
Mean Square Truncation Error in Series Expansions of Random Functions
Author(s): J. L. Brown, Jr.
Reviewed work(s):
Source: Journal of the Society for Industrial and Applied Mathematics, Vol. 8, No. 1 (Mar.,
1960), pp. 28-32
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2098952 .

Accessed: 26/12/2012 11:34

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend
access to Journal of the Society for Industrial and Applied Mathematics.

http://www.jstor.org 

This content downloaded  on Wed, 26 Dec 2012 11:34:41 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=siam
http://www.jstor.org/stable/2098952?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


J. SOC. INDUST. APPL. MATH. 
Vol. 8, No. 1, March, 1960 

Printed in U.S.A. 

MEAN SQUARE TRUNCATION ERROR IN SERIES 
EXPANSIONS OF RANDOM FUNCTIONS' 

J. L. BROWN, JR.2 

1. Introduction. The purpose of this note is to give a simple proof of a 
result obtained by Jordan [1] concerning the mean integral square error 
between a random function x(t) and a truncated series representation of 
x(t) in orthonormal functions. When the integral in the error expression 
is extended over a finite range of integration a < t < b, and the series is 
truncated after the Nth term, Jordan has shown that the optimum choice 
of orthonormal functions in the expansion (with respect to minimizing 
the mean square error) is a set of N eigenfunctions of a related integral 
equation. The result is of interest since this integral equation is identical 
to the equation involved in the Karhunen-Loeve expansion [2, pp. 96-98], 
where the criterion is that of obtaining expansion coefficients which are 
uncorrelated. 

The method used in this note will be a reduction of the problem to a 
classical problem in the theory of quadratic integral forms. 

2. Statement of problem. Given a sequence of functions, {+o(t)}, de- 
fined, continuous, and orthonorma] on a < t < b, we may associate with 
each square integrable random function x(t) a formal Fourier series of the 
form 

(1) x(t) =ann(t) (a < t _ b), 

where the {an} are random variables given by 
b 

(2) an - f x(t)>n(t) dt. 

As a tractable measure of the error involved in using an N-term truncation 
of series (1) to represent x(t), we define 

(3) EN[{lon(t)}I = E i{x(t) - E anqrn(t)} dt], 

where E[ ] denotes the mean or expectation of the quantity in brackets. 
For a given random function x(t) with continuous autocorrelation func- 
tion R(s, t) = E[x(s)x(t)] (a ? s, t < b) and fixed N, the problem is 
to determine the functions 01(t), . . . , q5N(t) so as to minimize EN[{4bn(t)}]. 

I Received by the editors April 7, 1959. 
2 Ordnance Research Laboratory, the Pennsylvania State University, University 

Park, Pennsylvania. 
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MEAN SQUARE TRUNCATION ERROR IN SERIES EXPANSIONS 29 

3. The theorem. 
THEOREM. The mean square error (3) is minimized if 41(t), O, +(t) 

are taken as the orthonormalized eigenfunctions of the Fredholm integral 
equation, 

(4) X f R(s, t)<k(t) dt = q(s) (a ? s ? b) 

corresponding to the eigenvalues Xi , - , XN, respectively where the eigen- 
values of (4) are numbered according to increasing magnitude; that is, 0 
< Xl I< I X21 <- 

Proof. Expanding the square in (3) and making use of the orthonormal- 
ity of the {O.(t)}, it follows that 

b +N 2 b N 

(5) f 1x(t) - ann (t) dt fx (t) dt- E an 2 
a S n= ) a n=l 

From (3), and linearity of the expectation, 

(6) EN [{n (t)J'] = j E [x (t)] dt - E E [an2]. 

Since the first term in (6) is independent of the choice of the {4.(t)}, the 
error is clearly minimized when the nonnegative quantity 

EZ=nl E[an2] 
is maximized. 

But, 

Efa '2] =E [Jx(t)O.n(t) dt x X(s) n (s) ds] 

= fb Lb E [x(s)x(t)] On(s) n(t) ds dt 

,b rb 

= Lb L| R(s, t)o.(s)o.(t) ds dt 

and thus the quantity to be maximized is 
N b b 

(7) E L L R(s, t) 0(s)+0(t) ds dt 

b 

subject to I cm(s)ckn(s) ds = am.- 

The solution to the problem of choosing k(t) to maximize the quadratic 
integral form 

rrz= fk=Q ~rb ehbthAb 
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30 J. L. BROWN, JR. 

where K(s, t) is a given continuous symmetric kernel and f c>2(t) dt = 1 

is well-known [3, pp. 122-125]; the maximum value of J(O, 0) is 1/X1, 
where X1 is the eigenvalue of smallest magnitude of the Fredholm integral 
equation 

rb 

X f K(s, t)4>(t) dt = 4,(s) 

and the function for which this maximum is attained is the corresponding 
normalized eigenfunction, 01(t). 

In our case, R(s, t) = R(t, s) by a basic property of the autocorrela- 
tion function; additionally, R (s, t) is a positive kernel [4, p. 124] and thus 
all the eigenvalues are positive. [Note that R(s, t) need not be positive 
definite.] 

If the eigenvalues of (4) (not necessarily distinct) are numbered in 
nondecreasing order so that 

(8) 0 < X1 < X2 _< X3 <_ 

then it is clear that (7) will be maximized by choosing +1(t), ON, f(t) 
as N orthonormalized solutions of (4) corresponding to eigenvalues X1, 
... , XN respectively. When these eigenvalues are distinct, a unique solu- 
tion is obtained. If, however, X10 is an eigenvalue of index k, the k corre- 
sponding orthonormal eigenfunctions are not uniquely determined since 
there is an inherent nonuniqueness in the Schmidt process of orthonor- 
malization. It is easily shown that if iJ1(t), * , 41k(t) and 41(t),*., 
qk(t) are two different orthonormal sets of eigenfunctions for X,,, then 
there exists a k X k matrix A = { aij} such that 

oi(t) = Eg=1 aij~lj(t) 
and 

Ej=i aijamj = Sim 
that is, any two competing sets of orthonormal solutions for a given eigen- 
value are related by an orthogonal transformation. 

This proves the theorem and the minimum mean integral square trunca- 
tion error is given explicitly as 

bXN 
(9) EN[{In(t) }]min = (t) - N 

a ~~~n=l Xn 

where I X.,. are the eigenvalues of (4) arranged in nondecreasing order. 

4. Conclusion. The above reduction of the problem to the application 
of a classical result provides a considerable shortening of Jordan's original 
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MEAN SQUARE TRUNCATION ERROR IN SERIES EXPANSIONS 31 

proof. It also avoids the necessity of assuming that the eigenfunctions of 
(4) form a complete set, although this will usually be the case in practice 
as noted by Jordan. 

Since the integral equation (4), which generates the optimum ortho- 
normal functions, is the same as the one involved in the Karhunen-Loeve 
expansion, the theorem of this note may be restated in the following form: 
the Karhunen-Loeve expansion 

x(t) E nla.?k.(t) X 

[where the an are given by (2) and the {10,(t)} are orthonormal solutions of 
(4) corresponding to eigenvalues { XA} ordered as in (8)] is an expansion for 
which the minimum integral mean square truncation error is achieved for any 
fixed choice of N. In addition, by the result of Karhunen and Loeve, the 
coefficients {a.} form a set of uncorrelated random variables. 

Since the original writing of this paper, Jordan [5] has presented an 
alternate proof which makes use of a theorem in functional analysis. It is 
believed that the proof given in the present note has the advantage of being 
more direct than either of Jordan's proofs. 

The author is indebted to the referee for calling attention to [6] where a 
more general version of this theorem is formulated in an abstract setting. 
In [6], it is stated that the minimum error is given by the series 

00 1 

n=N+l Xn 

That this is equivalent to equation (9) can be shown by applying Mercer's 
Theorem ([2], p. 374) to the kernel R(s, t). Term-by-term integration of 
the resulting identity 

R(s,s) = E 
n=1 Xn 

then yields 
b b 001 
| R(ss) ds = I E[x2(s)] ds = - 

fbRa ss) Ja n=1 Xn 

or 
b N ?? 

fbE[x2(s)] ds - E , = E 
a n=1 Xn n=N+l Xn 

as required. In practice, of course, equation (9) is preferable since only 
the first N eigenvalues are involved. 
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