the first value of the array off and returns it, shortening the array by 1 and

moving everything down.

4 unshift @ARRAY, LIST

Prepends list to the front of the array, and returns the number of elements in the

new array.

#!/usr/bin/perl

create a simple array

@coins = ("Quarter","Dime","Nickel");

print "1. \@coins = @coins\n";

add one element at the end of the array

push(@coins, "Penny");

print "2. \@coins = @coins\n";

add one element at the beginning of the array

unshift(@coins, "Dollar");

print "3. \@coins = @coins\n";

remove one element from the last of the array.

pop(@coins);

print "4. \@coins = @coins\n";

remove one element from the beginning of the array.

shift(@coins);

print "5. \@coins = @coins\n";

This will produce the following result:

Perl

33

1. @coins = Quarter Dime Nickel

2. @coins = Quarter Dime Nickel Penny

3. @coins = Dollar Quarter Dime Nickel Penny

4. @coins = Dollar Quarter Dime Nickel

5. @coins = Quarter Dime Nickel

Slicing Array Elements

You can also extract a "slice" from an array - that is, you can select more than one item

from an array in order to produce another array.

#!/usr/bin/perl

@days = qw/Mon Tue Wed Thu Fri Sat Sun/;

@weekdays = @days[3,4,5];

print "@weekdays\n";

This will produce the following result:

Thu Fri Sat

The specification for a slice must have a list of valid indices, either positive or negative,

each separated by a comma. For speed, you can also use the .. range operator:

#!/usr/bin/perl

@days = qw/Mon Tue Wed Thu Fri Sat Sun/;

@weekdays = @days[3..5];

print "@weekdays\n";

This will produce the following result:

Thu Fri Sat

Replacing Array Elements

Now we are going to introduce one more function called splice(), which has the following

syntax:

Perl

34

splice @ARRAY, OFFSET [, LENGTH [, LIST]]

This function will remove the elements of @ARRAY designated by OFFSET and LENGTH,

and replaces them with LIST, if specified. Finally, it returns the elements removed from

the array. Following is the example:

#!/usr/bin/perl

@nums = (1..20);

print "Before - @nums\n";

splice(@nums, 5, 5, 21..25);

print "After - @nums\n";

This will produce the following result:

Before - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

After - 1 2 3 4 5 21 22 23 24 25 11 12 13 14 15 16 17 18 19 20

Here, the actual replacement begins with the 6th number after that five elements are then

replaced from 6 to 10 with the numbers 21, 22, 23, 24 and 25.

Transform Strings to Arrays

Let's look into one more function called split(), which has the following syntax:

split [PATTERN [, EXPR [, LIMIT]]]

This function splits a string into an array of strings, and returns it. If LIMIT is specified,

splits into at most that number of fields. If PATTERN is omitted, splits on whitespace.

Following is the example:

#!/usr/bin/perl

define Strings

$var_string = "Rain-Drops-On-Roses-And-Whiskers-On-Kittens";

$var_names = "Larry,David,Roger,Ken,Michael,Tom";

transform above strings into arrays.

@string = split('-', $var_string);

@names = split(',', $var_names);

Perl

35

print "$string[3]\n"; # This will print Roses

print "$names[4]\n"; # This will print Michael

This will produce the following result:

Roses

Michael

Transform Arrays to Strings

We can use the join() function to rejoin the array elements and form one long scalar

string. This function has the following syntax:

join EXPR, LIST

This function joins the separate strings of LIST into a single string with fields separated by

the value of EXPR, and returns the string. Following is the example:

#!/usr/bin/perl

define Strings

$var_string = "Rain-Drops-On-Roses-And-Whiskers-On-Kittens";

$var_names = "Larry,David,Roger,Ken,Michael,Tom";

transform above strings into arrays.

@string = split('-', $var_string);

@names = split(',', $var_names);

$string1 = join('-', @string);

$string2 = join(',', @names);

print "$string1\n";

print "$string2\n";

This will produce the following result:

Rain-Drops-On-Roses-And-Whiskers-On-Kittens

Larry,David,Roger,Ken,Michael,Tom

Perl

36

Sorting Arrays

The sort() function sorts each element of an array according to the ASCII Numeric

standards. This function has the following syntax:

sort [SUBROUTINE] LIST

This function sorts the LIST and returns the sorted array value. If SUBROUTINE is specified

then specified logic inside the SUBTROUTINE is applied while sorting the elements.

#!/usr/bin/perl

define an array

@foods = qw(pizza steak chicken burgers);

print "Before: @foods\n";

sort this array

@foods = sort(@foods);

print "After: @foods\n";

This will produce the following result:

Before: pizza steak chicken burgers

After: burgers chicken pizza steak

Please note that sorting is performed based on ASCII Numeric value of the words. So the

best option is to first transform every element of the array into lowercase letters and then

perform the sort function.

The $[Special Variable

So far you have seen simple variable we defined in our programs and used them to store

and print scalar and array values. Perl provides numerous special variables, which have

their predefined meaning.

We have a special variable, which is written as $[. This special variable is a scalar

containing the first index of all arrays. Because Perl arrays have zero-based indexing, $[

will almost always be 0. But if you set $[to 1 then all your arrays will use on-based

indexing. It is recommended not to use any other indexing other than zero. However, let's

take one example to show the usage of $[variable:

#!/usr/bin/perl

Perl

37

define an array

@foods = qw(pizza steak chicken burgers);

print "Foods: @foods\n";

Let's reset first index of all the arrays.

$[= 1;

print "Food at \@foods[1]: $foods[1]\n";

print "Food at \@foods[2]: $foods[2]\n";

This will produce the following result:

Foods: pizza steak chicken burgers

Food at @foods[1]: pizza

Food at @foods[2]: steak

Merging Arrays

Because an array is just a comma-separated sequence of values, you can combine them

together as shown below:

#!/usr/bin/perl

@numbers = (1,3,(4,5,6));

print "numbers = @numbers\n";

This will produce the following result:

numbers = 1 3 4 5 6

The embedded arrays just become a part of the main array as shown below:

#!/usr/bin/perl

@odd = (1,3,5);

@even = (2, 4, 6);

@numbers = (@odd, @even);

Perl

38

print "numbers = @numbers\n";

This will produce the following result:

numbers = 1 3 5 2 4 6

Selecting Elements from Lists

The list notation is identical to that for arrays. You can extract an element from an array

by appending square brackets to the list and giving one or more indices:

#!/usr/bin/perl

$var = (5,4,3,2,1)[4];

print "value of var = $var\n"

This will produce the following result:

value of var = 1

Similarly, we can extract slices, although without the requirement for a leading @

character:

#!/usr/bin/perl

@list = (5,4,3,2,1)[1..3];

print "Value of list = @list\n";

This will produce the following result:

Value of list = 4 3 2

Perl

39

A hash is a set of key/value pairs. Hash variables are preceded by a percent (%) sign.

To refer to a single element of a hash, you will use the hash variable name preceded by a

"$" sign and followed by the "key" associated with the value in curly brackets.

Here is a simple example of using the hash variables:

#!/usr/bin/perl

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40);

print "\$data{'John Paul'} = $data{'John Paul'}\n";

print "\$data{'Lisa'} = $data{'Lisa'}\n";

print "\$data{'Kumar'} = $data{'Kumar'}\n";

This will produce the following result:

$data{'John Paul'} = 45

$data{'Lisa'} = 30

$data{'Kumar'} = 40

Creating Hashes

Hashes are created in one of the two following ways. In the first method, you assign a

value to a named key on a one-by-one basis:

$data{'John Paul'} = 45;

$data{'Lisa'} = 30;

$data{'Kumar'} = 40;

In the second case, you use a list, which is converted by taking individual pairs from the

list: the first element of the pair is used as the key, and the second, as the value. For

example:

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40);

For clarity, you can use => as an alias for , to indicate the key/value pairs as follows:

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

Here is one more variant of the above form, have a look at it, here all the keys have been

preceded by hyphen (-) and no quotation is required around them:

8. Perl ─ Hashes

Perl

40

%data = (-JohnPaul => 45, -Lisa => 30, -Kumar => 40);

But it is important to note that there is a single word, i.e., without spaces keys have been

used in this form of hash formation and if you build-up your hash this way then keys will

be accessed using hyphen only as shown below.

$val = $data{-JohnPaul}

$val = $data{-Lisa}

Accessing Hash Elements

When accessing individual elements from a hash, you must prefix the variable with a dollar

sign ($) and then append the element key within curly brackets after the name of the

variable. For example:

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

print "$data{'John Paul'}\n";

print "$data{'Lisa'}\n";

print "$data{'Kumar'}\n";

This will produce the following result:

45

30

40

Extracting Slices

You can extract slices of a hash just as you can extract slices from an array. You will need

to use @ prefix for the variable to store the returned value because they will be a list of

values:

#!/uer/bin/perl

%data = (-JohnPaul => 45, -Lisa => 30, -Kumar => 40);

@array = @data{-JohnPaul, -Lisa};

print "Array : @array\n";

Perl

41

This will produce the following result:

Array : 45 30

Extracting Keys and Values

You can get a list of all of the keys from a hash by using keys function, which has the

following syntax:

keys %HASH

This function returns an array of all the keys of the named hash. Following is the example:

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

@names = keys %data;

print "$names[0]\n";

print "$names[1]\n";

print "$names[2]\n";

This will produce the following result:

Lisa

John Paul

Kumar

Similarly, you can use values function to get a list of all the values. This function has the

following syntax:

values %HASH

This function returns a normal array consisting of all the values of the named hash.

Following is the example:

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

@ages = values %data;

Perl

42

print "$ages[0]\n";

print "$ages[1]\n";

print "$ages[2]\n";

This will produce the following result:

30

45

40

Checking for Existence

If you try to access a key/value pair from a hash that doesn't exist, you'll normally get the

undefined value, and if you have warnings switched on, then you'll get a warning

generated at run time. You can get around this by using the exists function, which returns

true if the named key exists, irrespective of what its value might be:

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

if(exists($data{'Lisa'})){

 print "Lisa is $data{'Lisa'} years old\n";

}

else{

 print "I don't know age of Lisa\n";

}

Here we have introduced the IF...ELSE statement, which we will study in a separate

chapter. For now you just assume that if(condition) part will be executed only when

the given condition is true otherwise else part will be executed. So when we execute the

above program, it produces the following result because here the given

condition exists($data{'Lisa'} returns true:

Lisa is 30 years old

Getting Hash Size

You can get the size - that is, the number of elements from a hash by using the scalar

context on either keys or values. Simply saying first you have to get an array of either the

keys or values and then you can get the size of array as follows:

Perl

43

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

@keys = keys %data;

$size = @keys;

print "1 - Hash size: is $size\n";

@values = values %data;

$size = @values;

print "2 - Hash size: is $size\n";

This will produce the following result:

1 - Hash size: is 3

2 - Hash size: is 3

Add and Remove Elements in Hashes

Adding a new key/value pair can be done with one line of code using simple assignment

operator. But to remove an element from the hash you need to use delete function as

shown below in the example:

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

@keys = keys %data;

$size = @keys;

print "1 - Hash size: is $size\n";

adding an element to the hash;

$data{'Ali'} = 55;

@keys = keys %data;

$size = @keys;

print "2 - Hash size: is $size\n";

delete the same element from the hash;

delete $data{'Ali'};

Perl

44

@keys = keys %data;

$size = @keys;

print "3 - Hash size: is $size\n";

This will produce the following result:

1 - Hash size: is 3

2 - Hash size: is 4

3 - Hash size: is 3

Perl

45

Perl conditional statements helps in the decision making, which require that the

programmer specifies one or more conditions to be evaluated or tested by the program,

along with a statement or statements to be executed if the condition is determined to be

true, and optionally, other statements to be executed if the condition is determined to be

false.

Following is the general from of a typical decision making structure found in most of the

programming languages:

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a boolean

context and all other values are true. Negation of a true value by ! or not returns a special

false value.

Perl programming language provides the following types of conditional statements.

Statement Description

if statement An if statement consists of a boolean expression

followed by one or more statements.

if...else statement An if statement can be followed by an optional else

statement.

9. Perl ─ If…Else

Perl

46

if...elsif...else statement An if statement can be followed by an optional elsif

statement and then by an optional else statement.

unless statement An unless statement consists of a boolean

expression followed by one or more statements.

unless...else statement An unless statement can be followed by an optional

else statement.

unless...elsif..else statement An unless statement can be followed by an optional

elsif statement and then by an optional else

statement.

switch statement With the latest versions of Perl, you can make use of

the switch statement, which allows a simple way of

comparing a variable value against various conditions.

if statement

A Perl if statement consists of a boolean expression followed by one or more statements.

Syntax

The syntax of an if statement in Perl programming language is:

if(boolean_expression){

 # statement(s) will execute if the given condition is true

}

If the boolean expression evaluates to true then the block of code inside the if statement

will be executed. If boolean expression evaluates to false then the first set of code after

the end of the if statement (after the closing curly brace) will be executed.

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a boolean

context and all other values are true. Negation of a true value by ! or not returns a special

false value.

Perl

47

Flow Diagram

Example

#!/usr/local/bin/perl

$a = 10;

check the boolean condition using if statement

if($a < 20){

 # if condition is true then print the following

 printf "a is less than 20\n";

}

print "value of a is : $a\n";

$a = "";

check the boolean condition using if statement

if($a){

 # if condition is true then print the following

 printf "a has a true value\n";

}

print "value of a is : $a\n";

Perl

48

First IF statement makes use of less than operator (<), which compares two operands and

if first operand is less than the second one then it returns true otherwise it returns false.

So when the above code is executed, it produces the following result:

a is less than 20

value of a is : 10

value of a is :

if...else statement

A Perl if statement can be followed by an optional else statement, which executes when

the boolean expression is false.

Syntax

The syntax of an if...else statement in Perl programming language is:

if(boolean_expression){

 # statement(s) will execute if the given condition is true

}else{

 # statement(s) will execute if the given condition is false

}

If the boolean expression evaluates to true, then the if block of code will be executed

otherwise else block of code will be executed.

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a boolean

context and all other values are true. Negation of a true value by ! or not returns a special

false value.

Perl

49

Flow Diagram

Example

#!/usr/local/bin/perl

$a = 100;

check the boolean condition using if statement

if($a < 20){

 # if condition is true then print the following

 printf "a is less than 20\n";

}else{

 # if condition is false then print the following

 printf "a is greater than 20\n";

}

print "value of a is : $a\n";

$a = "";

check the boolean condition using if statement

if($a){

Perl

50

 # if condition is true then print the following

 printf "a has a true value\n";

}else{

 # if condition is false then print the following

 printf "a has a false value\n";

}

print "value of a is : $a\n";

When the above code is executed, it produces the following result:

a is greater than 20

value of a is : 100

a has a false value

value of a is :

if...elsif...else statement

An if statement can be followed by an optional elsif...else statement, which is very useful

to test the various conditions using single if...elsif statement.

When using if , elsif , else statements there are few points to keep in mind.

 An if can have zero or one else's and it must come after any elsif's.

 An if can have zero to many elsif's and they must come before the else.

 Once an elsif succeeds, none of the remaining elsif's or else's will be tested.

Syntax

The syntax of an if...elsif...else statement in Perl programming language is:

if(boolean_expression 1){

 # Executes when the boolean expression 1 is true

}

elsif(boolean_expression 2){

 # Executes when the boolean expression 2 is true

}

elsif(boolean_expression 3){

 # Executes when the boolean expression 3 is true

}

Perl

51

else{

 # Executes when the none of the above condition is true

}

Example

#!/usr/local/bin/perl

$a = 100;

check the boolean condition using if statement

if($a == 20){

 # if condition is true then print the following

 printf "a has a value which is 20\n";

}elsif($a == 30){

 # if condition is true then print the following

 printf "a has a value which is 30\n";

}else{

 # if none of the above conditions is true

 printf "a has a value which is $a\n";

}

Here we are using the equality operator == which is used to check if two operands are

equal or not. If both the operands are same, then it returns true otherwise it retruns false.

When the above code is executed, it produces the following result:

a has a value which is 100

unless statement

A Perl unless statement consists of a boolean expression followed by one or more

statements.

Syntax

The syntax of an unless statement in Perl programming language is:

unless(boolean_expression){

 # statement(s) will execute if the given condition is false

}

Perl

52

If the boolean expression evaluates to false, then the block of code inside the unless

statement will be executed. If boolean expression evaluates to true then the first set of

code after the end of the unless statement (after the closing curly brace) will be executed.

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a boolean

context and all other values are true. Negation of a true value by ! or not returns a special

false value.

Flow Diagram

Example

#!/usr/local/bin/perl

$a = 20;

check the boolean condition using unless statement

unless($a < 20){

 # if condition is false then print the following

 printf "a is not less than 20\n";

}

print "value of a is : $a\n";

$a = "";

check the boolean condition using unless statement

unless ($a){

Perl

53

 # if condition is false then print the following

 printf "a has a false value\n";

}

print "value of a is : $a\n";

First unless statement makes use of less than operator (<), which compares two operands

and if first operand is less than the second one then it returns true otherwise it returns

false. So when the above code is executed, it produces the following result:

a is not less than 20

value of a is : 20

a has a false value

value of a is :

unless...else statement

A Perl unless statement can be followed by an optional else statement, which executes

when the boolean expression is true.

Syntax

The syntax of an unless...else statement in Perl programming language is:

unless(boolean_expression){

 # statement(s) will execute if the given condition is false

}else{

 # statement(s) will execute if the given condition is true

}

If the boolean expression evaluates to true then the unless block of code will be

executed otherwise else block of code will be executed.

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a boolean

context and all other values are true. Negation of a true value by ! or not returns a special

false value.

Perl

54

Flow Diagram

Example

#!/usr/local/bin/perl

$a = 100;

check the boolean condition using unless statement

unless($a == 20){

 # if condition is false then print the following

 printf "given condition is false\n";

}else{

 # if condition is true then print the following

 printf "given condition is true\n";

}

print "value of a is : $a\n";

$a = "";

check the boolean condition using unless statement

Perl

55

unless($a){

 # if condition is false then print the following

 printf "a has a false value\n";

}else{

 # if condition is true then print the following

 printf "a has a true value\n";

}

print "value of a is : $a\n";

When the above code is executed, it produces the following result:

given condition is false

value of a is : 100

a has a false value

value of a is :

unless...elsif..else statement

An unless statement can be followed by an optional elsif...else statement, which is very

useful to test the various conditions using single unless...elsif statement.

When using unless, elsif, else statements there are few points to keep in mind.

 An unless can have zero or one else's and it must come after any elsif's.

 An unless can have zero to many elsif's and they must come before the else.

 Once an elsif succeeds, none of the remaining elsif's or else's will be tested.

Syntax

The syntax of an unless...elsif...else statement in Perl programming language is:

unless(boolean_expression 1){

 # Executes when the boolean expression 1 is false

}

elsif(boolean_expression 2){

 # Executes when the boolean expression 2 is true

}

elsif(boolean_expression 3){

 # Executes when the boolean expression 3 is true

Perl

56

}

else{

 # Executes when the none of the above condition is met

}

Example

#!/usr/local/bin/perl

$a = 20;

check the boolean condition using if statement

unless($a == 30){

 # if condition is false then print the following

 printf "a has a value which is not 20\n";

}elsif($a == 30){

 # if condition is true then print the following

 printf "a has a value which is 30\n";

}else{

 # if none of the above conditions is met

 printf "a has a value which is $a\n";

}

Here we are using the equality operator == which is used to check if two operands are

equal or not. If both the operands are same then it returns true, otherwise it retruns false.

When the above code is executed, it produces the following result:

a has a value which is not 20

switch statement

A switch statement allows a variable to be tested for equality against a list of values. Each

value is called a case, and the variable being switched on is checked for each switch case.

A switch case implementation is dependent on Switch module and Switch module has

been implemented using Filter::Util::Call and Text::Balanced and requires both these

modules to be installed.

Perl

57

Syntax

The synopsis for a switch statement in Perl programming language is as follows:

use Switch;

switch(argument){

 case 1 { print "number 1" }

 case "a" { print "string a" }

 case [1..10,42] { print "number in list" }

 case (\@array) { print "number in list" }

 case /\w+/ { print "pattern" }

 case qr/\w+/ { print "pattern" }

 case (\%hash) { print "entry in hash" }

 case (\&sub) { print "arg to subroutine" }

 else { print "previous case not true" }

}

The following rules apply to a switch statement:

 The switch statement takes a single scalar argument of any type, specified in

parentheses.

 The value is followed by a block, which may contain one or more case statement

followed by a block of Perl statement(s).

 A case statement takes a single scalar argument and selects the appropriate type

of matching between the case argument and the current switch value.

 If the match is successful, the mandatory block associated with the case statement

is executed.

 A switch statement can have an optional else case, which must appear at the end

of the switch. The default case can be used for performing a task when none of the

cases is matched.

 If a case block executes an untargeted next, control is immediately transferred to

the statement after the case statement (i.e., usually another case), rather than out

of the surrounding switch block.

 Not every case needs to contain a next. If no next appears, the flow of control will

not fall through subsequent cases.

Perl

58

Flow Diagram

Example

#!/usr/local/bin/perl

use Switch;

$var = 10;

@array = (10, 20, 30);

%hash = ('key1' => 10, 'key2' => 20);

switch($var){

 case 10 { print "number 100\n" }

 case "a" { print "string a" }

 case [1..10,42] { print "number in list" }

 case (\@array) { print "number in list" }

 case (\%hash) { print "entry in hash" }

Perl

59

 else { print "previous case not true" }

}

When the above code is executed, it produces the following result:

number 100

Fall-though is usually a bad idea in a switch statement. However, now consider a fall-

through case, we will use the next to transfer the control to the next matching case, which

is a list in this case:

#!/usr/local/bin/perl

use Switch;

$var = 10;

@array = (10, 20, 30);

%hash = ('key1' => 10, 'key2' => 20);

switch($var){

 case 10 { print "number 100\n"; next; }

 case "a" { print "string a" }

 case [1..10,42] { print "number in list" }

 case (\@array) { print "number in list" }

 case (\%hash) { print "entry in hash" }

 else { print "previous case not true" }

}

When the above code is executed, it produces the following result:

number 100

number in list

The ? : Operator

Let's check the conditional operator ? : which can be used to

replace if...else statements. It has the following general form:

Perl

60

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then

Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then

Exp3 is evaluated and its value becomes the value of the expression. Below is a simple

example making use of this operator:

#!/usr/local/bin/perl

$name = "Ali";

$age = 10;

$status = ($age > 60)? "A senior citizen" : "Not a senior citizen";

print "$name is - $status\n";

This will produce the following result:

Ali is - Not a senior citizen

Perl

61

There may be a situation when you need to execute a block of code several number of

times. In general, statements are executed sequentially: The first statement in a function

is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times

and following is the general form of a loop statement in most of the programming

languages:

Perl programming language provides the following types of loop to handle the looping

requirements.

Loop Type Description

while loop Repeats a statement or group of statements while a given condition

is true. It tests the condition before executing the loop body.

until loop Repeats a statement or group of statements until a given condition

becomes true. It tests the condition before executing the loop body.

10. Perl ─ Loops

Perl

62

for loop Executes a sequence of statements multiple times and abbreviates

the code that manages the loop variable.

foreach loop The foreach loop iterates over a normal list value and sets the

variable VAR to be each element of the list in turn.

do...while loop Like a while statement, except that it tests the condition at the end

of the loop body

nested loops You can use one or more loop inside any another while, for or

do..while loop.

while loop

A while loop statement in Perl programming language repeatedly executes a target

statement as long as a given condition is true.

Syntax

The syntax of a while loop in Perl programming language is:

while(condition)

{

 statement(s);

}

Here statement(s) may be a single statement or a block of statements.

The condition may be any expression. The loop iterates while the condition is true. When

the condition becomes false, program control passes to the line immediately following the

loop.

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a boolean

context and all other values are true. Negation of a true value by ! or not returns a special

false value.

Perl

63

Flow Diagram

Here the key point of the while loop is that the loop might not ever run. When the condition

is tested and the result is false, the loop body will be skipped and the first statement after

the while loop will be executed.

Example

#!/usr/local/bin/perl

$a = 10;

while loop execution

while($a < 20){

 printf "Value of a: $a\n";

 $a = $a + 1;

}

Perl

64

Here we are using the comparison operator < to compare value of variable $a against 20.

So while value of $a is less than 20, while loop continues executing a block of code next

to it and as soon as the value of $a becomes equal to 20, it comes out. When executed,

above code produces the following result:

Value of a: 10

Value of a: 11

Value of a: 12

Value of a: 13

Value of a: 14

Value of a: 15

Value of a: 16

Value of a: 17

Value of a: 18

Value of a: 19

until loop

An until loop statement in Perl programming language repeatedly executes a target

statement as long as a given condition is false.

Syntax

The syntax of an until loop in Perl programming language is:

until(condition)

{

 statement(s);

}

Here statement(s) may be a single statement or a block of statements.

The condition may be any expression. The loop iterates until the condition becomes true.

When the condition becomes true, the program control passes to the line immediately

following the loop.

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a boolean

context and all other values are true. Negation of a true value by ! or not returns a special

false value.

Perl

65

Flow Diagram

Here key point of the until loop is that the loop might not ever run. When the condition is

tested and the result is true, the loop body will be skipped and the first statement after

the until loop will be executed.

Example

#!/usr/local/bin/perl

$a = 5;

until loop execution

until($a > 10){

 printf "Value of a: $a\n";

 $a = $a + 1;

}

Perl

66

Here we are using the comparison operator > to compare value of variable $a against 10.

So until the value of $a is less than 10, until loop continues executing a block of code

next to it and as soon as the value of $a becomes greater than 10, it comes out. When

executed, above code produces the following result:

Value of a: 5

Value of a: 6

Value of a: 7

Value of a: 8

Value of a: 9

Value of a: 10

for loop

A for loop is a repetition control structure that allows you to efficiently write a loop that

needs to execute a specific number of times.

Syntax

The syntax of a for loop in Perl programming language is:

for (init; condition; increment){

 statement(s);

}

Here is the flow of control in a for loop:

1. The init step is executed first, and only once. This step allows you to declare and

initialize any loop control variables. You are not required to put a statement here,

as long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If

it is false, the body of the loop does not execute and flow of control jumps to the

next statement just after the for loop.

3. After the body of the for loop executes, the flow of control jumps back up to the

increment statement. This statement allows you to update any loop control

variables. This statement can be left blank, as long as a semicolon appears after

the condition.

4. The condition is now evaluated again. If it is true, the loop executes and the process

repeats itself (body of loop, then increment step, and then again condition). After

the condition becomes false, the for loop terminates.

Perl

67

Flow Diagram

Example

#!/usr/local/bin/perl

for loop execution

for($a = 10; $a < 20; $a = $a + 1){

 print "value of a: $a\n";

}

Perl

68

When the above code is executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

foreach loop

The foreach loop iterates over a list value and sets the control variable (var) to be each

element of the list in turn:

Syntax

The syntax of a foreach loop in Perl programming language is:

foreach var (list) {

...

}

Perl

69

Flow Diagram

Example

#!/usr/local/bin/perl

@list = (2, 20, 30, 40, 50);

foreach loop execution

foreach $a (@list){

 print "value of a: $a\n";

}

When the above code is executed, it produces the following result:

value of a: 2

value of a: 20

value of a: 30

value of a: 40

value of a: 50

Perl

70

do...while loop

Unlike for and while loops, which test the loop condition at the top of the loop, the

do...while loop checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to

execute at least one time.

Syntax

The syntax of a do...while loop in Perl is:

do

{

 statement(s);

}while(condition);

It should be noted that the conditional expression appears at the end of the loop, so the

statement(s) in the loop executes once before the condition is tested. If the condition is

true, the flow of control jumps back up to do, and the statement(s) in the loop executes

again. This process repeats until the given condition becomes false.

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a boolean

context and all other values are true. Negation of a true value by ! or not returns a special

false value.

Flow Diagram

Perl

71

Example

#!/usr/local/bin/perl

$a = 10;

do...while loop execution

do{

 printf "Value of a: $a\n";

 $a = $a + 1;

}while($a < 20);

When the above code is executed, it produces the following result:

Value of a: 10

Value of a: 11

Value of a: 12

Value of a: 13

Value of a: 14

Value of a: 15

Value of a: 16

Value of a: 17

Value of a: 18

Value of a: 19

nested loops

A loop can be nested inside of another loop. Perl allows to nest all type of loops to be

nested.

Syntax

The syntax for a nested for loop statement in Perl is as follows:

for (init; condition; increment){

 for (init; condition; increment){

 statement(s);

 }

 statement(s);

}

Perl

72

The syntax for a nested while loop statement in Perl is as follows:

while(condition){

 while(condition){

 statement(s);

 }

 statement(s);

}

The syntax for a nested do...while loop statement in Perl is as follows:

do{

 statement(s);

 do{

 statement(s);

 }while(condition);

}while(condition);

The syntax for a nested until loop statement in Perl is as follows:

until(condition){

 until(condition){

 statement(s);

 }

 statement(s);

}

The syntax for a nested foreach loop statement in Perl is as follows:

foreach $a (@listA){

 foreach $b (@listB){

 statement(s);

 }

 statement(s);

}

Perl

73

Example

The following program uses a nested while loop to show the usage:

#/usr/local/bin/perl

$a = 0;

$b = 0;

outer while loop

while($a < 3){

 $b = 0;

 # inner while loop

 while($b < 3){

 print "value of a = $a, b = $b\n";

 $b = $b + 1;

 }

 $a = $a + 1;

 print "Value of a = $a\n\n";

}

This would produce the following result:

value of a = 0, b = 0

value of a = 0, b = 1

value of a = 0, b = 2

Value of a = 1

value of a = 1, b = 0

value of a = 1, b = 1

value of a = 1, b = 2

Value of a = 2

value of a = 2, b = 0

value of a = 2, b = 1

value of a = 2, b = 2

Value of a = 3

Perl

74

Loop Control Statements

Loop control statements change the execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

C supports the following control statements. Click the following links to check their detail.

Control Statement Description

next statement
Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

last statement
Terminates the loop statement and transfers execution to the

statement immediately following the loop.

continue statement
A continue BLOCK, it is always executed just before the

conditional is about to be evaluated again.

redo statement

The redo command restarts the loop block without evaluating

the conditional again. The continue block, if any, is not

executed.

goto statement
Perl supports a goto command with three forms: goto label, goto

expr, and goto &name.

next statement

The Perl next statement starts the next iteration of the loop. You can provide a LABEL

with next statement where LABEL is the label for a loop. A next statement can be used

inside a nested loop where it will be applicable to the nearest loop if a LABEL is not

specified.

If there is a continue block on the loop, it is always executed just before the condition is

about to be evaluated. You will see the continue statement in separate chapter.

Syntax

The syntax of a next statement in Perl is:

next [LABEL];

Perl

75

A LABEL inside the square braces indicates that LABEL is optional and if a LABEL is not

specified, then next statement will jump the control to the next iteration of the nearest

loop.

Flow Diagram

Example

#!/usr/local/bin/perl

$a = 10;

while($a < 20){

 if($a == 15)

 {

 # skip the iteration.

 $a = $a + 1;

 next;

 }

 print "value of a: $a\n";

 $a = $a + 1;

}

Perl

76

When the above code is executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Let's take one example where we are going to use a LABEL along with next statement:

#!/usr/local/bin/perl

$a = 0;

OUTER: while($a < 4){

 $b = 0;

 print "value of a: $a\n";

 INNER:while ($b < 4){

 if($a == 2){

 $a = $a + 1;

 # jump to outer loop

 next OUTER;

 }

 $b = $b + 1;

 print "Value of b : $b\n";

 }

 print "\n";

 $a = $a + 1;

}

Perl

77

When the above code is executed, it produces the following result:

value of a: 0

Value of b : 1

Value of b : 2

Value of b : 3

Value of b : 4

value of a: 1

Value of b : 1

Value of b : 2

Value of b : 3

Value of b : 4

value of a: 2

value of a: 3

Value of b : 1

Value of b : 2

Value of b : 3

Value of b : 4

last statement

When a last statement is encountered inside a loop, the loop is immediately terminated

and the program control resumes at the next statement following the loop. You can provide

a LABEL with last statement where LABEL is the label for a loop. A last statement can be

used inside a nested loop where it will be applicable to the nearest loop if a LABEL is not

specified.

If there is any continue block on the loop, then it is not executed. You will see the continue

statement in a separate chapter.

Syntax

The syntax of a last statement in Perl is:

last [LABEL];

Perl

78

Flow Diagram

Example 1

#!/usr/local/bin/perl

$a = 10;

while($a < 20){

 if($a == 15)

 {

 # terminate the loop.

 $a = $a + 1;

 last;

 }

 print "value of a: $a\n";

 $a = $a + 1;

}

Perl

79

When the above code is executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

Example 2

Let's take one example where we are going to use a LABEL along with next statement:

#!/usr/local/bin/perl

$a = 0;

OUTER: while($a < 4){

 $b = 0;

 print "value of a: $a\n";

 INNER:while ($b < 4){

 if($a == 2){

 # terminate outer loop

 last OUTER;

 }

 $b = $b + 1;

 print "Value of b : $b\n";

 }

 print "\n";

 $a = $a + 1;

}

When the above code is executed, it produces the following result:

value of a: 0

Value of b : 1

Value of b : 2

Value of b : 3

Value of b : 4

Perl

80

value of a: 1

Value of b : 1

Value of b : 2

Value of b : 3

Value of b : 4

value of a: 2

continue statement

A continue BLOCK, is always executed just before the conditional is about to be evaluated

again. A continue statement can be used with while and foreach loops. A continue

statement can also be used alone along with a BLOCK of code in which case it will be

assumed as a flow control statement rather than a function.

Syntax

The syntax for a continue statement with while loop is as follows:

while(condition){

 statement(s);

}continue{

 statement(s);

}

The syntax for a continue statement with foreach loop is as follows:

foreach $a (@listA){

 statement(s);

}continue{

 statement(s);

}

The syntax for a continue statement with a BLOCK of code is as follows:

continue{

 statement(s);

}

Perl

81

Example

The following program simulates a for loop using a while loop:

#/usr/local/bin/perl

$a = 0;

while($a < 3){

 print "Value of a = $a\n";

}continue{

 $a = $a + 1;

}

This would produce the following result:

Value of a = 0

Value of a = 1

Value of a = 2

The following program shows the usage of continue statement with foreach loop:

#/usr/local/bin/perl

@list = (1, 2, 3, 4, 5);

foreach $a (@list){

 print "Value of a = $a\n";

}continue{

 last if $a == 4;

}

This would produce the following result:

Value of a = 1

Value of a = 2

Value of a = 3

Value of a = 4

Perl

82

redo statement

The redo command restarts the loop block without evaluating the conditional again. You

can provide a LABEL with redo statement where LABEL is the label for a loop. A redo

statement can be used inside a nested loop where it will be applicable to the nearest loop

if a LABEL is not specified.

If there is any continue block on the loop, then it will not be executed before evaluating

the condition.

Syntax

The syntax for a redo statement is as follows:

redo [LABEL]

Flow Diagram

Example

The following program shows the usage of redo statement:

#/usr/local/bin/perl

$a = 0;

while($a < 10){

 if($a == 5){

Perl

83

 $a = $a + 1;

 redo;

 }

 print "Value of a = $a\n";

}continue{

 $a = $a + 1;

}

goto statement

Perl does support a goto statement. There are three forms: goto LABEL, goto EXPR, and

goto &NAME.

S.N. goto type

1 goto LABEL

The goto LABEL form jumps to the statement labeled with LABEL and resumes

execution from there.

2 goto EXPR

The goto EXPR form is just a generalization of goto LABEL. It expects the

expression to return a label name and then jumps to that labeled statement.

3 goto &NAME

It substitutes a call to the named subroutine for the currently running subroutine.

Syntax

The syntax for a goto statements is as follows:

goto LABEL

or

goto EXPR

or

Perl

84

goto &NAME

Flow Diagram

Example

The following program shows the most frequently used form of goto statement:

#/usr/local/bin/perl

$a = 10;

LOOP:do

{

 if($a == 15){

 # skip the iteration.

 $a = $a + 1;

 # use goto LABEL form

 goto LOOP;

 }

Perl

85

 print "Value of a = $a\n";

 $a = $a + 1;

}while($a < 20);

When the above code is executed, it produces the following result:

Value of a = 10

Value of a = 11

Value of a = 12

Value of a = 13

Value of a = 14

Value of a = 16

Value of a = 17

Value of a = 18

Value of a = 19

Following example shows the usage of goto EXPR form. Here we are using two strings and

then concatenating them using string concatenation operator (.). Finally, its forming a

label and goto is being used to jump to the label:

#/usr/local/bin/perl

$a = 10;

$str1 = "LO";

$str2 = "OP";

LOOP:do

{

 if($a == 15){

 # skip the iteration.

 $a = $a + 1;

 # use goto EXPR form

 goto $str1.$str2;

 }

 print "Value of a = $a\n";

 $a = $a + 1;

Perl

86

}while($a < 20);

When the above code is executed, it produces the following result:

Value of a = 10

Value of a = 11

Value of a = 12

Value of a = 13

Value of a = 14

Value of a = 16

Value of a = 17

Value of a = 18

Value of a = 19

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally

used for this purpose. Since none of the three expressions that form the for loop are

required, you can make an endless loop by leaving the conditional expression empty.

#!/usr/local/bin/perl

for(; ;)

{

 printf "This loop will run forever.\n";

}

You can terminate the above infinite loop by pressing the Ctrl + C keys.

When the conditional expression is absent, it is assumed to be true. You may have an

initialization and increment expression, but as a programmer more commonly use the for

(;;) construct to signify an infinite loop.

Perl

87

What is an Operator?

Simple answer can be given using the expression 4 + 5 is equal to 9. Here 4 and 5 are

called operands and + is called operator. Perl language supports many operator types, but

following is a list of important and most frequently used operators:

 Arithmetic Operators

 Equality Operators

 Logical Operators

 Assignment Operators

 Bitwise Operators

 Logical Operators

 Quote-like Operators

 Miscellaneous Operators

Let’s have a look at all the operators one by one.

Perl Arithmetic Operators

Assume variable $a holds 10 and variable $b holds 20, then following are the Perl

arithmatic operators:

Operator Description Example

+ Addition - Adds values on either side of the

operator

$a + $b will give 30

- Subtraction - Subtracts right hand operand from

left hand operand

$a - $b will give -10

* Multiplication - Multiplies values on either side of

the operator

$a * $b will give 200

/ Division - Divides left hand operand by right hand

operand

$b / $a will give 2

11. Perl ─ Operators

Perl

88

% Modulus - Divides left hand operand by right hand

operand and returns remainder

$b % $a will give 0

** Exponent - Performs exponential (power)

calculation on operators

$a**$b will give 10

to the power 20

Example

Try the following example to understand all the arithmatic operators available in Perl. Copy

and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

$a = 21;

$b = 10;

print "Value of \$a = $a and value of \$b = $b\n";

$c = $a + $b;

print 'Value of $a + $b = ' . $c . "\n";

$c = $a - $b;

print 'Value of $a - $b = ' . $c . "\n";

$c = $a * $b;

print 'Value of $a * $b = ' . $c . "\n";

$c = $a / $b;

print 'Value of $a / $b = ' . $c . "\n";

$c = $a % $b;

print 'Value of $a % $b = ' . $c. "\n";

$a = 2;

$b = 4;

$c = $a ** $b;

Perl

89

print 'Value of $a ** $b = ' . $c . "\n";

When the above code is executed, it produces the following result:

Value of $a = 21 and value of $b = 10

Value of $a + $b = 31

Value of $a - $b = 11

Value of $a * $b = 210

Value of $a / $b = 2.1

Value of $a % $b = 1

Value of $a ** $b = 16

Perl Equality Operators

These are also called relational operators. Assume variable $a holds 10 and variable $b

holds 20 then, let’s check the following numeric equality operators:

Operator Description Example

==
Checks if the value of two operands are equal

or not, if yes then condition becomes true.
($a == $b) is not true.

!=

Checks if the value of two operands are equal

or not, if values are not equal then condition

becomes true.

($a != $b) is true.

<=>

Checks if the value of two operands are equal

or not, and returns -1, 0, or 1 depending on

whether the left argument is numerically less

than, equal to, or greater than the right

argument.

($a <=> $b) returns -1.

>

Checks if the value of left operand is greater

than the value of right operand, if yes then

condition becomes true.

($a > $b) is not true.

<

Checks if the value of left operand is less than

the value of right operand, if yes then condition

becomes true.

($a < $b) is true.

Perl

90

>=

Checks if the value of left operand is greater

than or equal to the value of right operand, if

yes then condition becomes true.

($a >= $b) is not true.

<=

Checks if the value of left operand is less than

or equal to the value of right operand, if yes

then condition becomes true.

($a <= $b) is true.

Example

Try the following example to understand all the numeric equality operators available in

Perl. Copy and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

$a = 21;

$b = 10;

print "Value of \$a = $a and value of \$b = $b\n";

if($a == $b){

 print "$a == \$b is true\n";

}else{

 print "\$a == \$b is not true\n";

}

if($a != $b){

 print "\$a != \$b is true\n";

}else{

 print "\$a != \$b is not true\n";

}

$c = $a <=> $b;

print "\$a <=> \$b returns $c\n";

if($a > $b){

Perl

91

 print "\$a > \$b is true\n";

}else{

 print "\$a > \$b is not true\n";

}

if($a >= $b){

 print "\$a >= \$b is true\n";

}else{

 print "\$a >= \$b is not true\n";

}

if($a < $b){

 print "\$a < \$b is true\n";

}else{

 print "\$a < \$b is not true\n";

}

if($a <= $b){

 print "\$a <= \$b is true\n";

}else{

 print "\$a <= \$b is not true\n";

}

When the above code is executed, it produces the following result:

Value of $a = 21 and value of $b = 10

$a == $b is not true

$a != $b is true

$a <=> $b returns 1

$a > $b is true

$a >= $b is true

$a < $b is not true

$a <= $b is not true

Perl

92

Below is a list of equity operators. Assume variable $a holds "abc" and variable $b holds

"xyz" then, let’s check the following string equality operators:

Operator Description Example

lt Returns true if the left argument is stringwise less

than the right argument.

($a lt $b) is true.

gt Returns true if the left argument is stringwise

greater than the right argument.

($a gt $b) is false.

le Returns true if the left argument is stringwise less

than or equal to the right argument.

($a le $b) is true.

ge Returns true if the left argument is stringwise

greater than or equal to the right argument.

($a ge $b) is false.

eq Returns true if the left argument is stringwise equal

to the right argument.

($a eq $b) is false.

ne Returns true if the left argument is stringwise not

equal to the right argument.

($a ne $b) is true.

cmp Returns -1, 0, or 1 depending on whether the left

argument is stringwise less than, equal to, or

greater than the right argument.

($a cmp $b) is -1.

Example

Try the following example to understand all the string equality operators available in Perl.

Copy and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

$a = "abc";

$b = "xyz";

print "Value of \$a = $a and value of \$b = $b\n";

if($a lt $b){

 print "$a lt \$b is true\n";

Perl

93

}else{

 print "\$a lt \$b is not true\n";

}

if($a gt $b){

 print "\$a gt \$b is true\n";

}else{

 print "\$a gt \$b is not true\n";

}

if($a le $b){

 print "\$a le \$b is true\n";

}else{

 print "\$a le \$b is not true\n";

}

if($a ge $b){

 print "\$a ge \$b is true\n";

}else{

 print "\$a ge \$b is not true\n";

}

if($a ne $b){

 print "\$a ne \$b is true\n";

}else{

 print "\$a ne \$b is not true\n";

}

$c = $a cmp $b;

print "\$a cmp \$b returns $c\n";

When the above code is executed, it produces the following result:

Value of $a = abc and value of $b = xyz

abc lt $b is true

Perl

94

$a gt $b is not true

$a le $b is true

$a ge $b is not true

$a ne $b is true

$a cmp $b returns -1

Perl Assignment Operators

Assume variable $a holds 10 and variable $b holds 20, then below are the assignment

operators available in Perl and their usage:

Operator Description Example

=
Simple assignment operator, Assigns values

from right side operands to left side operand

$c = $a + $b will assigned

value of $a + $b into $c

+=

Add AND assignment operator, It adds right

operand to the left operand and assign the

result to left operand

$c += $a is equivalent to

$c = $c + $a

-=

Subtract AND assignment operator, It

subtracts right operand from the left operand

and assign the result to left operand

$c -= $a is equivalent to

$c = $c - $a

*=

Multiply AND assignment operator, It

multiplies right operand with the left operand

and assign the result to left operand

$c *= $a is equivalent to

$c = $c * $a

/=

Divide AND assignment operator, It divides

left operand with the right operand and assign

the result to left operand

$c /= $a is equivalent to

$c = $c / $a

%=

Modulus AND assignment operator, It takes

modulus using two operands and assign the

result to left operand

$c %= $a is equivalent to

$c = $c % a

**=

Exponent AND assignment operator, Performs

exponential (power) calculation on operators

and assign value to the left operand

$c **= $a is equivalent to

$c = $c ** $a

Perl

95

Example

Try the following example to understand all the assignment operators available in Perl.

Copy and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

$a = 10;

$b = 20;

print "Value of \$a = $a and value of \$b = $b\n";

$c = $a + $b;

print "After assignment value of \$c = $c\n";

$c += $a;

print "Value of \$c = $c after statement \$c += \$a\n";

$c -= $a;

print "Value of \$c = $c after statement \$c -= \$a\n";

$c *= $a;

print "Value of \$c = $c after statement \$c *= \$a\n";

$c /= $a;

print "Value of \$c = $c after statement \$c /= \$a\n";

$c %= $a;

print "Value of \$c = $c after statement \$c %= \$a\n";

$c = 2;

$a = 4;

print "Value of \$a = $a and value of \$c = $c\n";

$c **= $a;

print "Value of \$c = $c after statement \$c **= \$a\n";

Perl

96

When the above code is executed, it produces the following result:

Value of $a = 10 and value of $b = 20

After assignment value of $c = 30

Value of $c = 40 after statement $c += $a

Value of $c = 30 after statement $c -= $a

Value of $c = 300 after statement $c *= $a

Value of $c = 30 after statement $c /= $a

Value of $c = 0 after statement $c %= $a

Value of $a = 4 and value of $c = 2

Value of $c = 16 after statement $c **= $a

Perl Bitwise Operators

Bitwise operator works on bits and perform bit by bit operation. Assume if $a = 60; and

$b = 13; Now in binary format they will be as follows:

$a = 0011 1100

$b = 0000 1101

$a&$b = 0000 1100

$a|$b = 0011 1101

$a^$b = 0011 0001

~$a = 1100 0011

There are following Bitwise operators supported by Perl language, assume if $a = 60; and

$b = 13:

Operator Description Example

Perl

97

& Binary AND Operator copies a bit to the result

if it exists in both operands.

($a & $b) will give 12

which is 0000 1100

| Binary OR Operator copies a bit if it exists in

eather operand.

($a | $b) will give 61 which

is 0011 1101

^ Binary XOR Operator copies the bit if it is set

in one operand but not both.

($a ^ $b) will give 49

which is 0011 0001

~ Binary Ones Complement Operator is unary

and has the efect of 'flipping' bits.

(~$a) will give -61 which

is 1100 0011 in 2's

complement form due to a

signed binary number.

<< Binary Left Shift Operator. The left operands

value is moved left by the number of bits

specified by the right operand.

$a << 2 will give 240

which is 1111 0000

>> Binary Right Shift Operator. The left operands

value is moved right by the number of bits

specified by the right operand.

$a >> 2 will give 15 which

is 0000 1111

Example

Try the following example to understand all the bitwise operators available in Perl. Copy

and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

use integer;

$a = 60;

$b = 13;

print "Value of \$a = $a and value of \$b = $b\n";

$c = $a & $b;

print "Value of \$a & \$b = $c\n";

Perl

98

$c = $a | $b;

print "Value of \$a | \$b = $c\n";

$c = $a ^ $b;

print "Value of \$a ^ \$b = $c\n";

$c = ~$a;

print "Value of ~\$a = $c\n";

$c = $a << 2;

print "Value of \$a << 2 = $c\n";

$c = $a >> 2;

print "Value of \$a >> 2 = $c\n";

When the above code is executed, it produces the following result:

Value of $a = 60 and value of $b = 13

Value of $a & $b = 12

Value of $a | $b = 61

Value of $a ^ $b = 49

Value of ~$a = 18446744073709551555

Value of $a << 2 = 240

Value of $a >> 2 = 15

Perl Logical Operators

There are following logical operators supported by Perl language. Assume variable $a holds

true and variable $b holds false then:

Operator Description Example

Perl

99

and

Called Logical AND operator. If both the

operands are true then the condition becomes

true.

($a and $b) is false.

&&
C-style Logical AND operator copies a bit to the

result if it exists in both operands.
($a && $b) is false.

or

Called Logical OR Operator. If any of the two

operands are non zero then the condition

becomes true.

($a or $b) is true.

||
C-style Logical OR operator copies a bit if it

exists in eather operand.
($a || $b) is true.

not

Called Logical NOT Operator. Use to reverses

the logical state of its operand. If a condition is

true then Logical NOT operator will make false.

not($a and $b) is true.

Example

Try the following example to understand all the logical operators available in Perl. Copy

and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

$a = true;

$b = false;

print "Value of \$a = $a and value of \$b = $b\n";

$c = ($a and $b);

print "Value of \$a and \$b = $c\n";

$c = ($a && $b);

print "Value of \$a && \$b = $c\n";

$c = ($a or $b);

print "Value of \$a or \$b = $c\n";

Perl

100

$c = ($a || $b);

print "Value of \$a || \$b = $c\n";

$a = 0;

$c = not($a);

print "Value of not(\$a)= $c\n";

When the above code is executed, it produces the following result:

Value of $a = true and value of $b = false

Value of $a and $b = false

Value of $a && $b = false

Value of $a or $b = true

Value of $a || $b = true

Value of not($a)= 1

Quote-like Operators

There are following Quote-like operators supported by Perl language. In the following

table, a {} represents any pair of delimiters you choose.

Operator Description Example

q{ } Encloses a string with-in single quotes q{abcd} gives 'abcd'

qq{ } Encloses a string with-in double quotes qq{abcd} gives "abcd"

qx{ } Encloses a string with-in invert quotes qx{abcd} gives `abcd`

Example

Try the following example to understand all the quote-like operators available in Perl. Copy

and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

Perl

101

$a = 10;

$b = q{a = $a};

print "Value of q{a = \$a} = $b\n";

$b = qq{a = $a};

print "Value of qq{a = \$a} = $b\n";

unix command execution

$t = qx{date};

print "Value of qx{date} = $t\n";

When the above code is executed, it produces the following result:

Value of q{a = $a} = a = $a

Value of qq{a = $a} = a = 10

Value of qx{date} = Thu Feb 14 08:13:17 MST 2013

Miscellaneous Operators

There are following miscellaneous operators supported by Perl language. Assume variable

a holds 10 and variable b holds 20 then:

Operator Description Example

.
Binary operator dot (.) concatenates two

strings.

If $a="abc", $b="def"

then $a.$b will give

"abcdef"

x

The repetition operator x returns a string

consisting of the left operand repeated the

number of times specified by the right operand.

('-' x 3) will give ---.

..

The range operator .. returns a list of values

counting (up by ones) from the left value to the

right value

(2..5) will give (2, 3, 4,

5)

Perl

102

++
Auto Increment operator increases integer

value by one
$a++ will give 11

--
Auto Decrement operator decreases integer

value by one
$a-- will give 9

->

The arrow operator is mostly used in

dereferencing a method or variable from an

object or a class name

$obj->$a is an example

to access variable $a

from object $obj.

Example

Try the following example to understand all the miscellaneous operators available in Perl.

Copy and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

$a = "abc";

$b = "def";

print "Value of \$a = $a and value of \$b = $b\n";

$c = $a . $b;

print "Value of \$a . \$b = $c\n";

$c = "-" x 3;

print "Value of \"-\" x 3 = $c\n";

@c = (2..5);

print "Value of (2..5) = @c\n";

$a = 10;

$b = 15;

print "Value of \$a = $a and value of \$b = $b\n";

$a++;

Perl

103

$c = $a ;

print "Value of \$a after \$a++ = $c\n";

$b--;

$c = $b ;

print "Value of \$b after \$b-- = $c\n";

When the above code is executed, it produces the following result:

Value of $a = abc and value of $b = def

Value of $a . $b = abcdef

Value of "-" x 3 = ---

Value of (2..5) = 2 3 4 5

Value of $a = 10 and value of $b = 15

Value of $a after $a++ = 11

Value of $b after $b-- = 14

We will explain --> operator when we will discuss about Perl Object and Classes.

Perl Operators Precedence

The following table lists all operators from highest precedence to lowest.

left terms and list operators (leftward)

left ->

nonassoc ++ --

right **

right ! ~ \ and unary + and -

left =~ !~

left * / % x

left + - .

left << >>

nonassoc named unary operators

nonassoc < > <= >= lt gt le ge

nonassoc == != <=> eq ne cmp ~~

left &

left | ^

Perl

104

left &&

left || //

nonassoc

right ?:

right = += -= *= etc.

left , =>

nonassoc list operators (rightward)

right not

left and

left or xor

Example

Try the following example to understand all the perl operators precedence in Perl. Copy

and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

$a = 20;

$b = 10;

$c = 15;

$d = 5;

$e;

print "Value of \$a = $a, \$b = $b, \$c = $c and \$d = $d\n";

$e = ($a + $b) * $c / $d;

print "Value of (\$a + \$b) * \$c / \$d is = $e\n";

$e = (($a + $b) * $c)/ $d;

print "Value of ((\$a + \$b) * \$c) / \$d is = $e\n";

$e = ($a + $b) * ($c / $d);

print "Value of (\$a + \$b) * (\$c / \$d) is = $e\n";

Perl

105

$e = $a + ($b * $c) / $d;

print "Value of \$a + (\$b * \$c)/ \$d is = $e\n";

When the above code is executed, it produces the following result:

Value of $a = 20, $b = 10, $c = 15 and $d = 5

Value of ($a + $b) * $c / $d is = 90

Value of (($a + $b) * $c) / $d is = 90

Value of ($a + $b) * ($c / $d) is = 90

Value of $a + ($b * $c)/ $d is = 50

Perl

106

This chapter will give you the basic understanding on how to process and manipulate dates

and times in Perl.

Current Date and Time

Let's start with localtime() function, which returns values for the current date and time

if given no arguments. Following is the 9-element list returned by the localtime function

while using in list context:

sec, # seconds of minutes from 0 to 61

min, # minutes of hour from 0 to 59

hour, # hours of day from 0 to 24

mday, # day of month from 1 to 31

mon, # month of year from 0 to 11

year, # year since 1900

wday, # days since sunday

yday, # days since January 1st

isdst # hours of daylight savings time

Try the following example to print different elements returned by localtime() function:

#!/usr/local/bin/perl

@months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

@days = qw(Sun Mon Tue Wed Thu Fri Sat Sun);

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime();

print "$mday $months[$mon] $days[$wday]\n";

When the above code is executed, it produces the following result:

16 Feb Sat

12. Perl ─ Date and Time

Perl

107

If you will use localtime() function in scalar context, then it will return date and time from

the current time zone set in the system. Try the following example to print current date

and time in full format:

#!/usr/local/bin/perl

$datestring = localtime();

print "Local date and time $datestring\n";

When the above code is executed, it produces the following result:

Local date and time Sat Feb 16 06:50:45 2013

GMT Time

The function gmtime() works just like localtime() function but the returned values are

localized for the standard Greenwich time zone. When called in list context, $isdst, the last

value returned by gmtime, is always 0. There is no Daylight Saving Time in GMT.

You should make a note on the fact that localtime() will return the current local time on

the machine that runs the script and gmtime() will return the universal Greenwich Mean

Time, or GMT (or UTC).

Try the following example to print the current date and time but on GMT scale:

#!/usr/local/bin/perl

$datestring = gmtime();

print "GMT date and time $datestring\n";

When the above code is executed, it produces the following result:

GMT date and time Sat Feb 16 13:50:45 2013

Format Date & Time

You can use localtime() function to get a list of 9-elements and later you can use

the printf() function to format date and time based on your requirements as follows:

#!/usr/local/bin/perl

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime();

printf("Time Format - HH:MM:SS\n");

printf("%02d:%02d:%02d", $hour, $min, $sec);

Perl

108

When the above code is executed, it produces the following result:

Time Format - HH:MM:SS

06:58:52

Epoch time

You can use the time() function to get epoch time, i.e., the numbers of seconds that have

elapsed since a given date, in Unix is January 1, 1970.

#!/usr/local/bin/perl

$epoc = time();

print "Number of seconds since Jan 1, 1970 - $epoc\n";

When the above code is executed, it produces the following result:

Number of seconds since Jan 1, 1970 - 1361022130

You can convert a given number of seconds into date and time string as follows:

#!/usr/local/bin/perl

$datestring = localtime();

print "Current date and time $datestring\n";

$epoc = time();

$epoc = $epoc - 12 * 60 * 60; # one day before of current date.

$datestring = localtime($epoc);

print "Yesterday's date and time $datestring\n";

When the above code is executed, it produces the following result:

Current date and time Sat Feb 16 07:05:39 2013

Yesterday's date and time Fri Feb 15 19:05:39 2013

Perl

109

POSIX Function strftime()

You can use the POSIX function strftime() to format date and time with the help of the

following table. Please note that the specifiers marked with an asterisk (*) are locale-

dependent.

Specifier Replaced by Example

%a Abbreviated weekday name * Thu

%A Full weekday name * Thursday

%b Abbreviated month name * Aug

%B Full month name * August

%c Date and time representation * Thu Aug 23

14:55:02 2001

%C Year divided by 100 and truncated to integer (00-

99)

20

%d Day of the month, zero-padded (01-31) 23

%D Short MM/DD/YY date, equivalent to %m/%d/%y 08/23/01

%e Day of the month, space-padded (1-31) 23

%F Short YYYY-MM-DD date, equivalent to %Y-%m-%d 2001-08-23

%g Week-based year, last two digits (00-99) 01

%g Week-based year 2001

%h Abbreviated month name * (same as %b) Aug

%H Hour in 24h format (00-23) 14

Perl

110

%I Hour in 12h format (01-12) 02

%j Day of the year (001-366) 235

%m Month as a decimal number (01-12) 08

%M Minute (00-59) 55

%n New-line character ('\n')

%p AM or PM designation PM

%r 12-hour clock time * 02:55:02 pm

%R 24-hour HH:MM time, equivalent to %H:%M 14:55

%S Second (00-61) 02

%t Horizontal-tab character ('\t')

%T ISO 8601 time format (HH:MM:SS), equivalent

to%H:%M:%S

14:55

%u ISO 8601 weekday as number with Monday as 1 (1-

7)

4

%U Week number with the first Sunday as the first day

of week one (00-53)

33

%V ISO 8601 week number (00-53) 34

%w Weekday as a decimal number with Sunday as 0 (0-

6)

4

%W Week number with the first Monday as the first day

of week one (00-53)

34

Perl

111

%x Date representation * 08/23/01

%X Time representation * 14:55:02

%y Year, last two digits (00-99) 01

%Y Year 2001

%z ISO 8601 offset from UTC in timezone (1 minute=1,

1 hour=100)

If timezone cannot be termined, no characters

+100

%Z Timezone name or abbreviation *

If timezone cannot be termined, no characters

CDT

%% A % sign %

Let's check the following example to understand the usage:

#!/usr/local/bin/perl

use POSIX qw(strftime);

$datestring = strftime "%a %b %e %H:%M:%S %Y", localtime;

printf("date and time - $datestring\n");

or for GMT formatted appropriately for your locale:

$datestring = strftime "%a %b %e %H:%M:%S %Y", gmtime;

printf("date and time - $datestring\n");

When the above code is executed, it produces the following result:

date and time - Sat Feb 16 07:10:23 2013

date and time - Sat Feb 16 14:10:23 2013

Perl

112

A Perl subroutine or function is a group of statements that together performs a task. You

can divide up your code into separate subroutines. How you divide up your code among

different subroutines is up to you, but logically the division usually is so each function

performs a specific task.

Perl uses the terms subroutine, method and function interchangeably.

Define and Call a Subroutine

The general form of a subroutine definition in Perl programming language is as follows:

sub subroutine_name{

 body of the subroutine

}

The typical way of calling that Perl subroutine is as follows:

subroutine_name(list of arguments);

In versions of Perl before 5.0, the syntax for calling subroutines was slightly different as

shown below. This still works in the newest versions of Perl, but it is not recommended

since it bypasses the subroutine prototypes.

&subroutine_name(list of arguments);

Let's have a look into the following example, which defines a simple function and then call

it. Because Perl compiles your program before executing it, it doesn't matter where you

declare your subroutine.

#!/usr/bin/perl

Function definition

sub Hello{

 print "Hello, World!\n";

}

Function call

Hello();

13. Perl ─ Subroutines

Perl

113

When above program is executed, it produces the following result:

Hello, World!

Passing Arguments to a Subroutine

You can pass various arguments to a subroutine like you do in any other programming

language and they can be acessed inside the function using the special array @_. Thus

the first argument to the function is in $_[0], the second is in $_[1], and so on.

You can pass arrays and hashes as arguments like any scalar but passing more than one

array or hash normally causes them to lose their separate identities. So we will use

references (explained in the next chapter) to pass any array or hash.

Let's try the following example, which takes a list of numbers and then prints their

average:

#!/usr/bin/perl

Function definition

sub Average{

 # get total number of arguments passed.

 $n = scalar(@_);

 $sum = 0;

 foreach $item (@_){

 $sum += $item;

 }

 $average = $sum / $n;

 print "Average for the given numbers : $average\n";

}

Function call

Average(10, 20, 30);

When above program is executed, it produces the following result:

Average for the given numbers : 20

Perl

114

Passing Lists to Subroutines

Because the @_ variable is an array, it can be used to supply lists to a subroutine.

However, because of the way in which Perl accepts and parses lists and arrays, it can be

difficult to extract the individual elements from @_. If you have to pass a list along with

other scalar arguments, then make list as the last argument as shown below:

#!/usr/bin/perl

Function definition

sub PrintList{

 my @list = @_;

 print "Given list is @list\n";

}

$a = 10;

@b = (1, 2, 3, 4);

Function call with list parameter

PrintList($a, @b);

When above program is executed, it produces the following result:

Given list is 10 1 2 3 4

Passing Hashes to Subroutines

When you supply a hash to a subroutine or operator that accepts a list, then hash is

automatically translated into a list of key/value pairs. For example:

#!/usr/bin/perl

Function definition

sub PrintHash{

 my (%hash) = @_;

 foreach my $key (keys %hash){

 my $value = $hash{$key};

 print "$key : $value\n";

Perl

115

 }

}

%hash = ('name' => 'Tom', 'age' => 19);

Function call with hash parameter

PrintHash(%hash);

When above program is executed, it produces the following result:

name : Tom

age : 19

Returning Value from a Subroutine

You can return a value from subroutine like you do in any other programming language.

If you are not returning a value from a subroutine then whatever calculation is last

performed in a subroutine is automatically also the return value.

You can return arrays and hashes from the subroutine like any scalar but returning more

than one array or hash normally causes them to lose their separate identities. So we will

use references (explained in the next chapter) to return any array or hash from a

function.

Let's try the following example, which takes a list of numbers and then returns their

average:

#!/usr/bin/perl

Function definition

sub Average{

 # get total number of arguments passed.

 $n = scalar(@_);

 $sum = 0;

 foreach $item (@_){

 $sum += $item;

 }

 $average = $sum / $n;

Perl

116

 return $average;

}

Function call

$num = Average(10, 20, 30);

print "Average for the given numbers : $num\n";

When above program is executed, it produces the following result:

Average for the given numbers : 20

Private Variables in a Subroutine

By default, all variables in Perl are global variables, which means they can be accessed

from anywhere in the program. But you can create private variables called lexical

variables at any time with the my operator.

The my operator confines a variable to a particular region of code in which it can be used

and accessed. Outside that region, this variable cannot be used or accessed. This region

is called its scope. A lexical scope is usually a block of code with a set of braces around it,

such as those defining the body of the subroutine or those marking the code blocks of if,

while, for, foreach, and eval statements.

Following is an example showing you how to define a single or multiple private variables

using my operator:

sub somefunc {

 my $variable; # $variable is invisible outside somefunc()

 my ($another, @an_array, %a_hash); # declaring many variables at once

}

Let's check the following example to distinguish between global and private variables:

#!/usr/bin/perl

Global variable

$string = "Hello, World!";

Function definition

sub PrintHello{

 # Private variable for PrintHello function

Perl

117

 my $string;

 $string = "Hello, Perl!";

 print "Inside the function $string\n";

}

Function call

PrintHello();

print "Outside the function $string\n";

When above program is executed, it produces the following result:

Inside the function Hello, Perl!

Outside the function Hello, World!

Temporary Values via local()

The local is mostly used when the current value of a variable must be visible to called

subroutines. A local just gives temporary values to global (meaning package) variables.

This is known as dynamic scoping. Lexical scoping is done with my, which works more like

C's auto declarations.

If more than one variable or expression is given to local, they must be placed in

parentheses. This operator works by saving the current values of those variables in its

argument list on a hidden stack and restoring them upon exiting the block, subroutine, or

eval.

Let's check the following example to distinguish between global and local variables:

#!/usr/bin/perl

Global variable

$string = "Hello, World!";

sub PrintHello{

 # Private variable for PrintHello function

 local $string;

 $string = "Hello, Perl!";

 PrintMe();

 print "Inside the function PrintHello $string\n";

}

Perl

118

sub PrintMe{

 print "Inside the function PrintMe $string\n";

}

Function call

PrintHello();

print "Outside the function $string\n";

When above program is executed, it produces the following result:

Inside the function PrintMe Hello, Perl!

Inside the function PrintHello Hello, Perl!

Outside the function Hello, World!

State Variables via state()

There are another type of lexical variables, which are similar to private variables but they

maintain their state and they do not get reinitialized upon multiple calls of the subroutines.

These variables are defined using the state operator and available starting from Perl

5.9.4.

Let's check the following example to demonstrate the use of state variables:

#!/usr/bin/perl

use feature 'state';

sub PrintCount{

 state $count = 0; # initial value

 print "Value of counter is $count\n";

 $count++;

}

for (1..5){

 PrintCount();

}

Perl

119

When above program is executed, it produces the following result:

Value of counter is 0

Value of counter is 1

Value of counter is 2

Value of counter is 3

Value of counter is 4

Prior to Perl 5.10, you would have to write it like this:

#!/usr/bin/perl

{

 my $count = 0; # initial value

 sub PrintCount {

 print "Value of counter is $count\n";

 $count++;

 }

}

for (1..5){

 PrintCount();

}

Subroutine Call Context

The context of a subroutine or statement is defined as the type of return value that is

expected. This allows you to use a single function that returns different values based on

what the user is expecting to receive. For example, the following localtime() returns a

string when it is called in scalar context, but it returns a list when it is called in list context.

my $datestring = localtime(time);

In this example, the value of $timestr is now a string made up of the current date and

time, for example, Thu Nov 30 15:21:33 2000. Conversely:

Perl

120

($sec,$min,$hour,$mday,$mon, $year,$wday,$yday,$isdst) =
localtime(time);

Now the individual variables contain the corresponding values returned by localtime()

subroutine.

Perl

121

A Perl reference is a scalar data type that holds the location of another value which could

be scalar, arrays, or hashes. Because of its scalar nature, a reference can be used

anywhere, a scalar can be used.

You can construct lists containing references to other lists, which can contain references

to hashes, and so on. This is how the nested data structures are built in Perl.

Create References

It is easy to create a reference for any variable, subroutine or value by prefixing it with a

backslash as follows:

$scalarref = \$foo;

$arrayref = \@ARGV;

$hashref = \%ENV;

$coderef = \&handler;

$globref = *foo;

You cannot create a reference on an I/O handle (filehandle or dirhandle) using the

backslash operator but a reference to an anonymous array can be created using the square

brackets as follows:

 $arrayref = [1, 2, ['a', 'b', 'c']];

Similar way you can create a reference to an anonymous hash using the curly brackets as

follows:

$hashref = {

 'Adam' => 'Eve',

 'Clyde' => 'Bonnie',

};

A reference to an anonymous subroutine can be created by using sub without a subname

as follows:

$coderef = sub { print "Boink!\n" };

14. Perl ─ References

Perl

122

Dereferencing

Dereferencing returns the value from a reference point to the location. To dereference a

reference simply use $, @ or % as prefix of the reference variable depending on whether

the reference is pointing to a scalar, array, or hash. Following is the example to explain

the concept:

#!/usr/bin/perl

$var = 10;

Now $r has reference to $var scalar.

$r = \$var;

Print value available at the location stored in $r.

print "Value of $var is : ", $$r, "\n";

@var = (1, 2, 3);

Now $r has reference to @var array.

$r = \@var;

Print values available at the location stored in $r.

print "Value of @var is : ", @$r, "\n";

%var = ('key1' => 10, 'key2' => 20);

Now $r has reference to %var hash.

$r = \%var;

Print values available at the location stored in $r.

print "Value of %var is : ", %$r, "\n";

When above program is executed, it produces the following result:

Value of 10 is : 10

Value of 1 2 3 is : 123

Value of %var is : key220key110

Perl

123

If you are not sure about a variable type, then its easy to know its type using ref, which

returns one of the following strings if its argument is a reference. Otherwise, it returns

false:

SCALAR

ARRAY

HASH

CODE

GLOB

REF

Let's try the following example:

#!/usr/bin/perl

$var = 10;

$r = \$var;

print "Reference type in r : ", ref($r), "\n";

@var = (1, 2, 3);

$r = \@var;

print "Reference type in r : ", ref($r), "\n";

%var = ('key1' => 10, 'key2' => 20);

$r = \%var;

print "Reference type in r : ", ref($r), "\n";

When above program is executed, it produces the following result:

Reference type in r : SCALAR

Reference type in r : ARRAY

Reference type in r : HASH

Circular References

A circular reference occurs when two references contain a reference to each other. You

have to be careful while creating references otherwise a circular reference can lead to

memory leaks. Following is an example:

Perl

124

#!/usr/bin/perl

 my $foo = 100;

 $foo = \$foo;

 print "Value of foo is : ", $$foo, "\n";

When above program is executed, it produces the following result:

Value of foo is : REF(0x9aae38)

References to Functions

This might happen if you need to create a signal handler so you can produce a reference

to a function by preceding that function name with \& and to dereference that reference

you simply need to prefix reference variable using ampersand &. Following is an example:

#!/usr/bin/perl

Function definition

sub PrintHash{

 my (%hash) = @_;

 foreach $item (%hash){

 print "Item : $item\n";

 }

}

%hash = ('name' => 'Tom', 'age' => 19);

Create a reference to above function.

$cref = \&PrintHash;

Function call using reference.

&$cref(%hash);

When above program is executed, it produces the following result:

Perl

125

Item : name

Item : Tom

Item : age

Item : 19

Perl

126

Perl uses a writing template called a 'format' to output reports. To use the format feature

of Perl, you have to define a format first and then you can use that format to write

formatted data.

Define a Format

Following is the syntax to define a Perl format:

format FormatName =

fieldline

value_one, value_two, value_three

fieldline

value_one, value_two

.

Here FormatName represents the name of the format. The fieldline is the specific way,

the data should be formatted. The values lines represent the values that will be entered

into the field line. You end the format with a single period.

Next fieldline can contain any text or fieldholders. The fieldholders hold space for data

that will be placed there at a later date. A fieldholder has the format:

@<<<<

This fieldholder is left-justified, with a field space of 5. You must count the @ sign and the

< signs to know the number of spaces in the field. Other field holders include:

@>>>> right-justified

@|||| centered

@####.## numeric field holder

@* multiline field holder

An example format would be:

format EMPLOYEE =

===================================

@<<<<<<<<<<<<<<<<<<<<<< @<<

$name $age

@#####.##

15. Perl ─ Formats

Perl

127

$salary

===================================

.

In this example, $name would be written as left justify within 22 character spaces and

after that age will be written in two spaces.

Using the Format

In order to invoke this format declaration, we would use the write keyword:

write EMPLOYEE;

The problem is that the format name is usually the name of an open file handle, and the

write statement will send the output to this file handle. As we want the data sent to the

STDOUT, we must associate EMPLOYEE with the STDOUT filehandle. First, however, we

must make sure that that STDOUT is our selected file handle, using the select() function.

select(STDOUT);

We would then associate EMPLOYEE with STDOUT by setting the new format name with

STDOUT, using the special variable $~ or $FORMAT_NAME as follows:

$~ = "EMPLOYEE";

When we now do a write(), the data would be sent to STDOUT. Remember: if you are

going to write your report in any other file handle instead of STDOUT then you can use

select() function to select that file handle and rest of the logic will remain the same.

Let's take the following example. Here we have hard coded values just for showing the

usage. In actual usage you will read values from a file or database to generate actual

reports and you may need to write final report again into a file.

#!/usr/bin/perl

format EMPLOYEE =

===================================

@<<<<<<<<<<<<<<<<<<<<<< @<<

$name $age

@#####.##

$salary

===================================

.

Perl

128

select(STDOUT);

$~ = EMPLOYEE;

@n = ("Ali", "Raza", "Jaffer");

@a = (20,30, 40);

@s = (2000.00, 2500.00, 4000.000);

$i = 0;

foreach (@n){

 $name = $_;

 $age = $a[$i];

 $salary = $s[$i++];

 write;

}

When executed, this will produce the following result:

===================================

Ali 20

 2000.00

===================================

===================================

Raza 30

 2500.00

===================================

===================================

Jaffer 40

 4000.00

===================================

Define a Report Header

Everything looks fine. But you would be interested in adding a header to your report. This

header will be printed on top of each page. It is very simple to do this. Apart from defining

a template you would have to define a header and assign it to $^ or $FORMAT_TOP_NAME

variable:

Perl

129

#!/usr/bin/perl

format EMPLOYEE =

===================================

@<<<<<<<<<<<<<<<<<<<<<< @<<

$name $age

@#####.##

$salary

===================================

.

format EMPLOYEE_TOP =

===================================

Name Age

===================================

.

select(STDOUT);

$~ = EMPLOYEE;

$^ = EMPLOYEE_TOP;

@n = ("Ali", "Raza", "Jaffer");

@a = (20,30, 40);

@s = (2000.00, 2500.00, 4000.000);

$i = 0;

foreach (@n){

 $name = $_;

 $age = $a[$i];

 $salary = $s[$i++];

 write;

}

Now your report will look like:

Perl

130

===================================

Name Age

===================================

===================================

Ali 20

 2000.00

===================================

===================================

Raza 30

 2500.00

===================================

===================================

Jaffer 40

 4000.00

===================================

Define a Pagination

What about if your report is taking more than one page? You have a solution for that,

simply use $% or $FORMAT_PAGE_NUMBER vairable along with header as follows:

format EMPLOYEE_TOP =

===================================

Name Age Page @<

 $%

===================================

.

Now your output will look like as follows:

===================================

Name Age Page 1

===================================

===================================

Ali 20

Perl

131

 2000.00

===================================

===================================

Raza 30

 2500.00

===================================

===================================

Jaffer 40

 4000.00

===================================

Number of Lines on a Page

You can set the number of lines per page using special variable $= (or

$FORMAT_LINES_PER_PAGE). By default $= will be 60.

Define a Report Footer

While $^ or $FORMAT_TOP_NAME contains the name of the current header format, there

is no corresponding mechanism to automatically do the same thing for a footer. If you

have a fixed-size footer, you can get footers by checking variable $- or

$FORMAT_LINES_LEFT before each write() and print the footer yourself if necessary using

another format defined as follows:

format EMPLOYEE_BOTTOM =

End of Page @<

 $%

.

For a complete set of variables related to formating, please refer to the Perl Special

Variables section.

Perl

132

The basics of handling files are simple: you associate a filehandle with an external entity

(usually a file) and then use a variety of operators and functions within Perl to read and

update the data stored within the data stream associated with the filehandle.

A filehandle is a named internal Perl structure that associates a physical file with a name.

All filehandles are capable of read/write access, so you can read from and update any file

or device associated with a filehandle. However, when you associate a filehandle, you can

specify the mode in which the filehandle is opened.

Three basic file handles are - STDIN, STDOUT, and STDERR, which represent standard

input, standard output and standard error devices respectively.

Opening and Closing Files

There are following two functions with multiple forms, which can be used to open any new

or existing file in Perl.

open FILEHANDLE, EXPR

open FILEHANDLE

sysopen FILEHANDLE, FILENAME, MODE, PERMS

sysopen FILEHANDLE, FILENAME, MODE

Here FILEHANDLE is the file handle returned by the open function and EXPR is the

expression having file name and mode of opening the file.

Open Function

Following is the syntax to open file.txt in read-only mode. Here less than < sign indicates

that file has to be opend in read-only mode.

open(DATA, "<file.txt");

Here DATA is the file handle, which will be used to read the file. Here is the example, which

will open a file and will print its content over the screen.

#!/usr/bin/perl

open(DATA, "<file.txt") or die "Couldn't open file file.txt, $!";

while(<DATA>){

 print "$_";

}

16. Perl ─ File I/O

Perl

133

Following is the syntax to open file.txt in writing mode. Here less than > sign indicates

that file has to be opend in the writing mode.

open(DATA, ">file.txt") or die "Couldn't open file file.txt, $!";

This example actually truncates (empties) the file before opening it for writing, which may

not be the desired effect. If you want to open a file for reading and writing, you can put a

plus sign before the > or < characters.

For example, to open a file for updating without truncating it:

open(DATA, "+<file.txt"); or die "Couldn't open file file.txt, $!";

To truncate the file first:

open DATA, "+>file.txt" or die "Couldn't open file file.txt, $!";

You can open a file in the append mode. In this mode, writing point will be set to the end

of the file.

open(DATA,">>file.txt") || die "Couldn't open file file.txt, $!";

A double >> opens the file for appending, placing the file pointer at the end, so that you

can immediately start appending information. However, you can't read from it unless you

also place a plus sign in front of it:

open(DATA,"+>>file.txt") || die "Couldn't open file file.txt, $!";

Following is the table, which gives the possible values of different modes

Entities Definition

< or r Read Only Access

> or w Creates, Writes, and Truncates

>> or a Writes, Appends, and Creates

+< or r+ Reads and Writes

+> or w+ Reads, Writes, Creates, and Truncates

+>> or a+ Reads, Writes, Appends, and Creates

Perl

134

Sysopen Function

The sysopen function is similar to the main open function, except that it uses the system

open() function, using the parameters supplied to it as the parameters for the system

function:

For example, to open a file for updating, emulating the +<filename format from open:

sysopen(DATA, "file.txt", O_RDWR);

Or to truncate the file before updating:

sysopen(DATA, "file.txt", O_RDWR|O_TRUNC);

You can use O_CREAT to create a new file and O_WRONLY- to open file in write only mode

and O_RDONLY - to open file in read only mode.

The PERMS argument specifies the file permissions for the file specified, if it has to be

created. By default it takes 0x666.

Following is the table, which gives the possible values of MODE.

Entities Definition

O_RDWR Read and Write

O_RDONLY Read Only

O_WRONLY Write Only

O_CREAT Create the file

O_APPEND Append the file

O_TRUNC Truncate the file

O_EXCL Stops if file already exists

O_NONBLOCK Non-Blocking usability

Perl

135

Close Function

To close a filehandle, and therefore disassociate the filehandle from the corresponding file,

you use the close function. This flushes the filehandle's buffers and closes the system's

file descriptor.

close FILEHANDLE

close

If no FILEHANDLE is specified, then it closes the currently selected filehandle. It returns

true only if it could successfully flush the buffers and close the file.

close(DATA) || die "Couldn't close file properly";

Reading and Writing Files

Once you have an open filehandle, you need to be able to read and write information.

There are a number of different ways of reading and writing data into the file.

The <FILEHANDL> Operator

The main method of reading the information from an open filehandle is the <FILEHANDLE>

operator. In a scalar context, it returns a single line from the filehandle.

For example:

#!/usr/bin/perl

print "What is your name?\n";

$name = <STDIN>;

print "Hello $name\n";

When you use the <FILEHANDLE> operator in a list context, it returns a list of lines from

the specified filehandle. For example, to import all the lines from a file into an array:

#!/usr/bin/perl

open(DATA,"<import.txt") or die "Can't open data";

@lines = <DATA>;

close(DATA);

Perl

136

getc Function

The getc function returns a single character from the specified FILEHANDLE, or STDIN if

none is specified:

getc FILEHANDLE

getc

If there was an error, or the filehandle is at end of file, then undef is returned instead.

read Function

The read function reads a block of information from the buffered filehandle: This function

is used to read binary data from the file.

read FILEHANDLE, SCALAR, LENGTH, OFFSET

read FILEHANDLE, SCALAR, LENGTH

The length of the data read is defined by LENGTH, and the data is placed at the start of

SCALAR if no OFFSET is specified. Otherwise data is placed after OFFSET bytes in SCALAR.

The function returns the number of bytes read on success, zero at end of file, or undef if

there was an error.

print Function

For all the different methods used for reading information from filehandles, the main

function for writing information back is the print function.

print FILEHANDLE LIST

print LIST

print

The print function prints the evaluated value of LIST to FILEHANDLE, or to the current

output filehandle (STDOUT by default). For example:

print "Hello World!\n";

Perl

137

Copying Files

Here is the example, which opens an existing file file1.txt and read it line by line and

generate another copy file file2.txt.

#!/usr/bin/perl

Open file to read

open(DATA1, "<file1.txt");

Open new file to write

open(DATA2, ">file2.txt");

Copy data from one file to another.

while(<DATA1>)

{

 print DATA2 $_;

}

close(DATA1);

close(DATA2);

Renaming a file

Here is an example, which shows how we can rename a file file1.txt to file2.txt. Assuming

file is available in /usr/test directory.

#!/usr/bin/perl

rename ("/usr/test/file1.txt", "/usr/test/file2.txt");

This function rename takes two arguments and it just renames the existing file.

Perl

138

Deleting an Existing File

Here is an example, which shows how to delete a file file1.txt using the unlink function.

#!/usr/bin/perl

unlink ("/usr/test/file1.txt");

Positioning inside a File

You can use to tell function to know the current position of a file and seek function to

point a particular position inside the file.

tell Function

The first requirement is to find your position within a file, which you do using the tell

function:

tell FILEHANDLE

tell

This returns the position of the file pointer, in bytes, within FILEHANDLE if specified, or

the current default selected filehandle if none is specified.

seek Function

The seek function positions the file pointer to the specified number of bytes within a file:

seek FILEHANDLE, POSITION, WHENCE

The function uses the fseek system function, and you have the same ability to position

relative to three different points: the start, the end, and the current position. You do this

by specifying a value for WHENCE.

Zero sets the positioning relative to the start of the file. For example, the line sets the file

pointer to the 256th byte in the file.

seek DATA, 256, 0;

Perl

139

File Information

You can test certain features very quickly within Perl using a series of test operators known

collectively as -X tests. For example, to perform a quick test of the various permissions

on a file, you might use a script like this:

#/usr/bin/perl

my $file = "/usr/test/file1.txt";

my (@description, $size);

if (-e $file)

{

 push @description, 'binary' if (-B _);

 push @description, 'a socket' if (-S _);

 push @description, 'a text file' if (-T _);

 push @description, 'a block special file' if (-b _);

 push @description, 'a character special file' if (-c _);

 push @description, 'a directory' if (-d _);

 push @description, 'executable' if (-x _);

 push @description, (($size = -s _)) ? "$size bytes" : 'empty';

 print "$file is ", join(', ',@description),"\n";

}

Here is the list of features, which you can check for a file or directory:

Operator Definition

-A Script start time minus file last access time, in days.

-B Is it a binary file?

-C Script start time minus file last inode change time, in days.

-M Script start time minus file modification time, in days.

-O Is the file owned by the real user ID?

Perl

140

-R Is the file readable by the real user ID or real group?

-S Is the file a socket?

-T Is it a text file?

-W Is the file writable by the real user ID or real group?

-X Is the file executable by the real user ID or real group?

-b Is it a block special file?

-c Is it a character special file?

-d Is the file a directory?

-e Does the file exist?

-f Is it a plain file?

-g Does the file have the setgid bit set?

-k Does the file have the sticky bit set?

-l Is the file a symbolic link?

-o Is the file owned by the effective user ID?

-p Is the file a named pipe?

-r Is the file readable by the effective user or group ID?

-s Returns the size of the file, zero size = empty file.

-t Is the filehandle opened by a TTY (terminal)?

Perl

141

-u Does the file have the setuid bit set?

-w Is the file writable by the effective user or group ID?

-x Is the file executable by the effective user or group ID?

-z Is the file size zero?

Perl

142

Following are the standard functions used to play with directories.

opendir DIRHANDLE, EXPR # To open a directory

readdir DIRHANDLE # To read a directory

rewinddir DIRHANDLE # Positioning pointer to the begining

telldir DIRHANDLE # Returns current position of the dir

seekdir DIRHANDLE, POS # Pointing pointer to POS inside dir

closedir DIRHANDLE # Closing a directory.

Display all the Files

There are various ways to list down all the files available in a particular directory. First

let's use the simple way to get and list down all the files using the glob operator:

#!/usr/bin/perl

Display all the files in /tmp directory.

$dir = "/tmp/*";

my @files = glob($dir);

foreach (@files){

 print $_ . "\n";

}

Display all the C source files in /tmp directory.

$dir = "/tmp/*.c";

@files = glob($dir);

foreach (@files){

 print $_ . "\n";

}

Display all the hidden files.

17. Perl ─ Directories

Perl

143

$dir = "/tmp/.*";

@files = glob($dir);

foreach (@files){

 print $_ . "\n";

}

Display all the files from /tmp and /home directories.

$dir = "/tmp/* /home/*";

@files = glob($dir);

foreach (@files){

 print $_ . "\n";

}

Here is another example, which opens a directory and list out all the files available inside

this directory.

#!/usr/bin/perl

opendir (DIR, '.') or die "Couldn't open directory, $!";

while ($file = readdir DIR) {

 print "$file\n";

}

closedir DIR;

One more example to print the list of C source files you might use is:

#!/usr/bin/perl

opendir(DIR, '.') or die "Couldn't open directory, $!";

foreach (sort grep(/^.*\.c$/,readdir(DIR))){

 print "$_\n";

}

closedir DIR;

Perl

144

Create new Directory

You can use mkdir function to create a new directory. You will need to have the required

permission to create a directory.

#!/usr/bin/perl

$dir = "/tmp/perl";

This creates perl directory in /tmp directory.

mkdir($dir) or die "Couldn't create $dir directory, $!";

print "Directory created successfully\n";

Remove a directory

You can use rmdir function to remove a directory. You will need to have the required

permission to remove a directory. Additionally this directory should be empty before you

try to remove it.

#!/usr/bin/perl

$dir = "/tmp/perl";

This removes perl directory from /tmp directory.

rmdir($dir) or die "Couldn't remove $dir directory, $!";

print "Directory removed successfully\n";

Change a Directory

You can use chdir function to change a directory and go to a new location. You will need

to have the required permission to change a directory and go inside the new directory.

#!/usr/bin/perl

$dir = "/home";

This changes perl directory and moves you inside /home directory.

chdir($dir) or die "Couldn't go inside $dir directory, $!";

print "Your new location is $dir\n";

Perl

145

The execution and the errors always go together. If you are opening a file which does not

exist. then if you did not handle this situation properly then your program is considered

to be of bad quality.

The program stops if an error occurs. So a proper error handling is used to handle various

type of errors, which may occur during a program execution and take appropriate action

instead of halting program completely.

You can identify and trap an error in a number of different ways. Its very easy to trap

errors in Perl and then handling them properly. Here are few methods which can be used.

The if statement

The if statement is the obvious choice when you need to check the return value from a

statement; for example:

if(open(DATA, $file)){

 ...

}else{

 die "Error: Couldn't open the file - $!";

}

Here variable $! returns the actual error message. Alternatively, we can reduce the

statement to one line in situations where it makes sense to do so; for example:

open(DATA, $file) || die "Error: Couldn't open the file $!";

The unless Function

The unless function is the logical opposite to if: statements can completely bypass the

success status and only be executed if the expression returns false. For example:

unless(chdir("/etc")){

 die "Error: Can't change directory - $!";

}

The unless statement is best used when you want to raise an error or alternative only if

the expression fails. The statement also makes sense when used in a single-line

statement:

18. Perl ─ Error Handling

Perl

146

die "Error: Can't change directory!: $!" unless(chdir("/etc"));

Here we die only if the chdir operation fails, and it reads nicely.

The ternary Operator

For very short tests, you can use the conditional operator ?:

print(exists($hash{value}) ? 'There' : 'Missing',"\n");

It's not quite so clear here what we are trying to achieve, but the effect is the same as

using an if or unless statement. The conditional operator is best used when you want to

quickly return one of the two values within an expression or statement.

The warn Function

The warn function just raises a warning, a message is printed to STDERR, but no further

action is taken. So it is more useful if you just want to print a warning for the user and

proceed with rest of the operation:

chdir('/etc') or warn "Can't change directory";

The die Function

The die function works just like warn, except that it also calls exit. Within a normal script,

this function has the effect of immediately terminating execution. You should use this

function in case it is useless to proceed if there is an error in the program:

chdir('/etc') or die "Can't change directory";

Errors within Modules

There are two different situations we should be able to handle:

 Reporting an error in a module that quotes the module's filename and line number

- this is useful when debugging a module, or when you specifically want to raise a

module-related, rather than script-related, error.

 Reporting an error within a module that quotes the caller's information so that you

can debug the line within the script that caused the error. Errors raised in this

fashion are useful to the end-user, because they highlight the error in relation to

the calling script's origination line.

The warn and die functions work slightly differently than you would expect when called

from within a module. For example, the simple module:

Perl

147

package T;

require Exporter;

@ISA = qw/Exporter/;

@EXPORT = qw/function/;

use Carp;

sub function {

 warn "Error in module!";

}

1;

When called from a script like below:

use T;

function();

It will produce the following result:

Error in module! at T.pm line 9.

This is more or less what you might expected, but not necessarily what you want. From a

module programmer's perspective, the information is useful because it helps to point to a

bug within the module itself. For an end-user, the information provided is fairly useless,

and for all but the hardened programmer, it is completely pointless.

The solution for such problems is the Carp module, which provides a simplified method for

reporting errors within modules that return information about the calling script. The Carp

module provides four functions: carp, cluck, croak, and confess. These functions are

discussed below.

The carp Function

The carp function is the basic equivalent of warn and prints the message to STDERR

without actually exiting the script and printing the script name.

package T;

require Exporter;

@ISA = qw/Exporter/;

@EXPORT = qw/function/;

Perl

148

use Carp;

sub function {

 carp "Error in module!";

}

1;

When called from a script like below:

use T;

function();

It will produce the following result:

Error in module! at test.pl line 4

The cluck Function

The cluck function is a sort of supercharged carp, it follows the same basic principle but

also prints a stack trace of all the modules that led to the function being called, including

the information on the original script.

package T;

require Exporter;

@ISA = qw/Exporter/;

@EXPORT = qw/function/;

use Carp qw(cluck);

sub function {

 cluck "Error in module!";

}

1;

When called from a script like below:

use T;

function();

It will produce the following result:

Perl

149

Error in module! at T.pm line 9

 T::function() called at test.pl line 4

The croak Function

The croak function is equivalent to die, except that it reports the caller one level up. Like

die, this function also exits the script after reporting the error to STDERR:

package T;

require Exporter;

@ISA = qw/Exporter/;

@EXPORT = qw/function/;

use Carp;

sub function {

 croak "Error in module!";

}

1;

When called from a script like below:

use T;

function();

It will produce the following result:

Error in module! at test.pl line 4

As with carp, the same basic rules apply regarding the including of line and file information

according to the warn and die functions.

The confess Function

The confess function is like cluck; it calls die and then prints a stack trace all the way up

to the origination script.

Perl

150

package T;

require Exporter;

@ISA = qw/Exporter/;

@EXPORT = qw/function/;

use Carp;

sub function {

 confess "Error in module!";

}

1;

When called from a script like below:

use T;

function();

It will produce the following result:

Error in module! at T.pm line 9

 T::function() called at test.pl line 4

Perl

151

There are some variables which have a predefined and special meaning in Perl. They are

the variables that use punctuation characters after the usual variable indicator ($, @, or

%), such as $_ (explained below).

Most of the special variables have an english like long name, e.g., Operating System Error

variable $! can be written as $OS_ERROR. But if you are going to use english like names,

then you would have to put one line use English; at the top of your program file. This

guides the interpreter to pickup exact meaning of the variable.

The most commonly used special variable is $_, which contains the default input and

pattern-searching string. For example, in the following lines:

#!/usr/bin/perl

foreach ('hickory','dickory','doc') {

 print $_;

 print "\n";

}

When executed, this will produce the following result:

hickory

dickory

doc

Again, let's check the same example without using $_ variable explicitly:

#!/usr/bin/perl

foreach ('hickory','dickory','doc') {

 print;

 print "\n";

}

When executed, this will also produce the following result:

hickory

dickory

doc

19. Perl ─ Special Variables

Perl

152

The first time the loop is executed, "hickory" is printed. The second time around, "dickory"

is printed, and the third time, "doc" is printed. That's because in each iteration of the loop,

the current string is placed in $_, and is used by default by print. Here are the places

where Perl will assume $_ even if you don't specify it:

 Various unary functions, including functions like ord and int, as well as the all file

tests (-f, -d) except for -t, which defaults to STDIN.

 Various list functions like print and unlink.

 The pattern-matching operations m//, s///, and tr/// when used without an =~

operator.

 The default iterator variable in a foreach loop if no other variable is supplied.

 The implicit iterator variable in the grep and map functions.

 The default place to put an input record when a line-input operation's result is

tested by itself as the sole criterion of a while test (i.e.,). Note that outside of a

while test, this will not happen.

Special Variable Types

Based on the usage and nature of special variables, we can categorize them in the

following categories:

 Global Scalar Special Variables.

 Global Array Special Variables.

 Global Hash Special Variables.

 Global Special Filehandles.

 Global Special Constants.

 Regular Expression Special Variables.

 Filehandle Special Variables.

Global Scalar Special Variables

Here is the list of all the scalar special variables. We have listed corresponding english like

names along with the symbolic names.

$_

The default input and pattern-searching space.

$ARG

$.

Perl

153

$NR

The current input line number of the last

filehandle that was read. An explicit close on

the filehandle resets the line number.

$/ The input record separator; newline by default.

If set to the null string, it treats blank lines as

delimiters. $RS

$,
The output field separator for the print

operator.
$OFS

$\
The output record separator for the print

operator.
$ORS

$" Like "$," except that it applies to list values

interpolated into a double-quoted string (or

similar interpreted string). Default is a space. $LIST_SEPARATOR

$;
The subscript separator for multidimensional

array emulation. Default is "\034".
$SUBSCRIPT_SEPARATOR

$^L
What a format outputs to perform a formfeed.

Default is "\f".
$FORMAT_FORMFEED

$: The current set of characters after which a

string may be broken to fill continuation fields

(starting with ^) in a format. Default is "\n"". $FORMAT_LINE_BREAK_CHARACTERS

$^A
The current value of the write accumulator for

format lines.
$ACCUMULATOR

$#

Perl

154

$OFMT
Contains the output format for printed

numbers (deprecated).

$?
The status returned by the last pipe close,

backtick (``) command, or system operator.
$CHILD_ERROR

$! If used in a numeric context, yields the current

value of the errno variable, identifying the last

system call error. If used in a string context,

yields the corresponding system error string. $OS_ERROR or $ERRNO

$@
The Perl syntax error message from the last

eval command.
$EVAL_ERROR

$$

The pid of the Perl process running this script.

$PROCESS_ID or $PID

$<

The real user ID (uid) of this process.

$REAL_USER_ID or $UID

$>

The effective user ID of this process.

$EFFECTIVE_USER_ID or $EUID

$(

The real group ID (gid) of this process.

$REAL_GROUP_ID or $GID

$)

The effective gid of this process.

$EFFECTIVE_GROUP_ID or $EGID

$0

Perl

155

$PROGRAM_NAME
Contains the name of the file containing the

Perl script being executed.

$[The index of the first element in an array and

of the first character in a substring. Default is

0.

$]
Returns the version plus patchlevel divided by

1000.
$PERL_VERSION

$^D

The current value of the debugging flags.

$DEBUGGING

$^E

Extended error message on some platforms.

$EXTENDED_OS_ERROR

$^F
The maximum system file descriptor, ordinarily

2.
$SYSTEM_FD_MAX

$^H
Contains internal compiler hints enabled by

certain pragmatic modules.

$^I
The current value of the inplace-edit extension.

Use undef to disable inplace editing.
$INPLACE_EDIT

$^M The contents of $M can be used as an

emergency memory pool in case Perl dies with

an out-of-memory error. Use of $M requires a

special compilation of Perl. See the INSTALL

document for more information.

Perl

156

$^O
Contains the name of the operating system

that the current Perl binary was compiled for.
$OSNAME

$^P
The internal flag that the debugger clears so

that it doesn't debug itself.
$PERLDB

$^T
The time at which the script began running, in

seconds since the epoch.
$BASETIME

$^W
The current value of the warning switch, either

true or false.
$WARNING

$^X
The name that the Perl binary itself was

executed as.
$EXECUTABLE_NAME

$ARGV
Contains the name of the current file when

reading from .

Global Array Special Variables

@ARGV
The array containing the command-line arguments intended

for the script.

@INC
The array containing the list of places to look for Perl scripts

to be evaluated by the do, require, or use constructs.

@F
The array into which the input lines are split when the -a

command-line switch is given.

Perl

157

Global Hash Special Variables

%INC
The hash containing entries for the filename of each file that

has been included via do or require.

%ENV The hash containing your current environment.

%SIG The hash used to set signal handlers for various signals.

Global Special Filehandles

ARGV

The special filehandle that iterates over command line

filenames in @ARGV. Usually written as the null filehandle in

<>.

STDERR The special filehandle for standard error in any package.

STDIN The special filehandle for standard input in any package.

STDOUT The special filehandle for standard output in any package.

DATA

The special filehandle that refers to anything following the

__END__ token in the file containing the script. Or, the

special filehandle for anything following the __DATA__ token

in a required file, as long as you're reading data in the same

package __DATA__ was found in.

_ (underscore)
The special filehandle used to cache the information from the

last stat, lstat, or file test operator.

Global Special Constants

__END__
Indicates the logical end of your program. Any following text

is ignored, but may be read via the DATA filehandle.

__FILE__
Represents the filename at the point in your program where

it's used. Not interpolated into strings.

Perl

158

__LINE__
Represents the current line number. Not interpolated into

strings.

__PACKAGE__

Represents the current package name at compile time, or

undefined if there is no current package. Not interpolated into

strings.

Regular Expression Special Variables

$digit Contains the text matched by the corresponding set of

parentheses in the last pattern matched. For example, $1

matches whatever was contained in the first set of

parentheses in the previous regular expression.

$& The string matched by the last successful pattern match.

$MATCH

$` The string preceding whatever was matched by the last

successful pattern match.

$PREMATCH

$' The string following whatever was matched by the last

successful pattern match.

$POSTMATCH

$+ The last bracket matched by the last search pattern. This is

useful if you don't know which of a set of alternative patterns

was matched. For example: /Version: (.*)|Revision: (.*)/ &&

($rev = $+);
$LAST_PAREN_MATCH

Filehandle Special Variables

$| If set to nonzero, forces an fflush(3) after every write or

print on the currently selected output channel.

$OUTPUT_AUTOFLUSH

Perl

159

$% The current page number of the currently selected output

channel.

$FORMAT_PAGE_NUMBER

$= The current page length (printable lines) of the currently

selected output channel. Default is 60.

$FORMAT_LINES_PER_PAGE

$- The number of lines left on the page of the currently

selected output channel.

$FORMAT_LINES_LEFT

$~ The name of the current report format for the currently

selected output channel. Default is the name of the

filehandle.
$FORMAT_NAME

$^ The name of the current top-of-page format for the

currently selected output channel. Default is the name of

the filehandle with _TOP appended.
$FORMAT_TOP_NAME

Perl

160

Each programmer will, of course, have his or her own preferences in regards to

formatting, but there are some general guidelines that will make your programs easier to

read, understand, and maintain.

The most important thing is to run your programs under the -w flag at all times. You may

turn it off explicitly for particular portions of code via the no warnings pragma or the $^W

variable if you must. You should also always run under use strict or know the reason why

not. The use sigtrap and even use diagnostics pragmas may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is

that the closing curly bracket of a multi-line BLOCK should line up with the keyword that

started the construct. Beyond that, he has other preferences that aren't so strong:

 4-column indent.

 Opening curly on same line as keyword, if possible, otherwise line up.

 Space before the opening curly of a multi-line BLOCK.

 One-line BLOCK may be put on one line, including curlies.

 No space before the semicolon.

 Semicolon omitted in "short" one-line BLOCK.

 Space around most operators.

 Space around a "complex" subscript (inside brackets).

 Blank lines between chunks that do different things.

 Uncuddled elses.

 No space between function name and its opening parenthesis.

 Space after each comma.

 Long lines broken after an operator (except and and or).

 Space after last parenthesis matching on current line.

 Line up corresponding items vertically.

 Omit redundant punctuation as long as clarity doesn't suffer.

Here are some other more substantive style issues to think about: Just because you CAN

do something a particular way doesn't mean that you SHOULD do it that way. Perl is

designed to give you several ways to do anything, so consider picking the most readable

one.

20. Perl ─ Coding Standard

Perl

161

For instance:

open(FOO,$foo) || die "Can't open $foo: $!";

Is better than -

die "Can't open $foo: $!" unless open(FOO,$foo);

Because the second way hides the main point of the statement in a modifier. On the other

hand,

print "Starting analysis\n" if $verbose;

Is better than -

$verbose && print "Starting analysis\n";

Because the main point isn't whether the user typed -v or not.

Don't go through silly contortions to exit a loop at the top or the bottom, when Perl

provides the last operator so you can exit in the middle. Just "outdent" it a little to make

it more visible:

LINE:

for (;;) {

 statements;

 last LINE if $foo;

 next LINE if /^#/;

 statements;

}

Let's see few more important points:

 Don't be afraid to use loop labels--they're there to enhance readability as well as

to allow multilevel loop breaks. See the previous example.

 Avoid using grep() (or map()) or `backticks` in a void context, that is, when you

just throw away their return values. Those functions all have return values, so use

them. Otherwise use a foreach() loop or the system() function instead.

 For portability, when using features that may not be implemented on every

machine, test the construct in an eval to see if it fails. If you know what version or

patchlevel a particular feature was implemented, you can test $] ($PERL_VERSION

in English) to see if it will be there. The Config module will also let you interrogate

values determined by the Configure program when Perl was installed.

Perl

162

 Choose mnemonic identifiers. If you can't remember what mnemonic means,

you've got a problem.

 While short identifiers like $gotit are probably ok, use underscores to separate

words in longer identifiers. It is generally easier to read $var_names_like_this than

$VarNamesLikeThis, especially for non-native speakers of English. It's also a simple

rule that works consistently with VAR_NAMES_LIKE_THIS.

 Package names are sometimes an exception to this rule. Perl informally reserves

lowercase module names for "pragma" modules like integer and strict. Other

modules should begin with a capital letter and use mixed case, but probably without

underscores due to limitations in primitive file systems' representations of module

names as files that must fit into a few sparse bytes.

 If you have a really hairy regular expression, use the /x modifier and put in some

whitespace to make it look a little less like line noise. Don't use slash as a delimiter

when your regexp has slashes or backslashes.

 Always check the return codes of system calls. Good error messages should go to

STDERR, include which program caused the problem, what the failed system call

and arguments were, and (VERY IMPORTANT) should contain the standard system

error message for what went wrong. Here's a simple but sufficient example:

opendir(D, $dir) or die "can't opendir $dir: $!";

 Think about reusability. Why waste brainpower on a one-shot when you might want

to do something like it again? Consider generalizing your code. Consider writing a

module or object class. Consider making your code run cleanly with use strict and

use warnings (or -w) in effect. Consider giving away your code. Consider changing

your whole world view. Consider... oh, never mind.

 Be consistent.

 Be nice.

Perl

163

A regular expression is a string of characters that defines the pattern or patterns you are

viewing. The syntax of regular expressions in Perl is very similar to what you will find

within other regular expression.supporting programs, such as sed, grep, and awk.

The basic method for applying a regular expression is to use the pattern binding operators

=~ and !~. The first operator is a test and assignment operator.

There are three regular expression operators within Perl.

 Match Regular Expression - m//

 Substitute Regular Expression - s///

 Transliterate Regular Expression - tr///

The forward slashes in each case act as delimiters for the regular expression (regex) that

you are specifying. If you are comfortable with any other delimiter, then you can use in

place of forward slash.

The Match Operator

The match operator, m//, is used to match a string or statement to a regular expression.

For example, to match the character sequence "foo" against the scalar $bar, you might

use a statement like this:

#!/usr/bin/perl

$bar = "This is foo and again foo";

if ($bar =~ /foo/){

 print "First time is matching\n";

}else{

 print "First time is not matching\n";

}

$bar = "foo";

if ($bar =~ /foo/){

 print "Second time is matching\n";

}else{

 print "Second time is not matching\n";

}

21. Perl ─ Regular Expressions

Perl

164

When above program is executed, it produces the following result:

First time is matching

Second time is matching

The m// actually works in the same fashion as the q// operator series.you can use any

combination of naturally matching characters to act as delimiters for the expression. For

example, m{}, m(), and m>< are all valid. So above example can be re-written as follows:

#!/usr/bin/perl

$bar = "This is foo and again foo";

if ($bar =~ m[foo]){

 print "First time is matching\n";

}else{

 print "First time is not matching\n";

}

$bar = "foo";

if ($bar =~ m{foo}){

 print "Second time is matching\n";

}else{

 print "Second time is not matching\n";

}

You can omit m from m// if the delimiters are forward slashes, but for all other delimiters

you must use the m prefix.

Note that the entire match expression, that is the expression on the left of =~ or !~ and

the match operator, returns true (in a scalar context) if the expression matches. Therefore

the statement:

$true = ($foo =~ m/foo/);

will set $true to 1 if $foo matches the regex, or 0 if the match fails. In a list context, the

match returns the contents of any grouped expressions. For example, when extracting the

hours, minutes, and seconds from a time string, we can use:

my ($hours, $minutes, $seconds) = ($time =~ m/(\d+):(\d+):(\d+)/);

Perl

165

Match Operator Modifiers

The match operator supports its own set of modifiers. The /g modifier allows for global

matching. The /i modifier will make the match case insensitive. Here is the complete list

of modifiers

Modifier Description

i Makes the match case insensitive.

m

Specifies that if the string has newline or carriage return characters, the ^

and $ operators will now match against a newline boundary, instead of a

string boundary.

o Evaluates the expression only once.

s Allows use of . to match a newline character.

x Allows you to use white space in the expression for clarity.

g Globally finds all matches.

cg Allows the search to continue even after a global match fails.

Matching Only Once

There is also a simpler version of the match operator - the ?PATTERN? operator. This is

basically identical to the m// operator except that it only matches once within the string

you are searching between each call to reset.

For example, you can use this to get the first and last elements within a list:

#!/usr/bin/perl

@list = qw/food foosball subeo footnote terfoot canic footbrdige/;

foreach (@list)

{

 $first = $1 if ?(foo.*)?;

 $last = $1 if /(foo.*)/;

Perl

166

}

print "First: $first, Last: $last\n";

When above program is executed, it produces the following result:

First: food, Last: footbrdige

Regular Expression Variables

Regular expression variables include $, which contains whatever the last grouping match

matched; $&, which contains the entire matched string; $`, which contains everything

before the matched string; and $', which contains everything after the matched string.

Following code demonstrates the result:

#!/usr/bin/perl

$string = "The food is in the salad bar";

$string =~ m/foo/;

print "Before: $`\n";

print "Matched: $&\n";

print "After: $'\n";

When above program is executed, it produces the following result:

Before: The

Matched: foo

After: d is in the salad bar

The Substitution Operator

The substitution operator, s///, is really just an extension of the match operator that allows

you to replace the text matched with some new text. The basic form of the operator is:

s/PATTERN/REPLACEMENT/;

The PATTERN is the regular expression for the text that we are looking for. The

REPLACEMENT is a specification for the text or regular expression that we want to use to

replace the found text with. For example, we can replace all occurrences of dog with cat

using the following regular expression:

#/user/bin/perl

Perl

167

$string = "The cat sat on the mat";

$string =~ s/cat/dog/;

print "$string\n";

When above program is executed, it produces the following result:

The dog sat on the mat

Substitution Operator Modifiers

Here is the list of all the modifiers used with substitution operator.

Modifier Description

i Makes the match case insensitive.

m

Specifies that if the string has newline or carriage return characters, the ^

and $ operators will now match against a newline boundary, instead of a

string boundary.

o Evaluates the expression only once.

s Allows use of . to match a newline character.

x Allows you to use white space in the expression for clarity.

g Replaces all occurrences of the found expression with the replacement text.

e
Evaluates the replacement as if it were a Perl statement, and uses its return

value as the replacement text.

The Translation Operator

Translation is similar, but not identical, to the principles of substitution, but unlike

substitution, translation (or transliteration) does not use regular expressions for its search

on replacement values. The translation operators are:

Perl

168

tr/SEARCHLIST/REPLACEMENTLIST/cds

y/SEARCHLIST/REPLACEMENTLIST/cds

The translation replaces all occurrences of the characters in SEARCHLIST with the

corresponding characters in REPLACEMENTLIST. For example, using the "The cat sat on

the mat." string we have been using in this chapter:

#/user/bin/perl

$string = 'The cat sat on the mat';

$string =~ tr/a/o/;

print "$string\n";

When above program is executed, it produces the following result:

The cot sot on the mot.

Standard Perl ranges can also be used, allowing you to specify ranges of characters either

by letter or numerical value. To change the case of the string, you might use the following

syntax in place of the uc function.

$string =~ tr/a-z/A-Z/;

Translation Operator Modifiers

Following is the list of operators related to translation.

Modifier Description

c Complements SEARCHLIST.

d Deletes found but unreplaced characters.

s Squashes duplicate replaced characters.

The /d modifier deletes the characters matching SEARCHLIST that do not have a

corresponding entry in REPLACEMENTLIST. For example:

#!/usr/bin/perl

Perl

169

$string = 'the cat sat on the mat.';

$string =~ tr/a-z/b/d;

print "$string\n";

When above program is executed, it produces the following result:

b b b.

The last modifier, /s, removes the duplicate sequences of characters that were replaced,

so:

#!/usr/bin/perl

$string = 'food';

$string = 'food';

$string =~ tr/a-z/a-z/s;

print "$string\n";

When above program is executed, it produces the following result:

fod

More Complex Regular Expressions

You don't just have to match on fixed strings. In fact, you can match on just about anything

you could dream of by using more complex regular expressions. Here's a quick cheat

sheet:

Following table lists the regular expression syntax that is available in Python.

Pattern Description

^ Matches beginning of line.

$ Matches end of line.

. Matches any single character except newline. Using m option

allows it to match newline as well.

Perl

170

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets.

* Matches 0 or more occurrences of preceding expression.

+ Matches 1 or more occurrence of preceding expression.

? Matches 0 or 1 occurrence of preceding expression.

{ n} Matches exactly n number of occurrences of preceding

expression.

{ n,} Matches n or more occurrences of preceding expression.

{ n, m} Matches at least n and at most m occurrences of preceding

expression.

a| b Matches either a or b.

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0-9].

\D Matches nondigits.

\A Matches beginning of string.

\Z Matches end of string. If a newline exists, it matches just before

newline.

Perl

171

\z Matches end of string.

\G Matches point where last match finished.

\b Matches word boundaries when outside brackets. Matches

backspace (0x08) when inside brackets.

\B Matches nonword boundaries.

\n, \t, etc. Matches newlines, carriage returns, tabs, etc.

\1...\9 Matches nth grouped subexpression.

\10 Matches nth grouped subexpression if it matched already.

Otherwise refers to the octal representation of a character code.

[aeiou] Matches a single character in the given set

[^aeiou] Matches a single character outside the given set

The ^ metacharacter matches the beginning of the string and the $ metasymbol matches

the end of the string. Here are some brief examples.

nothing in the string (start and end are adjacent)

/^$/

a three digits, each followed by a whitespace

character (eg "3 4 5 ")

/(\d\s){3}/

matches a string in which every

odd-numbered letter is a (eg "abacadaf")

/(a.)+/

string starts with one or more digits

/^\d+/

Perl

172

string that ends with one or more digits

/\d+$/

Let’s have a look at another example.

#!/usr/bin/perl

$string = "Cats go Catatonic\nWhen given Catnip";

($start) = ($string =~ /\A(.*?) /);

@lines = $string =~ /^(.*?) /gm;

print "First word: $start\n","Line starts: @lines\n";

When above program is executed, it produces the following result:

First word: Cats

Line starts: Cats When

Matching Boundaries

The \b matches at any word boundary, as defined by the difference between the \w class

and the \W class. Because \w includes the characters for a word, and \W the opposite,

this normally means the termination of a word. The \B assertion matches any position

that is not a word boundary. For example:

/\bcat\b/ # Matches 'the cat sat' but not 'cat on the mat'

/\Bcat\B/ # Matches 'verification' but not 'the cat on the mat'

/\bcat\B/ # Matches 'catatonic' but not 'polecat'

/\Bcat\b/ # Matches 'polecat' but not 'catatonic'

Selecting Alternatives

The | character is just like the standard or bitwise OR within Perl. It specifies alternate

matches within a regular expression or group. For example, to match "cat" or "dog" in an

expression, you might use this:

if ($string =~ /cat|dog/)

You can group individual elements of an expression together in order to support complex

matches. Searching for two people’s names could be achieved with two separate tests,

like this:

Perl

173

if (($string =~ /Martin Brown/) || ($string =~ /Sharon Brown/))

This could be written as follows

if ($string =~ /(Martin|Sharon) Brown/)

Grouping Matching

From a regular-expression point of view, there is no difference between except, perhaps,

that the former is slightly clearer.

$string =~ /(\S+)\s+(\S+)/;

and

$string =~ /\S+\s+\S+/;

However, the benefit of grouping is that it allows us to extract a sequence from a regular

expression. Groupings are returned as a list in the order in which they appear in the

original. For example, in the following fragment we have pulled out the hours, minutes,

and seconds from a string.

my ($hours, $minutes, $seconds) = ($time =~ m/(\d+):(\d+):(\d+)/);

As well as this direct method, matched groups are also available within the special $x

variables, where x is the number of the group within the regular expression. We could

therefore rewrite the preceding example as follows:

#!/usr/bin/perl

$time = "12:05:30";

$time =~ m/(\d+):(\d+):(\d+)/;

my ($hours, $minutes, $seconds) = ($1, $2, $3);

Perl

174

print "Hours : $hours, Minutes: $minutes, Second: $seconds\n";

When above program is executed, it produces the following result:

Hours : 12, Minutes: 05, Second: 30

When groups are used in substitution expressions, the $x syntax can be used in the

replacement text. Thus, we could reformat a date string using this:

#!/usr/bin/perl

$date = '03/26/1999';

$date =~ s#(\d+)/(\d+)/(\d+)#$3/$1/$2#;

print "$date\n";

When above program is executed, it produces the following result:

1999/03/26

The \G Assertion

The \G assertion allows you to continue searching from the point where the last match

occurred. For example, in the following code, we have used \G so that we can search to

the correct position and then extract some information, without having to create a more

complex, single regular expression:

#!/usr/bin/perl

$string = "The time is: 12:31:02 on 4/12/00";

$string =~ /:\s+/g;

($time) = ($string =~ /\G(\d+:\d+:\d+)/);

$string =~ /.+\s+/g;

($date) = ($string =~ m{\G(\d+/\d+/\d+)});

Perl

175

print "Time: $time, Date: $date\n";

When above program is executed, it produces the following result:

Time: 12:31:02, Date: 4/12/00

The \G assertion is actually just the metasymbol equivalent of the pos function, so between

regular expression calls you can continue to use pos, and even modify the value of pos

(and therefore \G) by using pos as an lvalue subroutine.

Regular-expression Examples

Literal Characters

Example Description

Perl Match "Perl".

Character Classes

Example Description

[Pp]ython Matches "Python" or "python"

rub[ye] Matches "ruby" or "rube"

[aeiou] Matches any one lowercase vowel

[0-9] Matches any digit; same as [0123456789]

[a-z] Matches any lowercase ASCII letter

[A-Z] Matches any uppercase ASCII letter

[a-zA-Z0-9] Matches any of the above

[^aeiou] Matches anything other than a lowercase vowel

Perl

176

[^0-9] Matches anything other than a digit

Special Character Classes

Example Description

. Matches any character except newline

\d Matches a digit: [0-9]

\D Matches a nondigit: [^0-9]

\s Matches a whitespace character: [\t\r\n\f]

\S Matches nonwhitespace: [^ \t\r\n\f]

\w Matches a single word character: [A-Za-z0-9_]

\W Matches a nonword character: [^A-Za-z0-9_]

Repetition Cases

Example Description

ruby? Matches "rub" or "ruby": the y is optional

ruby* Matches "rub" plus 0 or more ys

ruby+ Matches "rub" plus 1 or more ys

Perl

177

\d{3} Matches exactly 3 digits

\d{3,} Matches 3 or more digits

\d{3,5} Matches 3, 4, or 5 digits

Nongreedy Repetition

This matches the smallest number of repetitions:

Example Description

<.*> Greedy repetition: matches "<python>perl>"

<.*?> Nongreedy: matches "<python>" in "<python>perl>"

Grouping with Parentheses

Example Description

\D\d+ No group: + repeats \d

(\D\d)+ Grouped: + repeats \D\d pair

([Pp]ython(,)?)+ Match "Python", "Python, python, python", etc.

Backreferences

This matches a previously matched group again:

Example Description

([Pp])ython&\1ails Matches python&pails or Python&Pails

Perl

178

(['"])[^\1]*\1 Single or double-quoted string. \1 matches whatever the 1st

group matched. \2 matches whatever the 2nd group matched,

etc.

Alternatives

Example Description

python|perl Matches "python" or "perl"

rub(y|le)) Matches "ruby" or "ruble"

Python(!+|\?) "Python" followed by one or more ! or one ?

Anchors

This need to specify match positions.

Example Description

^Python Matches "Python" at the start of a string or internal line

Python$ Matches "Python" at the end of a string or line

\APython Matches "Python" at the start of a string

Python\Z Matches "Python" at the end of a string

\bPython\b Matches "Python" at a word boundary

\brub\B \B is nonword boundary: match "rub" in "rube" and "ruby" but not

alone

Python(?=!) Matches "Python", if followed by an exclamation point

Python(?!!) Matches "Python", if not followed by an exclamation point

Perl

179

Special Syntax with Parentheses

Example Description

R(?#comment) Matches "R". All the rest is a comment

R(?i)uby Case-insensitive while matching "uby"

R(?i:uby) Same as above

rub(?:y|le)) Group only without creating \1 backreference

Perl

180

Using sendmail Utility

Sending a Plain Message

If you are working on Linux/Unix machine then you can simply use sendmail utility inside

your Perl program to send email. Here is a sample script that can send an email to a given

email ID. Just make sure the given path for sendmail utility is correct. This may be different

for your Linux/Unix machine.

#!/usr/bin/perl

$to = 'abcd@gmail.com';

$from = 'webmaster@yourdomain.com';

$subject = 'Test Email';

$message = 'This is test email sent by Perl Script';

open(MAIL, "|/usr/sbin/sendmail -t");

Email Header

print MAIL "To: $to\n";

print MAIL "From: $from\n";

print MAIL "Subject: $subject\n\n";

Email Body

print MAIL $message;

close(MAIL);

print "Email Sent Successfully\n";

Actually, the above script is a client email script, which will draft email and submit to the

server running locally on your Linux/Unix machine. This script will not be responsible for

sending email to actual destination. So you have to make sure email server is properly

configured and running on your machine to send email to the given email ID.

22. Perl ─ Sending Email

Perl

181

Sending an HTML Message

If you want to send HTML formatted email using sendmail, then you simply need to add

Content-type: text/html\n in the header part of the email as follows:

#!/usr/bin/perl

$to = 'abcd@gmail.com';

$from = 'webmaster@yourdomain.com';

$subject = 'Test Email';

$message = '<h1>This is test email sent by Perl Script</h1>';

open(MAIL, "|/usr/sbin/sendmail -t");

Email Header

print MAIL "To: $to\n";

print MAIL "From: $from\n";

print MAIL "Subject: $subject\n\n";

print MAIL "Content-type: text/html\n";

Email Body

print MAIL $message;

close(MAIL);

print "Email Sent Successfully\n";

Using MIME::Lite Module

If you are working on windows machine, then you will not have access on sendmail utility.

But you have alternate to write your own email client using MIME:Lite perl module. You

can download this module from MIME-Lite-3.01.tar.gz and install it on your either

machine Windows or Linux/Unix. To install it follow the simple steps:

$tar xvfz MIME-Lite-3.01.tar.gz

$cd MIME-Lite-3.01

$perl Makefile.PL

$make

$make install

Perl

182

That's it and you will have MIME::Lite module installed on your machine. Now you are

ready to send your email with simple scripts explained below.

Sending a Plain Message

Now following is a script which will take care of sending email to the given email ID:

#!/usr/bin/perl

use MIME::Lite;

$to = 'abcd@gmail.com';

$cc = 'efgh@mail.com';

$from = 'webmaster@yourdomain.com';

$subject = 'Test Email';

$message = 'This is test email sent by Perl Script';

$msg = MIME::Lite->new(

 From => $from,

 To => $to,

 Cc => $cc,

 Subject => $subject,

 Data => $message

);

$msg->send;

print "Email Sent Successfully\n";

Sending an HTML Message

If you want to send HTML formatted email using sendmail, then you simply need to add

Content-type: text/html\n in the header part of the email. Following is the script, which

will take care of sending HTML formatted email:

#!/usr/bin/perl

use MIME::Lite;

$to = 'abcd@gmail.com';

$cc = 'efgh@mail.com';

Perl

183

$from = 'webmaster@yourdomain.com';

$subject = 'Test Email';

$message = '<h1>This is test email sent by Perl Script</h1>';

$msg = MIME::Lite->new(

 From => $from,

 To => $to,

 Cc => $cc,

 Subject => $subject,

 Data => $message

);

$msg->attr("content-type" => "text/html");

$msg->send;

print "Email Sent Successfully\n";

Sending an Attachment

If you want to send an attachment, then following script serves the purpose:

#!/usr/bin/perl

use MIME::Lite;

$to = 'abcd@gmail.com';

$cc = 'efgh@mail.com';

$from = 'webmaster@yourdomain.com';

$subject = 'Test Email';

$message = 'This is test email sent by Perl Script';

$msg = MIME::Lite->new(

 From => $from,

 To => $to,

 Cc => $cc,

 Subject => $subject,

 Type => 'multipart/mixed'

Perl

184

);

Add your text message.

$msg->attach(Type => 'text',

 Data => $message

);

Specify your file as attachement.

$msg->attach(Type => 'image/gif',

 Path => '/tmp/logo.gif',

 Filename => 'logo.gif',

 Disposition => 'attachment'

);

$msg->send;

print "Email Sent Successfully\n";

You can attach as many files as you like in your email using attach() method.

Using SMTP Server

If your machine is not running an email server then you can use any other email server

available at the remote location. But to use any other email server you will need to have

an id, its password, URL, etc. Once you have all the required information, you simple need

to provide that information in send() method as follows:

$msg->send('smtp', "smtp.myisp.net", AuthUser=>"id",
AuthPass=>"password");

You can contact your email server administrator to have the above used information and

if a user id and password is not already available then your administrator can create it in

minutes.

Perl

185

Part 2: Perl – Advanced Topics

Perl

186

What is a Socket?

Socket is a Berkeley UNIX mechanism of creating a virtual duplex connection between

different processes. This was later ported on to every known OS enabling communication

between systems across geographical location running on different OS software. If not for

the socket, most of the network communication between systems would never ever have

happened.

Taking a closer look; a typical computer system on a network receives and sends

information as desired by the various applications running on it. This information is routed

to the system, since a unique IP address is designated to it. On the system, this

information is given to the relevant applications, which listen on different ports. For

example an internet browser listens on port 80 for information received from the web

server. Also we can write our custom applications which may listen and send/receive

information on a specific port number.

For now, let's sum up that a socket is an IP address and a port, enabling connection to

send and recieve data over a network.

To explain above mentioned socket concept we will take an example of Client - Server

Programming using Perl. To complete a client server architecture we would have to go

through the following steps:

To Create a Server

 Create a socket using socket call.

 Bind the socket to a port address using bind call.

 Listen to the socket at the port address using listen call.

 Accept client connections using accept call.

To Create a Client

 Create a socket with socket call.

 Connect (the socket) to the server using connect call.

Following diagram shows the complete sequence of the calls used by Client and Server to

communicate with each other:

23. Perl ─ Socket Programming

Perl

187

Server Side Socket Calls

The socket() call

The socket() call is the first call in establishing a network connection is creating a socket.

This call has the following syntax:

socket(SOCKET, DOMAIN, TYPE, PROTOCOL);

The above call creates a SOCKET and other three arguments are integers which should

have the following values for TCP/IP connections.

 DOMAIN should be PF_INET. It's probable 2 on your computer.

 TYPE should be SOCK_STREAM for TCP/IP connection.

 PROTOCOL should be (getprotobyname('tcp'))[2]. It is the particular protocol

such as TCP to be spoken over the socket.

So socket function call issued by the server will be something like this:

use Socket # This defines PF_INET and SOCK_STREAM

socket(SOCKET,PF_INET,SOCK_STREAM,(getprotobyname('tcp'))[2]);

Perl

188

The bind() call

The sockets created by socket() call are useless until they are bound to a hostname and

a port number. Server uses the following bind() function to specify the port at which they

will be accepting connections from the clients.

bind(SOCKET, ADDRESS);

Here SOCKET is the descriptor returned by socket() call and ADDRESS is a socket address

(for TCP/IP) containing three elements:

 The address family (For TCP/IP, that's AF_INET, probably 2 on your system).

 The port number (for example 21).

 The internet address of the computer (for example 10.12.12.168).

As the bind() is used by a server, which does not need to know its own address so the

argument list looks like this:

use Socket # This defines PF_INET and SOCK_STREAM

$port = 12345; # The unique port used by the sever to listen requests

$server_ip_address = "10.12.12.168";

bind(SOCKET, pack_sockaddr_in($port, inet_aton($server_ip_address)))

 or die "Can't bind to port $port! \n";

The or die clause is very important because if a server dies without outstanding

connections, the port won't be immediately reusable unless you use the option

SO_REUSEADDR using setsockopt() function. Here pack_sockaddr_in() function is

being used to pack the Port and IP address into binary format.

The listen() call

If this is a server program, then it is required to issue a call to listen() on the specified

port to listen, i.e., wait for the incoming requests. This call has the following syntax:

listen(SOCKET, QUEUESIZE);

The above call uses SOCKET descriptor returned by socket() call and QUEUESIZE is the

maximum number of outstanding connection request allowed simultaneously.

Perl

189

The accept() call

If this is a server program then it is required to issue a call to the access() function to

accept the incoming connections. This call has the following syntax:

accept(NEW_SOCKET, SOCKET);

The accept call receive SOCKET descriptor returned by socket() function and upon

successful completion, a new socket descriptor NEW_SOCKET is returned for all future

communication between the client and the server. If access() call fails, then it returns

FLASE which is defined in Socket module which we have used initially.

Generally, accept() is used in an infinite loop. As soon as one connection arrives the server

either creates a child process to deal with it or serves it himself and then goes back to

listen for more connections.

while(1) {

 accept(NEW_SOCKET, SOCKT);

}

Now all the calls related to server are over and let us see a call which will be required by

the client.

Client Side Socket Calls

The connect() call

If you are going to prepare client program, then first you will use socket() call to create

a socket and then you would have to use connect() call to connect to the server. You

already have seen socket() call syntax and it will remain similar to server socket() call,

but here is the syntax for connect() call:

connect(SOCKET, ADDRESS);

Here SCOKET is the socket descriptor returned by socket() call issued by the client and

ADDRESS is a socket address similar to bind call, except that it contains the IP address of

the remote server.

$port = 21; # For example, the ftp port

$server_ip_address = "10.12.12.168";

connect(SOCKET, pack_sockaddr_in($port, inet_aton($server_ip_address)))

 or die "Can't connect to port $port! \n";

Perl

190

If you connect to the server successfully, then you can start sending your commands to

the server using SOCKET descriptor, otherwise your client will come out by giving an error

message.

Client - Server Example

Following is a Perl code to implement a simple client-server program using Perl socket.

Here server listens for incoming requests and once connection is established, it simply

replies Smile from the server. The client reads that message and print on the screen. Let's

see how it has been done, assuming we have our server and client on the same machine.

Script to Create a Server

#!/usr/bin/perl -w

Filename : server.pl

use strict;

use Socket;

use port 7890 as default

my $port = shift || 7890;

my $proto = getprotobyname('tcp');

my $server = "localhost"; # Host IP running the server

create a socket, make it reusable

socket(SOCKET, PF_INET, SOCK_STREAM, $proto)

 or die "Can't open socket $!\n";

setsockopt(SOCKET, SOL_SOCKET, SO_REUSEADDR, 1)

 or die "Can't set socket option to SO_REUSEADDR $!\n";

bind to a port, then listen

bind(SOCKET, pack_sockaddr_in($port, inet_aton($server)))

 or die "Can't bind to port $port! \n";

listen(SOCKET, 5) or die "listen: $!";

print "SERVER started on port $port\n";

Perl

191

accepting a connection

my $client_addr;

while ($client_addr = accept(NEW_SOCKET, SOCKET)) {

 # send them a message, close connection

 my $name = gethostbyaddr($client_addr, AF_INET);

 print NEW_SOCKET "Smile from the server";

 print "Connection recieved from $name\n";

 close NEW_SOCKET;

}

To run the server in background mode issue the following command on Unix prompt:

$perl sever.pl&

Script to Create a Client

!/usr/bin/perl -w

Filename : client.pl

use strict;

use Socket;

initialize host and port

my $host = shift || 'localhost';

my $port = shift || 7890;

my $server = "localhost"; # Host IP running the server

create the socket, connect to the port

socket(SOCKET,PF_INET,SOCK_STREAM,(getprotobyname('tcp'))[2])

 or die "Can't create a socket $!\n";

connect(SOCKET, pack_sockaddr_in($port, inet_aton($server)))

 or die "Can't connect to port $port! \n";

my $line;

while ($line = <SOCKET>) {

Perl

192

 print "$line\n";

}

close SOCKET or die "close: $!";

Now let's start our client at the command prompt, which will connect to the server and

read message sent by the server and displays the same on the screen as follows:

$perl client.pl

Smile from the server

NOTE: If you are giving the actual IP address in dot notation, then it is recommended to

provide IP address in the same format in both client as well as server to avoid any

confusion.

Perl

193

We have already studied references in Perl and Perl anonymous arrays and hashes. Object

Oriented concept in Perl is very much based on references and anonymous array and

hashes. Let's start learning basic concepts of Object Oriented Perl.

Object Basics

There are three main terms, explained from the point of view of how Perl handles objects.

The terms are object, class, and method.

 An object within Perl is merely a reference to a data type that knows what class it

belongs to. The object is stored as a reference in a scalar variable. Because a scalar

only contains a reference to the object, the same scalar can hold different objects

in different classes.

 A class within Perl is a package that contains the corresponding methods required

to create and manipulate objects.

 A method within Perl is a subroutine, defined with the package. The first argument

to the method is an object reference or a package name, depending on whether

the method affects the current object or the class.

Perl provides a bless() function, which is used to return a reference which ultimately

becomes an object.

Defining a Class

It is very simple to define a class in Perl. A class is corresponding to a Perl Package in its

simplest form. To create a class in Perl, we first build a package.

A package is a self-contained unit of user-defined variables and subroutines, which can be

re-used over and over again.

Perl Packages provide a separate namespace within a Perl program which keeps

subroutines and variables independent from conflicting with those in other packages.

To declare a class named Person in Perl we do:

package Person;

The scope of the package definition extends to the end of the file, or until another package

keyword is encountered.

24. Perl ─ OOP in Perl

Perl

194

Creating and Using Objects

To create an instance of a class (an object) we need an object constructor. This constructor

is a method defined within the package. Most programmers choose to name this object

constructor method new, but in Perl you can use any name.

You can use any kind of Perl variable as an object in Perl. Most Perl programmers choose

either references to arrays or hashes.

Let's create our constructor for our Person class using a Perl hash reference. When creating

an object, you need to supply a constructor, which is a subroutine within a package that

returns an object reference. The object reference is created by blessing a reference to the

package's class. For example:

package Person;

sub new

{

 my $class = shift;

 my $self = {

 _firstName => shift,

 _lastName => shift,

 _ssn => shift,

 };

 # Print all the values just for clarification.

 print "First Name is $self->{_firstName}\n";

 print "Last Name is $self->{_lastName}\n";

 print "SSN is $self->{_ssn}\n";

 bless $self, $class;

 return $self;

}

Now Let us see how to create an Object.

$object = new Person("Mohammad", "Saleem", 23234345);

Perl

195

You can use simple hash in your consturctor if you don't want to assign any value to any

class variable. For example:

package Person;

sub new

{

 my $class = shift;

 my $self = {};

 bless $self, $class;

 return $self;

}

Defining Methods

Other object-oriented languages have the concept of security of data to prevent a

programmer from changing an object data directly and they provide accessor methods to

modify object data. Perl does not have private variables but we can still use the concept

of helper methods to manipulate object data.

Let us define a helper method to get person’s first name:

sub getFirstName {

 return $self->{_firstName};

}

Another helper function to set person’s first name:

sub setFirstName {

 my ($self, $firstName) = @_;

 $self->{_firstName} = $firstName if defined($firstName);

 return $self->{_firstName};

}

Now let’s have a look into complete example: Keep Person package and helper functions

into Person.pm file.

#!/usr/bin/perl

package Person;

Perl

196

sub new

{

 my $class = shift;

 my $self = {

 _firstName => shift,

 _lastName => shift,

 _ssn => shift,

 };

 # Print all the values just for clarification.

 print "First Name is $self->{_firstName}\n";

 print "Last Name is $self->{_lastName}\n";

 print "SSN is $self->{_ssn}\n";

 bless $self, $class;

 return $self;

}

sub setFirstName {

 my ($self, $firstName) = @_;

 $self->{_firstName} = $firstName if defined($firstName);

 return $self->{_firstName};

}

sub getFirstName {

 my($self) = @_;

 return $self->{_firstName};

}

1;

Now let's make use of Person object in employee.pl file as follows:

#!/usr/bin/perl

use Person;

$object = new Person("Mohammad", "Saleem", 23234345);

Perl

197

Get first name which is set using constructor.

$firstName = $object->getFirstName();

print "Before Setting First Name is : $firstName\n";

Now Set first name using helper function.

$object->setFirstName("Mohd.");

Now get first name set by helper function.

$firstName = $object->getFirstName();

print "Before Setting First Name is : $firstName\n";

When we execute above program, it produces the following result:

First Name is Mohammad

Last Name is Saleem

SSN is 23234345

Before Setting First Name is : Mohammad

Before Setting First Name is : Mohd.

Inheritance

Object-oriented programming has very good and useful concept called inheritance.

Inheritance simply means that properties and methods of a parent class will be available

to the child classes. So you don't have to write the same code again and again, you can

just inherit a parent class.

For example, we can have a class Employee, which inherits from Person. This is referred

to as an "isa" relationship because an employee is a person. Perl has a special variable,

@ISA, to help with this. @ISA governs (method) inheritance.

Following are the important points to be considered while using inheritance:

 Perl searches the class of the specified object for the given method or attribute,

i.e., variable.

 Perl searches the classes defined in the object class's @ISA array.

 If no method is found in steps 1 or 2, then Perl uses an AUTOLOAD subroutine, if

one is found in the @ISA tree.

Perl

198

 If a matching method still cannot be found, then Perl searches for the method

within the UNIVERSAL class (package) that comes as part of the standard Perl

library.

 If the method still has not found, then Perl gives up and raises a runtime exception.

So to create a new Employee class that will inherit methods and attributes from our Person

class, we simply code as follows: Keep this code into Employee.pm.

#!/usr/bin/perl

package Employee;

use Person;

use strict;

our @ISA = qw(Person); # inherits from Person

Now Employee Class has all the methods and attributes inherited from Person class and

you can use them as follows: Use main.pl file to test it:

#!/usr/bin/perl

use Employee;

$object = new Employee("Mohammad", "Saleem", 23234345);

Get first name which is set using constructor.

$firstName = $object->getFirstName();

print "Before Setting First Name is : $firstName\n";

Now Set first name using helper function.

$object->setFirstName("Mohd.");

Now get first name set by helper function.

$firstName = $object->getFirstName();

print "After Setting First Name is : $firstName\n";

Perl

199

When we execute above program, it produces the following result:

First Name is Mohammad

Last Name is Saleem

SSN is 23234345

Before Setting First Name is : Mohammad

Before Setting First Name is : Mohd.

Method Overriding

The child class Employee inherits all the methods from the parent class Person. But if you

would like to override those methods in your child class then you can do it by giving your

own implementation. You can add your additional functions in child class or you can add

or modify the functionality of an existing methods in its parent class. It can be done as

follows: modify Employee.pm file.

#!/usr/bin/perl

package Employee;

use Person;

use strict;

our @ISA = qw(Person); # inherits from Person

Override constructor

sub new {

 my ($class) = @_;

 # Call the constructor of the parent class, Person.

 my $self = $class->SUPER::new($_[1], $_[2], $_[3]);

 # Add few more attributes

 $self->{_id} = undef;

 $self->{_title} = undef;

 bless $self, $class;

 return $self;

}

Override helper function

Perl

200

sub getFirstName {

 my($self) = @_;

 # This is child class function.

 print "This is child class helper function\n";

 return $self->{_firstName};

}

Add more methods

sub setLastName{

 my ($self, $lastName) = @_;

 $self->{_lastName} = $lastName if defined($lastName);

 return $self->{_lastName};

}

sub getLastName {

 my($self) = @_;

 return $self->{_lastName};

}

1;

Now let's again try to use Employee object in our main.pl file and execute it.

#!/usr/bin/perl

use Employee;

$object = new Employee("Mohammad", "Saleem", 23234345);

Get first name which is set using constructor.

$firstName = $object->getFirstName();

print "Before Setting First Name is : $firstName\n";

Now Set first name using helper function.

Perl

201

$object->setFirstName("Mohd.");

Now get first name set by helper function.

$firstName = $object->getFirstName();

print "After Setting First Name is : $firstName\n";

When we execute above program, it produces the following result:

First Name is Mohammad

Last Name is Saleem

SSN is 23234345

This is child class helper function

Before Setting First Name is : Mohammad

This is child class helper function

After Setting First Name is : Mohd.

Default Autoloading

Perl offers a feature which you would not find in any other programming languages: a

default subroutine. Which means, if you define a function called AUTOLOAD(), then any

calls to undefined subroutines will call AUTOLOAD() function automatically. The name of

the missing subroutine is accessible within this subroutine as $AUTOLOAD.

Default autoloading functionality is very useful for error handling. Here is an example to

implement AUTOLOAD, you can implement this function in your own way.

sub AUTOLOAD

{

 my $self = shift;

 my $type = ref ($self) || croak "$self is not an object";

 my $field = $AUTOLOAD;

 $field =~ s/.*://;

 unless (exists $self->{$field})

 {

 croak "$field does not exist in object/class $type";

 }

 if (@_)

 {

Perl

202

 return $self->($name) = shift;

 }

 else

 {

 return $self->($name);

 }

}

Destructors and Garbage Collection

If you have programmed using object oriented programming before, then you will be

aware of the need to create a destructor to free the memory allocated to the object when

you have finished using it. Perl does this automatically for you as soon as the object goes

out of scope.

In case you want to implement your destructor, which should take care of closing files or

doing some extra processing then you need to define a special method called DESTROY.

This method will be called on the object just before Perl frees the memory allocated to it.

In all other respects, the DESTROY method is just like any other method, and you can

implement whatever logic you want inside this method.

A destructor method is simply a member function (subroutine) named DESTROY, which

will be called automatically in following cases:

 When the object reference's variable goes out of scope.

 When the object reference's variable is undef-ed.

 When the script terminates

 When the perl interpreter terminates

For Example, you can simply put the following method DESTROY in your class:

package MyClass;

...

sub DESTROY

{

 print "MyClass::DESTROY called\n";

}

Perl

203

Object Oriented Perl Example

Here is another nice example, which will help you to understand Object Oriented Concepts

of Perl. Put this source code into any perl file and execute it.

#!/usr/bin/perl

Following is the implementation of simple Class.

package MyClass;

sub new

{

 print "MyClass::new called\n";

 my $type = shift; # The package/type name

 my $self = {}; # Reference to empty hash

 return bless $self, $type;

}

sub DESTROY

{

 print "MyClass::DESTROY called\n";

}

sub MyMethod

{

 print "MyClass::MyMethod called!\n";

}

Following is the implemnetation of Inheritance.

package MySubClass;

@ISA = qw(MyClass);

sub new

Perl

204

{

 print "MySubClass::new called\n";

 my $type = shift; # The package/type name

 my $self = MyClass->new; # Reference to empty hash

 return bless $self, $type;

}

sub DESTROY

{

 print "MySubClass::DESTROY called\n";

}

sub MyMethod

{

 my $self = shift;

 $self->SUPER::MyMethod();

 print " MySubClass::MyMethod called!\n";

}

Here is the main program using above classes.

package main;

print "Invoke MyClass method\n";

$myObject = MyClass->new();

$myObject->MyMethod();

print "Invoke MySubClass method\n";

$myObject2 = MySubClass->new();

$myObject2->MyMethod();

print "Create a scoped object\n";

Perl

205

{

 my $myObject2 = MyClass->new();

}

Destructor is called automatically here

print "Create and undef an object\n";

$myObject3 = MyClass->new();

undef $myObject3;

print "Fall off the end of the script...\n";

Remaining destructors are called automatically here

When we execute above program, it produces the following result:

Invoke MyClass method

MyClass::new called

MyClass::MyMethod called!

Invoke MySubClass method

MySubClass::new called

MyClass::new called

MyClass::MyMethod called!

 MySubClass::MyMethod called!

Create a scoped object

MyClass::new called

MyClass::DESTROY called

Create and undef an object

MyClass::new called

MyClass::DESTROY called

Fall off the end of the script...

MyClass::DESTROY called

MySubClass::DESTROY called

Perl

206

This chapter teaches you how to access a database inside your Perl script. Starting from

Perl 5 has become very easy to write database applications using DBI module. DBI stands

for Database Independent Interface for Perl, which means DBI provides an abstraction

layer between the Perl code and the underlying database, allowing you to switch database

implementations really easily.

The DBI is a database access module for the Perl programming language. It provides a

set of methods, variables, and conventions that provide a consistent database interface,

independent of the actual database being used.

Architecture of a DBI Application

DBI is independent of any database available in backend. You can use DBI whether you

are working with Oracle, MySQL or Informix, etc. This is clear from the following architure

diagram.

Here DBI is responsible of taking all SQL commands through the API, (i.e., Application

Programming Interface) and to dispatch them to the appropriate driver for actual

execution. And finally, DBI is responsible of taking results from the driver and giving back

it to the calling scritp.

Notation and Conventions

Throughout this chapter following notations will be used and it is recommended that you

should also follow the same convention.

 $dsn Database source name

 $dbh Database handle object

 $sth Statement handle object

 $h Any of the handle types above ($dbh, $sth, or $drh)

 $rc General Return Code (boolean: true=ok, false=error)

 $rv General Return Value (typically an integer)

 @ary List of values returned from the database.

25. Perl ─ Database Access

Perl

207

 $rows Number of rows processed (if available, else -1)

 $fh A filehandle

 undef NULL values are represented by undefined values in Perl

 \%attr Reference to a hash of attribute values passed to methods

Database Connection

Assuming we are going to work with MySQL database. Before connecting to a database

make sure of the followings. You can take help of our MySQL tutorial in case you are not

aware about how to create database and tables in MySQL database.

 You have created a database with a name TESTDB.

 You have created a table with a name TEST_TABLE in TESTDB.

 This table is having fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.

 User ID "testuser" and password "test123" are set to access TESTDB.

 Perl Module DBI is installed properly on your machine.

 You have gone through MySQL tutorial to understand MySQL Basics.

Following is the example of connecting with MySQL database "TESTDB":

#!/usr/bin/perl

use DBI

use strict;

my $driver = "mysql";

my $database = "TESTDB";

my $dsn = "DBI:$driver:database=$database";

my $userid = "testuser";

my $password = "test123";

my $dbh = DBI->connect($dsn, $userid, $password) or die $DBI::errstr;

If a connection is established with the datasource then a Database Handle is returned and

saved into $dbh for further use otherwise $dbh is set to undef value and $DBI::errstr

returns an error string.

Perl

208

INSERT Operation

INSERT operation is required when you want to create some records into a table. Here we

are using table TEST_TABLE to create our records. So once our database connection is

established, we are ready to create records into TEST_TABLE. Following is the procedure

to create single record into TEST_TABLE. You can create as many as records you like using

the same concept.

Record creation takes the following steps:

 Prearing SQL statement with INSERT statement. This will be done using prepare()
API.

 Executing SQL query to select all the results from the database. This will be done
using execute() API.

 Releasing Stattement handle. This will be done using finish() API.

 If everything goes fine then commit this operation otherwise you can rollback

complete transaction. Commit and Rollback are explained in next sections.

my $sth = $dbh->prepare("INSERT INTO TEST_TABLE

 (FIRST_NAME, LAST_NAME, SEX, AGE, INCOME)

 values

 ('john', 'poul', 'M', 30, 13000)");

$sth->execute() or die $DBI::errstr;

$sth->finish();

$dbh->commit or die $DBI::errstr;

Using Bind Values

There may be a case when values to be entered is not given in advance. So you can use

bind variables which will take the required values at run time. Perl DBI modules make use

of a question mark in place of actual value and then actual values are passed through

execute() API at the run time. Following is the example:

my $first_name = "john";

my $last_name = "poul";

my $sex = "M";

my $income = 13000;

my $age = 30;

my $sth = $dbh->prepare("INSERT INTO TEST_TABLE

 (FIRST_NAME, LAST_NAME, SEX, AGE, INCOME)

 values

Perl

209

 (?,?,?,?)");

$sth->execute($first_name,$last_name,$sex, $age, $income)

 or die $DBI::errstr;

$sth->finish();

$dbh->commit or die $DBI::errstr;

READ Operation

READ Operation on any databasse means to fetch some useful information from the

database, i.e., one or more records from one or more tables. So once our database

connection is established, we are ready to make a query into this database. Following is

the procedure to query all the records having AGE greater than 20. This will take four

steps:

 Prearing SQL SELECT query based on required conditions. This will be done using

prepare() API.

 Executing SQL query to select all the results from the database. This will be done

using execute() API.

 Fetching all the results one by one and printing those results.This will be done

using fetchrow_array() API.

 Releasing Stattement handle. This will be done using finish() API.

my $sth = $dbh->prepare("SELECT FIRST_NAME, LAST_NAME

 FROM TEST_TABLE

 WHERE AGE > 20");

$sth->execute() or die $DBI::errstr;

print "Number of rows found :" + $sth->rows;

while (my @row = $sth->fetchrow_array()) {

 my ($first_name, $last_name) = @row;

 print "First Name = $first_name, Last Name = $last_name\n";

}

$sth->finish();

Using Bind Values

There may be a case when condition is not given in advance. So you can use bind variables,

which will take the required values at run time. Perl DBI modules makes use of a question

mark in place of actual value and then the actual values are passed through execute() API

at the run time. Following is the example:

Perl

210

$age = 20;

my $sth = $dbh->prepare("SELECT FIRST_NAME, LAST_NAME

 FROM TEST_TABLE

 WHERE AGE > ?");

$sth->execute($age) or die $DBI::errstr;

print "Number of rows found :" + $sth->rows;

while (my @row = $sth->fetchrow_array()) {

 my ($first_name, $last_name) = @row;

 print "First Name = $first_name, Last Name = $last_name\n";

}

$sth->finish();

UPDATE Operation

UPDATE Operation on any database means to update one or more records already

available in the database tables. Following is the procedure to update all the records having

SEX as 'M'. Here we will increase AGE of all the males by one year. This will take three

steps:

 Prearing SQL query based on required conditions. This will be done using

prepare() API.

 Executing SQL query to select all the results from the database. This will be done

using execute() API.

 Releasing Stattement handle. This will be done using finish() API.

 If everything goes fine then commit this operation otherwise you can rollback

complete transaction. See next section for commit and rollback APIs.

my $sth = $dbh->prepare("UPDATE TEST_TABLE

 SET AGE = AGE + 1

 WHERE SEX = 'M'");

$sth->execute() or die $DBI::errstr;

print "Number of rows updated :" + $sth->rows;

$sth->finish();

$dbh->commit or die $DBI::errstr;

Using Bind Values

Perl

211

There may be a case when condition is not given in advance. So you can use bind variables,

which will take required values at run time. Perl DBI modules make use of a question mark

in place of actual value and then the actual values are passed through execute() API at

the run time. Following is the example:

$sex = 'M';

my $sth = $dbh->prepare("UPDATE TEST_TABLE

 SET AGE = AGE + 1

 WHERE SEX = ?");

$sth->execute('$sex') or die $DBI::errstr;

print "Number of rows updated :" + $sth->rows;

$sth->finish();

$dbh->commit or die $DBI::errstr;

In some case you would like to set a value, which is not given in advance so you can use

binding value as follows. In this example income of all males will be set to 10000.

$sex = 'M';

$income = 10000;

my $sth = $dbh->prepare("UPDATE TEST_TABLE

 SET INCOME = ?

 WHERE SEX = ?");

$sth->execute($income, '$sex') or die $DBI::errstr;

print "Number of rows updated :" + $sth->rows;

$sth->finish();

DELETE Operation

DELETE operation is required when you want to delete some records from your database.

Following is the procedure to delete all the records from TEST_TABLE where AGE is equal

to 30. This operation will take the following steps.

 Prearing SQL query based on required conditions. This will be done using
prepare() API.

 Executing SQL query to delete required records from the database. This will be
done using execute() API.

 Releasing Stattement handle. This will be done using finish() API.

 If everything goes fine then commit this operation otherwise you can rollback

complete transaction.

Perl

212

$age = 30;

my $sth = $dbh->prepare("DELETE FROM TEST_TABLE

 WHERE AGE = ?");

$sth->execute($age) or die $DBI::errstr;

print "Number of rows deleted :" + $sth->rows;

$sth->finish();

$dbh->commit or die $DBI::errstr;

Using do Statement

If you're doing an UPDATE, INSERT, or DELETE there is no data that comes back from the

database, so there is a short cut to perform this operation. You can use do statement to

execute any of the command as follows.

$dbh->do('DELETE FROM TEST_TABLE WHERE age =30');

do returns a true value if it succeeded, and a false value if it failed. Actually, if it succeeds

it returns the number of affected rows. In the example it would return the number of rows

that were actually deleted.

COMMIT Operation

Commit is the operation which gives a green signal to database to finalize the changes

and after this operation no change can be reverted to its orignal position.

Here is a simple example to call commit API.

$dbh->commit or die $dbh->errstr;

ROLLBACK Operation

If you are not satisfied with all the changes or you encounter an error in between of any

operation , you can revert those changes to use rollback API.

Here is a simple example to call rollback API.

$dbh->rollback or die $dbh->errstr;

Begin Transaction

Many databases support transactions. This means that you can make a whole bunch of

queries which would modify the databases, but none of the changes are actually made.

Then at the end, you issue the special SQL query COMMIT, and all the changes are made

Perl

213

simultaneously. Alternatively, you can issue the query ROLLBACK, in which case all the

changes are thrown away and database remains unchanged.

Perl DBI module provided begin_work API, which enables transactions (by turning

AutoCommit off) until the next call to commit or rollback. After the next commit or rollback,

AutoCommit will automatically be turned on again.

$rc = $dbh->begin_work or die $dbh->errstr;

AutoCommit Option

If your transactions are simple, you can save yourself the trouble of having to issue a lot

of commits. When you make the connect call, you can specify an AutoCommit option

which will perform an automatic commit operation after every successful query. Here's

what it looks like:

my $dbh = DBI->connect($dsn, $userid, $password,

 {AutoCommit => 1})

 or die $DBI::errstr;

Here AutoCommit can take value 1 or 0, where 1 means AutoCommit is on and 0 means

AutoCommit is off.

Automatic Error Handling

When you make the connect call, you can specify a RaiseErrors option that handles errors

for you automatically. When an error occurs, DBI will abort your program instead of

returning a failure code. If all you want is to abort the program on an error, this can be

convenient. Here's what it looks like:

my $dbh = DBI->connect($dsn, $userid, $password,

 {RaiseError => 1})

 or die $DBI::errstr;

Here RaiseError can take value 1 or 0.

Disconnecting Database

To disconnect Database connection, use disconnect API as follows:

$rc = $dbh->disconnect or warn $dbh->errstr;

Perl

214

The transaction behaviour of the disconnect method is, sadly, undefined. Some database

systems (such as Oracle and Ingres) will automatically commit any outstanding changes,

but others (such as Informix) will rollback any outstanding changes. Applications not using

AutoCommit should explicitly call commit or rollback before calling disconnect.

Using NULL Values

Undefined values, or undef, are used to indicate NULL values. You can insert and update

columns with a NULL value as you would a non-NULL value. These examples insert and

update the column age with a NULL value:

$sth = $dbh->prepare(qq{

 INSERT INTO TEST_TABLE (FIRST_NAME, AGE) VALUES (?, ?)

 });

 $sth->execute("Joe", undef);

Here qq{} is used to return a quoted string to prepare API. However, care must be taken

when trying to use NULL values in a WHERE clause. Consider:

SELECT FIRST_NAME FROM TEST_TABLE WHERE age = ?

Binding an undef (NULL) to the placeholder will not select rows, which have a NULL age!

At least for database engines that conform to the SQL standard. Refer to the SQL manual

for your database engine or any SQL book for the reasons for this. To explicitly select

NULLs you have to say "WHERE age IS NULL".

A common issue is to have a code fragment handle a value that could be either defined or

undef (non-NULL or NULL) at runtime. A simple technique is to prepare the appropriate

statement as needed, and substitute the placeholder for non-NULL cases:

$sql_clause = defined $age? "age = ?" : "age IS NULL";

$sth = $dbh->prepare(qq{

 SELECT FIRST_NAME FROM TEST_TABLE WHERE $sql_clause

 });

$sth->execute(defined $age ? $age : ());

Some Other DBI Functions

available_drivers

@ary = DBI->available_drivers;

@ary = DBI->available_drivers($quiet);

Perl

215

Returns a list of all available drivers by searching for DBD::* modules through the

directories in @INC. By default, a warning is given if some drivers are hidden by others of

the same name in earlier directories. Passing a true value for $quiet will inhibit the

warning.

installed_drivers

%drivers = DBI->installed_drivers();

Returns a list of driver name and driver handle pairs for all drivers 'installed' (loaded) into

the current process. The driver name does not include the 'DBD::' prefix.

data_sources

@ary = DBI->data_sources($driver);

Returns a list of data sources (databases) available via the named driver. If $driver is

empty or undef, then the value of the DBI_DRIVER environment variable is used.

quote

$sql = $dbh->quote($value);

$sql = $dbh->quote($value, $data_type);

Quote a string literal for use as a literal value in an SQL statement, by escaping any special

characters (such as quotation marks) contained within the string and adding the required

type of outer quotation marks.

$sql = sprintf "SELECT foo FROM bar WHERE baz = %s",

 $dbh->quote("Don't");

For most database types, quote would return 'Don''t' (including the outer quotation

marks). It is valid for the quote() method to return an SQL expression that evaluates to

the desired string. For example:

$quoted = $dbh->quote("one\ntwo\0three")

may produce results which will be equivalent to

Perl

216

CONCAT('one', CHAR(12), 'two', CHAR(0), 'three')

Methods Common to All Handles

err

$rv = $h->err;

or

$rv = $DBI::err

or

$rv = $h->err

Returns the native database engine error code from the last driver method called. The

code is typically an integer but you should not assume that. This is equivalent to $DBI::err

or $h->err.

errstr

$str = $h->errstr;

or

$str = $DBI::errstr

or

$str = $h->errstr

Returns the native database engine error message from the last DBI method called. This

has the same lifespan issues as the "err" method described above. This is equivalent to

$DBI::errstr or $h->errstr.

rows

$rv = $h->rows;

or

$rv = $DBI::rows

This returns the number of rows effected by previous SQL statement and equivalent to

$DBI::rows.

Perl

217

trace

$h->trace($trace_settings);

DBI sports an extremely useful ability to generate runtime tracing information of what it's

doing, which can be a huge time-saver when trying to track down strange problems in

your DBI programs. You can use different values to set trace level. These values varies

from 0 to 4. The value 0 means disable trace and 4 means generate complete trace.

Interpolated Statements are Prohibited.

It is highly recommended not to use interpolated statements as follows:

while ($first_name = <>) {

 my $sth = $dbh->prepare("SELECT *

 FROM TEST_TABLE

 WHERE FIRST_NAME = '$first_name'");

 $sth->execute();

 # and so on ...

}

Thus don't use interpolated statement instead use bind value to prepare dynamic SQL

statement.

Perl

218

What is CGI ?

 A Common Gateway Interface, or CGI, is a set of standards that defines how

information is exchanged between the web server and a custom script.

 The CGI specs are currently maintained by the NCSA and NCSA defines CGI is as

follows:

 The Common Gateway Interface, or CGI, is a standard for external gateway

programs to interface with information servers such as HTTP servers.

 The current version is CGI/1.1 and CGI/1.2 is under progress.

Web Browsing

To understand the concept of CGI, let’s see what happens when we click a hyper link

available on a web page to browse a particular web page or URL.

 Your browser contacts web server using HTTP protocol and demands for the URL,

i.e., web page filename.

 Web Server will check the URL and will look for the filename requested. If web

server finds that file then it sends the file back to the browser without any further

execution otherwise sends an error message indicating that you have requested a

wrong file.

 Web browser takes response from web server and displays either the received file

content or an error message in case file is not found.

However, it is possible to set up HTTP server in such a way so that whenever a file in a

certain directory is requested that file is not sent back; instead it is executed as a program,

and whatever that program outputs as a result, that is sent back for your browser to

display. This can be done by using a special functionality available in the web server and

it is called Common Gateway Interface or CGI and such programs which are executed

by the server to produce final result, are called CGI scripts. These CGI programs can be a

PERL Script, Shell Script, C or C++ program, etc.

26. Perl ─ CGI Programming

Perl

219

CGI Architecture Diagram

Web Server Support and Configuration

Before you proceed with CGI Programming, make sure that your Web Server supports CGI

functionality and it is configured to handle CGI programs. All the CGI programs to be

executed by the web server are kept in a pre-configured directory. This directory is called

CGI directory and by convention it is named as /cgi-bin. By convention Perl CGI files will

have extention as .cgi.

First CGI Program

Here is a simple link which is linked to a CGI script called hello.cgi. This file has been kept

in/cgi-bin/ directory and it has the following content. Before running your CGI program,

make sure you have change mode of file using chmod 755 hello.cgi UNIX command.

#!/usr/bin/perl

print "Content-type:text/html\r\n\r\n";

print '<html>';

print '<head>';

Perl

220

print '<title>Hello Word - First CGI Program</title>';

print '</head>';

print '<body>';

print '<h2>Hello Word! This is my first CGI program</h2>';

print '</body>';

print '</html>';

1;

Now if you click hello.cgi link then request goes to web server who search for hello.cgi in

/cgi-bin directory, execute it and whatever result got generated, web server sends that

result back to the web browser, which is as follows:

Hello Word! This is my first CGI program

This hello.cgi script is a simple Perl script which is writing its output on STDOUT file, i.e.,

screen. There is one important and extra feature available which is first line to be printed

Content-type:text/html\r\n\r\n. This line is sent back to the browser and specifies

the content type to be displayed on the browser screen. Now you must have undertood

basic concept of CGI and you can write many complicated CGI programs using Perl. This

script can interact with any other exertnal system also to exchange information such as a

database, web services, or any other complex interfaces.

Understanding HTTP Header

The very first line Content-type:text/html\r\n\r\n is a part of HTTP header, which is

sent to the browser so that browser can understand the incoming content from server

side. All the HTTP header will be in the following form:

HTTP Field Name: Field Content

For Example:

Content-type:text/html\r\n\r\n

Perl

221

There are a few other important HTTP headers, which you will use frequently in your CGI

Programming.

Header Description

Content-type: String
A MIME string defining the format of the content being
returned. Example is Content-type:text/html

Expires: Date String

The date when the information becomes invalid. This should

be used by the browser to decide when a page needs to be

refreshed. A valid date string should be in the format 01 Jan

1998 12:00:00 GMT.

Location: URL String
The URL that should be returned instead of the URL

requested. You can use this filed to redirect a request to any
other location.

Last-modified: String The date of last modification of the file.

Content-length: String
The length, in bytes, of the data being returned. The browser

uses this value to report the estimated download time for a
file.

Set-Cookie: String Set the cookie passed through the string

CGI Environment Variables

All the CGI program will have access to the following environment variables. These

variables play an important role while writing any CGI program.

Variable Names Description

CONTENT_TYPE
The data type of the content. Used when the client is sending

attached content to the server. For example file upload, etc.

CONTENT_LENGTH
The length of the query information. It's available only for POST
requests

HTTP_COOKIE Returns the set cookies in the form of key & value pair.

Perl

222

HTTP_USER_AGENT
The User-Agent request-header field contains information

about the user agent originating the request. Its name of the
web browser.

PATH_INFO The path for the CGI script.

QUERY_STRING
The URL-encoded information that is sent with GET method
request.

REMOTE_ADDR
The IP address of the remote host making the request. This
can be useful for logging or for authentication purpose.

REMOTE_HOST
The fully qualified name of the host making the request. If this

information is not available then REMOTE_ADDR can be used
to get IR address.

REQUEST_METHOD
The method used to make the request. The most common

methods are GET and POST.

SCRIPT_FILENAME The full path to the CGI script.

SCRIPT_NAME The name of the CGI script.

SERVER_NAME The server's hostname or IP Address.

SERVER_SOFTWARE The name and version of the software the server is running.

Here is a small CGI program to list down all the CGI variables supported by your Web

server.

#!/usr/bin/perl

print "Content-type: text/html\n\n";

print "Environment\n";

foreach (sort keys %ENV)

{

 print "$_: $ENV{$_}
\n";

}

1;

Perl

223

Raise a "File Download" Dialog Box?

Sometime it is desired that you want to give option where a user will click a link and it will

pop up a "File Download" dialogue box to the user instead of displaying actual content.

This is very easy and will be achived through HTTP header.

This HTTP header will be different from the header mentioned in previous section. For

example, if you want to make a FileName file downloadable from a given link then it's

syntax will be as follows:

#!/usr/bin/perl

HTTP Header

print "Content-Type:application/octet-stream; name=\"FileName\"\r\n";

print "Content-Disposition: attachment; filename=\"FileName\"\r\n\n";

Actual File Content will go hear.

open(FILE, "<FileName");

while(read(FILE, $buffer, 100))

{

 print("$buffer");

}

GET and POST Methods

You must have come across many situations when you need to pass some information

from your browser to the web server and ultimately to your CGI Program handling your

requests. Most frequently browser uses two methods to pass this information to the web

server. These methods are GET Method and POST Method. Let's check them one by one.

Passing Information using GET Method

The GET method sends the encoded user information appended to the page URL itself. The

page and the encoded information are separated by the ? character as follows:

http://www.test.com/cgi-bin/hello.cgi?key1=value1&key2=value2

The GET method is the defualt method to pass information from a browser to the web

server and it produces a long string that appears in your browser's Location:box. You

should never use GET method if you have password or other sensitive information to pass

to the server. The GET method has size limitation: only 1024 characters can be passed in

a request string.

Perl

224

This information is passed using QUERY_STRING header and will be accessible in your

CGI Program through QUERY_STRING environment variable which you can parse and use

in your CGI program.

You can pass information by simply concatenating key and value pairs alongwith any URL

or you can use HTML <FORM> tags to pass information using GET method.

Simple URL Example : Get Method

Here is a simple URL which will pass two values to hello_get.cgi program using GET

method.

http://www.tutorialspoint.com/cgi-bin/hello_get.cgi?first_name=ZARA&last_name=ALI

Below is hello_get.cgi script to handle input given by web browser.

#!/usr/bin/perl

local ($buffer, @pairs, $pair, $name, $value, %FORM);

Read in text

$ENV{'REQUEST_METHOD'} =~ tr/a-z/A-Z/;

if ($ENV{'REQUEST_METHOD'} eq "GET")

{

 $buffer = $ENV{'QUERY_STRING'};

}

Split information into name/value pairs

@pairs = split(/&/, $buffer);

foreach $pair (@pairs)

{

 ($name, $value) = split(/=/, $pair);

 $value =~ tr/+/ /;

 $value =~ s/%(..)/pack("C", hex($1))/eg;

 $FORM{$name} = $value;

}

$first_name = $FORM{first_name};

$last_name = $FORM{last_name};

print "Content-type:text/html\r\n\r\n";

print "<html>";

http://www.tutorialspoint.com/cgi-bin/hello_get.cgi?first_name=ZARA&last_name=ALI

Perl

225

print "<head>";

print "<title>Hello - Second CGI Program</title>";

print "</head>";

print "<body>";

print "<h2>Hello $first_name $last_name - Second CGI Program</h2>";

print "</body>";

print "</html>";

1;

Simple FORM Example: GET Method

Here is a simple example, which passes two values using HTML FORM and submit button.

We are going to use the same CGI script hello_get.cgi to handle this input.

<FORM action="/cgi-bin/hello_get.cgi" method="GET">

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name">

<input type="submit" value="Submit">

</FORM>

Here is the actual output of the above form coding. Now you can enter First and Last Name

and then click submit button to see the result.

First Name:

Last Name:
Submit

Passing Information using POST Method
A more reliable method of passing information to a CGI program is the POST method. This

packages the information in exactly the same way as GET methods, but instead of sending

it as a text string after a ? in the URL, it sends it as a separate message as a part of HTTP

header. Web server provides this message to the CGI script in the form of the standard

input.

Perl

226

Below is the modified hello_post.cgi script to handle input given by the web browser.

This script will handle GET as well as POST method.

#!/usr/bin/perl

local ($buffer, @pairs, $pair, $name, $value, %FORM);

Read in text

$ENV{'REQUEST_METHOD'} =~ tr/a-z/A-Z/;

if ($ENV{'REQUEST_METHOD'} eq "POST")

{

 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

}else {

 $buffer = $ENV{'QUERY_STRING'};

}

Split information into name/value pairs

@pairs = split(/&/, $buffer);

foreach $pair (@pairs)

{

 ($name, $value) = split(/=/, $pair);

 $value =~ tr/+/ /;

 $value =~ s/%(..)/pack("C", hex($1))/eg;

 $FORM{$name} = $value;

}

$first_name = $FORM{first_name};

$last_name = $FORM{last_name};

print "Content-type:text/html\r\n\r\n";

print "<html>";

print "<head>";

print "<title>Hello - Second CGI Program</title>";

print "</head>";

print "<body>";

print "<h2>Hello $first_name $last_name - Second CGI Program</h2>";

Perl

227

print "</body>";

print "</html>";

1;

Let us take again same examle as above, which passes two values using HTML FORM and

submit button. We are going to use CGI script hello_post.cgi to handle this input.

<FORM action="/cgi-bin/hello_post.cgi" method="POST">

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name">

<input type="submit" value="Submit">

</FORM>

Here is the actual output of the above form coding, You enter First and Last Name and

then click submit button to see the result.

First Name:

Last Name:
Submit

Passing Checkbox Data to CGI Program

Checkboxes are used when more than one option is required to be selected. Here is an

example HTML code for a form with two checkboxes.

<form action="/cgi-bin/checkbox.cgi" method="POST" target="_blank">

<input type="checkbox" name="maths" value="on"> Maths

<input type="checkbox" name="physics" value="on"> Physics

<input type="submit" value="Select Subject">

</form>

Perl

228

The result of this code is the following form:

 Maths Physics
Submit

Below is checkbox.cgi script to handle input given by web browser for radio button.

#!/usr/bin/perl

local ($buffer, @pairs, $pair, $name, $value, %FORM);

Read in text

$ENV{'REQUEST_METHOD'} =~ tr/a-z/A-Z/;

if ($ENV{'REQUEST_METHOD'} eq "POST")

{

 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

}else {

 $buffer = $ENV{'QUERY_STRING'};

}
Split information into name/value pairs

@pairs = split(/&/, $buffer);

foreach $pair (@pairs)

{

 ($name, $value) = split(/=/, $pair);

 $value =~ tr/+/ /;

 $value =~ s/%(..)/pack("C", hex($1))/eg;

 $FORM{$name} = $value;

}

if($FORM{maths}){

 $maths_flag ="ON";

}else{

 $maths_flag ="OFF";

}

if($FORM{physics}){

 $physics_flag ="ON";

}else{

 $physics_flag ="OFF";

Perl

229

}

print "Content-type:text/html\r\n\r\n";

print "<html>";

print "<head>";

print "<title>Checkbox - Third CGI Program</title>";

print "</head>";

print "<body>";

print "<h2> CheckBox Maths is : $maths_flag</h2>";

print "<h2> CheckBox Physics is : $physics_flag</h2>";

print "</body>";

print "</html>";

1;

Passing Radio Button Data to CGI Program

Radio Buttons are used when only one option is required to be selected. Here is an example

HTML code for a form with two radio button:

<form action="/cgi-bin/radiobutton.cgi" method="POST" target="_blank">

<input type="radio" name="subject" value="maths"> Maths

<input type="radio" name="subject" value="physics"> Physics

<input type="submit" value="Select Subject">

</form>

The result of this code is the following form:

 Maths Physics
Submit

Below is radiobutton.cgi script to handle input given by the web browser for radio button.

#!/usr/bin/perl

local ($buffer, @pairs, $pair, $name, $value, %FORM);

Read in text

$ENV{'REQUEST_METHOD'} =~ tr/a-z/A-Z/;

Perl

230

if ($ENV{'REQUEST_METHOD'} eq "POST")

{

 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

}else {

 $buffer = $ENV{'QUERY_STRING'};

}

Split information into name/value pairs

@pairs = split(/&/, $buffer);

foreach $pair (@pairs)

{

 ($name, $value) = split(/=/, $pair);

 $value =~ tr/+/ /;

 $value =~ s/%(..)/pack("C", hex($1))/eg;

 $FORM{$name} = $value;

}

$subject = $FORM{subject};

print "Content-type:text/html\r\n\r\n";

print "<html>";

print "<head>";

print "<title>Radio - Fourth CGI Program</title>";

print "</head>";

print "<body>";

print "<h2> Selected Subject is $subject</h2>";

print "</body>";

print "</html>";

1;

Passing Text Area Data to CGI Program

A textarea element is used when multiline text has to be passed to the CGI Program. Here

is an example HTML code for a form with a TEXTAREA box:

<form action="/cgi-bin/textarea.cgi" method="POST" target="_blank">

Perl

231

<textarea name="textcontent" cols=40 rows=4>

Type your text here...

</textarea>

<input type="submit" value="Submit">

</form>

The result of this code is the following form:

Submit

Below is the textarea.cgi script to handle input given by the web browser.

#!/usr/bin/perl

local ($buffer, @pairs, $pair, $name, $value, %FORM);

Read in text

$ENV{'REQUEST_METHOD'} =~ tr/a-z/A-Z/;

if ($ENV{'REQUEST_METHOD'} eq "POST")

{

 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

}else {

 $buffer = $ENV{'QUERY_STRING'};

}

Split information into name/value pairs

@pairs = split(/&/, $buffer);

foreach $pair (@pairs)

{

 ($name, $value) = split(/=/, $pair);

 $value =~ tr/+/ /;

 $value =~ s/%(..)/pack("C", hex($1))/eg;

 $FORM{$name} = $value;

}

$text_content = $FORM{textcontent};

print "Content-type:text/html\r\n\r\n";

Perl

232

print "<html>";

print "<head>";

print "<title>Text Area - Fifth CGI Program</title>";

print "</head>";

print "<body>";

print "<h2> Entered Text Content is $text_content</h2>";

print "</body>";

print "</html>";

1;

Passing Drop Down Box Data to CGI Program

A drop down box is used when we have many options available but only one or two will

be selected. Here is example HTML code for a form with one drop down box

<form action="/cgi-bin/dropdown.cgi" method="POST" target="_blank">

<select name="dropdown">

<option value="Maths" selected>Maths</option>

<option value="Physics">Physics</option>

</select>

<input type="submit" value="Submit">

</form>

The result of this code is the following form:

Submit

Below is the dropdown.cgi script to handle input given by web browser.

#!/usr/bin/perl

local ($buffer, @pairs, $pair, $name, $value, %FORM);

Read in text

Perl

233

$ENV{'REQUEST_METHOD'} =~ tr/a-z/A-Z/;

if ($ENV{'REQUEST_METHOD'} eq "POST")

{

 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

}else {

 $buffer = $ENV{'QUERY_STRING'};

}

Split information into name/value pairs

@pairs = split(/&/, $buffer);

foreach $pair (@pairs)

{

 ($name, $value) = split(/=/, $pair);

 $value =~ tr/+/ /;

 $value =~ s/%(..)/pack("C", hex($1))/eg;

 $FORM{$name} = $value;

}

$subject = $FORM{dropdown};

print "Content-type:text/html\r\n\r\n";

print "<html>";

print "<head>";

print "<title>Dropdown Box - Sixth CGI Program</title>";

print "</head>";

print "<body>";

print "<h2> Selected Subject is $subject</h2>";

print "</body>";

print "</html>";

1;

Using Cookies in CGI

HTTP protocol is a stateless protocol. But for a commercial website it is required to

maintain session information among different pages. For example one user registration

ends after transactions which spans through many pages. But how to maintain user's

session information across all the web pages?

Perl

234

In many situations, using cookies is the most efficient method of remembering and

tracking preferences, purchases, commissions, and other information required for better

visitor experience or site statistics.

How It Works

Your server sends some data to the visitor's browser in the form of a cookie. The browser

may accept the cookie. If it does, it is stored as a plain text record on the visitor's hard

drive. Now, when the visitor arrives at another page on your site, the cookie is available

for retrieval. Once retrieved, your server knows/remembers what was stored.

Cookies are a plain text data record of 5 variable-length fields:

 Expires: The date the cookie will expire. If this is blank, the cookie will expire when

the visitor quits the browser.

 Domain: The domain name of your site.

 Path: The path to the directory or web page that set the cookie. This may be blank

if you want to retrieve the cookie from any directory or page.

 Secure: If this field contains the word "secure" then the cookie may only be

retrieved with a secure server. If this field is blank, no such restriction exists.

 Name=Value: Cookies are set and retrviewed in the form of key and value pairs.

Setting up Cookies

It is very easy to send cookies to browser. These cookies will be sent along with the HTTP

Header. Assuming you want to set UserID and Password as cookies. So it will be done as

follows:

#!/usr/bin/perl

print "Set-Cookie:UserID=XYZ;\n";

print "Set-Cookie:Password=XYZ123;\n";

print "Set-Cookie:Expires=Tuesday, 31-Dec-2007 23:12:40 GMT";\n";

print "Set-Cookie:Domain=www.tutorialspoint.com;\n";

print "Set-Cookie:Path=/perl;\n";

print "Content-type:text/html\r\n\r\n";

...........Rest of the HTML Content goes here....

Here we used Set-Cookie HTTP header to set cookies. It is optional to set cookies

attributes like Expires, Domain, and Path. It is important to note that cookies are set

before sending magic line "Content-type:text/html\r\n\r\n.

Retrieving Cookies

Perl

235

It is very easy to retrieve all the set cookies. Cookies are stored in CGI environment

variable HTTP_COOKIE and they will have following form.

key1=value1;key2=value2;key3=value3....

Here is an example of how to retrieve cookies.

#!/usr/bin/perl

$rcvd_cookies = $ENV{'HTTP_COOKIE'};

@cookies = split /;/, $rcvd_cookies;

foreach $cookie (@cookies){

 ($key, $val) = split(/=/, $cookie); # splits on the first =.

 $key =~ s/^\s+//;

 $val =~ s/^\s+//;

 $key =~ s/\s+$//;

 $val =~ s/\s+$//;

 if($key eq "UserID"){

 $user_id = $val;

 }elsif($key eq "Password"){

 $password = $val;

 }

}

print "User ID = $user_id\n";

print "Password = $password\n";

This will produce the following result, provided above cookies have been set before calling

retrieval cookies script.

User ID = XYZ

Password = XYZ123

CGI Modules and Libraries

You will find many built-in modules over the internet which provides you direct functions

to use in your CGI program. Following are the important once.

 CGI Module

 Berkeley cgi-lib.pl

Perl

236

Perl

237

What are Packages?

The package statement switches the current naming context to a specified namespace

(symbol table). Thus:

 A package is a collection of code which lives in its own namespace.

 A namespace is a named collection of unique variable names (also called a symbol

table).

 Namespaces prevent variable name collisions between packages.

 Packages enable the construction of modules which, when used, won't clobber

variables and functions outside of the modules's own namespace.

 The package stays in effect until either another package statement is invoked, or

until the end of the current block or file.

 You can explicitly refer to variables within a package using the :: package qualifier.

Following is an example having main and Foo packages in a file. Here special variable

__PACKAGE__ has been used to print the package name.

#!/usr/bin/perl

This is main package

$i = 1;

print "Package name : " , __PACKAGE__ , " $i\n";

package Foo;

This is Foo package

$i = 10;

print "Package name : " , __PACKAGE__ , " $i\n";

package main;

This is again main package

$i = 100;

print "Package name : " , __PACKAGE__ , " $i\n";

print "Package name : " , __PACKAGE__ , " $Foo::i\n";

1;

27. Perl ─ Packages and Modules

Perl

238

When above code is executed, it produces the following result:

Package name : main 1

Package name : Foo 10

Package name : main 100

Package name : main 10

BEGIN and END Blocks

You may define any number of code blocks named BEGIN and END, which act as

constructors and destructors respectively.

BEGIN { ... }

END { ... }

BEGIN { ... }

END { ... }

 Every BEGIN block is executed after the perl script is loaded and compiled but

before any other statement is executed.

 Every END block is executed just before the perl interpreter exits.

 The BEGIN and END blocks are particularly useful when creating Perl modules.

Following example shows its usage:

#!/usr/bin/perl

package Foo;

print "Begin and Block Demo\n";

BEGIN {

 print "This is BEGIN Block\n"

}

END {

 print "This is END Block\n"

}

1;

Perl

239

When above code is executed, it produces the following result:

This is BEGIN Block

Begin and Block Demo

This is END Block

What are Perl Modules?

A Perl module is a reusable package defined in a library file whose name is the same as

the name of the package with a .pm as extension.

A Perl module file called Foo.pm might contain statements like this.

#!/usr/bin/perl

package Foo;

sub bar {

 print "Hello $_[0]\n"

}

sub blat {

 print "World $_[0]\n"

}

1;

Few important points about Perl modules

 The functions require and use will load a module.

 Both use the list of search paths in @INC to find the module.

 Both functions require and use call the eval function to process the code.

 The 1; at the bottom causes eval to evaluate to TRUE (and thus not fail).

The Require Function

A module can be loaded by calling the require function as follows:

#!/usr/bin/perl

require Foo;

Perl

240

Foo::bar("a");

Foo::blat("b");

You must have noticed that the subroutine names must be fully qualified to call them. It

would be nice to enable the subroutine bar and blat to be imported into our own

namespace so we wouldn't have to use the Foo:: qualifier.

The Use Function

A module can be loaded by calling the use function.

#!/usr/bin/perl

use Foo;

bar("a");

blat("b");

Notice that we didn't have to fully qualify the package's function names. The use function

will export a list of symbols from a module given a few added statements inside a module.

require Exporter;

@ISA = qw(Exporter);

Then, provide a list of symbols (scalars, lists, hashes, subroutines, etc) by filling the list

variable named @EXPORT: For Example:

package Module;

require Exporter;

@ISA = qw(Exporter);

@EXPORT = qw(bar blat);

sub bar { print "Hello $_[0]\n" }

sub blat { print "World $_[0]\n" }

sub splat { print "Not $_[0]\n" } # Not exported!

1;

Perl

241

Create the Perl Module Tree

When you are ready to ship your Perl module, then there is standard way of creating a

Perl Module Tree. This is done using h2xs utility. This utility comes along with Perl. Here

is the syntax to use h2xs:

$h2xs -AX -n ModuleName

For example, if your module is available in Person.pm file, then simply issue the following

command:

$h2xs -AX -n Person

This will produce the following result:

Writing Person/lib/Person.pm

Writing Person/Makefile.PL

Writing Person/README

Writing Person/t/Person.t

Writing Person/Changes

Writing Person/MANIFEST

Here is the descritpion of these options:

 -A omits the Autoloader code (best used by modules that define a large number of

infrequently used subroutines).

 -X omits XS elements (eXternal Subroutine, where eXternal means external to Perl,

i.e., C).

 -n specifies the name of the module.

So above command creates the following structure inside Person directory. Actual result

is shown above.

 Changes

 Makefile.PL

 MANIFEST (contains the list of all files in the package)

 README

 t/ (test files)

 lib/ (Actual source code goes here

So finally, you tar this directory structure into a file Person.tar.gz and you can ship it. You

will have to update README file with the proper instructions. You can also provide some

test examples files in t directory.

Perl

242

Installing Perl Module

Download a Perl module in the form tar.gz file. Use the following sequence to install any

Perl Module Person.pm which has been downloaded in as Person.tar.gz file.

tar xvfz Person.tar.gz

cd Person

perl Makefile.PL

make

make install

The Perl interpreter has a list of directories in which it searches for modules (global array

@INC).

Perl

243

You can use Perl in various ways to create new processes as per your requirements. This

tutorial will list down few important and most frequently used methods of creating and

managing Perl processes.

 You can use special variables $$ or $PROCESS_ID to get current process ID.

 Every process created using any of the mentioned methods, maintains its own
virtual environment with-in %ENV variable.

 The exit() function always exits just the child process which executes this function

and the main process as a whole will not exit unless all running child-processes
have exited.

 All open handles are dup()-ed in child-processes, so that closing any handles in one

process does not affect the others.

Backstick Operator

This simplest way of executing any Unix command is by using backstick operator. You

simply put your command inside the backstick operator, which will result in execution of

the command and returns its result which can be stored as follows:

#!/usr/bin/perl

@files = 'ls –l';

foreach $file (@files){

 print $file;

}

1;

When the above code is executed, it lists down all the files and directories available in the

current directory:

drwxr-xr-x 3 root root 4096 Sep 14 06:46 9-14

drwxr-xr-x 4 root root 4096 Sep 13 07:54 android

-rw-r--r-- 1 root root 574 Sep 17 15:16 index.htm

drwxr-xr-x 3 544 401 4096 Jul 6 16:49 MIME-Lite-3.01

-rw-r--r-- 1 root root 71 Sep 17 15:16 test.pl

drwx------ 2 root root 4096 Sep 17 15:11 vAtrJdy

28. Perl ─ Process Management

Perl

244

The system() Function

You can also use system() function to execute any Unix command, whose output will go

to the output of the perl script. By default, it is the screen, i.e., STDOUT, but you can

redirect it to any file by using redirection operator >:

#!/usr/bin/perl

system("ls -l")

1;

When above code is executed, it lists down all the files and directories available in the

current directory:

drwxr-xr-x 3 root root 4096 Sep 14 06:46 9-14

drwxr-xr-x 4 root root 4096 Sep 13 07:54 android

-rw-r--r-- 1 root root 574 Sep 17 15:16 index.htm

drwxr-xr-x 3 544 401 4096 Jul 6 16:49 MIME-Lite-3.01

-rw-r--r-- 1 root root 71 Sep 17 15:16 test.pl

drwx------ 2 root root 4096 Sep 17 15:11 vAtrJdy

Be careful when your command contains shell environmental variables like $PATH or

$HOME. Try following three scenarios:

#!/usr/bin/perl

$PATH = "I am Perl Variable";

system('echo $PATH'); # Treats $PATH as shell variable

system("echo $PATH"); # Treats $PATH as Perl variable

system("echo \$PATH"); # Escaping $ works.

1;

Perl

245

When above code is executed, it produces the following result depending on what is set in

shell variable $PATH.

/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin

I am Perl Variable

/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin

The fork() Function

Perl provides a fork() function that corresponds to the Unix system call of the same name.

On most Unix-like platforms where the fork() system call is available, Perl's fork() simply

calls it. On some platforms such as Windows where the fork() system call is not available,

Perl can be built to emulate fork() at the interpreter level.

The fork() function is used to clone a current process. This call create a new process

running the same program at the same point. It returns the child pid to the parent process,

0 to the child process, or undef if the fork is unsuccessful.

You can use exec() function within a process to launch the requested executable, which

will be executed in a separate process area and exec() will wait for it to complete before

exiting with the same exit status as that process.

#!/usr/bin/perl

if(!defined($pid = fork())) {

 # fork returned undef, so unsuccessful

 die "Cannot fork a child: $!";

}elsif ($pid == 0) {

 print "Printed by child process\n";

 exec("date") || die "can't exec date: $!";

} else {

 # fork returned 0 nor undef

 # so this branch is parent

 print "Printed by parent process\n";

 $ret = waitpid($pid, 0);

 print "Completed process id: $ret\n";

}

1;

Perl

246

When above code is executed, it produces the following result:

Printed by parent process

Printed by child process

Tue Sep 17 15:41:08 CDT 2013

Completed process id: 17777

The wait() and waitpid() can be passed as a pseudo-process ID returned by fork().

These calls will properly wait for the termination of the pseudo-process and return its

status. If you fork without ever waiting on your children using waitpid() function, you will

accumulate zombies. On Unix systems, you can avoid this by setting $SIG{CHLD} to

"IGNORE" as follows:

#!/usr/bin/perl

local $SIG{CHLD} = "IGNORE";

if(!defined($pid = fork())) {

 # fork returned undef, so unsuccessful

 die "Cannot fork a child: $!";

}elsif ($pid == 0) {

 print "Printed by child process\n";

 exec("date") || die "can't exec date: $!";

} else {

 # fork returned 0 nor undef

 # so this branch is parent

 print "Printed by parent process\n";

 $ret = waitpid($pid, 0);

 print "Completed process id: $ret\n";

}

1;

Perl

247

When above code is executed, it produces the following result:

Printed by parent process

Printed by child process

Tue Sep 17 15:44:07 CDT 2013

Completed process id: -1

The kill() Function

Perl kill('KILL', (Process List)) function can be used to terminate a pseudo-process by

passing it the ID returned by fork().

Note that using kill('KILL', (Process List)) on a pseudo-process() may typically cause

memory leaks, because the thread that implements the pseudo-process does not get a

chance to clean up its resources.

You can use kill() function to send any other signal to target processes, for example

following will send SIGINT to a process IDs 104 and 102:

#!/usr/bin/perl

kill('INT', 104, 102);

1;

Perl

248

You can embed Pod (Plain Old Text) documentation in your Perl modules and scripts.

Following is the rule to use embedded documentation in your Perl Code:

Start your documentation with an empty line, a =head1 command at the beginning, and

end it with a =cut command and an empty line.

Perl will ignore the Pod text you entered in the code. Following is a simple example of

using embedded documentation inside your Perl code:

#!/usr/bin/perl

print "Hello, World\n";

=head1 Hello, World Example

This example demonstrate very basic syntax of Perl.

=cut

print "Hello, Universe\n";

When above code is executed, it produces the following result:

Hello, World

Hello, Universe

If you're going to put your Pod at the end of the file, and you're using an __END__ or

__DATA__ cut mark, make sure to put an empty line there before the first Pod command

as follows, otherwise without an empty line before the =head1, many translators wouldn't

have recognized the =head1 as starting a Pod block.

#!/usr/bin/perl

print "Hello, World\n";

while(<DATA>){

 print $_;

}

__END__

29. Perl ─ Embedded Documentation

Perl

249

=head1 Hello, World Example

This example demonstrate very basic syntax of Perl.

print "Hello, Universe\n";

When above code is executed, it produces the following result:

Hello, World

=head1 Hello, World Example

This example demonstrate very basic syntax of Perl.

print "Hello, Universe\n";

Let's take one more example for the same code without reading DATA part:

#!/usr/bin/perl

print "Hello, World\n";

__END__

=head1 Hello, World Example

This example demonstrate very basic syntax of Perl.

print "Hello, Universe\n";

When above code is executed, it produces the following result:

Hello, World

What is POD?

Pod is a simple-to-use markup language used for writing documentation for Perl, Perl

programs, and Perl modules. There are various translators available for converting Pod to

various formats like plain text, HTML, man pages, and more. Pod markup consists of three

basic kinds of paragraphs:

 Ordinary Paragraph: You can use formatting codes in ordinary paragraphs, for

bold, italic, code-style , hyperlinks, and more.

Perl

250

 Verbatim Paragraph: Verbatim paragraphs are usually used for presenting a

codeblock or other text which does not require any special parsing or formatting,

and which shouldn't be wrapped.

 Command Paragraph: A command paragraph is used for special treatment of

whole chunks of text, usually as headings or parts of lists. All command paragraphs

start with =, followed by an identifier, followed by arbitrary text that the command

can use however it pleases. Currently recognized commands are:

=pod

=head1 Heading Text

=head2 Heading Text

=head3 Heading Text

=head4 Heading Text

=over indentlevel

=item stuff

=back

=begin format

=end format

=for format text...

=encoding type

=cut

POD Examples

Consider the following POD:

=head1 SYNOPSIS

Copyright 2005 [TUTORIALSOPOINT].

=cut

You can use pod2html utility available on Linux to convert above POD into HTML, so it

will produce following result:

Copyright 2005 [TUTORIALSOPOINT].

Perl

251

Next, consider the following example:

=head2 An Example List

=over 4

=item * This is a bulleted list.

=item * Here's another item.

=back

=begin html

<p>

Here's some embedded HTML. In this block I can

include images, apply

styles, or do anything else I can do with

HTML. pod parsers that aren't outputting HTML will

completely ignore it.

</p>

=end html

When you convert the above POD into HTML using pod2html, it will produce the following

result:

An Example List

 This is a bulleted list.

 Here's another item.

Here's some embedded HTML. In this block I can include images, apply
styles, or do anything else I can do with HTML. pod parsers that aren't
outputting HTML will completely ignore it.

