
Threshold Cryptography Based Data Security in
Cloud Computing

Abstract-Cloud computing is very popular in organizations and
institutions because it provides storage and computing services at
very low cost. However, it also introduces new challenges for
ensuring the confidentiality, integrity and access control of the
data. Some approaches are given to ensure these security
requirements but they are lacked in some ways such as violation
of data confidentiality due to collusion attack and heavy
computation (due to large no keys). To address these issues we
propose a scheme that uses threshold cryptography in which
data owner divides users in groups and gives single key to each
user group for decryption of data and, each user in the group
shares parts of the key. In this paper, we use capability list to
control the access. This scheme not only provides the strong data
confidentiality but also reduces the number of keys.

 Keywords: Outsourced data, malicious outsiders, access
control, authentication, capability list, threshold
cryptography.

I. INTRODUCTION

Cloud computing is a new and fast growing technology in
field of computation and storage of data. It provides storage
and computing as a service at very attractive cost. It provides
services according to three fundamental service models:
infrastructure as a service (IaaS), platform as a service (PaaS)
and software as a service (SaaS). Storage as a service is
basically a platform as a service. The five characteristics of
cloud computing are: on-demand service, self service, location
independent, rapid elasticity and measured scale service.
These characteristics make cloud significant. Industries and
institutions are exploiting these characteristics of cloud
computing and increasing their profit and revenue [1]. That is
why, industries are shifting their businesses towards cloud
computing.

However, data security is a major obstacle in the way of
cloud computing. People are still fearing to exploit the cloud
computing. Some people believe that cloud is unsafe place
and once you send your data to the cloud, you lose complete
control over it [8][9]. They are more or less right. Data of data
owners are processed and stored at external servers. So,
confidentiality, integrity and access of data become more
vulnerable. Since, external servers are operated by
commercial service providers, data owner can't trust on them
as they can use data for their benefits and can spoil businesses
of data owner [4]. Data owner even can't trust on users as they

may be malicious. Data confidentiality may violet through
collusion attack of malicious users and service providers.

Many schemes are given to ensure these security
requirements but they are suffering from collusion attack of
malicious users and cloud service provider and heavy
computation (due to large no keys). To address these issues
we propose a scheme. In this scheme, there are basically three
entities: Data Owner (DO), Cloud Service Provider (CSP) and
Users. Users are divided in groups on some basis such as
location, project and department and, corresponding to each
group, there is a single key for encryption and decryption of
data. Each user in the group shares parts of the key. Data can
be decrypted when at least threshold number of users will
present. This scheme not only provides data confidentiality by
all means but also reduces the number of keys. To achieve
fine-grained data access control, the approach has used
capability list [6]. It is basically row-based decomposition of
access matrix. In capability list authorized data and operations
for a user are specified. It is better suit than Access Control
List (ACL) [5][10][16] because ACL specifies users and their
permitted operation for each data and file. It is practically
inefficient that two users require same data and have same
operations on it. In this paper, the approach has used the
modified Diffie-Hellman algorithm to generate one time
shared session-key between CSP and user to protect the data
from outsiders. To ensure data integrity the approach has used
MD5 [4].

The remaining portion of this paper is organized as follows.
In Section II, we review the related work. In Section III, we
describe the model and assumption. In Section IV, we present
our proposed scheme. Section V shows Hierarchy
management of access rights. In Section VI, we analyse our
approach in terms of security and performance. Finally, we
conclude the paper in section VII.

II. RELATED WORK

Data confidentiality and access control are two basic
security requirements for outsourced data in cloud computing.
Sometime, when we emphasize more on security of data, we
forget about performance of systems (DO, CSP, users). For
example, to secure data, we sometime use too many keys. We
know that keys are confidential, so there is need to secure and
maintain these keys which are additional work. These
additional works affect the performance of the system. So, it is

Sushil Kr Saroj
CSE Department

GCET, Greater Noida

Sanjeev Kr Chauhan
CSE Department

MNNIT, Allahabad

Aravendra Kr Sharma
CSE Department

Galgotias Univ., Greater Noida.

Sundaram Vats
CSE Department

GCET, Greater Noida.

2015 IEEE International Conference on Computational Intelligence & Communication Technology

978-1-4799-6023-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CICT.2015.149

202

desirable to reduce no of keys. So, there is need a scheme that
provides not only data security but also maintain the
performance. Many schemes are suggested to meet these
requirements.

Symbol Description
DO
CSP
Pu
Pr
KT
Ek
Dk
PuCSP
PrCSP
PuDO
PrDO
PuUSR
PrUSR
Fi
Di
d
UID
FID
AR
CPList
M
PKS
KTi
OR
MD5
XA/B
YA/B
KS
q
p
MOD

Data Owner
Cloud Service Provider
Public Key
Private Key
Symmetric Key
Encryption
Decryption
Public Key of CSP
Private Key of CSP
Public Key of DO
Private Key of DO
Public Key of User
Private Key of User
ith File
ith File Message Digest
Number of Shares
User Identity
File Identity
Access Right
Capability List
Message
Partial Key Set
ith User's partial symmetric key
OR operation of Gate
Hash Algorithm
Chosen Secret Key
Calculated Public Key
Secret Session Key
Prime number
Primitive root
Modulus Function

The scheme proposed in [13] is the group-key scheme. In
group-key scheme, there is a single key corresponding to each
group of users for decryption process and all users of the
group know that key. Here, number of keys is reduced but
there is a problem of collusion attack of CSP and a user
because a single malicious user can leak whole data of the
group to CSP. We know that CSP is not trusted party. It can
use data owner’s data for its commercial benefits.

The scheme proposed in [4] tried to achieve data
confidentiality and access control. In this scheme, data are
encrypted by symmetric keys and symmetric keys are known
only to data owner and corresponding data users. The
encrypted data are stored at CSP. CSP can't see data stored at
it as data are encrypted. Data are further encrypted by one
time secrete session-key shared between CSP and user by the
modified Diffie-Hellman protocol to protect data from
outsiders during the transmission between CSP and user. This
scheme no doubt provides whole data security but there is

associated a key corresponding to each user and users may be
large in number in some applications. So, number of keys may
increase. Hence, increases the maintenance and security
concerns of keys

 Communication model of the proposed scheme somehow
matches with it [4] but proposed scheme is more secure and
reduces number of keys. The proposed scheme is useful for
those applications where works are done in team and group
such as in software industries. You may think proposed
scheme has limited applications but it is not as such. It is
applicable all where you can group users on some basis and
can apply threshold cryptography technique. Such as software
and hardware industries, institutes, banks and medicals fields.
There is provision of hierarchy of access in this scheme which
makes this scheme more useful and realistic. For Example, an
university has vice-chancellor, hods, teachers, clerklier-staff
and students. Each one has different level of access right.

III. MODEL AND ASSUMPTIONS

We suppose that our model is composed of three entities: a
CSP, a DO and many users associated with DO. Initially, all
users are registered at DO. During registration users send their
credentials to DO. We assume that user’s credentials are sent
securely to DO. DO then divides users in groups and provides
encryption keys, tokens, algorithm (MD5) and other necessary
things for secure communication to user groups in response of
registration. A user can get data from CSP in a confidential
manner after successful authentication of himself at CSP. We
assume that CSP has a large capacity and computational
power. We also assume that no one can breach the security of
CSP. Further we assume that the algorithm which is used to
generate the secrete keys for encryption, is secure at DO. DO

 Fig. 1. Communication Model in the Proposed Scheme
has storage capacity to store some files and data and, he can
execute programs also at CSP to manage his files and data.
We are using modified Diffie-Hellman and public key

203

cryptography to secure communication between CSP and user.
Modified Diffie-Hellman protocol is used to create one time
session-key between CSP and user. Fig.1 illustrates the secure
communication between entities in the proposed scheme.

IV. PROPOSED SCHEME

In this section, we present a complete model for secure
communication between different entities and secure access to
data. There are four algorithms in the proposed scheme.
Algorithm 1 describes secure communication of data between
DO and CSP moreover this algorithm insures data con-
fidentiality and, authentication of DO and CSP. Algorithm 2
describes procedures which DO and CSP apply after a new
file creation in respect. Algorithm 3 describes about secure
communication of data between CSP and user. In this
algorithm user’s authorization is also checked. Algorithm 4
describes the threshold cryptography technique for decryption
of a user’s file. Algorithm 4 is applied at user side where
number of keys is reduced (one key corresponding to one
group) and no threat of collusion attack as in group-key
scheme.

To understand proposed scheme better we take an example
of real life scenario, DO may be a software industry who
stores its data on to the CSP and the users may be its
employees who view their data from the CSP. DO divides
users in groups on some basis such as project basis and
encrypts the data of each group with a single symmetric key
(KT) and, it gives parts of the symmetric key (KT) to each user
of the group. DO computes digest of data by using 128-bit
MD5 hash algorithm and then encapsulates the digest and data
using the symmetric key (KT). This in turn, provides strong
data confidentiality and integrity. DO then fills the entries
such as UID, FID and AR in Capability List corresponding to
each new user. DO then encrypts Capability List and
encapsulated things with its private key after that public key
of CSP and, then sends all things to CSP. These encryptions
ensure confidentiality and authentication between DO and
CSP.

Algorithm 1: Procedure to be followed by CSP after
getting encrypted File and Capability List from DO

Step 1: CSP stores Encrypted Data and Capability List
which are received from DO
Array ← Rece(EkPuCSP(EkPrDO ((Fi)) || (CPList))

(Fi) ← DkPrCSP(DkPuDO((Array))�

Step 2: CSP updates the Encrypted File List
Encptd. File List ← Encptd. File List (FID, Base Adds.)

Step 3: CSP updates Capability List
CPList ← CPList(UID, FID, AR)

 Algorithm 1 describes the process what CSP do after
getting encrypted data and Capability List from the DO. CSP
decrypts the message using its own private key and the public

key of data owner and stores the encrypted data and
Capability List in its storage. CSP then updates the encrypted
File List and Capability List. Since, data are encrypted using
symmetric key (KT) which is known only to DO and respected
user group, CSP can't see data even though user's credential
comes through it.

Algorithm 2: Procedure to be followed after a new File
creation
Step 1: DO updates Capability List
CPList ← Add.(CPList, (UID, FID, AR))

Step 2: Now, DO encrypts the CPList, Encrypted File,
symmetric key and sends these to the CSP
Send(EkPuCSP(EkPrDO(CPList, (Fi), EkPrDO

(EkPuUSR(KT, N+1, TimeStamp)))))

Step 3: CSP Updates its copy of the Capability List,
Encrypted File List and sends symmetric key to indented
user group
Send(EkPuUSR(EkPrDO(EkPuUSR(KT, N+1,TimeStamp))))

Step 4: Now, the user can send actual access request for
that File directly to CSP

Algorithm 2 illustrates the procedure required after a new
File creation. When a new File is created, DO fills entries for
that File in Capability List containing UID, FID and AR. DO
generates a symmetric key (KT) and encrypts File with that
symmetric key (KT). Now, DO encrypts the updated CPList,
Encrypted File and symmetric key (KT) with its private key
after that public key of CSP and sends these to the CSP. When
CSP receives these, it updates Capability List, Encrypted File
List and sends encrypted symmetric key (KT) to respective
user group. Users of the user group then decrypt the message
and get their own parts of the symmetric key (KT). To avoid
man-in-middle and replay attack we use nonce and timestamp
in each message. After getting the details, user can request to
CSP for data.

Algorithm 3 describes how data are exchanged securely
between CSP and the user by use of modified Diffie-Hellman
algorithm. We called it modified D-H algorithm as we encrypt
the D-H parameters using the public key of one side and,
using nonce in each direction during session key (KS)
generation and data transfer. It helps to counter the man-in-the
middle attack. After available of keys and tokens, the user
may request for data to CSP. CSP initiates modified D-H key
exchange with the user, if request is authentic. We assume that
the session key (KS) is shared between CSP and the user by
modified Diffie-Hellman algorithm. Now, CSP encrypts the
encrypted File (Fi) and its digest (Di) with the shared session
key (KS) and sends it to the user. This over encryption ensures

204

the confidentiality of the message between cloud service
provider and the user. The user then decrypts the message
(user decrypts the message according to algorithm 4) and
calculates the digest of File and then matches it with stored
digest. If digest matches, File is original otherwise File is
modified by outsiders and user then sends an error notification
message to DO.

Algorithm 3: Algorithm for secure data exchange
between CSP and User by using Modified D-H key
exchange
Step 1: User sends data access request to CSP
Send(UID, FID, AR))

Step 2: CSP matches UID, FID, AR with CPList stored at
it.
If(match)
 Go to step (3)
else
 Go to step (6)

Step 3: CSP initiates D-H exchange with that User and
shares one time shared session key(KS)

Step 4: CSP encrypts the encrypted File with shared
session key and sends it to User
Send(((Fi)))

Step 5: User decrypts the File and calculates the message
digest of that File
If
 Calculated digest matches with stored digest then File is
original
else
 File is modified and User sends Error Notification to DO

Step 6: CSP sends 'invalid request' message to User

 Algorithm 4 which resembles the threshold cryptography
technique [2][14], describes the procedure how a File is
decrypting for User 1. After getting encrypted message, user's
main concern how to decrypt it because he alone can't decrypt.
So, he first updates PKS Vector (Initially, all bits of it are zero)
with his key component and then sends PKS Vector and
encrypted message to next user of same group. The next user
then decrypts the message and updates the PKS Vector with
his key component. This is continuing until all bits of PKS
Vector are one. Here, we can see that application is not using
all key components (Only threshold no of key components).
After this, data are sent back to initiator user. Initiator user
then decrypts the message and gets it. Initially, User 1does not
decrypt message (M), he just updates the PKS Vector.

Algorithm 4: Algorithm for Decryption of a File for
User 1

Step 1: User 1 receives Encrypted File
M ← Rece.((Fi))

Step 2: Initially, all bits of PKS Vector is zero. Here,
PKS Vector indicates parts of the key. User 1 will update
this PKS Vector with the components he has
PKS = PKS OR A1

Step 3: User 1 forwards M and PKS to ith user of the
group. Who will decrypt it and update the PKS Vector
M = (M)
PKS = PKS OR Ai
The ith user then forwards M and PKS to next user in the
group. The next user performs same operations as ith user
did. This process is continued.

Step 4: if(PKS = = 11111............................up to d bits)
 Go to step (5)
else
 Go to step (3)

Step 5: Forward M to the User 1
User 1 then decrypts message (M) and get File
Fi = (M)

Decryption process of a File for User 1 is shown in Fig. 2

 Fig. 2. Process of Decryption for User 1

205

V. HIERARCHY MANAGEMENT OF ACCESS RIGHTS

 In this section, we describe hierarchy of access rights
of users. Fig. 3 illustrates about it. Here, users encircle in
same group have same access rights. In other way, we can say
that they are sharing key components of the key with which
data of that group are encrypted. Along with this, each user
can also see data of all the groups which are formed with users
beneath him in the hierarchy. Here, we are calling child group
for such users group but the user uses dummy key for it and
this key is not shared with any others. When a user wants to
see data of his child group, he encrypts the encrypted data of
child group with his dummy key and sends encrypted data to
that child group for decryption. Here, decryption is same as
Algorithm 4. After all bits of PKS Vector are one, data returns
to the user (initiator). The user then decrypts it with his
dummy key and gets data.

 Fig. 3. Hierarchy of Access Rights

VI. SECURITY AND PERFORMANCE ANALYSIS

A. Security Analysis
In this section, we analyse the approach in terms of security

strength and scalability.
1) Data confidentiality: In the proposed scheme, DO

stores its data at CSP in encrypted form. Since, data are
encrypted by the symmetric keys which are known
only to DO and respective users group, CSP can't see
the data. After validation of user request, CSP sends
encrypted data to the user. To protect data from
outsiders CSP again encrypts the encrypted data by the
onetime session key (KS) shared between CSP and user.
Here, we can see that key length is increased due to
applying double encryption, which helps against brute-
force attack. In the proposed scheme, no member of
any group knows about whole key (due to threshold
cryptography). They know only about for what they
are authorised. Hence, collusion attack of CSP and
users is not possible.

2) Entity Authentication: In the proposed scheme, user is
authenticated at DO when he sends his personal details
to DO by encrypting its own private key during
registration. DO is authenticated at CSP when it sends
capability list and encrypted message digest and data to
CSP by encrypting its own private key. User is
authenticated at CSP when user's ID and password
match with user's ID and password stored at the
database of CSP.

3) Data Integrity: The proposed scheme uses MD5 to
calculate the message digest of data. DO encrypts data
and message digest of data with a symmetric key KT
which is known only to respected user group. When
user gets encrypted data and message digest from CSP,
he decrypts it first and then calculates the message
digest of received data. Data integrity is ensured when
received and calculated digest match.

4) Data Access Control: To ensure data access control,
the proposed scheme uses capability list in the
approach. Capability list basically contains the UID,
FID and AR. Only DO has rights to perform any
operation on it. CSP only can read it for the purpose of
secure data access. CSP sends only those data to users
what are in their access rights. In other way, users can
access those data which are in their capability [15].

B. Performance Analysis
 We have seen that DO transferred maximum of its load

and computation to CSP and did only necessary things by
itself. No of keys (because in threshold cryptography, there is
a single key corresponding to each group) have reduced in the
proposed scheme. Hence, reduces the maintenance and
security concerns of keys and reduces the additional
computation time.

 VII CONCLUSION

In this paper, we presented a new approach which provides
security for data outsourced at CSP. Some approaches are
given to secure outsourced data but they are suffering from
having large number of keys and collusion attack. By
employing the threshold cryptography at the user side, we
protect outsourced data from collusion attack. Since, DO
stores its data at CSP in encrypted form and, keys are known
only to DO and respected users group, data confidentiality is
ensured. To ensure fine-grained access control of outsourced
data, the scheme has used capability list. Public key
cryptography and MD5 ensure the entity authentication and
data integrity respectively. Public key cryptography and D-H
exchange protected the data from outsiders in our approach.
No of keys (because in threshold cryptography, there is a
single key corresponding to each group) have reduced in the
proposed scheme.

REFERENCES
[1] J. Do, Y. Song, and N. Park, “Attribute Based Proxy Re-encryption for

Data Confidentiality in Cloud Computing Environments," Computers,
Networks, Systems and Industrial Engineering (CNSI), 2011 First

206

ACIS/JNU International Conference on, vol., no., pp.248-251, 23-25
May 2011.

[2] A. Shamir, “How to share a secret," Communications of the ACM,
v.22 n.11, p.612-613, Nov. 1979. [Online]. Available:
http://portal.acm.org/citation.cfm?id=359168.359176.

[3] N. Bennani, E. Damiani, and S. Cimato, “Toward Cloud-Based Key
Management for Outsourced Databases," Computer Software and
Applications Conference Workshops (COMPSACW), 2010 IEEE 34th
Annual, vol., no., pp.232-236, 19-23 July 2010.

[4] S. Sanka, C. Hota, and M. Rajarajan, “Secure data access in cloud
computing," Internet Multimedia Services Architecture and application
(IMSAA), 2010 IEEE 4th International Conference on, vol., no., pp.1-6,
15-17 Dec. 2010.

[5] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,"
in Proc. of NDSS’05, 2005.

[6] C. Hota, S. Sanka, M. Rajarajan, and S. Nair, “Capability-Based
Cryptographic Data Access Control in Cloud Computing," Int. J.
Advanced Networking and Applications Volume: 01 Issue: 01 Page:
(2011).

[7] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,"
Association for Computing Machinery, in Proc. of CCS’06, 2006.

[8] T. Mather, S. Kumaraswamy, and S. Latif, “Cloud Security and
Privacy," O'Reilly Media, Sep. 2009.

[9] A. T. Velte, T. J. Velte, and R. Elsenpeter, “Cloud computing a
practical approach," Tata McGraw-Hill Edition, 2010, ISBN-13:978-
0-07-068351-8.

[10] W. Stallings, “Cryptography and network security," LPE Forth Edition,
ISBN-978-81-7758-774-6.

[11] G. Miklau, and D. Suciu, “Controlling access to published data using
cryptography," in Proc. of 29th VLDB, Germany, Sept 2003.

[12] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving Secure, Scalable,
and Fine-grained Data Access Control in Cloud Computing," in Proc.
of IEEE INFOCOM 2010, 2010.

[13] H. Zhong, and H. Zhen, “An Efficient Authenticated Group Key
Agreement Protocol," Security Technology, 2007 41st Annual IEEE
International Carnahan Conference on, vol., no., pp.250-254, 8-11 Oct.
2007.

[14] S. K. Harit, S. K. Saini, N. Tyagi, and K. K. Mishra, “RSA Threshold
Signature Based Node Eviction in Vehicular Ad Hoc Network,"
Information Technology Journal, 2012, ISSN 1812-5638, in Asian
Network for Scientific Information.

[15] R. S. Fabry, “Capability-Based Addressing," in Communications of the
ACM, 17(7), July 1974, pp. 403-412.

[16] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P.
Samarati, “Over-encryption: Management of access control evolution
on outsourced data,” in Proc. of VLDB’07, 2007.

207

