Chapter 7: Filter Design

7.1 Practical Filter Terminology

Analog and digital filters and their designs constitute one of the major emphasis areas in signal processing
and communication systems. This is due to the fact that most of the LTI system blocks have a transfer
function of a LP, HP, BP, BS or all pass nature. Traditionally, filters and their implementations have been in
the analog realm but more and more digital versions become the staple of the engineering design tools. We
have presented the spectral descriptions of ideal filters.

Terminology of a practical analog LP filter:
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Observations:
In addition to passband extending to w, and stopband starting from wg, there is a transition region
Wg - Wp rad/s or Hz, depending on the units of the horizontal axis.

The ripple of £d; around the nominal value of 1.0 in the passband is called the passband or in-band ripple.
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Similarly, d, at the highest level that the spectrum can reach in the stopband is called stopband ripple.

Both of these ripple parameters are expressed either in db or in percentage.
An analog LP filter is expressed by:
1- d ElH(W) [E1+d; if |[WIEwp

_ (7.1)
|H(w) [Ed, it [wp |wg |
A digital LP filter is expressed by:
H(W)|-1lEd if [WIEW
IHW)[-1lEd; if [WIEWp (7.2)

IHW)|Ed, if Wg E|WED

Smaller the transition better the performance or higher the roll-off of a filter.

Filters are specified in terms of these characteristics and there are both FIR and IIR structures for

realization.
Some filter classes have no ripple in the passband and some others exhibit equi-ripple characteristics.

Almost all the time LP filters or LPF equivalent of other filters are designed and special transformations

are used for obtaining actual systems.

7.2 Filter Parameter Transformations

There are standard transformations for converting a frequency-selective filter from one type to another one

both for the continuous systems and the digital ones. Given a LP transfer function H(s) with a normalized

cut-off frequency unity (1.0), and convert it to a LP filter with a cutoff of w, via:

s* = sw, (7.3)

where s” represents the transformed frequency variable. Since w” = W.W,, then frequency range O£|wIEL is

mapped to 0£|w” |E wc. Therefore, the transformation
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transforms a LP filter to a new LP filter with a cutoff frequency wg

filter classes as shown in the table below.

(7.4)

. There are similar transformations for other

Filter Type Transformation
Low Pass s
We.
High Pass We
S#
Band Pass W, s
0 +—2), W, =.[we W,
BW (WO S#) 0 C "Gy
Band Stop BW CBW=wg, - w,
st w, 2
Wo-(W—O +—)

Similarly, the discrete-time case is handled in terms of z-transforms. Given a LP filter with a cutoff frequency
W, we want to obtain another one with a cutoff frequency W .

By using the form: z=¢e we have:

. 1z
or equivalently (%)=

. (1-a?)sSnw

z* =exp[j.tan”

2a + (L+a 2).CosW

_1_a

-1

- az
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the transformation maps the unit circle in the z-plane into a unit circle in the z* - plane. The required a is
given by:
We - WE)/2
o = SnWe - We)/ 2] 7.7
Snl(We +We)/2]
Transformations are tabulated below:
Assume that W, is the desired cutoff frequency for LP/HP filters and W’él\/\/é are the desired lower and

2

upper frequencies for the BP/BS filters.

Filter Type Transformation Associated Formulas
Low Pass (L=l a1 = SnWe - WE)/ 2]
1-az Sn(W. +WE)/ 2]
High Pass z'+a _ Sn(We - WE)/2]
1+az’t O Sn(W, +WE)/2]
Band Pass 2 %z 1 % . Cos[(WE, +WE,)/2]
ki, Bk, Cod(We, - We,)/ 2
k+l kel k= Cot[ (W, - \/\/él)IZ].TanW7C
Band Stop 2 ;%.1 1 l;_& . Cos[(\/\/éz +\N§l)/2]
LR z1+1 COS[(WEZ_Wél)/z]
k+l kel k=Tar{(WE, - \/v‘éél)/2].Tan\’\'—2C
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7.3 Butterworth Filters
The Butterworth filter class is an infinite impulse response filter. Let us recall the governing difference

equation of lIR systems:
M
a bk.Z_k
N M A
yinl=4a a.yn- 1]+ &b,.xn- K] and H(2)° Y(2) _ N(2) _ k=0 (7.8)
= =0 X(2 D@ Ny

=1

They have no passband ripple and the magnitude square for order N is described by:
(7.9)

|H (W) P=1/1+ (—2)2N
We

| H{w) |

Ideal response
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Magnitude is a monotonically decreasing function of w. It has a -3.0 dB at the normalized frequency of

1.0, which is also known as the 3 dB bandwidth.
Butterworth is called a maximally flat approximation to ideal low-pass filters.
The filter transfer function is obtained from:
1 1
H(S).H (- 9) |s=jw =1 H(W) | = R
JPR AL IR R e

j? J

It is easy to see that the poles of H(s) are given by the roots of:

SN =. 1=l fork=012,--,2N- 1
j

s, =el@N-DpIN =g 5+ jw,  fork=012,--,2N- 1
2k+N-1 2k 1p 2k+N-1 2k+ 1p
s, =Cos(==———=p)=9nE=—=L) and w, =SnE=———=p)=Co
k = Cos( N p)= ( > k ( N p) =Cos( 5

For instance, Butterworth filter for N=3 has poles on the unit circle:

SO:er/3; sl:eIZp/3; 52:e13p/3:elp
s, =el®’3. s; =el®/3. ss =elP/3=1
jw
H(@) o4 H(-s)
~X
" X1.0 N
/ . N
A\
/
I 60° ‘\
I
—X X o
| x /o ]
\ =60 !
\ //
\\\ 1.0 //
X< o X7
—_r.—’
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To get a stable transfer function we MUST chose the poles of H(s) in the LH plane, which results in:

H(s) =

1

1

(s- el?P/3)(s- elP)(s- el*/3) =(52 +s+1)(s+1)

The coefficients of this third order Butterworth filter is given by a table:

Butterworth Filter Coefficients for orders 1 through 8
Order ay a, ag a, ag ag ay ag
1 1
2 J2 1
3 2 2 1
4 2.613 3.41 2.613 1
5 3.236 5.236 5.236 3.236 1
6 3.864 7.464 9.141 7.464 3.864 1
7 4.494 10.103 14.606 14.606 10.103 4.494 1
8 5.126 13.128 21.828 25.691 21.828 13.128 5.126 1

To obtain a particular filter with a 3dB cutoff frequency at w., we replace s
corresponding magnitude characteristic is then expressed by:

in H(s) with a s/w. .The

1

1+ (w/wg )N
with the two constraints: |H(wp)|=1-d;

H(s) =

and [H(ws)Fd,

Xeyan oL )23 and Wy o (Ly2 g

We 1-d,; We d,
dy(2- dy)dZ

(1- d)°@- d,)?

Log(wp /ws)

1.7

We must satisfy:

Log

To results in the order of the filter: H (7.14)

N = lnt{%[{



Design Steps:
1. Determine equation N from (7.14), which must be the nearest integer.
2. Determine w from the expressions of constraints.

3. For the computed N determine the denominator polynomial of normalizedH (s) from the table.
4. Find the unnormalized transfer function by replacing s inH(s) with s/ w, which will be a unity gain filter.
5. Adjust the gain of the filter by the desired amplification factor, if needed.
Example 7.1: Design a low-pass Butterworth filter to have an attenuation no more than 1.0 dB for
| wilf 2000 rad/sand at least 15 dB for |wP 5000 rad/s.
20 Log(1- d;) =-1 b d, =0.1087 and 20 Log(d,)=-15 b d, =0.1778
These resultat N3 26045P N = 3. From the table we have:
H(s) = 1/(s® +2s? + 2s+1) and the second constraint yields w. = 2826.8rad /s.
H(s) = (2826.8)% /[s® + 2* (2826.8).5% + 2* (2826.8) 2.5+ (2826.8)°]

When implemented using matlab we have:
| H (w) |

1

| - 1 J'J
0 1 2 4 4 5 6 wkrad/s
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Example 7.2: An electro-cardiogram produces a voltage proportional to the heartbeat potentials. The doctor
uses the plots after the raw data is filtered by an experimentally determined filter with the following impulse
response:

h(t) =568 3! - e 28![485C0s176t - 668Sn176t] - e %' [83C0s285t - 255Sin285t]

An analysis yields a 5" Order Butterworth filter with a cutoff frequency of 47.75 Hz and unity gain.
% Example 7.2 5-th Butterworth filter for electro-cardiogram plots.

[n,d]=butter(5,2*pi*47.75,'s");

for i=1:size(n,2)-1; n(i)=0; end;

pzmap(n,d);

[r,p,K]=residue(n,d)

delta=0.1*2*pi*47.75

w=0:delta:100*delta; h=freqs(n,d,w); mag=abs(h); plot(w,mag)

1
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r=[1.0e+002 *; -0.4146 + 1.2761i; -0.4146 - 1.2761i; -2.4272 - 3.3408i; -2.4272 + 3.3408i; 5.6837]
p=[1.0e+002 *; -0.9271 + 2.8534i; -0.9271 - 2.8534i; -2.4272 + 1.7635i; -2.4272 - 1.7635i; -3.0002]
k=[]
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7.4 Chebychev Filters

The Chebychev filter class si based on Chebychev Cosine polynomials:

Cu W) :‘:, Cos(N.Cos'l_\iv) |WIE 1
1Cosh(N.Cosh™*w) |w[1
and we can use the following recursion to generate higher-order terms:
Cn (W) =2wWCy.1(W)- Cy.o(W); Co(w) =L C(w) =w
The resulting filter has a low-pass characteric or order N:
2 1
MOz
The magnitude characteristics:
| Heeo) |2 - P Hw) P

8,

(7.15)

(7.16)

(7.17)

&

N odd

| H (9) | has ripples between 1 and 1/+4/1+e? and for large values of w, stop-band region:

|H(w)|C1l/eCy(W);
Attenuation (loss) loss = 20.Log pe + 20.Log,;,Cy, (W)
for large w: loss = 20.Logpe + 6(N - 1) + 20.N.Log oW

7.10
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- —

(7.18)
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Design Steps:
1. From the passband specification determine equation e from (7.18), which must be the nearest integer.
2. Using the stop-band specification and (7.20) determine N.
3. Let us introduce a new parameter:

=L snnid (7.21)
N e
4. The poles of H(s) are:
S =Sy *+Jjw, for k=012---,N-1 (7.22)
s, = Sin(2k|\; 1).%.9‘ nh(b) and w, =c:os(2kN' 1).%.Cosh(b) (7.23)
which are located on an ellipse in the s-plane with an equation:
2 2
S W,
— =1 (7.24)
Snh°(b) Cosh“(b)
jw
jw cosh O Butterworth poles
cosh § ,|7”-.(|.__ X  Chebyshev poles
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Example 7.3: Consider a Chebychev filter with attenuation not more than 1.0 dB for |w £ 1000 rads/s and at
least 10 dB for |w[ 5000 rads/s.
Let us normalize the parameters: w, =1.0 and wg = 5.0.

1
J1+e?

10 =20.L0g,,0.509+ 6(N - 1)+20.L0og,,5 P N =[1.092] =2

20.L0ogy, =-1 b e=0509

S = 12+ 12 wp =1000 b s,,=-54531+ j892.92
Wp ’

1

H =
®) (s+545.31) +(892.92) >

| H{w) |

1.12+
1

| |
1 5 6 w (kHz)

Finally, an approximation to the ideal low-pass filter can be made in terms of Jacobi elliptic sine functions,
which results in a smaller order or a sharper roll-off for a given order. The cost of this improvement is the
presence of ripples in both the passband and stopband and stability issues.
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| H(w) |2 | H(w) |

1+ €2

w, w w,

N odd N even

Example 7.4: 7" Order Butterworth, Chebychev | and Elliptic Filters
% Example 7.4 Seventh Order IIR filters

% Filter design functions
[nb,db]=butter(7,2,'s"); [nc,dc]=chebyl1(7,3,2,'s"); [ne,de]=ellip(7,0.5,20,0.25,'s");

%Pole-zero maps
pzmap(nb,db); figure; pzmap(nc,dc); figure; pzmap(ne,de); figure;

% Magnitude and phase computations
w=-6:0.01:6
hb=freqs(nb,db,w); hc=freqs(nc,dc,w); he=fregs(ne,de,w);
magb=abs(hb); magc=abs(hc); mage=abs(he);
phaseb=angle(hb); phasec=angle(hc); phasee=angle(he);

% Plotting functions
plot(w,magb,'r',w,magc,'g',w,mage,'b"); figure; plot(w,phaseb,'r',w,phasec,'g',w,phasee,'b');
end;
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7.5 Impulse Invariant Design of Digital IIR Filters

The digital versions of the previous set of IIR filters are obtained by equating the impulse responses at the
sampling instances:
h[n] =h, (nT) (7.25)
and the digital frequency variable is related to its analog counterpart via:
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W=wT (7.26)
Design Steps:
1. From the specified pass-band and stop-band cutoff frequencies: W,,Wg and 7.26 find their analog

counterparts.
2. Determine the analog transfer function H_(s) as it was done in Sections 7.3 or 7.4.

3. Expand H,(s) in partial fractions and obtain z-transform of each term from a s-transform to z-transform
conversion tables’.

4. Combine the terms to obtain H(2).
Example 7.5: Let us re-visit the filtering problem of Example 7.1. Using w. =2836.8 and H(s) from that
exercise and partial fraction expansion:

(2826.8)°
[s® + 2% (2826.8).5% +2* (2826.8) > s+ (2826.8)°
__ 28268  2826.8*(s+14134) 0.5* (2826.8)°
S+2826.8 (s+1413.4)% +(2448.1)% (s+1413.4)% +(2448.1)2

From the conversion table, we have get the transfer function in z-domain and for T =1.0ms

H(s) =

H (2) = 2806.8* z 72 - ze W4T Cos(2448.1T) + ZSin(2448.1T)}
(Z) - ) [ -1413 4T 2 - 1413.4T - 2826.8TT
z- e z°- 2ze Cos(2448.1T) + e
z z? - 0.0973.2

= 2826.8* [

7- 0.2433 22 - 0.3742.2+0.0592
which can be amplitude normalized and implemented in terms of canonical building blocks.

! These tables can be found in CRC and other mathematical tables or in many texts including Soliman & Srinath, Continuous and Discrete Signals and Systems, 2nd
Edition, Prentice-Hall, 1998 The table has been included as a courtesy of the publishers.
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Laplace transforms and their Z-transform equivalents

Laplace Transform,
H(s)

Z-Transform,
H(2)

——— TZ
(z =17
T’z(z +1)

(z —1)°
S S
z —exp[—aT]

Tzexp[—aT]

(z — exp[—aT]y’

1 Z .z =
(b —a) (z —exp[—aT] 1z — exp[-bT]

Tz (1—exp[—aT])z

(z =1 a(z — 1)(z — exp[~aT])
Tzexp[—al]

(z — exp[—aT])y
z z al exp[—aT]z

z=1 z-exp[-aT] (c— exp[-al)f
z sinw, T
77 =2z cosw T + 1

z(z — cosw, T)
z? —2zcosw,T + 1

zexp[—aT]sinw,T
72> — 2z exp[—aT] cosw,T + exp[—2aT]

- - zexp[—aT]cose,T
72 — 2z exp[—aT] cosw, T + exp[—2aT]

Example 7.6: Let us design a Butterworth LP filter with specifications: Passband amplitude to be within 2.0
dB for frequencies below 0.2p rads/ s and the stopband magnitude to be less than -10 dB for 0.4p rads/ s or

above. Assume unity gain at D.C.
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Wp =0.2p; Wg =0.4p implies:
20.Log,, |[H(0.2p) |=-2 b |H(0.2p)|?=10"°2
20.Log,, |H(0.4p)|=-10 b |H(0.4p)[*=10""

For impulse-invariance design we have the equivalent analog filter specifications for w=WT =W for T =1.
|H,(0.2p) °=10"%% and |H,(0.4p)|*=10""

This results fro a Butterworth filter:

Ha(WP=—— b 1+ 21002 and 1+ Q%28 210
1+ (w/wg) We We
Solution yields: N =[1.9718] =2 and w; =0.7185rads/s
H(s) 1 0.5162

(sIwg)2+ 2% (s/we) +1  s? +1.01* s+0.5162

The corresponding z-transfer function:
_ 0.5854z
H(2) =

72 -1.0512+0.362
| H(Q) |

1

0.891

| N
0.27 04r 0.5 § (rad)
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7.6 Digital FIR Filters
Digital finite-impulse response filters are also known as "non-recursive filters are the most practical filters with
absolute stability and no feedback. Canonical form of these filters are feedforward structures and consist of
delay, multiply and accumulators and written by a difference equation of the form:

x[n]
n
| s n|
D
h[1
> [1]
> %
: g
D AN - 2]
I >
hN-1]
N-1 N-1
yin] = & ¥n- k].Hn] =& h[n- k].x[n] (7.27)
k=0 k=0
They have linear phase provided we have symmetrical coefficients:
h[n] =h[N - 1- n] (7.28)

Their frequency responses are obtained from the term-by-term DTFT operation. However, filters of size odd
and even exhibit different characteristics.
For N :even

1 : N/2-1 : N-1 :
HOW) =& hin].e ™" ="4 "hnl.e” ™ + & h[rj.e” ™" (7.29)
n=0 n=0 n=N/2
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Replace n by N - n- 1inthe second sum and substitute (7.28):

N/2-1 . N/2-1 .
HW= & hln.e™+ & hnJe WMN-In)

n=0 n=0
O N-1 (7.30a)
jN/2-1 N-1( -iW—
=1 a 2hn].Cos(W(n - —]) e 2
1 n=0 2 %
Similarly, for N:odd
N-1
3 - (N-3)/2 - - W—
h(W) = ih(¥)+ 5 2.hn] Cos(W(n - NTl))'\Ze P (7.30b)
| n=0

In both cases, the term in braces is real, so that the phase of H(W) is given by the complex exponential at

the end, which exhibit a linear phase shift or equivalently a delay of NTl samples.

Given a desired frequency response H, (W), such as an ideal low-pass filter symmetric about the
origin, the corresponding impulse response hy[n] is symmetric about n=0.

The most general procedure for obtaining FIR filter of length N is to obtain a finite sequence with a
finite-length window sequence: wn].

If hy[n] is symmetric then it has linear phase but
the system is non-causal.

Causal impulse response is obtained by shifting the sequence to the right by NTl samples.

Design Procedure:
1. Obtain H4 (W) from hy[n] via DFT.

2. Multiply hy[n] by the window function wn]..
3. Find the impulse response of the digital filter:

hin] =hy[n- (N- 1)/2]wn] (7.31)
4. Determine H(2) via z-transform or alternatively find the z-transform H(z) of the sequence h,[n].w{n]:
H(z)=z N-D'2 H¢z) (7.32)
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7.6 Design of Windowed FIR Filters
Depending upon the selection of a specific window function, one gets different filtering behavior.
1. Rectangular window filter:
il OENEN-1

WolNl =1 7.33
U }0 Otherwise ( )

| H() |

2. Bartlett window filter:
i 2n/N-1 OEnfE£N-1
wg[n]=12-[2n/N-1 (N-1/2EnEN-1 (7.40)
% 0  Otherwise
3. Hanning window filter:
10.5*[1- Cos(2np /(N-1)] OEnEN-1

W nj=i 7.41
Hanl ) ; 0 Otherwise (7.41)

4. Hamming window filter:
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10.54- 0.46* Cos(2np /(N- 1) OENEN-1

W nl =i 7.42
e : 0 Otherwise (7.42)
5. Blackman window filter:
10.42- 0.5* Cos(2np /(N - 1)) + 0.08* Cos(4np /(N -1) OEnE£N-1
Wg [n] = _ (7.43)
0 0 Otherwise
6. Kaiser window filter:
I N - N-1
Ho@IED? - (- 23
] OENEN-1
wi [n] = N - (7.44)
AR ol ()
¥ 0 Otherwise

where 1, (x) is the modified zero-order Bessel function of the first kind usually studied with FM modulation.

Example 7.7: Let us design a 9-point LP FIR filter with a cutoff frequency W =0.2p.

hg (1] _1 Zg oivin gy = SN(02np)
2 2 np
For a 9-point window, we evaluate hy[n] for - 4£n£ 4:
0.147 , 0.317 , 0.475 | 0.588 1 0.588 | 0.475 , 0.317 , 0.147}
P P Y p p P P Y
0.147 4 +0.317 3 +%22 +@21 +1+@2_1 +%z'2 +@2_3 +%z'4

Y p P P Y P P Y

H(2)= 2 Ha2) =217 (14 778y + 0317 (1, 57y, 04T 0.588
p

(7.45)

Rectangular: hy[n] ={

H&z) =

4

(z2+Z72°%+ (z3+z2%+7

Similarly, for a 9-point Hamming window filter (7.42) results in a sequence:
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w{n] ={0.081,0.215,0.541,0.865, 1,0.865,0.541,0.215,0.081}
0.012 O 068 0.257 0.508 , 0.508 0.257 0.068 0.012

hg [Nl.Wn] ={ , : 1 , , ’ }
d p "p "p T pp ' p p
H ¢2) :%24 ,0068 3,025 , 0508 . 0508 .. 0257 ., 0068 5 0012 _,
p p p p p D 0 e
0.012 0.068 0.257 0.508

(Z-1+Z-7)+ (2-2 +Z-6)+ (Z-3+Z-5)+Z-4

H(2=z*HE)=——@1+2"°)+
Y
The frequency responses clearly indicate differences in behavior.

Il 2y | | H() |

] ‘ - .
0 T (rad) 0 ' ‘ 7 £ (rad)

9-point Rectangular Window LP Filter 9-point Hamming Window LP Filter
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Example 7.8: Let us design a differentiator (Hilbert Transformer), which cannot be implemented in the
analog domain. Hilbert transformer is used for obtaining single-side band (SSB) communication signal to
generate signals that are in phase quadrature to a sinusoidal input. The ideal differentiator:

H(w) = jw (7.46)
Hilbert transformer:
H(w) = - jSgn(w) (7.47)

Desired response in the frequency-domain:
HyW=HMW) -wg/2EWEwg/2

HyMW)=HMWT) -pEwEp
for some sampling period T. Expand the desired spectrum in a Fourier series since it was periodic:

H (W= & hy[nle ™ (7.49)
n=-¥

(7.48)

p .

Nl = 5 OHa (We""aw (7.50)
-p

If Hy(W) is purely real, the impulse response exhibits even symmetry; h,[n] =hy[- n].

If Hy(W) is purely imaginary, the impulse response exhibits odd symmetry; h,[n] = - hy[- n].

If the input to a Hilbert transformer is x, (t) = Cos(w,t) then we get the output y, (t) = Sin(wyt). The impulse
response of this transformer is given by:

‘. O n even

A odd (7.51)

hy[n] =— 0 - j.Sgn(w).e".dw=
2p TE
For a rectangular window of length 15 the impulse sequence from (7.51) becomes:

hy[n] ={- i,o,_ 20-20-202020202)
% P p op P oHTIp

H(2) = _[ 11,2 10 pe,p8,10,1 0,1
7 57 3 3 c

Frequency response of this rectangular and similarly Hamming window versions of 15 tap filter are displayed.
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H{)/j

Ideal response Rectangular window

£
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