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Propositions

Definition

A proposition is a declarative sentence (that is, a sentence that
declares a fact) that is either true or false, but not both.
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Propositions

Negation

Let p be a proposition. The negation of p, denoted by ¬p or by p̄
is the statement:

“It is not the case that p.”

The proposition ¬p is pronounced “not p.”

p ¬p
T F
F T
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Propositions

Conjunction, disjunction, and exclusive or

Let p and q be propositions.

The conjunction of p and q, denoted p ∧ q, is true when p
and q are both true and false otherwise.

The disjunction of p and q, denoted p ∨ q, is false when p
and q are false and true otherwise.

The exclusive or of p and q, denoted p ⊕ q, is the proposition
that is true exactly when one of p and q is true.

p q p ∧ q p ∨ q p ⊕ q

F F F F F
F T F T T
T F F T T
T T T T F

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Propositions

Conjunction, disjunction, and exclusive or

Let p and q be propositions.

The conjunction of p and q, denoted p ∧ q, is true when p
and q are both true and false otherwise.

The disjunction of p and q, denoted p ∨ q, is false when p
and q are false and true otherwise.

The exclusive or of p and q, denoted p ⊕ q, is the proposition
that is true exactly when one of p and q is true.

p q p ∧ q p ∨ q p ⊕ q

F F F F F
F T F T T
T F F T T
T T T T F

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Propositions

Conjunction, disjunction, and exclusive or

Let p and q be propositions.

The conjunction of p and q, denoted p ∧ q, is true when p
and q are both true and false otherwise.

The disjunction of p and q, denoted p ∨ q, is false when p
and q are false and true otherwise.

The exclusive or of p and q, denoted p ⊕ q, is the proposition
that is true exactly when one of p and q is true.

p q p ∧ q p ∨ q p ⊕ q

F F F F F
F T F T T
T F F T T
T T T T F

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Propositions

Conjunction, disjunction, and exclusive or

Let p and q be propositions.

The conjunction of p and q, denoted p ∧ q, is true when p
and q are both true and false otherwise.

The disjunction of p and q, denoted p ∨ q, is false when p
and q are false and true otherwise.

The exclusive or of p and q, denoted p ⊕ q, is the proposition
that is true exactly when one of p and q is true.

p q p ∧ q p ∨ q p ⊕ q

F F F F F
F T F T T
T F F T T
T T T T F

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Conditional statements

Definition

Let p and q be propositions, called the “hypothesis” and
“conclusion” respectively. The conditional statement p → q is the
proposition “if p, then q.” The proposition p → q is false when p
is true and q is false, and true otherwise.

p q p → q

F F T
F T T
T F F
T T T
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Conditional statements

Some other ways to express conditionals:

if p, then q

if p, q

p is sufficient for q

q if p

q when p

a necessary condition for p is q

a sufficient condition for q is p

q unless ¬p
p implies q

p only if q

q whenever p

q is necessary for p

q follows from p
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Conditional statements

Converse, contrapositive, and inverse

Consider the implication p → q.

The converse refers to q → p.

The contrapositive refers to ¬q → ¬p.

The inverse refers to ¬p → ¬q.

Equivalence

Two propositions are called equivalent when they have the same
truth table.

The contrapositive is equivalent to the original implication.

The converse and inverse are equivalent to each other.

The inverse is not equivalent to the original.

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Conditional statements

Converse, contrapositive, and inverse

Consider the implication p → q.

The converse refers to q → p.

The contrapositive refers to ¬q → ¬p.

The inverse refers to ¬p → ¬q.

Equivalence

Two propositions are called equivalent when they have the same
truth table.

The contrapositive is equivalent to the original implication.

The converse and inverse are equivalent to each other.

The inverse is not equivalent to the original.

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Conditional statements

Converse, contrapositive, and inverse

Consider the implication p → q.

The converse refers to q → p.

The contrapositive refers to ¬q → ¬p.

The inverse refers to ¬p → ¬q.

Equivalence

Two propositions are called equivalent when they have the same
truth table.

The contrapositive is equivalent to the original implication.

The converse and inverse are equivalent to each other.

The inverse is not equivalent to the original.

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Conditional statements

Converse, contrapositive, and inverse

Consider the implication p → q.

The converse refers to q → p.

The contrapositive refers to ¬q → ¬p.

The inverse refers to ¬p → ¬q.

Equivalence

Two propositions are called equivalent when they have the same
truth table.

The contrapositive is equivalent to the original implication.

The converse and inverse are equivalent to each other.

The inverse is not equivalent to the original.

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Conditional statements

Converse, contrapositive, and inverse

Consider the implication p → q.

The converse refers to q → p.

The contrapositive refers to ¬q → ¬p.

The inverse refers to ¬p → ¬q.

Equivalence

Two propositions are called equivalent when they have the same
truth table.

The contrapositive is equivalent to the original implication.

The converse and inverse are equivalent to each other.

The inverse is not equivalent to the original.

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Conditional statements

Converse, contrapositive, and inverse

Consider the implication p → q.

The converse refers to q → p.

The contrapositive refers to ¬q → ¬p.

The inverse refers to ¬p → ¬q.

Equivalence

Two propositions are called equivalent when they have the same
truth table.

The contrapositive is equivalent to the original implication.

The converse and inverse are equivalent to each other.

The inverse is not equivalent to the original.

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Conditional statements

Converse, contrapositive, and inverse

Consider the implication p → q.

The converse refers to q → p.

The contrapositive refers to ¬q → ¬p.

The inverse refers to ¬p → ¬q.

Equivalence

Two propositions are called equivalent when they have the same
truth table.

The contrapositive is equivalent to the original implication.

The converse and inverse are equivalent to each other.

The inverse is not equivalent to the original.

Prof. Steven Evans Discrete Mathematics



Propositional Logic
Applications of Propositional Logic

Propositional Equivalences
Predicates and Quantifiers

Conditional statements

Biconditionals

Let p and q be propositions. The biconditional statement p ↔ q is
the proposition “p if and only if q.” These are also called
“bi-implications.”

p q p ↔ q

F F T
F T F
T F F
T T T
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Truth tables of compound propositions

Example

Construct the truth table of the compound proposition

(p ∨ ¬q)→ (p ∧ q).
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Grammar rules

Operator Precedence

¬− 1

− ∧− 2
− ∨− 3

− → − 4
− ↔ − 5

x ∧ ¬y ∨ z → w

≡ ((x ∧ (¬y)) ∨ z)→ w .
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Logic and bit operations

Truth Value Bit

T 1
F 0

p q p ∧ q p ∨ q p ⊕ q

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0
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Examples

Smullyan posed many puzzles about an island that has two kinds
of inhabitants: knights, who always tell the truth, and their
opposites, knaves, who always lie. You encounter two people A
and B. What are A and B if A says, “B is a knight,” and B says,
“The two of us are opposite types.”?
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Examples

A father tells his two children, a boy and a girl, to play in their
backyard without getting dirty. However, while playing, both
children get mud on their foreheads. When the children stop
playing, the father says, “At least one of you has a muddy
forehead,” and then asks the children to answer “Yes” or “No” to
the following question: “Do you know whether you have a muddy
forehead?” The father asks this question twice. What will the
children answer each time this question is asked?

(The children are honest, can see each others’ foreheads, cannot
see their own foreheads, and answer simultaneously.)
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1.3: Propositional Equivalences
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More kinds of propositions

A proposition that is always true, no matter the truth values
of the variables that occur in it, is called a tautology.

A proposition that is always false is called a contradiction.

A proposition that is neither of these is called a contingency.

p q p ∨ ¬p p ∧ ¬p p → q

F F T F T
F T T F F
T F T F T
T T T F T
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Logical equivalences

Definition

Propositions p and q are called logically equivalent, denoted
p ≡ q, when p ↔ q is a tautology.

Examples

DeMorgan’s laws:

¬(p ∧ q) ≡ ¬p ∨ ¬q. (Check this one yourself!)

¬(p ∨ q) ≡ ¬p ∧ ¬q.

Conditional expansion:

(p → q) ≡ (¬p ∨ q). (Check this one too!)
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Example: p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

F F F F

F F F F

F F T F

F F T F

F T F F

F T F F

F T T T

T T T T

T F F F

T T T T

T F T F

T T T T

T T F F

T T T T

T T T T

T T T T
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F F T F F

F T F

F T F F F

T F F

F T T T T

T T T

T F F F T

T T T

T F T F T

T T T

T T F F T

T T T

T T T T T
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Example: p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

F F F F F F F

F

F F T F F F T

F

F T F F F T F

F

F T T T T T T

T

T F F F T T T

T

T F T F T T T

T

T T F F T T T

T

T T T T T T T

T
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Equivalence rules

Identity laws:

p ∧ T ≡ p.

p ∨ F ≡ p.

Domination laws:

p ∧ F ≡ F .

p ∨ T ≡ T .

Idempotent laws:

p ∨ p ≡ p.

p ∧ p ≡ p.

Double negation law:

¬(¬p) ≡ p.

Commutative laws:

p ∨ q ≡ q ∨ p.

p ∧ q ≡ q ∧ p.

Associative laws:

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r).

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r).

Distributive laws:

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

DeMorgan’s laws:

¬(p ∧ q) ≡ ¬p ∨ ¬q.

¬(p ∨ q) ≡ ¬p ∧ ¬q.
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Equivalence rules

Absorption laws:

p ∨ (p ∧ q) ≡ p.

p ∧ (p ∨ q) ≡ p.

Negation laws:

p ∨ ¬p ≡ T .

p ∧ ¬p ≡ F .

Implication laws:

p → q ≡ ¬p ∨ q.

p → q ≡ ¬q → ¬p.

p ∨ q ≡ ¬p → q.

p ∧ q ≡ ¬(p → ¬q).

p ∧ ¬q ≡ ¬(p → q).

Distribution and implication:

(p → q) ∧ (p → r) ≡ p → (q ∧ r).

(p → r) ∧ (q → r) ≡ (p ∨ q)→ r .

(p → q) ∨ (p → r) ≡ p → (q ∨ r).

(p → r) ∨ (q → r) ≡ (p ∧ q)→ r .

Biequivalence laws:

p ↔ q ≡ (p → q) ∧ (q → p).

p ↔ q ≡ ¬p ↔ ¬q.

p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q).

¬(p ↔ q) ≡ p ↔ ¬q.
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p ∧ ¬q ≡ ¬(p → q).

Distribution and implication:

(p → q) ∧ (p → r) ≡ p → (q ∧ r).

(p → r) ∧ (q → r) ≡ (p ∨ q)→ r .

(p → q) ∨ (p → r) ≡ p → (q ∨ r).

(p → r) ∨ (q → r) ≡ (p ∧ q)→ r .

Biequivalence laws:

p ↔ q ≡ (p → q) ∧ (q → p).

p ↔ q ≡ ¬p ↔ ¬q.

p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q).

¬(p ↔ q) ≡ p ↔ ¬q.
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Using DeMorgan’s laws

Example

Show that (p ∧ q)→ (p ∨ q) is a tautology.
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Predicates

The statement “x is greater than 3” has two parts:

1 The variable x is referred to as the subject.

2 The clause “is greater than 3” is referred to as the predicate.

Symbolically, we express this sentence as P(x), where P is the
predicate, operating on the variable x . The statement P(x) is said
to be the value of the propositional function P at x . Once a value
has been assigned to x , P(x) becomes a proposition and has a
truth value.
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Predicates

Example

Let Q(x , y) denote the statement “x = y + 3”. What are the truth
values of the propositions Q(1, 2) and Q(3, 0)?
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Quantifiers

Universal quantifiers

The universal quantification of P(x) is the statement “P(x) for all
values of x (in the domain)”. The notation ∀xP(x) denotes this
statement, and the symbol ∀ is called the universal quantifier.

An element for which P(x) is false is called a counterexample of
∀xP(x).

Example

What is the truth value of ∀x(x2 ≥ x) if the domain consists of all
real numbers? What is the truth value if the domain consists only
of all integers?
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Quantifiers

Existential quantifiers

The existential quantification of P(x) is the statement “There
exists an element x in the domain such that P(x).” We use the
notation ∃xP(x) for the existential quantification of P(x), and ∃ is
called the existential quantifier.

Example

What is the truth value of ∃xP(x), where P(x) is the statement
x2 > 10 and the universe of discourse consists of the positive
integers not exceeding 4?
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Quantifiers

Alternative names for quantifiers:

Universal

for all

for every

all of

for each

given any

for arbitrary

for each

for any

Existential

there exists

for some

for at least one

there is
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Quantifiers

Uniqueness quantifier

We can build more quantifiers by putting a size limit on the
existential quantifier. The most important of these is the
uniqueness quantifier, denoted by ∃!xP(x) or ∃1xP(x),
corresponding to the statement “There exists a unique x (i.e.,
exactly one x) such that P(x) is true.”
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Quantifiers

Example of restricted quantifiers

What do the statements ∀x < 0(x2 > 0), ∀y 6= 0(y3 6= 0), and
∃z > 0(z2 = 2) mean, where the domain in each case consists of
the real numbers?
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The grammar of quantifiers

Precedence

The quantifiers ∀ and ∃ have higher precedence than all logical
operators from propositional calculus.

∀xP(x) ∨ Q(x)

≡ (∀xP(x)) ∨ Q(x).
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The grammar of quantifiers

Binding variables

When a quantifier is used on the variable x , we say that this
occurrence of the variable is bound. An occurrence of a variable
not bound by a quantifier or set to a value is free. The part of an
expression to which a quantifier is applied is called its scope. So, a
variable is free if it outside the scope of all quantifiers in the
formula that specify it.

All variables that occur in a proposition function must be bound or
set equal to a particular value to turn it into a proposition.
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Logical equivalences involving quantifiers

Definition

Statements involving quantifiers are logically equivalent when they
have the same truth value no matter which predicates are
substituted or which domain of discourse is chosen. We denote this
by S ≡ T .

Example

Show that ∀x(P(x) ∧ Q(x)) and ∀xP(x) ∧ ∀xQ(x) are logically
equivalent.
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Negating quantified expressions

There are two versions of DeMorgan’s laws for quantified
expressions:

1 ¬∃xP(x) ≡ ∀x¬P(x).

2 ¬∀xP(x) ≡ ∃x¬P(x).

Example

Show that ¬∀x(P(x)→ Q(x)) and ∃x(P(x)∧¬Q(x)) are logically
equivalent.
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Quantifiers

Example

Consider these statements, of which are the first three are premises
and the fourth is a valid conclusion:

1 All hummingbirds are richly colored.

2 No large birds live on honey.

3 Birds that do not live on honey are dull in color.

4 Hummingbirds are small.

Let P(x), Q(x), R(x), and S(x) be the statements “x is a
hummingbird”, “x is large”, “x lives on honey”, and “x is richly
colored” respectively. Express the statements in the argument
using quantifiers and these propositional functions.
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