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The coordinate matrix element of the time evolution operator, exp[ — iHi /fi], is determined
by expanding (its exponent) in a power series in £. Recursion relations are obtained for the
expansion coefficients which can be analytically evaluated for any number of degrees of
freedom. Numerical application to the tunneling matrix element in a double well potential and
to the reactive flux correlation function for a barrier potential show this approach to be a
dramatic improvement over the standard short time approximation for the propagator. Its use
in a Feynman path integral means that fewer “‘time slices™ in the matrix product

exp[( — i/A)AtH ¥, At = 1 /N, will be required. The first few terms in the present expansion
constitute a fully quantum version of the short time propagator recently obtained by us using
semiclassical methods [ Chem. Phys. Lett. 151, 1 {1988} ].

I. INTRODUCTION

Feynman path integration'? continues to receive con-
siderable attention as a means of describing the dynamics
(via the time evolution operator e ~ "*/%) and statistical me-
chanics (via the Boltzmann operator e~ ") of quantum
systemns. One reason for this attention is that path integrals
can be efficiently applied 1o systems with many degrees of
freedom. Another attractive feature is that a “bath” of har-
monic degrees of freedom can be integrated out using influ-
ence functional methodology,' thereby obtaining ( without
approximation!) a path integral involving only the remain-
ing degrees of freedom of the *system.”

In the standard path integral development one obtains
the propagator for a net time increment ¢ by multiplying
together N propagators each for the shorter time increment
Ar=t/N (all in the coordinate representation),

(xNie- ..m/ﬁ]xu> — fde_ .

N
"'.[dxl H (x‘|e rnmmhk ])_
-

It is thus necessary to know the (coordinate matrix of the)
propagator enly for a short time At and then to perform the
muttidimensional integral over all “intermediate™ positions.
Because the integral will in general be of high dimensionali-
ty—particularly so if ¥ is large and the system consists of
many degrees of freedom—the only generally feasible ap-
proach is some kind of Monte Carlo integration procedure.?

It is important to emphasize that Eq. (1.1) is actually
exact for any number (¥} of time slices; the only thing that
requires large & is that the approximation used for the short
time, or single step propagator in the integrand of Eq. {(1.1),

(xk |€ - p'H.m/ﬁixk_])' (1.2)

be sufficiently accurate. Large & thus means that the single
step propagator need be accurate only for a very short time
Ar=1t/N. In practice, though, one would like for the single
step propagators to be accurate for as long a time At as possi-
ble, so that ¥ can be taken as small as possible (for a given
net time tncrement £). The (obvious) reason for this is to

(L1)

904 J. Chemn. Phys, 90 {2}, 15 January 1989

0021-9606/89/020904-08%02.10

keep the number of Monte Carlo integration variables as
small as possible,

The most commonly used” approximation for the short
time propagator is obtained from the Trotter formula,*

(xk |e . I'HA.‘/ﬁ|xk 1 )

m [FEA) Im 2
=(2mﬁm) “p[zﬁm P =%l ]

A
Xexpl _‘T;[V(xk) + V{xk_,)]},

(1.3)

where the Hamiltonian has been assumed to be of Cartesian
form [see Eq. (2.1) below] for F degrees of freedom. In a
preceding Letter’ we noted that Eq. (1.3) is actually not
correct to O At), the correct result to this order having the
following modification in the exponent of the last factor {i.e.,
the potential energy part)

IV(x) + Vxe )]

1
_'J; dgV[xk_1+{xk_xJ._|]§]- (1.4)
This modified, “first order” propagator, which was obtained
using semiclassical methods, was shown to be considerably
more efficient than the standard one, Eq. (1.3). By more
efficient we mean that results to a given level of accuracy are
obtained with a smalier value of N. [Both Eq. (1.3) and the
madification of Eq. (1.4) give the correct result in Eq. (1.1)
in the lHmit ¥ — .]

This paper pursues the guest for better short time propa-
gators, i.e., analytically obtainable, easily evaluateable ap-
proximations for the single step propagator, Eq. {1.2), that
areaccurate for as long a time Ar as possible. The basicideais
that used in our earlier paper,” namely expanding the expo-
nent of the propagator in a power series in At

i

A: - Fr2 [
{Ar) exp 2

(%{J‘“i’ J"V| -+ W3&I+ W}At:}‘f ”')]’
z

(1.5)
a form suggested o us by the standard short time approxi-
mation, Eq. {1.3). (It was our realization that the exponent
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of Eq. (1.3) is not correct through order At that led us 1o
search for the propagator that is correct to this order, and
then also for higher order terms.) The development given in
this paper is more general than that in our earlier Letter: it is
fully quantum mechanical (rather than semiclassical} and
derived for muitidimensional systems, and it shows more
systematically how terms of arbitrary order can be deter-
mined.

The general development is given in Sec. I§, and Sec. I11
shows how these results are modified if there is a vector po-
tential (e.g., from an electromagnetic field) in the Hamilto-
nian. Section IV shows how the reactive flux correlation
function is expressed in terms of this expansion for the pro-
pagator. Numerical calculations of tunneling matrix ele-
ments in a double well potential and of reactive flux correla-
tion functions for a barrier potential are presented in Sec. V.
Results for both the single step propagator itself and path
integrals using it show that the number of time slices (¥} can
be reduced considerably using these new expressions.

Finally, to conclude this introduction it should be noted
that other workers have also presented methods for obtain-
ing better short time propagators. We mention specifically
the work of Kono, Takasaka, and Lin® who have used an
expression proposed by Takahashi and Imada.” As given,
though, this expression applies only to evaluation of the par-
tition function, tr(e "), and not to general matrix ele-
ments. Suzuki® has also described ways for correcting the
Trotter product formula [ie., Eq. (1.3}]. Another useful
approach is the partial averaging scheme developed by Doll
and co-workers,” which alsc has the effect of reducing the
number of Monte Carlo integration variables. Schweizer et
al."" have used first order time-dependent perturbation theo-
ry and also a variational approximation to improve the stan-
dard short time propagator. Also, various semiclassical ap-
proximations'' for the propagator (and for the Boltzmann
operator) have been suggested'” for use as the single step
propagator in a path integral.

Il. POWER SERIES FOR THE QGUANTUM MECHANICAL
PROPAGATOR

Throughout this section we consider simple (but multi-
dimensional) Cartesian Hamiltonian operators of the form

n‘)

ﬁ:
2m

+ V(x), (2.13

where {%, p} = {%,=x,, p,=#/i3/0x,} for i=1,..F. We
wish to determine an analytic approximation for the coordi-
nate matrix element of the single step propagator

(x|e " xy) (2.2)

for use in Feynman path integrals, as discussed in the Intro-
duction. (With the usual transcription — — i}, we are
also, of course, considering such approximations for the
Boltzmann operator ¢ ~#".} The approximation must be
correct in the limit 1—0, but for the sake of efficiency in a
path integral one would like it to be accurate for as long a
time as possible.

In the limit /—0 one knows the limiting form of the
propagator to be

lim {x]e """ F|x,) = (L)Mze [— Ix — x| ]
0 2mifit
(2.3)

so the e@nsatz we choose is

{xle "M A|x,) =t FlVPWD (2.4a)
where W{x,t) is expanded as a power series in f as

W(x.t) :% S W, (xy= Y 1" "W, (x).(24b)

az0 't

( W also depends on the initial condition X,,, but to keep the
notation simple we do not indicate this explicitly.) In light of
Eq. {2.3), we anticipate the form for the first two terms in
the expansion {2.4b) to be

I'V[l(x) = % |x - X“|2, (254)

F A2

PRI ) _( m )
= : ,

2mif

so that Egs. (2.4) and (2.5) may also be combined to read

(X|€ H'h/ﬁ{x"> = (X|€ - JH.,;M‘|XU)

(2.5b)

Xexp[-i; 2 ¢t W (x)|, (2.6)
na= 2

where the first factor on the right-hand side is the free parti-
cle propagator, Eq. (2.3) {i.e., H,=p 1/2m).

To determine the various terms { W, (x)} in the expan-
sion (2.4} we use the fact that the propagator satisfies the
time-dependent Schridinger equation

_F + F(x) — fﬁi (x|le "Fx,) =0, (2.7)

2m at
where V2 = 37| 32/dx}. Substituting Eq. (2.4) into Eq.
(2.7) and equating like powers of t leads ina straightforward
way 1o the following equations for the functions {W, (x)}:

Ozf'ﬁi:—é”., +V(x¥5,, + (n— YW, (x)

+— Z VW, (x) VW, . (x)
m JI'
~Aew, 0, (2.8)
2m
forn=0,12,. (W ,=0). Forn = 0and ! these equations

are, respectively,

W,(x) =5Levw.}(x)|-‘ (2.92)
1 h
:ﬁ€+ T () T, (x) = 5 T (),
{2.96)

and one can easily verify that the previously anticipated so-
lutions for W,(x} and W, (x), namely Eq. (2.5}, do indeed
satisfy Eq. (2.9) (noting the fact that ¥7|x — x,° = 2F).
Using these solutions [Eq. (2.5)] for W(x) and W, (x),
Eq. (2.8) then gives the following equations for W, (x) and
for all higher order terms:

(x - x,) VIL(x) + Waofx) = — V(x), (2.10a)
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{X—x{,)'VW (x)+(n—-1W_(x)

i

{x)+2 VW, . (x),

(2.10b)

v Wn‘ v Wu
2m "Z (x)

forn=34,..
Note that Egs. (2.10) are all linear inhomogeneous first
order differential equations of the form

(X — X} Vp{x) + (7 — D)p(x} = a(x), (2.11)

where the right-hand side #(x) is a known inhomogeneity.
One can verify by direct substitution that the solution to Eq.
(2.1} is

1
y(x) =j dE £ a(xq + (x — xy)E). (2.12)
L1
To show this, note first that
a
v =
y{x) o y(x)
i
=J e atxg + (x—x)8)
o ax
1
ny O
=J; dgg : ax, a4+ (X X80 (2'13)
s0 that
1
(x — %) Vy(x) :J‘ dEE™ x — %)
0
a ’
‘xa(x Ma et aowne  (2.14)
But
d .
(x — le)‘?'ﬂ'(x )|x Xa b [R X3
=L a(xy+ (x —x)8), (2.15)
dg

so that Eq. (2.14) becomes

1
(% — %) Tp(x) =j dEEm L a(xy+ (x = x)6).
0 d_f,'
(2.10)

Integration by parts on the right-hand side of Eq. (2.16)
gives

£" 'a{x, + (x — xn)§)|(11

1
_.j dE(n — 1E™ (%0 + (X — Xo)E)
[+]

1
za(x)-(n~l}j dEE" fa(xg + (X — X,)E)
n

=a{x) — (# — Dy(x),
whereby Eq. (2.16) becomes Eq. (2.11), thus verifying that
Eq. (2.12} is the solution.

Applying the results of the previous paragraph to Eq.
(2.10a) gives the solution for W,(x) as

1
W,(x) = —f dE V(xo + (x ~ %0)8), (2.17)
8}

and application to Eq. (2.10b) gives an expression for
W, (x) in terms of lower order terms,

1 .
W.,{x)=f dgg"*[-‘ivzw,,_.(xw
2m

n--2
VW,
2m ,,E—'z (x)
W,_,v(x’}] . (2.18)
R N LI 1T

forn=134,. . W, W.
from Eq. (2.18).
Thus, the explicit solution for W,(x) is

.. can thus be determined recursively

. 1
W][x) = 'ﬁf d§§V2W3(x')I,- =%, + (X — %, )& (219)
Im Jo

with W,(x) given by Eq. (2.17}. Since

1 32
.._J' dgl 3 V(XO—+- (x"“—xo)é")
0 dx
| 62
_ d [ 2
.[1 5'¢ ax*?

Eq. (2.19) becomes

Vsz(x') =

V{x")|‘- =x, + (% —x,0&"'

1 3
W = — 12 [Cage | dgre”
4] 0
a 2
ax"?
Changing integration variables appropriately allows one of
these inlcgrations to be performed, giving finally

X

V(x")lx'=x.,+ (x — x, 0687

d§§(l —HVV(X) |,

B L R A

(2.20)
The next term, W,(x), is then given from Eq. (2.18) as

L .
W = [ dee?| 2 v
) 2m

L jw] 221)

=, (% — X048

Using the previously obtained solutions for W, and W, and
proceeding in a manner similar to the above paragraph, one
obtains the following result for W

I :
W,(x) = _if dgf dETE (1 — HHVV(X') TV(X")
] 4]

’] 1
i : f de£7(1 — HHVHV(X)
Bm Jo

with x' = x, + (x —x,)¢ and x" = x, + (x — x,)&"', and
where

33 F az 2 F 64
(V9 =( ) = .
2 X; 9 dxidx}

i=1 =1

(2.22)

It is clear that one can continue using Eq. (2.18) to
construct higher order terms, though the algebra becomes
tedious. If the potential is sufficiently simple {e.g., a polyno-
mial} that the various integrals are doable analytically, then
computer algebra manipulators (e.g., MACSYMA or Mathe-
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matica) can be used to do this very efficiently. This is what
has been done, in fact, for the examples discussed in Sec. V to
obtain terms up to ¥,

It is also possible, of course, to attempt to extend the
region of usefulness of the power series expansion for W(x,1)
by converting it into a Padé'* approximant, t.c.,

L+ M £

S W, (x)~ E 7P, (x)/| 1+ 2 1"g,(x)|.
e et nZl
(223)

There is a well established procedure for determining the
L+ M+ 1 coeficients {p,(x)}, {g,(x)} from the
L + M + 1 coefficients { W, (x)} which is also amenable to
computer algebraic manipulation. The results discussed in
Sec. V do indeed show that the Padé procedure extends the
accuracy of the above propagator to longer times.

Before concluding this section we note that for the case
of one dimension {F = 1) the above integrals can be simpli-
fied by integration by parts. Thus, Eqgs. (2.17), (2.20), and
(2.22} can be written in this case as

Wiix) = _TAI;J: dx’ Vix'), (2.24a)
3] 2 M, \
Wix)= — ZH:sz[V(xO) + Fix) — EL dax’ Vix )],
(2.24b)
X X F
W,(x)= J Vix)idx — U‘ V{x')dx’] }
kT & 2 i fur
- g Y + 0 “?&L_ Vixx

_ %{V'm - V'(x(,n], (2.24c)

where Ax = x — x,,. We note that Eq. (2.24a) for W,(x) is
the same exponent obtained by us previously® using semi-
classical arguments and also that expansion of the exponen-
tial factor involving W, of Eq. (2.24b) gives the correspond-
ing ¥an Vleck determinant. Furthermore, the first rerm of
Eq. (2.24¢) is the same third order term obtained before
semiclassically. In the present fully quantum treatment,
though, we obtain a *'quantum correction” to this term, the
second term of Eq. (2.24¢) (which is proportional to #°).

o:;ﬁf;b‘m, +(n— l)W"(x)_zlﬁ_er,,_ ; 4

m 2m ,

+ P oAl L avw, |,
2mc mc

n=0,12,. (W_,=0). If the vector potential is set to zero,
then Eq. (3.2) reverts to Eq. (2.8).
Forn=0and 1, Eq. (3.2} gives

Wox) = —— VW2, (3.38)
2m

Finally, it is illuminating to see the limiting form taken
by the various terms in Eq. (2.24) as x — x,,. [t is not hard to
show that

lim W,(x}= — ¥Vix,), (2.25a)

X2,

. iﬁ L3

lim W(x) = — -2 V" (x,), (2.25b)

X=Xy 12m

. V' (x0)? # y

lim W, = - 0 V' (xy). (2.25

2 P 2Um | 2domr | 0 (2259
Thus for the case t = — i#if, the equilibrium density is given

by this single step propagator as

_H _ m 1/2 { B
{x|e |x} (Zm‘izﬂ) expl — fAV(x)
B ﬁZBZ
12m

#
_ V-nt 4 .
10m {x)]—i—O{ﬁ ),

23
Voix) + —— ﬁﬁ [V {x)?
{2.26)

If one expands the exponential and keeps only the terms
through order #, then one obtains the well-known Wigner'*
correction factor to the classical density,

{x|e --B!f|x):(2ﬂ:25) e —AVLD
232 23
x[l— fﬁ Ve x) + ’;’3 Ve (x)?

(2.27)

ll. HAMILTONIAN WITH VECTOR POTENTIAL

For completeness we show in this section how the re-
sults in Sec. II are modified if the Hamiltonian includes a
vector potential that arises from an electromagnetic field,’

ﬁ:Jm[ﬁ_EA(i)]MV(iL (3.1)
2m c

The same ansaiz as Eq. (2.4) is chosen, and the analogous
procedure leads here to the following equations for the func-
tions {W,{x) }:

H 2
S VW, VW, 48,1V + —— [A(OP
““o 2me?
(3.2)
f
—aL s Low ow, ——"iv?W — S AvW,
2 m 2m me
(3.3b)

The solution of Eq. (3.3a} for W,(x) is the same as before,
Eq. (2.5a), and Eq. (3.3b) then becomes
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(x — %) IW, =E(x — x,)-A(x). (3.4)
c

Utilizing Egs. (2.11) and (2.12}, the solution to Eq. (3.4) is

found to be

]
W (x)=W” +§J‘ dE(x — X} -A(xy + (X — %}E)
L]

=W 4 fj dx~A(X') (3.5)
CJx,
where the constant W {” is the field free result of Eq. (2.5b).
Utilizing the above results for W, and ¥, it is not hard
to show that for n = 2,3,4,..., Eq. (3.2) gives equations iden-
tical to the field free case, Eq. (2.10}; i.e., all terms involving
the vector potential cancel out. The solution of Eq. (2.10a)
for W,(x) is thus the same as the field free case, i.e., Eq.
(2.17), but the solution for W,(x) given by Eq. (2.18) for
n=23

W,(x) zjl dgg(i‘% VI, (x")

El
X =K, k(K- x5,

(3.6)

is different from the field free case because here VW, {x) #0.
From Eq. (3.9), in fact, one has

—iVWZ(x')‘VW,(x’))
m

YW, (x) = A(x), 31
<

so that Eq. {3.6} becomes

W,(x) = Wi{"(x)

1
—ij dEETWo(x) Ay o v+ aper (38)
mae Jo

where W % (x) is the field free resuit given by Eq. (2.20}.
Using the solution for W,(x), one obtains the following ex-
plicit result for W¥;:

ﬁ3

Ct) = —
¢ 2m*

[da[darewale “sa

3 P T a gyt |, o A
—Z(sQle Qs Qe s,
dr s

a 2
dsds’

1 £ ¥
Wi(x) = W{”(x) +—"—J a’é’f de" & ATV,
mc Jo L § 39)
(3.

withx' = x4+ (x — x,)fand X" = x, + (x — x,)§".

In summary, therefore, the terms #,(x) are the same as
the field-free results of Sec. IL, but W, (x) and W,(x), given
by Egs. (3.5) and (3.9), have a contribution involving the
vector potential. In Eq. (3.5) the well known term that ap-
pears in the action for a Lagrangian with a vector potential is
recovered.”"?

IV. REACTIVE FLUX CORRELATION FUNCTIONS

One potentially powerful use of path integral method-
ology is to evaluate reactive flux correlation functions, the
integral of which gives the thermal [8 = (A7} '] rate con-
stant for a chemical reaction,

KB =04 [ arc, (.1)

Q
where O is the partition function for reactants. The version
of the correlation function given by Milier, Schwartz, and
Tromp'® involves the propagator for complex time ¢,
=1 ik /2,

Cf-(t) - tr [Fe;m:/ﬁpe - Hﬂ‘/ﬁ] (4.2)
where Fis the flux operator,
1 o s m g
F=—[8(8 —s,}p, + p.8(3 —5,) ]; (4.3)
2m

sis the (Cartesian) reaction coordinate, p, its conjugate mo-
mentum operator, and § = s, is the dividing surface that de-
fines reactants and products. Evaluating the trace in a coor-
dinate representation gives the following expression for the
correlation function:

(S'Q'{e - ;.ug/ﬁ|SQ>

(4.4)

where Re denotes “real part of,” where s = 5" = 5, after differentiation, and where Q are the (Cartesian) coordinates for the

degrees of freedom in addition to the reaction coordinate.

Since it is often the case in applications that one needs only the short time behavior of the flux correlation function, we
consider in this Section the possibility of using the single step propagator developed in Sec. II to evaluate it. Specializing to the
case of one dimension [and thus no coordinate Q in Eq. (4.4) ] and writing the coordinate matrix element of the propagator in

the form of Sec. II, i.e.,

(s'le” .m/ﬁ|s)E 1 WA
17

it is not hard to show that Eq. (4.4) becomes

Cf{t} =

2m3t, | Isds’

1 g~ (A Im WfD.O:r,){ — #1m d ZW(SJ';U _ Z(Re aWis0,1.) )2] '

(4.5)

4.
2 (4.6}

with s = 5" = O after differentiation (where the dividing surface s, has been chosen as 5, = 0). Now expanding the exponent
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Wi{s,s';1, ) in a power series as in Eq. (2.4b) gives the final expression
Cit) = C}‘”(r)expl — % Im ..Zz WL 0,0)
= ]
t

with s = s’ = 0, and where C (¢} is the free particle corre-

lation function'®

kT (BB /2)?

2k [¢7 + (AB /2
If the standard short time approximation, Eq. (1.3}, is

used for the propagator, then it is casy to show that Eq. (4.7)

gives the free particle correlation function multiplied simply

by a classical Boltzmann factor,

Cit)y =C/ (e M, (4.8)
Having the propagator expressed as a power series in time, as
it is in the present methodology, is especially convenient for

Boltzmann correlation functions because complex time is as
easily dealt with as real (or pure imaginary) time.

CO(n) = (4.7b)

V. APPLICATIONS

We first illustrate the use of the power series expansion
of Sec. 11, Eq. {2.4) with W, determined from Eq. (2.18),
by calculating the off-diagonal coordinate matrix clement of
the Boltzmann operator,

{x_le ™|x,}, (5.1}

for the case of an electron in a one-dimensional symmetric
doubie well potential,

(5.2}

This quantity is closely related to the tunneling splitting
between the two lowest eigenstates of the double well. The
coefficients are chosen so that the barrier heightis4.2 eV and
the two minima are located at x| = + 2.65 A.

Figure 1 shows the relative error made by truncating
Eq. (2.4) at n,,,, = 6, 8, and 10, for « single (imaginary)
time step, as a function of the dimensionless quantity %o, S,
where w,,,, is the imaginary frequency at the top of the bar-
rier. Each successive higher order is seen to reduce the error
over a larger range of . Eventually [i.e, beyond some
Boin = Bon {111, of course, the error begins to grow very
rapidly; one would then need 1o include many more terms in
the power series to obtain convergent results, or the series
may not converge at all, if 3 exceeds its radius of conver-
gence. A successful way of overcoming this problem is to use
rational expansions such as Padé approximants. As seen in
Fig. 1, the |5/3] Padé approximant (computed from the
n =10,...8 terms of the Taylor series) converges significantly
better over a much hroader range of & than the correspond-
ing Tayior expansion. It is thus seen that the recursive evalu-
ation of the propagator according to Eq. {2.18} shows pro-
mise for calculating short or intermediate (complex} time
dynamics analptically. 1t should then be vseful in studying
the dynamical (or equilibrium statistical mechanical) prop-

Vix) = — x4+ cpx*.

erties of multidimensional systems in a simple and economi-
cal way. Finally, Fig. 1 also shows the error made by using
the standard Trotter formula, Eq. (1.3). As anticipated, the
error increases fnearly with £ in this case, and very soon
grows aut of the scale of the figure.

Next, we apply the various approximations discussed
above for the short time propagator to the path integral eval-
uation of the same quantity according to Eq. (1.1). The cal-
culation is performed with fixed 8 /N = 7/4. Shown in Fig. 2
are results obtained using the expansion of Eq. (2.4) trun-
cated after the n = 3and n = 5 term. Also shown are results
obtained from the corresponding (i.e., of the same order)
semiclassical expressions derived by us recently,” namely the
first and third order propagator. Although no net quantum
term appears in the n =2 or 3 terms in the present treat-
ment, the effect of retaining the exponential form (rather
than expanding it to lowest order to produce the Van Vieck
determinant of the semiclassical expression) is the reduction
of the error roughly by a factor of 2. The semiclassical third
order propagaior is seen te further reduce the error, and the
corresponding quantum version yields results which are es-
sentially indistinguishable from the exact ones within the

40

1

% error

4 6
how, B
FICG. 1. Percentage error, 100 (approximate - exact)/exact, in the tun-
nelmg matrix clemnent fEq. (5.13] for an electron ina double well potential
[Eq. (5.23], for the single slep propagator in pure imaginary time
{1 - - i#yf?). The barnier heightis 4.2 ¢V and the two minima are located at
4 265 A Thedotied line is the result ol the standard short time propagator
{Eqg. {1.3}], and the solid lines the resuits of the exponential power series
{Eq. (2.4 forn,,,. 6,8 and 10, The dashed line is the result of the Padé
approximant, Eq. £2.23), with £ ~ 5, M — 3. [n the abscissa, w,,, 15 Lthe
imaginary lrequency at the top of the barrier,
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FIG. 2. Percentage error in the path integral evaluation of the off-diagonal
coordinate matrix element of the Boltzmann operator. Eq. (5.1), for an
electron in a double well potential, with the short time propagator given by
the various approximations discussed in Sec. I The parameters are the
same asin Fig. 1. Triangles: Trotter formula; open circles: semiclassical first
order propagator; open squares: semiclassical third order propagator, solid
circies: quantum version of the first order propagator (terms up to #, in-
cluded in the power series}; solid squares: quantum version of Lhe third
order propagator { power series with terms up to W.,).

resotution of the figure. The error made by the Trotter for-
mula [Eq. (£.3)] is again large compared to that of the pow-
er series.

Finally, we demonstrate the analptic calculation of the
reactive flux correfation function as described in Sec. IV us-
ing the single step, complex time propagator of Eq. (2.4) for
an Eckart barrier,

Vix) = ___I;{!“_ .
cosh-(ax)

(5.3}
The mass is taken to be that of a hydrogen atom, the tem-
perature is T=630 K (8#=500h '), and ¥, = 7.5 keal/
mol, a = 3.15 A ' are typical of a hydrogen atom transfer
reaction. The Eckart potential is sirple enough that the nec-
essary integrations invelved in Eq. (2.18) can be performed
analytically, However, it is usefu! to point out that one actu-
ally need not carry out all the algebra with the full potential
for the flux correlation function. Since the right hand side of
Eq. (4.7a) 1s evaluated at x = x' =0, one can readily see
that only a finite number of terms in the Taylor expansion of
the potential contribute to a certain order in ¢, . The calcula-
tion is thus greatly simplified by expanding the potential as a
polynemial, without loss of accuracy for a given order in the
complex time. Symbolic algebra programs are particularly
efficient in dealing with polynomials, and complex time ts no
more difficult to manipulate than purely imaginary (or real)
time, so that the analytic calculation of the flux correlation
function as described above is straightforward and free of
numertcal errors. The results of this procedure are shown
and compared to those obtained by an accurate basis set

Q"

CelH)

FIG. 3. The Aux correlation function, Eq. {4.4), for an Eckart barrier {cf
Eq. (5.3)]. The mass is that of a hydregen atom, and the temperature is 630
K. The barrier height is 7.5 k cal/mel and the imaginary frequency of the
barrier is 1022 cm ', Solid line: exact results; circles: analytic, single step
calculation by power series expansion [cf. Eq. (4.7}], with a1, = 4; Daot-
ted line: single step evaluation of the flux correlation function usicg the
Trotter formula [cf. Eq. (4.8)].

calculation in Fig. 3. For comparison, the result obtained
using the standard short time propagator, i.e., Eq. (4.8), is
also shown.

VI. CONCLUDING REMARKS

The exponential power series expansion for the propa-
gator developed in Sec. ITis thus seen to be much more accu-
rate than the standard short time approximation, Eq. (1.3),
permitting one to use much larger time increments Az in a
path integral, Eq. (1.1). Of course, this more accurate pro-
pagator is more difficult to evaluate then Eq. (1.3), but
should not be prohibitively so in many situations of practical
interest. Padéing the power series extends its range of accu-
racy to even longer times,

The primary purpose we envision for this single step
propagator is as an improved short time propagator for use
in a path integrat, Eq. (1.1). If time evolution is needed for
only relatively short times, however—as is often the case for
the reactive flux correlation function of Sec. IV—then it may
be possible to use it for the entire time increment. The exam-
ple treated in Sec. V is very encouraging in this regard. Hav-
ing the propagator as a power series in time is especially
convenient for Boltzmann correlation functions because one
is able to deal with complex time (r — %8 /2) in a very sim-
ple way.

By reducing the number of time slices that are required
to evaluate a path integral, Eq. (1.1), we believe that the
single step propagator described in this paper will signifi-
cantly increase the feasibility of path integral calculations.

Note added in proof: Since completion of this paper we
have become aware of a paper [ Y. Fujiwara, T. A. Osborn,
and 8. F. J. Wilk, Phys. Rev. A 25, 14 (1982)] in which the
same kind of exponential expansion of Sec. II kas been car-
ried out for the Boltzmann operator e - £, Fujiwara ef al,
derived the coefficients { W, } in the expansion by making a
perturbation expansion in the potential ¥ and then using a
linked-graph method to rearrange the two expansions {one
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in A, the other perturbation expansion in V). The reader
can readily verify that the derivation in Sec. II is consider-
ably simpler. To the best of our knowledge, the present work
is the first application of the approach to Feynman path inte-
gration and to the evaluation of flux correlation functions.
We are grateful to Dr. Weitao Yang for pointing this refer-
ence out to us.
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