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Lecture 4: Numerical differentiation

Finite difference formulas

Suppose you are given a data set of N non-equispaced points at x = xi with values f(xi)
as shown in Figure 1. Because the data are not equispaced in general, then ∆xi 6= ∆xi+1.

Figure 1: Data set of N points at x = xi with values f(xi)

Let’s say we wanted to compute the derivative f ′(x) at x = xi. For simplicity of notation,
we will refer to the value of f(x) at x = xi as fi. Because, in general, we do not know the
form of f(x) when dealing with disrete points, then we need to determine the derivatives of
f(x) at x = xi in terms of the known quantities fi. Formulas for the derivatives of a data
set can be derived using Taylor series.

The value of f(x) at x = xi+1 can be written in terms of the Taylor series expansion of
f about x = xi as

fi+1 = fi + ∆xi+1f
′
i +

∆x2
i+1

2
f ′′i +

∆x3
i+1

6
f ′′′i +O

(
∆x4

i+1

)
. (1)

This can be rearranged to give us the value of the first derivative at x = xi as

f ′i =
fi+1 − fi

∆xi+1

− ∆xi+1

2
f ′′i −

∆x2
i+1

6
f ′′′i +O

(
∆x3

i+1

)
. (2)

If we assume that the value of f ′′i does not change significantly with changes in ∆xi+1, then
this is the first order derivative of f(x) at x = xi, which is written as

f ′i =
fi+1 − fi

∆xi+1

+O (∆xi+1) . (3)
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This is known as a forward difference. The first order backward difference can be obtained
by writing the Taylor series expansion about fi to obtain fi−1 as

fi−1 = fi −∆xif
′
i +

∆x2
i

2
f ′′i −

∆x3
i

6
f ′′′i +O

(
∆x4

i

)
, (4)

which can be rearranged to yield the backward difference of f(x) at xi as

f ′i =
fi − fi−1

∆xi
+O (∆xi) . (5)

The first order forward and backward difference formulas are first order accurate approxima-
tions to the first derivative. This means that decreasing the grid spacing by a factor of two
will only increase the accuracy of the approximation by a factor of two. We can increase the
accuracy of the finite difference formula for the first derivative by using both of the Taylor
series expansions about fi,

fi+1 = fi + ∆xi+1f
′
i +

∆x2
i+1

2
f ′′i +

∆x3
i+1

6
f ′′′i +O

(
∆x4

i+1

)
(6)

fi−1 = fi −∆xif
′
i +

∆x2
i

2
f ′′i −

∆x3
i

6
f ′′′i +O

(
∆x4

i

)
. (7)

Subtracting equation (7) from (6) yields

fi+1 − fi−1 = (∆xi+1 + ∆xi) f
′
i +

∆x2
i+1 −∆x2

i

2
f ′′i +

∆x3
i+1 + ∆x3

i

6
f ′′′i

+ O
(
∆x4

i+1

)
+O

(
∆x4

i

)
fi+1 − fi−1

∆xi+1 + ∆xi
= f ′i +

∆x2
i+1 −∆x2

i

2 (∆xi+1 + ∆xi)
f ′′i +

∆x3
i+1 + ∆x3

i

6 (∆xi+1 + ∆xi)
f ′′′i

+ O
(

∆x4
i+1

∆xi+1 + ∆xi

)
+O

(
∆x4

i

∆xi+1 + ∆xi

)
, (8)

which can be rearranged to yield

f ′i =
fi+1 − fi−1

∆xi+1 + ∆xi
−

∆x2
i+1 −∆x2

i

2 (∆xi+1 + ∆xi)
f ′′i +O

(
∆x3

i+1 + ∆x3
i

6 (∆xi+1 + ∆xi)

)
(9)

In most cases if the spacing of the grid points is not too eratic, such that ∆xi+1 ≈ ∆xi,
equation (9) can be written as the central difference formula for the first derivative as

f ′i =
fi+1 − fi−1

2∆xi
+O

(
∆x2

i

)
. (10)

What is meant by the “order of accuracy”?

Suppose we are given a data set of N = 16 points on an equispaced grid as shown in Figure
2, and we are asked to compute the first derivative f ′i at i = 2, . . . , N − 1 using the forward,
backward, and central difference formulas (3), (5), and (10). If we refer to the approximation
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Figure 2: A data set consisting of N = 16 points.

of the first derivative as δf
δx

, then these three formulas for the first derivative on an equispaced
grid with ∆xi = ∆x can be approximated as

Forward difference
δf

δx
=

fi+1 − fi
∆x

, (11)

Backward difference
δf

δx
=

fi − fi−1

∆x
, (12)

Central difference
δf

δx
=

fi+1 − fi−1

2∆x
. (13)

These three approximations to the first derivative of the data shown in Figure 2 are shown
in Figure 3. Now let’s say we are given five more data sets, each of which defines the same
function f(xi), but each one has twice as many grid points as the previous one to define the
function, as shown in Figure 4. The most accurate approximations to the first derivatives
will be those that use the most refined data with N = 512 data points. In order to quantify
how much more accurate the solution gets as we add more data points, we can compare the
derivative computed with each data set to the most resolved data set. To compare them, we
can plot the difference in the derivative at x = 0.5 and call it the error, such that

Error =

∣∣∣∣∣ δfδx
)
n

− δf

δx

)
n=6

∣∣∣∣∣ (14)

where n = 1, . . . , 5 is the data set and n = 6 corresponds to the most refined data set. The
result is shown in Figure 5 on a log-log plot. For all three cases we can see that the error
closely follows the form

Error = k∆xn , (15)

where k = 1.08 and n = 1 for the forward and backward difference approximations, and
k = 8.64 and n = 2 for the central difference approximation. When we plot the error of a
numerical method and it follows the form of equation (15), then we say that the method is
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Figure 3: Approximation to the first derivative of the data shown in Figure 2 using three
different approximations.

nth order and that the error can be written as O (∆xn). Because n = 1 for the forward and
backward approximations, they are said to be first order methods, while since n = 2 for
the central approximation, it is a second order method.

Taylor tables

The first order finite difference formulas in the previous sections were written in the form

df

dx
=
δf

δx
+ Error , (16)

where δf
δx

is the approximate form of the first derivative df
dx

with some error that determines
the order of accuracy of the approximation. In this section we define a general method of
estimating derivatives of arbitrary order of accuracy. We will assume equispaced points, but
the analysis can be extended to arbitrarily spaced points. The nth derivative of a discrete
function fi at points x = xi can be written in the form

dnf

dxn

∣∣∣∣∣
x=xi

=
δnf

δxn
+O (∆xm) , (17)

where
δnf

δxn
=

j=+Nr∑
j=−Nl

aj+Nlfi+j , (18)

and m is the order of accuracy of the approximation, aj+Nl are the coefficients of the ap-
proximation, and Nl and Nr define the width of the approximation stencil. For example, in
the central difference approximation to the first derivative,

f ′i = − 1

2∆x
fi−1 + 0fi +

1

2∆x
fi+1 +O

(
∆x2

)
, (19)

= a0fi−1 + a1fi + a2fi+1 +O
(
∆x2

)
. (20)
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Figure 4: The original data set and 5 more, each with twice as many grid points as the
previous one.

In this case, Nl = 1, Nr = 1, a0 = −1/2∆x, a1 = 0, and a2 = +1/2∆x. In equation (18) the
discrete values fi+j can be written in terms of the Taylor series expansion about x = xi as

fi+j = fi + j∆xf ′i +
(j∆x)2

2
f ′′i + ... (21)

= fi +
∞∑
k=1

(j∆x)k

k!
f

(k)
i . (22)

Using this Taylor series approximation with m+ 2 terms for the fi+j in equation (18), where
m is the order of accuracy of the finite difference formula, we can substitute these values into
equation (17) and solve for the coefficients aj+Nl to derive the appropriate finite difference
formula.

As an example, suppose we would like to determine a second order accurate approxima-
tion to the second derivative of a function f(x) at x = xi using the data at xi−1, xi, and
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Figure 5: Depiction of the error in computing the first derivative for the forward, backward,
and central difference formulas

xi+1. Writing this in the form of equation (17) yields

d2f

dx2
=
δf

δx
+O

(
∆x2

)
, (23)

where, from equation (18),
δf

δx
= a0fi−1 + a1fi + a2fi+1 . (24)

The Taylor series approximations to fi−1 and fi+1 to O (∆x4) are given by

fi−1 ≈ fi −∆xf ′i +
∆x2

2
f ′′i −

∆x3

6
f ′′′i +

∆x4

24
f ivi , (25)

fi+1 ≈ fi + ∆xf ′i +
∆x2

2
f ′′i +

∆x3

6
f ′′′i +

∆x4

24
f ivi , (26)

Rather than substitute these into equation (24), we create a Taylor table, which requires
much less writing, as follows. If we add the columns in the table then we have

a0fi−1 + a1fi + a2fi+1 = (a0 + a1 + a2)fi + (−a0 + a2)∆xf ′i + (a0 + a2)
∆x2

2
f ′′i

+ (−a0 + a2)
∆x3

6
f ′′′i + (a0 + a2)

∆x4

24
f ivi . (27)
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Term in (24) fi ∆xf ′i ∆x2f ′′i ∆x3f ′′′i ∆x4f ivi
a0fi−1 a0 −a0 a0/2 −a0/6 a0/24
a1fi a1 0 0 0 0
a2fi+1 a2 a2 a2/2 a2/6 a2/24

0 0 1 ? ?

Because we would like the terms containing fi and f ′i on the right hand side to vanish, then
we must have a0 + a1 + a2 = 0 and −a0 + a2 = 0. Furthermore, since we want to retain the
second derivative on the right hand side, then we must have a0 + a2 = 1. This yields three
equations in three unknowns for a0, a1, and a2, namely,

a0 + a1 + a2 = 0
−a0 + a2 = 0
a0/2 + a2/2 = 1

, (28)

in which the solution is given by a0 = a2 = 1 and a1 = −2. Substituting these values into
equation (27) results in

fi−1 − 2fi + fi+1 = ∆x2f ′′i +
∆x4

12
f ivi , (29)

which, after rearranging, yields the second order accurate finite difference formula for the
second derivative as

f ′′i =
fi−1 − 2fi + fi+1

∆x2
+O

(
∆x2

)
, (30)

where the error term is given by

Error = −∆x2

12
f ivi . (31)

As another example, let us compute the second order accurate one-sided difference for-
mula for the first derivative of f(x) at x = xi using xi, xi−1, and xi−2. The Taylor table
for this example is given below. By requring that a0 + a1 + a2 = 0, −2a0 − a1 = 1, and

Term fi ∆xf ′i ∆x2f ′′i ∆x3f ′′′i ∆x4f ivi
a0fi−2 a0 −2a0 2a0 −4a0/3 2a0/3
a1fi−1 a1 −a1 +a1/2 −a1/6 a1/24
a2fi a2 0 0 0 0

0 1 0 ? ?

2a0 + a1/2 = 0, we have a0 = 1/2, a1 = −2, and a2 = 3/2. Therefore, the second order
accurate one-sided finite difference formula for the first derivative is given by

df

dx
=
fi−2 − 4fi−1 + 3fi

2∆x
+O

(
∆x2

)
, (32)

where the error term is given by

Error =
∆x2

3
f ′′′i . (33)
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Higher order finite difference formulas can be derived using the Taylor table method described
in this section. These are shown in Applied numerical analysis, sixth edition, by C. F. Gerald
& P. O. Wheatley, Addison-Welsley, 1999., pp. 373-374.


