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Chapter 7:  Filter Design 

7.1 Practical Filter Terminology 
Analog and digital filters and their designs constitute one of the major emphasis areas in signal processing 

and communication systems. This is due to the fact that most of the LTI system blocks have a transfer 
function of a LP, HP, BP, BS or all pass nature. Traditionally, filters and their implementations have been in 
the analog realm but more and more digital versions become the staple of the engineering design tools. We 
have presented the spectral descriptions of ideal filters.  

Terminology of a practical analog LP filter:  
|)(| wH

11 δ+

11 δ−

2δ

Pw Sw  
Observations: 

• In addition to passband extending to Pw  and stopband starting from Sw , there is a transition region 

PS ww − rad/s or Hz, depending on the units of the horizontal axis. 

• The ripple of 1δ±  around the nominal value of 1.0 in the passband is called the passband or in-band ripple. 
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• Similarly, 2δ  at the highest level that the spectrum can reach in the stopband is called stopband ripple.  

• Both of these ripple parameters are expressed either in db or in percentage.  

• An analog LP filter is expressed by: 
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• A digital LP filter is expressed by: 
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• Smaller the transition better the performance or higher the roll-off of a filter. 

• Filters are specified in terms of these characteristics and there are both FIR and IIR structures for 
realization. 

• Some filter classes have no ripple in the passband and some others exhibit equi-ripple characteristics. 

• Almost all the time LP filters or LPF equivalent of other filters are designed and special transformations 
are used for obtaining actual systems. 

 
 7.2 Filter Parameter Transformations 

There are standard transformations for converting a frequency-selective filter from one type to another one 
both for the continuous systems and the digital ones. Given a  LP transfer function )(sH  with a normalized 
cut-off frequency unity (1.0), and convert it to a LP filter with a cutoff of Cw  via: 

  Cwss .# =               (7.3) 

where #s  represents the transformed frequency variable. Since Cwww .# = , then frequency range 1||0 ≤≤ w  is 

mapped to .||0 #
Cww ≤≤  Therefore, the transformation 
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transforms a LP filter to a new LP filter with a cutoff frequency #
Cw . There are similar transformations for other 

filter classes as shown in the table below. 
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Similarly, the discrete-time case is handled in terms of z-transforms. Given a LP filter with a cutoff frequency 
,CΩ  we want to obtain another one with a cutoff frequency .#

CΩ  
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By using the form: Ω= jez  we have: 
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the transformation maps the unit circle in the z-plane into a unit circle in the −#z plane. The required α  is 
given by: 
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Transformations are tabulated below: 

Assume that #
CΩ  is the desired cutoff frequency for LP/HP filters and ##

21
, CC ΩΩ are the desired lower and 

upper frequencies for the BP/BS filters. 
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7.3 Butterworth Filters  
The Butterworth filter class is an infinite impulse response filter. Let us recall the governing difference 
equation of IIR systems: 
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 They have no passband ripple and the magnitude square for order N is described by: 

  N

Cw
wwH 22 )(1/1|)(| +=             (7.9) 
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• Magnitude is a monotonically decreasing function of .w  It has a -3.0 dB at the normalized frequency of 
1.0, which is also known as the 3 dB bandwidth. 

• Butterworth is called a maximally flat approximation to ideal low-pass filters.  

• The filter transfer function is obtained from: 
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It is easy to see that the poles of )(sH  are given by the roots of: 
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For instance, Butterworth filter for N=3 has poles on the unit circle: 
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To get a stable transfer function we MUST chose the poles of )(sH  in the LH plane, which results in: 
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The coefficients of this third order Butterworth filter is given by a table: 
 

Butterworth Filter Coefficients for orders 1 through 8 
Order 1a  2a  3a  4a  5a  6a  7a  8a  

1 1        
2 2  1       
3 2 2 1      
4 2.613 3.41 2.613 1     
5 3.236 5.236 5.236 3.236 1    
6 3.864 7.464 9.141 7.464 3.864 1   
7 4.494 10.103 14.606 14.606 10.103 4.494 1  
8 5.126 13.128 21.828 25.691 21.828 13.128 5.126 1 

 
To obtain a particular filter with a 3dB cutoff frequency at Cw , we replace s  in )(sH  with a Cws / .The 
corresponding magnitude characteristic is then expressed by: 
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Design Steps: 
1. Determine equation N from (7.14), which must be the nearest integer. 
2. Determine Cw  from the expressions of constraints. 
3. For the computed N determine the denominator polynomial of normalized )(sH  from the table. 
4. Find the unnormalized transfer function by replacing s in )(sH  with Cws / , which will be a unity gain filter. 
5. Adjust the gain of the filter by the desired amplification factor, if needed. 

Example 7.1: Design a low-pass Butterworth filter to have an attenuation no more than 1.0 dB for 
sradw /2000|| ≤ and at least 15 dB for ./5000|| sradw ≥   

 1087.01)1(20 11 =⇒−=− δδLog   and 1778.015)(20 22 =⇒−= δδLog  
These result at .36045.2 =⇒≥ NN  From the table we have: 

  )122/(1)( 23 +++= ssssH  and the second constraint yields ./8.2826 sradwC =  

  ])8.2826(.)8.2826(*2).8.2826(*2/[)8.2826()( 32233 +++= ssssH   
When implemented using matlab we have: 
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Example 7.2: An electro-cardiogram produces a voltage proportional to the heartbeat potentials. The doctor 
uses the plots after the raw data is filtered by an experimentally determined filter with the following impulse 
response: 
  ]28525528583[]176668176485[..568)( 93243300 tSintCosetSintCoseeth ttt −−−−= −−−  
An analysis yields a 5th Order Butterworth filter with a cutoff frequency of 47.75 Hz and unity gain. 

% Example 7.2 5-th Butterworth filter for electro-cardiogram plots. 
[n,d]=butter(5,2*pi*47.75,'s'); 
for i=1:size(n,2)-1; n(i)=0; end; 
pzmap(n,d); 
[r,p,k]=residue(n,d) 
delta=0.1*2*pi*47.75 
 
w=0:delta:100*delta;  h=freqs(n,d,w);  mag=abs(h);  plot(w,mag) 

  
r = [1.0e+002 *;  -0.4146 + 1.2761i;  -0.4146 - 1.2761i;  -2.4272 - 3.3408i;  -2.4272 + 3.3408i;   5.6837]           
p= [1.0e+002 *;  -0.9271 + 2.8534i;  -0.9271 - 2.8534i;  -2.4272 + 1.7635i;  -2.4272 - 1.7635i;  -3.0002]           
k =  [ ] 
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7.4 Chebychev Filters  
The Chebychev filter class si based on Chebychev Cosine polynomials: 
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and we can use the following recursion to generate higher-order terms: 
  wwCwCwCwCwwC NNN ==−= −− )(;1)();()(..2)( 1021       (7.16) 
The resulting filter has a low-pass characteric or order N: 
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The magnitude characteristics: 

 
|)(| sH  has ripples between 1 and 21/1 ε+  and for large values of w, stop-band region: 

  )(./1|)(| wCwH Nε≅ ;             (7.18) 
Attenuation (loss)  )(.20.20 1010 wCLogLogloss N+= ε         (7.19) 
for large :w   wLogNNLogloss 1010 ..20)1(6.20 +−+= ε        (7.20) 
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Design Steps: 
1. From the passband specification determine equation ε  from (7.18), which must be the nearest integer. 
2. Using the stop-band specification and (7.20) determine N. 
3. Let us introduce a new parameter: 
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4. The poles of )(sH  are: 
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which are located on an ellipse in the s-plane with an equation: 
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Example 7.3: Consider a Chebychev filter with attenuation not more than 1.0 dB for sradsw /1000|| ≤  and at 
least 10 dB for ./5000|| sradsw ≥   
Let us normalize the parameters: 0.1=Pw  and .0.5=Sw  
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Finally, an approximation to the ideal low-pass filter can be made in terms of Jacobi elliptic sine functions, 
which results in a smaller order or a sharper roll-off for a given order. The cost of this improvement is the 
presence of ripples in both the passband and stopband and stability issues. 
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Example 7.4: 7th Order Butterworth, Chebychev I and Elliptic Filters 
% Example 7.4 Seventh Order IIR filters 
% Filter design functions 

[nb,db]=butter(7,2,'s');  [nc,dc]=cheby1(7,3,2,'s');  [ne,de]=ellip(7,0.5,20,0.25,'s'); 
 
%Pole-zero maps 

pzmap(nb,db); figure; pzmap(nc,dc); figure; pzmap(ne,de); figure;   
 
% Magnitude and phase computations 

w=-6:0.01:6 
hb=freqs(nb,db,w); hc=freqs(nc,dc,w); he=freqs(ne,de,w); 
magb=abs(hb); magc=abs(hc); mage=abs(he); 
phaseb=angle(hb); phasec=angle(hc); phasee=angle(he); 

 
% Plotting functions 

plot(w,magb,'r',w,magc,'g',w,mage,'b'); figure; plot(w,phaseb,'r',w,phasec,'g',w,phasee,'b'); 
end; 
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7.5 Impulse Invariant Design of Digital IIR Filters  
The digital versions of the previous set of IIR filters are obtained by equating the impulse responses at the 
sampling instances: 
  )(][ nThnh a=              (7.25) 
and the digital frequency variable is related to its analog counterpart via: 
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  Tw.=Ω               (7.26) 

Design Steps: 
1. From the specified pass-band and stop-band cutoff frequencies: SP ΩΩ ,  and 7.26 find their analog 

counterparts. 
2. Determine the analog transfer function )(sH a as it was done in Sections 7.3 or 7.4. 
3. Expand )(sH a  in partial fractions and obtain z-transform of each term from a s-transform to z-transform 

conversion tables1. 
4. Combine the terms to obtain ).(zH  

Example 7.5: Let us re-visit the filtering problem of Example 7.1. Using 8.2836=Cw  and )(sH  from that 
exercise and partial fraction expansion: 
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From the conversion table, we have get the transfer function in z-domain and for msT 0.1=  
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which can be amplitude normalized and implemented in terms of canonical building blocks. 
 
 
 
 
                                                                 
1 These tables can be found in CRC and other mathematical tables or in many texts including Soliman & Srinath, Continuous and Discrete Signals and Systems, 2nd 
Edition, Prentice-Hall, 1998 The table has been included as a courtesy of the publishers.  
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Example 7.6: Let us design a Butterworth LP filter with specifications: Passband amplitude to be within 2.0 
dB for frequencies below srads/2.0 π  and the stopband magnitude to be less than -10 dB for srads/4.0 π  or 
above. Assume unity gain at D.C. 
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ππ 4.0;2.0 =Ω=Ω SP  implies: 

  2.02
10 10|)2.0(|2|)2.0(|.20 −=⇒−= ππ HHLog  

  12
10 10|)4.0(|10|)4.0(|.20 −=⇒−= ππ HHLog  

For impulse-invariance design we have the equivalent analog filter specifications for Ω=Ω= Tw  for .1=T  
  2.02 10|)2.0(| −=πaH  and    12 10|)4.0(| −=πaH  

This results fro a Butterworth filter: 
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The corresponding z-transfer function: 
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7.6 Digital FIR Filters  
Digital finite-impulse response filters are also known as ”non-recursive filters are the most practical filters with 
absolute stability and no feedback. Canonical form of these filters are feedforward structures and consist of 
delay, multiply and accumulators and written by a difference equation of the form: 
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They have linear phase provided we have symmetrical coefficients: 
  ]1[][ nNhnh −−=              (7.28) 
Their frequency responses are obtained from the term-by-term DTFT operation. However, filters of size odd 
and even exhibit different characteristics.  
For evenN :  
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Replace n  by 1−− nN  in the second sum and substitute (7.28): 
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Similarly, for oddN :  
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In both cases, the term in braces is real, so that the phase of )(ΩH  is given by the complex exponential at 

the end, which exhibit a linear phase shift or equivalently a delay of 
2

1−N
 samples. 

 Given a desired frequency response )(ΩdH , such as an ideal low-pass filter symmetric about the 
origin, the corresponding impulse response ][nhd  is symmetric about .0=n   

• The most general procedure for obtaining FIR filter of length N  is to obtain a finite sequence with a 
finite-length window sequence: ].[nw   

• If ][nhd  is symmetric then it has linear phase but  
• the system is non-causal.  

• Causal impulse response is obtained by shifting the sequence to the right by 
2

1−N
 samples. 

Design Procedure: 
1. Obtain )(ΩdH  from ][nhd  via DFT. 
2. Multiply ][nhd  by the window function ].[nw . 
3. Find the impulse response of the digital filter: 

][].2/)1([][ nwNnhnh d −−=            (7.31) 
     4. Determine )(zH  via z-transform or alternatively  find the z-transform )(zH ′  of the sequence ][].[ nwnhd : 

  )(.)( 2/)1( zHzzH N ′= −−             (7.32) 
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7.6 Design of Windowed FIR Filters  
Depending upon the selection of a specific window function, one gets different filtering behavior. 

1. Rectangular window filter: 
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2. Bartlett window filter: 
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3. Hanning window filter: 
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4. Hamming window filter: 
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5. Blackman window filter: 
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6. Kaiser window filter: 
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where )(0 xI  is the modified zero-order Bessel function of the first kind usually studied with FM modulation. 

Example 7.7: Let us design a 9-point LP FIR filter with a cutoff frequency .2.0 π=ΩC   
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For a 9-point window, we evaluate ][nhd  for :44 ≤≤− n  
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Similarly, for a 9-point Hamming window filter (7.42) results in a sequence: 
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 The frequency responses clearly indicate differences in behavior. 

 
           9-point Rectangular Window LP Filter   9-point Hamming Window LP Filter  
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Example 7.8: Let us design a differentiator (Hilbert Transformer), which cannot be implemented in the 
analog domain. Hilbert transformer is used for obtaining single-side band (SSB) communication signal to 
generate signals that are in phase quadrature to a sinusoidal input. The ideal differentiator: 
  jwwH =)(               (7.46) 
Hilbert transformer: 
  )()( wjSgnwH −=              (7.47) 
Desired response in the frequency-domain: 
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d
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         (7.48) 

for some sampling period T. Expand the desired spectrum in a Fourier series since it was periodic: 
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• If )(ΩdH  is purely real, the impulse response exhibits even symmetry; ][][ nhnh dd −= . 
• If )(ΩdH  is purely imaginary, the impulse response exhibits odd symmetry; ].[][ nhnh dd −−=  

 
If the input to a Hilbert transformer is )()( 0twCostxa =  then we get the output )()( 0twSintya = . The impulse 
response of this transformer is given by: 

  ∫
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For a rectangular window of length 15 the impulse sequence from (7.51) becomes: 
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Frequency response of this rectangular and similarly Hamming window versions of 15 tap filter are displayed. 
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