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1 Introduction to Rocketry
Before getting into the details of orbital mechanics, we must understand the
fundamentals of rockets and the principles behind spaceflight.

1.1 Rocket Equation
The most important concept to grasp first is the rocket equation:

∆v = ve ln
m0

m1

Derived by the Russian physicist Konstantin Tsiolkovsky in 1903, the rocket
equation states that the change in velocity a spacecraft can produce is equal
to: the product of it’s exhaust velocity, and linear logarithm of the ratio of it’s
total mass to dry mass. Here ’exhaust velocity’ means the average velocity of
the rocket exhaust, and the ratio can be simplified as the ’mass ratio’.

This equation governs a critical quantity in spaceflight; delta-v, the change
in velocity that a spacecraft can produce.

1.2 Exhaust Velocity
The exhaust velocity can be defined as the velocity at which propellant gases
escape the rocket engine of the spacecraft. In the rocket equation, effective
exhaust velocity is taken. This means the practical velocity of propellant
particles, taking into account factors like atmospheric retardation. Exhaust
velocity in it’s simplest form is represented as:

ve = g0Isp

Where g0 is the gravitation on the surface of the Earth (m/s), and Isp is
the specific impulse of the engine measured in seconds. This gives the exhaust
velocity the unit of m/s.

1.3 Specific Impulse
The specific impulse is simply a measure of the efficiency of a rocket engine.
Phyically, it is the impulse delivered per unit of propellant consumed, and has
the same dimensions as thrust produced per propellant flow rate. If mass is
used as the unit of propellant, then Isp has the unit m/s. However if propellant
is expressed as weight in Newtons, the Isp has the unit seconds. This latter
definition of specific impulese is used, because seconds are common to both
measurement systems, imperial and metric.
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Put together, the thrust produced by a rocket is:

Fthrust = Isp · ṁ

The product of the specific impulse and the mass of the craft. We can con-
clude that a higher specific impulse generates more thrust per unit of propellant,
and hence a more efficient rocket.

1.4 Thrust-to-Weight Ratio
The thrust-to-weight ratio (TWR) of a rocket is defined as the dimensionless
ratio of the thrust of the craft to it’s weight on the surface of the Earth. Math-
ematically:

TWR =
T

W
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1.5 Oberth Effect
When a spacecraft travels close to a large body, at a very high speed due to
the body’s gravitational well, an impulse by the craft’s engine produces more
thrust than in normal situations. This is attributed to the Oberth effect. Simply
described, the faster a spacecraft travels, the more kinetic energy it has in it’s
propellant. Hence the propellant uses this additional energy in addition to it’s
own chemical energy, to propel a rocket further and faster. Hence, engine burns
are far more efficient closer to a planetary body, and the Oberth effect can be
exploited to gain more ∆v from a burn.

Example of the Oberth Effect. The Beagle spacecraft performed it’s burn at it’s
closest, fastest point relative to Mars.
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2 Orbital Mechanics

2.1 Orbital Velocity
An ’orbit’ is the path of an object in space around another body. In order for
a spacecraft to be ’orbital’ or ’in orbit’, it must travel fast enough laterally for
the surface of the Earth to literally fall away from underneath it.

Depending on the velocity of the craft, it may be on a parabolic/hyperbolic
escape trajectory, or a stable elliptical orbit around a planet. To determine the
velocity required at a certain altitude to maintain a circular orbit, we use the
equation:

v =

√
GM

r

where G is the gravitational constant, M is the mass of the planet, and r is the
radius from the centre of the planet. This equation is of course an approximation
that ignores the spacecrafts own mass, as it is negligible compared to that of
the planet.

Now in order for a spacecraft to escape the planet’s gravity, and hence no
longer be on a closed elliptical orbit, the following inequality must be satisfied:

v ≥
√

2GM

r

The majority of orbits in the real world are ellipses, not perfect circles.
Hence the lowest point in an orbit is called the ’periapsis’, and the highest point
is called the ’apoapsis’. In a perfectly circular orbit, the periapse and apoapse
are the same.

In order to better understand these equations, let’s see their application in
the real world. The International Space Station orbits at a mean altitude of
approximately 400Km above the surface of the Earth. The equatorial radius of
the Earth is 6371Km, hence the radius from the centre of the Earth to the ISS
is 6, 771, 000m. The mass of the Earth is 6.972 × 1024kg and the gravitational
constant is approximately 6.67384 × 10−11 . Hence using the circular orbit
equation, we get:

v =

√
6.67384 × 10−11 × 6.972 × 1024

6771000
= 7672m/s

The true velocity of the ISS is reported as 7677m/s, within ±10m/s of our
calculation.

To calculate the escape velocity of the Earth at 400km above the surface,
we use the second equation and get:

v =

√
2 × 6.67384 × 10−11 × 6.972 × 1024

6771000
= 10850m/s

We can thus use simple mathematics to calculate the velocity of a spacecraft
in different orbits.
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2.2 Orbital Characteristics
In order to accurately describe an orbital trajectory, far more information is
required in addition to velocity. The parameters required to identify a unique
orbit are known as the ’orbitale elements’, and the six elements are:

1. Eccentricity - Elongation of the orbit compared to a circle. Has the value
1 for a perfectly circular orbit.

2. Semi-major Axis - In circular orbits, the distance between the centre of
the spacecraft and the centre of the body it orbits. In eccentric orbits,
the sum of the apoapsis and periapsis (relative to the centre of the Earth)
divided by two; simply, the average radius of the orbit relative to the
centre of the planet.

3. Inclination - Vertical tilt of the orbit, relative to the reference plane. The
point of intersection between the reference plane and the orbital plane is
called the Ascending Node (AN). The inclination is numerically the angle
between the two planes at the AN.

4. Longtitude of the Ascending Node - The horizontal location of the AN
with respect to the reference plane.

5. Argument of Periapsis - Angle between AN and periapsis, defining the
orientation of the ellipse.

6. Mean anomoly at epoch - The position of the spacecraft on the orbital
ellipse at a given time.
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3 Orbital Manouvers

3.1 Hohmann Transfer
A Hohmann transfer is the simplest propulsive manouver, used to transfer be-
tween two different circular orbits around the same body. At it’s most ba-
sic, it involves two impulsive thrusts. The first burn raises/lowers the apoap-
sis/periapsis of the orbit to the desired altitude. The second burn occurs at
the desired altitude, and circularises the orbit by bringing the other periap-
sis/apoapsis to the desired alititude. Hence, a circular orbit at a different alti-
tude is obtained.

3.2 Bi-elliptic Transfer
A bi-elliptic transfer serves the same purpose as a Hohmann transfer, but can
in some cases reduce the fuel requirement to change orbits. An initial burn is
applied to raise the apoapsis of the orbit and create a highly elliptical trajectory.
At the tip of the ellipse, another burn is performed to raise/lower the periapsis
to the desired altitude. Finally, at the desired altitude, a third and final burn
circularises the orbit. Whilst these transfers take longer, they are more efficient
for large changes in the orbit.

3.3 Gravity Assist
A gravity assist is the simplest form of manouver that spacecraft perform. The
principle behind a gravity assist is the usage of the angular momentum and
gravity of a planet to change the velocity of a spacecraft, without using pro-
pellant or thrust. This may at first seem like a violation of conservation of
energy. However momentum is in fact conserved because whatever momentum
the spacecraft gains, the planet loses. The effect on the planet’s velocity is,
however, negligible to the point of non-existence.
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3.3.1 Acceleration

A gravity assist to increase the velocity of a spacecraft uses the gravity of a
planet to pull the craft towards itself. The spacecraft hence travels on a hy-
perbolic escape trajectory relative to the planet. However, the planet iteself is
moving at a very high speed around the Sun, to the order of tens of kilometres
per second. Thus, the gravity of the planet ’pulls’ the spacecraft towards it with
a force proportional to the orbital velocity of the planet around the Sun. The
craft is hence ’sling-shotted’ on a hyperbolic trajectory away from the planet,
with a net velocity greater than before the assist.

3.3.2 Deceleration

A decelerating gravity assist is essentially an inverted accelerating gravity as-
sist. Here, the angular momentum of the planet is subtracted from that of the
spacecraft, and the net velocity is less than before the assist.

8



A practical example of accelerating gravity assists is the Cassini Saturn
Orbiter. Cassini used several flybys around Venus, Earth and Jupiter to increase
it’s speed and reach Saturn far quicker than by a normal trajectory:
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Decelerating gravity assists were heavily used by the MESSENGER probe,
to continually reduce it’s velocity relative to the Sun and lower it to the orbit
of Mercury:
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