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Abstract

We study random walks whose increments are α-stable distributions with shape

parameter 1 < α < 2. Specifically, assuming a mean increment size which is

negative, we provide series expansions in terms of the mean increment size

for the probability that the all-time maximum of an α-stable random walk is

equal to zero and, in the totally skewed to the left case of skewness parameter

β = −1, for the expected value of the all-time maximum of an α-stable random

walk. Our series expansions generalize previous results for Gaussian random

walks. Key ingredients in our proofs are Spitzer’s identity for random walks,

the stability property of α-stable random variables and Zolotarev’s integral

representation for the CDF of an α-stable random variable. We also discuss an

application of our results to a problem arising in queueing theory.
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1. Introduction

The class of α-stable distributions is an extension of the class of Gaussian distribu-

tions to random variables with infinite variance and sometimes even infinite mean. It is

in fact well known [11, 28, 32] that the class of α-stable distributions corresponds to the

set of weak limit points in generalized versions of the central limit theorem for sums of

i.i.d. random variables with an infinite second moment. In this paper, we study several

problems related to the all-time maximum of a random walk whose increments are i.i.d.

α-stable random variables with finite, negative mean. Specifically, let {Xk, k ≥ 1} be
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an i.i.d. sequence of α-stable random variables with shape parameter 1 < α < 2,

skewness parameter −1 ≤ β ≤ 1, shift parameter −ν < 0 and scale parameter 1. See

(1) below for the characteristic function of the sequence {Xk, k ≥ 1}. One may consult

Samorodnitsky and Taqqu [28] or Zolotarev [35] for detailed discussions regarding α-

stable random variables. We also provide the necessary background information on α-

stable distributions in Section 2 below. For the moment, we note that since 1 < α < 2,

we have that

−∞ < Eν [X1] = −ν < 0 and Varν(X1) = +∞.

Now set S0 = 0 and

Sn =

n∑
k=1

Xk, n ≥ 1.

We then define S = {Sn, n ≥ 0} to be the random walk associated with the sequence

{Xk, k ≥ 1}. Our main quantity of interest in this paper is the all-time maximum of

S. More precisely, we wish to study the random variable

M = sup
n≥0

Sn.

Note that since we have assumed that −ν < 0, it is immediate by the strong law of

large numbers [9] that M is well-defined (meaning with probability one). In the present

paper we will be concerned with studying Pν(M = 0) and Eν [M ] as functions of the

drift parameter −ν < 0.

The main results which we obtain in this paper provide full series expansion for

both Pν(M = 0) and Eν [M ] as functions of the drift parameter −ν < 0. One may

consult Theorems 3.1 and 3.2 of Section 3 below for the precise form of our series

expansions. Our results contribute to a long line of research [5, 8, 15, 16, 22, 29] aimed

at obtaining series expansions for random walks. For a survey of such results one may

consult Janssen and van Leeuwaarden [16]. The class of α-stable random variables

includes the class of Gaussian random variables as a special case by setting α = 2 and

β = 0 and so our results are most closely related to those of Chang and Peres [8] and

Janssen and van Leeuwaarden [15, 16], both of whom studied the Gaussian random

walk. Specifically, in [8] and [16] a series expansion is provided in terms of −ν for

Pν(M = 0) and in [15] series expansions are given in terms of −ν for Eν [M ] and indeed
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all of the cumulants of M . Our series expansions are also valid for the Gaussian case

of α = 2 and β = 0 and similar to [8] and [15, 16] the coefficients of our expansions

may be expressed in terms of the analytic continuation of the Riemann zeta function

to points along the negative portion of the real axis. At the same time the expansions

we obtain also reveal additional coefficients which were effectively set equal to zero

in the series expansions of [8] and [15, 16]. Indeed, the series expansions of [8] and

[15, 16] were expressed entirely in terms of odd or even powers of −ν < 0. This was

presumably due to the symmetry of the Gaussian distribution. The series expansions

which we obtain in the present paper have non-zero coefficients for all integer powers

of −ν < 0, with the exception again of the symmetric case of β = 0.

The proofs of our main results in this paper rely as in Chang and Peres [8] and

Janssen and van Leeuwaarden [15, 16] upon Spitzer’s identities [31] for random walks

in order to express Pν(M = 0) and Eν [M ] as infinite sums involving either certain

probabilities or expectations, respectively, associated with the partial sums of the

random walk S. Due to the stability property of α-stable random variables [28], it

is immediate that the partial sums expressed in Spitzer’s identities [31] are α-stable

random variables themselves. Unfortunately, although α-stable random variables do

admit simple closed form expressions for their characteristic functions, it turns out that,

with the exception of a few special cases, there are no known closed form expressions for

their distribution functions. Therefore, in the present paper we rely upon Zolotarev’s

[35] integral representation for the distribution function of an α-stable random variable

in order to continue the analysis after expressing either Pν(M = 0) or Eν [M ] as an

infinite sum using Spitzer’s identity [31]. In fact, a significant portion of the paper

is devoted to analyzing certain functions appearing in the integral representation of

Zoltarev [35]. Once these functions have been properly analyzed, we then borrow

techniques from complex analysis originally developed by Riemann [27] for analytically

continuing the zeta function in order to finish the proof.

We now complete this section by noting that the all-time maximum of a random walk

also plays an important role in more applied fields. In queueing theory [33], the limiting

delay distribution for the G/G/1 queue may be expressed in terms of the all-time

maximum of an associated random walk. This problem is discussed in further detail

in Section 7. Moreover, applications may also be found in fields as diverse as financial
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engineering [6, 7], insurance mathematics [2], operations management [12, 18, 34], and

sequential analysis [30].

2. Background on α-stable Random Variables

Several parameterizations exist for the characteristic function of an α-stable dis-

tribution and for the remainder of this paper we use the parameterization (B) given

by Theorem C.3 of Zolotarev [35]. Specifically, let Sα(β, γ, 1) denote a generic α-

stable random variable which under the probability measure P has shape parameter

0 < α < 2, α ̸= 1, skewness parameter −1 ≤ β ≤ 1, shift parameter γ ∈ R and scale

parameter 1. Then, the characteristic function of Sα(β, γ, 1) is given by

lnE[exp(itSα(β, γ, 1))] = itγ − |t|α(exp(−i(π/2)βK(α)sgn t)), t ∈ R, (1)

where K(α) = α − 1 + sgn(1 − α). The case of α = 1 may be treated separately.

We note that (1) may be extended to the case of α = 2 and β = 0 in which case we

recover the characteristic function of a normal random variable with a mean of γ and

a variance of two. One may consult Samorodnitsky and Taqqu [28] or Zolotarev [35]

for in-depth discussions of α-stable random variables.

The shape parameter 0 < α < 2 of an α-stable random variable controls the rate of

decay of the tails of the distribution and the skewness parameter −1 ≤ β ≤ 1 specifies

the degree of asymmetry in the distribution. If β > 0, then the distribution is skewed

to the right, while if β < 0, then the distribution is skewed to the left, and the case of

β = 0 corresponds to the distribution being symmetric about the origin. The role of

the the shift parameter γ is intuitively clear from (1). For the remainder of this paper,

we will be concerned for the most part with the cases of 1 < α < 2 and −1 ≤ β ≤ 1. In

these cases, the distribution of Sα(β, γ, 1) admits a density whose support is the entire

real line. Moreover, for 1 < α < 2, we have the asymptotics as x approaches ∞ given

by

P(Sα(β, γ, 1) > x) ∼ x−αCα
1 + β̃

2
cos((π/2)βK(α)), (2)

where β̃ = tan((π/2)βK(α)) cot((π/2)α) and Cα = (1 − α)(Γ(2 − α) cos((π/2)α))−1.

The asymptotic (2) also holds for P(Sα(β, γ, 1) < −x) as x → ∞ with β̃ replaced by
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−β̃. Note from (2) that if 1 < α < 2, then Sα(β, γ, 1) will only have finite moments

up to order p < α.

It is clear from (2) and the ensuing discussion that if β = 1, then the right tail of the

distribution of Sα(β, γ, 1) is heavier than the left tail, while the situation is reversed if

β = −1. We therefore refer to Sα(β, γ, 1) in the case of β = 1 as being “totally skewed

to the right”, while if β = −1 we say that Sα(β, γ, 1) is “totally skewed to the left”.

Specifically, if β = 1, then as x → ∞,

P(Sα(1, γ, 1) < −x) ∼ Bα

(x
α

)−α/(2(α−1))

exp(−(α− 1)(x/(α))α/(α−1)), (3)

where Bα = (2πα(α− 1))−1/2. If β = −1, then (3) holds with > x instead of < −x.

Now, for each 1 < α < 2 and −1 ≤ β ≤ 1, let Gα(x;β, γ, 1) denote the CDF

of an Sα(β, γ, 1) random variable. For the remainder of the paper we suppress the

dependence of Gα(x;β, γ, 1) on the parameters of the distribution and simply write

G(x). Our proofs in the present paper rely heavily upon Zolotarev’s [35] integral

representations for G. We therefore now provide the necessary results. For each 1 <

α < 2 and −1 ≤ β ≤ 1, let

θ = θ(β) = β(α− 2)/α, (4)

and define the function Uα,θ by setting

Uα,θ(φ) =

(
sin((π/2)α(φ+ θ))

cos((π/2)φ)

)α/(1−α)
cos((π/2)((α− 1)φ+ αθ))

cos((π/2)φ)
, (5)

for −θ < φ ≤ 1. It then follows by (2.2.27) of Zolotarev [35] that for 1 < α < 2,

−1 ≤ β ≤ 1, γ = 0 and scale parameter 1, we may represent the CDF G of an

Sα(β, 0, 1) random variable on the positive half-line via the integral expression

G(x) = 1− 1

2

∫ 1

−θ

exp(−xα/(α−1)Uα,θ(φ))dφ, x > 0. (6)

Moreover, differentiating (6) with respect to x and passing the derivative underneath

the integral sign, one obtains as in (2.2.18) of Zolotarev [35] the representation on the

positive half-line for the pdf gα(x;β, 0, 1) of an Sα(β, 0, 1) random variable given by

g(x) =
1

2

α

α− 1
x1/(α−1)

∫ 1

−θ

Uα,θ(φ) exp(−xα/(α−1)Uα,θ(φ))dφ, x > 0. (7)

Note that in (7) we suppress the dependence of gα(x;β, 0, 1) on the parameters of the

distribution, which we continue to do for the remainder of the paper.
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3. Main Results

As stated in Section 1, our main results in this paper provide series expansions for

both Pν(M = 0) and Eν [M ] as a function of the drift parameter −ν < 0. We now

state these results in order.

3.1. Series Expansion for Pν(M = 0)

In this section, we provide a series expansion for the quantity Pν(M = 0) as a

function of the drift parameter ν. In general, it turns out that Pν(M = 0) → 0 as

ν → 0 and so it is convenient to first renormalize Pν(M = 0) in order to obtain a non-

degenerate quantity in the limit as ν tends to zero. Specifically, for each 1 < α < 2

and −1 ≤ β ≤ 1, let

ϑ =
1

2

α

α− 1
(1 + θ), (8)

where we recall the definition of θ from (4) above. We then define the normalized

version of Pν(M = 0) by setting

π(ν) = ν−ϑPν(M = 0), ν > 0. (9)

A straightforward calculation using the facts that 1 < α < 2 and −1 ≤ β ≤ 1, shows

that ϑ ≥ 1 for all parameter combinations with strict equality holding only in the

totally skewed to the right case of β = 1 for all stability parameters 1 < α < 2.

Proposition 3.1. For each parameter combination 1 < α < 2 and −1 ≤ β ≤ 1, we

have that π(ν) → 1 as ν → 0.

Note that using (9) one has that Proposition 3.1 implies the rough asymptotic regarding

Pν(M = 0) given by

Pν(M = 0) = νϑ + o(νϑ), as ν ↓ 0. (10)

In Theorem 3.1 below we provide the full series expansion leading to the rough asymp-

totic above.

Before stating Theorem 3.1 recall first from Spitzer [31] the fundamental identity

lnPν(M = 0) = −
∞∑

n=1

1

n
Pν(Sn > 0). (11)
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Moreover, note that using the stability property of α-stable random variables (see

Corollary 1.2.9 of [28]) it follows that for each n ≥ 1, we have that under P0,

X1 + ...+Xn
d
= n1/αX1, (12)

and so we may write

Pν(Sn > 0) = P0(X1 > n(α−1)/αν). (13)

Thus, using the definition of π in (9), we obtain by differentiation that

d

dν
lnπ(ν) = −ϑ

1

ν
+

∞∑
n=1

1

n1/α
g(n(α−1)/αν), (14)

where g denotes the density of an α−stable random variable. Next, note that using

Zolotarev’s integral representation (7) above for the density of an α-stable distribution

on the positive half-line, we obtain by the monotone convergence theorem [24] along

with the fact that Uα,θ(φ) ≥ 0 for −θ < φ ≤ 1 (see Proposition 5.1 below) that we

may write

∞∑
n=1

1

n1/α
g(n(α−1)/αν) (15)

=
1

2

α

α− 1
ν1/(α−1)

∫ 1

−θ

Uα,θ(φ)
1

exp(να/(α−1)Uα,θ(φ))− 1
dφ.

In addition, by the results of Section 5 below, it follows that we may make the change-

of-variables x = Uα,θ(φ) in the integral above together with (14) and (15) to arrive

at

d

dν
lnπ(ν) = −H1(ν), ν > 0, (16)

where the function H1(ν) is defined by

H1(ν) = ϑ
1

ν
+

1

2

α

α− 1
ν1/(α−1)

∫ ∞

Uα,θ(1)

x

exp(να/(α−1)x)− 1
(U−1

α,θ)
′
(x)dx, (17)

for ν > 0.

Proposition 3.2. For each parameter combination 1 < α < 2 and −1 ≤ β ≤ 1, we

have the series expansion

H1(ν) =
1

π

1

α

∞∑
k=1

(−1)k
Γ(k/α)

Γ(k)
sin((π/2)k(1 + θ))ζ(k/α− k + 1)νk−1, (18)

valid for all 0 < ν < α(2π/(α− 1))(α−1)/α.
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Proposition 3.2 together with Proposition 3.1 and (16) now imply Theorem 3.1.

Theorem 3.1. For each parameter combination 1 < α < 2 and −1 ≤ β ≤ 1, we have

the series expansion

π(ν) (19)

= exp

(
1

π

1

α

∞∑
k=1

(−1)k−1 Γ(k/α)

Γ(k + 1)
sin((π/2)k(1 + θ))ζ(k/α− k + 1)νk

)
,

valid for all 0 < ν < α(2π/(α− 1))(α−1)/α.

In the coefficients of the series expansions above, the function ζ is the analytic continu-

ation of the Riemann zeta function to the complex plane. Indeed, Propositions 3.1 and

3.2 and Theorem 3.1 also hold in the Gaussian case of α = 2 and β = 0. Specifically, it

may be shown in this case using the duplication formula for the Gamma function that

the series expansion given by (19) above coincides with the series expansions obtained

by Chang and Peres [8] and Janssen and van Leeuwaarden [17]. It is also interesting

to note that the radius of convergence α(2π/(α− 1))(α−1)/α → 1 as α → 1. Hence, the

series expansion (19) is valid for all 0 < ν < 1 regardless of the value of 1 < α < 2. We

also note that using (9) above, it is immediate that Theorem 3.1 implies a full series

expansion for Pν(M = 0) in a neighborhood of zero.

3.2. Series Expansion for Eν [M ]

In this section, we study the quantity Eν [M ]. By Theorems 5 and 6 of Kiefer and

Wolfowitz [21] we have that Eν [M ] < +∞ if and only if Eν [(max(X1, 0))
2] < +∞.

Hence, Eν [M ] = +∞ for ν > 0, the exception being the totally skewed to the left case

of β = −1 for all stability parameters 1 < α < 2. We therefore focus our attention on

this special case for the remainder of the section. For each ν > 0 define the quantity

Ξ(ν) = Eν [M ]− 1

ν1/(α−1)
. (20)

Our main result in this section, Theorem 3.1, provides a series expansion for Ξ as a

function of ν. We begin with the following result which identifies the limit of Ξ as ν

tends to zero.

Proposition 3.3. For each parameter combination 1 < α < 2 and β = −1, we have
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that

lim
ν→0

Ξ(ν) = − 1

π

1

α
Γ(−1/α) sin((π/2)(1 + θ))ζ(1− 1/α).

Similar to our proof of Theorem 3.1, our proof of Theorem 3.2 also has as its starting

point Spitzer’s identity [31] for random walks. Specifically, recall that for each ν > 0

we may write

Eν [M ] =

∞∑
n=1

1

n
Eν [S

+
n ]. (21)

Next, note that using the stability property of α-stable random variables, it follows

after an integration-by-parts that for each n ≥ 1,

Eν [S
+
n ] = n1/α

∫ ∞

n(α−1)/αν

(1−G(x))dx. (22)

Similar to the developments in Section 3.1, we now obtain, upon substituting (22)

into (21) together with the definition of Ξ in (20) and the Zolotarev [35] integral

representation (6) of the CDF of an α-stable random variable, that we may write

d

dν
Ξ(ν) =

1

α− 1

1

να/(α−1)
− 1

2

∫ 1

−θ

1

exp(να/(α−1)Uα,θ(φ))− 1
dφ.

Now, by the results of Section 5 below, it follows that we may make the change-of-

variables x = Uα,θ(φ) in the integral above in order to obtain

d

dν
Eν [M ] = H2(ν), ν > 0, (23)

where the function H2(ν) is defined by

H2(ν) =
1

α− 1

1

να/(α−1)
+

1

2

∫ ∞

Uα,θ(1)

1

exp(να/(α−1)x)− 1
(U−1

α,θ)
′
(x)dx, (24)

for ν > 0.

Proposition 3.4. For each parameter combination 1 < α < 2 and β = −1, we have

the series expansion

H2(ν) =
(1 + θ)

4
(25)

+
1

π

1

α

∞∑
k=1

(−1)k−1 Γ(k/α)

Γ(k + 1)
sin((π/2)k(1 + θ))ζ(k/α− k)νk,

valid for all 0 < ν < α(2π/(α− 1))(α−1)/α.
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Proposition 3.4 together with Proposition 3.3 and (23) now imply Theorem 3.2.

Theorem 3.2. For each parameter combination 1 < α < 2 and β = −1, we have the

series expansion

Ξ(ν) = − 1

π

1

α
Γ(−1/α) sin((π/2)(1 + θ))ζ(1− 1/α) +

(1 + θ)

4
ν

+
1

π

1

α

∞∑
k=1

(−1)k−1 Γ(k/α)

Γ(k + 2)
sin((π/2)k(1 + θ))ζ(k/α− k)νk+1,

valid for all 0 < ν < α(2π/(α− 1))(α−1)/α.

Propositions 3.3 and 3.4 and Theorem 3.2 also hold in the Gaussian case of α = 2 and

β = 0. Specifically, in this case it may be shown that the series expansion given by

Theorem 3.2 agrees with the results of Janssen and van Leeuwaarden [15, 16].

4. Rough Asymptotics

In this section, we provide the proofs of the rough asymptotics which are needed in

order to prove our main results of the paper.

4.1. Limiting Behavior of Pν(M = 0)

Proof of Proposition 3.1. First note that from the definition of π in (9) and Spitzer’s

identity (11), we have that for ν > 0,

lnπ(ν) = −ϑ ln(ν)−
∞∑

n=1

1

n
Pν(Sn > 0). (26)

Next, by stability property (12) and (13) of α-stable random variables, the Zolotarev

integral representation (6) for the CDF of an α-stable random variable with ν = 0,

the positivity of Uα,θ(φ) for −θ < φ < 1 guaranteed by Proposition 5.1, the Monotone

Convergence Theorem [24] and the series definition of the natural logarithm it follows

that

∞∑
n=1

1

n
Pν(Sn > 0) = −1

2

∫ 1

−θ

ln(1− exp(−να/(α−1)Uα,θ(φ)))dφ. (27)

Next, note that since 1 < α < 2, we have that α/(α− 1) > 0, and so, again using the

positivity of Uα,θ(φ) for −θ < φ < 1 guaranteed by Proposition 5.1 of Section 5.1, we
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have that for each −θ < φ < 1,

ln(1− exp(−να/(α−1)Uα,θ(φ)))− ln(να/(α−1)Uα,θ(φ))) → 0 as ν → 0. (28)

Moreover, it is straightforward to show that the quantity on the lefthand side above is,

for each −θ < φ < 1, monotonically decreasing in ν > 0. Hence, since by (30) below

we have that for each ν > 0,∫ 1

−θ

| ln(να/(α−1)Uα,θ(φ)))|dφ < ∞,

it follows by (27), (28) and the Dominated Convergence Theorem [24] that we may

write

∞∑
n=1

1

n
Pν(Sn > 0) = −1

2

α

α− 1
(1 + θ) ln(ν)− 1

2

∫ 1

−θ

ln(Uα,θ(φ))dφ+ o(1).

Thus, using the definition of ϑ given in (8) together with the identity (26), the above

equality now implies that

lnπ(ν) =
1

2

∫ 1

−θ

ln(Uα,θ(φ)))dφ+ o(1), ν > 0.

Hence, in order to complete the proof it suffices to show that∫ 1

−θ

ln(Uα,θ(φ)))dφ = 0. (29)

However note that using the definition of Uα,θ(φ) in (5) it follows that

ln(Uα,θ(φ)) =
α

1− α
ln(sin((π/2)α(φ+ θ))) (30)

+ ln(cos((π/2)((α− 1)φ+ αθ)))

+
1

α− 1
ln(cos((π/2)φ)).

By an appropriate change-of-variables, it is then straightforward to prove the desired

result (29).

4.2. Limiting Behavior of Eν [M ]

Proof of Proposition 3.3. First recall that by (21) and (22) above we have that in

the case of 1 < α < 2 and β = −1 we may write

Eν [M ] =

∞∑
n=1

1

n(α−1)/α

∫ ∞

n(α−1)/αν

(1−G(x))dx, ν > 0,
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where G denotes the CDF of an α-stable random variable with 1 < α < 2 and β = −1.

Next, note that using the Zolotarev integral representation for the CDF of an α-

stable random variable given by (6), it follows after a change-of-variables that from the

definition of θ from (4) of Section 2 above, the positivity of Uα,θ(φ) for −θ < φ < 1

guaranteed by Proposition 5.1 of Section 5 below, and the Monotone Convergence

Theorem [24], we have that for ν > 0 we may write

∞∑
n=1

1

n(α−1)/α

∫ ∞

n(α−1)/αν

(1−G(x))dx (31)

=
1

2

∫ 1

−θ

∫ ∞

ν

1

exp(xα/(α−1)Uα,θ(φ))− 1
dxdφ.

We now proceed to analyze the inner integral on the righthand side of (31) above.

First note that making the change-of-variables v = xα/(α−1)Uα,θ(φ) in the inner

integral in (31), we obtain that for ν > 0,∫ ∞

ν

1

exp(xα/(α−1)Uα,θ(φ))− 1
dx (32)

=
α− 1

α

1

(Uα,θ(φ))(α−1)/α

∫ ∞

να/(α−1)Uα,θ(φ)

1

exp(v)− 1

1

v1/α
dv.

Next, note that making use of the generating function of the Bernoulli numbers [1],

together with their relationship to the Riemann zeta function [1], it follows that for

each 0 < x < 2π we may write

1

exp(x)− 1

1

x1/α
=

1

x1/α+1
+

∞∑
k=0

(−1)k+1 ζ(−k)

k!
xk−1/α.

Now integrating the above and using the contour integral representation [27] of the

Riemann zeta function to evaluate the resulting constant of integration, it follows that

for 0 < x < 2π,∫ ∞

x

1

exp(v)− 1

1

v1/α
dv − α

1

x1/α
(33)

= Γ

(
1− 1

α

)
ζ

(
1− 1

α

)
+

∞∑
k=0

(−1)k
ζ(−k)

k!

1

k + 1− 1
α

xk+1−1/α.

Thus, substituting (33) into (32) we obtain that for 0 < ν < (2π/Uα,θ(φ)) we may

write ∫ ∞

ν

1

exp(xα/(α−1)Uα,θ(φ))− 1
dx− (α− 1)

1

Uα,θ(φ)

1

ν1/(α−1)
(34)

=
α− 1

α
Γ

(
1− 1

α

)
ζ

(
1− 1

α

)
1

(Uα,θ(φ))(α−1)/α
+O(ν).
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Now substituting (34) into (31) and using the fact from Proposition 5.1 of Section

5.1 below that in the case of β = −1 we have that Uα,θ(φ) > (α − 1)αα/(1−α) for

−θ < φ < 1, it follows by the Dominated Convergence Theorem [24] that

lim
ν→0

Eν [M ]− (α− 1)

2

∫ 1

−θ

1

Uα,θ(φ)
dφ

1

ν1/(α−1)
(35)

=
1

2

(α− 1)

α
Γ

(
1− 1

α

)
ζ

(
1− 1

α

)∫ 1

−θ

1

(Uα,θ(φ))(α−1)/α
dφ.

In order to complete the proof, it now remains to evaluate each of the integrals

appearing in the expression (35) above. We begin with the integral appearing on the

lefthand side of (35). First note that using the Zolotarev integral representation of

the CDF of an α-stable random variable with ν = 0 given by (6) of Section 2 with x

replaced by x(α−1)/α, and then integrating the resulting expression from 0 to ∞, we

have by the Monotone Convergence Theorem [24] that may write∫ 1

−θ

1

Uα,θ(φ)
dφ = 2

∫ ∞

0

(1−G(x(α−1)/α))dx =

∫ ∞

0

xα/(α−1)g(x)dx, (36)

where the equality on the righthand side above follows after performing an integration-

by-parts and an appropriate change-of-variables. We now evaluate the integral on the

righthand side of (36). For a ∈ C with Re a > 0 recall the series definition [13] of the

Mittag-Leffler function Ea : C 7→ C given by

Ea(s) =

∞∑
k=0

sk

Γ(ak + 1)
, s ∈ C.

Then, by Theorem 2.10.3 of Zolotarev [35] together with the duality relationship (2.3.3)

of Zolotarev [35], we obtain that for p > 0,

Ep/α(s) =

∫ ∞

0

Ep(sx
p)x−1/α−1g(x−1/α)dx = α

∫ ∞

0

Ep(sx
p)g(x)dx (37)

for s ∈ C, where the equality on the righthand side above follows by an appropriate

change-of-variables. Taking the derivative with respect to s on both sides of (37) and

setting s = 0, we now obtain that∫ ∞

0

xpg(x)dx =
Γ(p)

Γ(p/α)
, p > 0, (38)

where here we have used the fact that E
′

p(0) = (pΓ(p))−1. Now setting p = α/(α− 1)

in (38) and using (36) and the fact that Γ(1 + z) = zΓ(z) z ∈ C, it follows that

(α− 1)

2

∫ 1

−θ

1

Uα,θ(φ)
dφ = 1. (39)
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Next, we analyze the integral on the righthand side of (35). In a similar manner to the

above, using the Zolotarev integral representation of the CDF of an α-stable random

variable with ν = 0 given by (6) of Section 2, along with the integral representation of

the gamma function, we may write∫ 1

−θ

1

(Uα,θ(φ))(α−1)/α
dφ =

(
1

2

α− 1

α
Γ

(
α− 1

α

))−1 ∫ ∞

0

(1−G(x))dx.

Hence, performing integration-by-parts on the integral on the righthand side above,

then setting p = 1 in (38), using Euler’s reflection formula [23], and noting that in the

case that β = −1 we have that α(1 + θ) = 2, it follows that we may write(
1

2

α− 1

α
Γ

(
α− 1

α

)
ζ

(
α− 1

α

))∫ 1

−θ

1

(Uα,θ(φ))(α−1)/α
dφ (40)

= − 1

π

1

α
Γ(−1/α) sin((π/2)(1 + θ))ζ(1− 1/α),

which completes our treatment of the righthand side of (35). Now placing (35), (39)

and (40) together we obtain the desired result.

5. Analysis of Uα,θ and U−1
α,θ

In Section 6, an important role is played in the proofs of Propositions 3.2 and 3.4

by U−1
α,θ, the inverse of the function Uα,θ appearing in (6). We therefore devote this

entire section to analyzing Uα,θ and its inverse U−1
α,θ.

5.1. Analysis of Uα,θ

In this section, we begin with the following result regarding the behavior of Uα,θ at

the endpoints −θ and 1.

Proposition 5.1. For each 1 < α < 2 and −1 ≤ β ≤ 1, we have that Uα,θ(−θ) = +∞.

Moreover,

1. If 1 < α < 2 and β = −1, then Uα,θ(1) = (α− 1)αα/(1−α).

2. If 1 < α < 2 and −1 < β ≤ 1, then Uα,θ(1) = 0.

Proof. We first show that in both cases Uα,θ(φ) → ∞ as φ → −θ. Note that since

1 < α < 2 and −1 ≤ β ≤ 1, it is straightforward to show that −1 < θ < 1. Thus, from
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(5) we obtain that

lim
φ→−θ

Uα,θ(φ) = cos((π/2)θ)α/(α−1) lim
φ→−θ

sin((π/2)α(φ+ θ))α/(1−α) = +∞,

where the final equality follows since by the assumption 1 < α < 2, we have that

α/(1− α) < 0. We next prove Items 1 and 2.

First suppose that 1 < α < 2 and β = −1 and note that this implies that θ =

(2/α − 1) and α(1 + θ) = 2. Then, using the asymptotic sin(x)/x → 1 as x → 0, it

is straightforward to obtain from (5) that Uα,θ(φ) → (α − 1)αα/(1−α) as φ → 1, from

which Item 1 follows.

Next suppose that 1 < α < 2 and −1 < β ≤ 1. It is then straightforward to deduce

that 0 < α(1 + θ) < 2 and hence

lim
φ→1

Uα,θ(φ) = sin((π/2)α(1 + θ))α/(1−α) lim
φ→1

cos((π/2)φ)1/(α−1) = 0,

where the final equality follows since by the assumption 1 < α < 2, we have that

1/(α− 1) > 1. Thus, Item 2 is proven.

Next we prove that Uα,θ is decreasing on (−θ, 1). This result may be found elsewhere

in the literature (see, for instance, Nolan [25]), however, we provide a separate proof

for the sake of completeness.

Proposition 5.2. For each 1 < α < 2 and −1 ≤ β ≤ 1, the function Uα,θ is decreasing

on the interval (−θ, 1).

Proof. Let f : C 7→ C be the function defined by f(z) = iz− zα exp(i(π/2)β(α−2))

for z ∈ C. Then, for each z = x+iy, write f(z) = u(x, y)+iv(x, y), where u, v : R2 7→ R.

Now let Γ0 be the level curve of v of level 0 in the region of the x-y plane given by

{(x, y) ∈ R2 : −θ(π/2) < arg z < π/2}, where again we write z = x + iy in order to

associate points in R2 with points in C. It now follows that we may parameterize Γ0

by writing

Γ0(Φ) =

(
sin((π/2)β(α− 2) + Φα)

sin((π/2) + Φ)

)1/(1−α)

eiΦ, − θ(π/2) < Φ < (π/2). (41)

Now using the definition of f : C 7→ C along with (41) it straightforward to see after

some algebra that u(Γ0(Φ)) = −Uα,θ((2/π)Φ) for −θ(π/2) < Φ < (π/2). Now recall

[23] that each level curve of v in the x-y plane must follow along an integral curve of
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the vector field formed by the gradient of u. Hence, in order to complete the proof it

suffices by Proposition 5.1 to verify that f
′
(z) ̸= 0 along the level curve Γ0. However,

using the fact that 1 < α < 2 and −1 ≤ β ≤ 1, a straightforward calculation using the

definition of f : C 7→ C verifies that f
′
(z) ̸= 0 for Re z > 0.

5.2. Analysis of the function U−1
α,θ

Note by Propositions 5.1 and 5.2 of Section 5.1 above that for each parameter

combination 1 < α < 2 and −1 ≤ β ≤ 1 we have that Uα,θ is a continuous, decreasing

function on (−θ, 1], with Uα,θ(−θ) = +∞. Thus, we may uniquely define the inverse

function of Uα,θ, which we denote by U−1
α,θ : [Uα,θ(1),+∞) 7→ (−θ, 1], and we define its

associated Laplace transform

F (s) =

∫ ∞

Uα,θ(1)

e−sxU−1
α,θ(x)dx, Re s > 0.

Next recall by Theorem 2.4.2 of Zolotarev [35] that the CDF G of an α-stable

random variable has a unique analytic continuation to the entire complex plane. Let

us therefore continue to denote this extension by G : C 7→ C. Also by Theorem 2.4.2

of [35], the function G has the series expansion

1−G(s) =
1

2
(1 + θ) +

1

π

1

α

∞∑
n=1

(−1)n
Γ(nα )

Γ(n+ 1)
sin(n(π/2)(1 + θ))sn, (42)

for s ∈ C. We note as well that by Theorem 2.4.3 of [35], G is of order α/(α− 1) and

type (α− 1)αα/(1−α). These facts will be used in the remainder of this section.

Proposition 5.3. For each 1 < α < 2 and −1 ≤ β ≤ 1, we have that

F (s) =
1

s

(
e−sUα,θ(1) − 2(1−G(s(α−1)/α))

)
, Re s > 0. (43)

Proof. Let 1 < α < 2 and −1 ≤ β ≤ 1 and recall from the Zolotarev integral

representation (6) of Section 2 that for real-valued x > 0 we may write

1−G(x) =
1

2

∫ 1

−θ

exp(−xα/(α−1)Uα,θ(φ))dφ, (44)

where we recall from (4) of Section 2 that θ(β) = β(α−2)/α. Now perform the change-

of-variables u = Uα,θ(φ) for −θ < φ ≤ 1, and note that by Propositions 5.1 and 5.2

we have that we may write φ = U−1
α,θ (u) for Uα,θ(1) ≤ u < +∞. It therefore now
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follows from (44) and Proposition 5.1 that for real-valued x > 0 we may write

1−G(x) = −1

2

∫ ∞

Uα,θ(1)

exp
(
−xα/(α−1)u

)
(U−1

α,θ)
′
(u) du.

Now note that the above equality may be rewritten as∫ ∞

Uα,θ(1)

exp (−xu) (U−1
α,θ)

′
(u) du = −2(1−G(x(α−1)/α)). (45)

Then, integrating-by-parts the lefthand side above and using some simple algebra, we

arrive at

F (x) =
1

x

(
e−xUα,θ(1) − 2(1−G(x(α−1)/α))

)
,

for real-valued x > 0. The result (43) now holds by the uniqueness [23] of analytic

continuation.

We now use Proposition 5.3 to provide a characterization of (U−1
α,θ)

′
in terms of the

CDF G.

Proposition 5.4. For each parameter combination 1 < α < 2 and −1 ≤ β ≤ 1, we

have that

(U−1
α,θ)

′
(x) = − 1

π

∫ +∞

−∞
eixξ(1−G((iξ)α/(α−1)))dξ, x > Uα,θ(1). (46)

Proof. First note that by Propositions 5.1 and 5.2 we have that (U−1
α,θ)

′
is an

integrable function on (Uα,θ(1),+∞). Hence, we may define the Fourier transform

f(ξ) =

∫ +∞

−∞
e−iξu1{u > Uα,θ(1)}(U−1

α,θ)
′
(u)du, ξ ∈ R.

Now note that taking limits on both sides of (45) in the proof of Proposition 5.3, it

follows by the Dominated Convergence Theorem [24] and the continuity of the function

G that

f(ξ) = −2(1−G((iξ)α/(α−1))), ξ ∈ R.

Hence, since by Proposition 5.2 we have that for each x > Uα,θ(1), the function (U−1
α,θ)

′

is of bounded variation in an interval containing x and is continuous at x, the result

(46) now follows by the Fourier inversion formula.
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5.3. The function G

Define the pair of functions G+ and G− by setting

G+(s) =

∫ +∞

0

eisξ(1−G((iξ)(α−1)/α))dξ, Im s ≥ 0, s /∈ [Uα,θ(1),∞), (47)

and

G−(s) = −
∫ 0

−∞
eisξ(1−G((iξ)(α−1)/α))dξ, Im s ≤ 0, s /∈ [Uα,θ(1),∞). (48)

In Proposition 5.5 below, we show that both of these functions are well defined on

their domain of definition, and, moreover, that they agree for s ∈ (−∞, Uα,θ(1)). In

preparation for this result, let

G(s) =

G+(s), Im s ≥ 0, s /∈ [Uα,θ(1),∞),

G−(s), Im s ≤ 0, s /∈ [Uα,θ(1),∞).

(49)

Proposition 5.5. For each s ∈ C \ [Uα,θ(1),∞), we have that

G(s) =
1

2
i

∫ 1

−θ

1

s− Uα,θ(φ)
dφ. (50)

Proof. First note that by the Zolotarev integral representation (6) of Section 2 and

the uniqueness of analytic continuation [23], it follows that for each ξ ∈ R we may

write

1−G((iξ)(α−1)/α) =
1

2

∫ 1

−θ

exp(−iξUα,θ(φ))dφ.

Now let s ∈ C be such that Im s ≥ 0 and s /∈ [Uα,θ(1),∞). It then follows by (47)

and the definition of G above that we may write

G(s) =
1

2
lim

R→∞

∫ R

0

∫ 1

−θ

exp(−ξi(Uα,θ(φ)− s))dφdξ.

Now interchanging the order of integration in the above and performing the inner

integration, we obtain that

G(s) =
1

2
i

∫ 1

−θ

1

s− Uα,θ(φ)
dφ− 1

2
i lim
R→∞

∫ 1

−θ

exp(−Ri(Uα,θ(φ)− s))

s− Uα,θ(φ)
dφ. (51)

Next note that since Im s ≥ 0 and s /∈ [Uα,θ(1),∞), it follows by Propositions 5.1

and 5.2 that s − Uα,θ(φ) ̸= 0 for −θ < φ ≤ 1. Hence, using the Riemann-Lebesgue

lemma [4], we obtain that

lim
R→∞

∫ 1

−̆θ

exp(−Ri(Uα,θ(φ)− s))

s− Uα,θ(φ)
dφ = 0. (52)
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It now follows by (51) and (52) that

G(s) =
1

2
i

∫ 1

−θ

1

s− Uα,θ(φ)
dφ, Im s ≥ 0, s /∈ [Uα,θ(1),∞).

In a similar manner, it may be shown that (50) holds for Im s ≤ 0, s /∈ [Uα,θ(1),∞).

Now note that by Propositions 5.1 and 5.2, as well as (50) of Proposition 5.5, we

have that the function G is analytic in C \ [Uα,θ(1),∞). In the following result, we

provide a series expansion for G in a suitable region in the complex plane. We have

the following.

Proposition 5.6. For each s ∈ C \ [Uα,θ(1),∞) with |s| > (α− 1)αα/(1−α), we have

the series expansion

1

i
G(s) =

1

2
(1 + θ)

1

s
(53)

+
1

π

1

α

α− 1

α

∞∑
n=1

(−1)n−1Γ(
n
α )Γ(n(

α−1
α ))

Γ(n)
sin(n(π/2)(1 + θ))(−s)n(1−α)/α−1.

Proof. First note that letting s = iz for z > 0 in (47), we obtain by the definition

of G above that

G(iz) =

∫ +∞

0

e−zξ(1−G((iξ)(α−1)/α))dξ, z > 0. (54)

Next, recall by (42) that the function G has the series expansion

1−G(s) =
1

2
(1 + θ) +

1

π

1

α

∞∑
n=1

(−1)n
Γ(nα )

Γ(n+ 1)
sin(n(π/2)(1 + θ))sn, s ∈ C,

and by Theorem 2.4.3 of [35] is of order α/(α − 1) and type (α − 1)αα/(1−α). Hence,

for z > (α − 1)αα/(1−α), we obtain from (42), (54) and the Dominated Convergence

Theorem [24] along with some simple algebra that

G(iz) =
1

2
(1 + θ)

1

z
(55)

+
1

π

1

α

∞∑
n=1

(−1)n
Γ(nα )

Γ(n+ 1)
sin(n(π/2)(1 + θ))in(α−1)/α

∫ +∞

0

e−zξξn(α−1)/αdξ.

However, note that after a change-of-variables one may write∫ +∞

0

e−zξξn(α−1)/αdξ = n
α− 1

α
Γ(n(α− 1)/α)zn(1−α)/α−1, n ≥ 1. (56)
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Hence, upon substitution of (56) into (55) and some algebra we obtain that for z >

(α− 1)αα/(1−α),

1

i
G(iz) =

1

2
(1 + θ)

1

zi

+
1

π

1

α

α− 1

α

∞∑
n=1

(−1)n−1Γ(
n
α )Γ(n(

α−1
α ))

Γ(n)
sin(n(π/2)(1 + θ))(−iz)n(1−α)/α−1.

The result now follows since by Propositions 5.1 and 5.2, and (50) of Proposition 5.5,

the function G is analytic in C \ [Uα,θ(1),∞), together with the uniqueness of analytic

continuation [23].

Proposition 5.6 above provides a series expansion for the function G for large values

of s ∈ C. Next, in the following result, we characterize the behavior of G in the vicinity

of Uα,θ(1).

Proposition 5.7. For each 1 < α < 2 and −1 ≤ β ≤ 1, we have that for each

0 < η < 2π, η ̸= π,

lim
r→0

rG(Uα,θ(1) + reiη) = 0 (57)

and ∣∣rG(Uα,θ(1) + reiη)
∣∣ ≤ (1 + θ), r > 0. (58)

Proof. First recall by (47) above that for s ∈ C with Im s ≥ 0 and s /∈ [Uα,θ(1),∞),

we may write

G(s) =

∫ +∞

0

eisξ(1−G((iξ)(α−1)/α))dξ. (59)

Next, recall that by (6) of Section 5 and the uniqueness of analytic continuation [23],

it follows after a change-of-variables that for ξ ∈ R we may write,

1−G((iξ)(α−1)/α) (60)

= −1

2
exp(−iξUα,θ(1))

∫ ∞

0

exp(−iξu)dU−1
α,θ(Uα,θ(1) + u).

Hence, substituting (60) into (59), we obtain that for s ∈ C with Im s ≥ 0 and

s /∈ [Uα,θ(1),∞), we may write

G(s) = −1

2

∫ +∞

0

eiξ(s−Uα,θ(1))

(∫ ∞

0

exp(−iξu)dU−1
α,θ(Uα,θ(1) + u)

)
dξ. (61)
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Now let s = Uα,θ(1) + reiη with r > 0 and 0 < η < π. It then follows after making

the change-of-variables v = ξr in (61) that we obtain

rG(Uα,θ(1) + reiη) (62)

= −1

2

∫ +∞

0

eve
i((π/2)+η)

(∫ ∞

0

exp(−i(v/r)u)dU−1
α,θ(Uα,θ(1) + u)

)
dv.

Moreover, note that since 0 < η < π we have that Re ei(π/2+η) < 0. Also note that

using Proposition 5.1, it follows by the Riemann-Lebesgue lemma [4] that for each

v > 0,

lim
r→0

∫ ∞

0

exp(−i(v/r)u)dU−1
α,θ(Uα,θ(1) + u) = 0.

Hence, since by the triangle inequality and Proposition 5.1 we have for each v > 0,∣∣∣∣∫ ∞

0

exp(−i(v/r)u)dU−1
α,θ(Uα,θ(1) + u)

∣∣∣∣ ≤ 1 + θ,

it follows by (62) and the Bounded Convergence Theorem [24] that (57) holds for

0 < η < π. Using the definition of G− in (48), it may also be shown in a similar

manner to the above that (57) holds in the case of π < η < 2π. This completes the

proof of the claim (57).

We now proceed to show that the claim (58) holds. Let s = Uα,θ(1) + reiη with

r > 0 and 0 < η < π. Then, using Propositions 5.1 and 5.2, it is straightforward to

show that uniformly for {ξ ∈ C : −η ≤ arg ξ ≤ 0}, we have the convergence

eiξ(s−Uα,θ(1))

(∫ ∞

0

exp(−iξu)dU−1
α,θ(Uα,θ(1) + u)

)
→ 0 as |ξ| → ∞.

Moreover, again using Propositions 5.1 and 5.2, it follows that the inner integral in

(61) converges uniformly for Im ξ ≤ 0, and hence is analytic for Im ξ < 0. It therefore

follows by (61) and using a standard argument involving Cauchy’s integral theorem

[23] that we may write

G(Uα,θ(1) + reiη) (63)

= −e−iη

2

∫ +∞

0

eirξ
(∫ ∞

0

exp(ξue−i(π/2+η))dU−1
α,θ(Uα,θ(1) + u)

)
dξ.

Now integrating-by-parts in (63) we obtain that

ei(π/2+η)2rG(Uα,θ(1) + reiη) (64)

= (1 + θ) +

∫ +∞

0

eirξ
d

dξ

(∫ ∞

0

exp(ξue−i(π/2+η))dU−1
α,θ(Uα,θ(1) + u)

)
dξ.
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Moreover, note that since 0 < η < π we have that Re ei(π/2+η) < 0. Thus, passing the

derivative underneath the integral sign in the above, a straightforward application of

the triangle inequality together with Proposition 5.1 yields that∣∣∣∣∫ +∞

0

eirξ
d

dξ

(∫ ∞

0

exp(ξue−i(π/2+η))dU−1
α,θ(Uα,θ(1) + u)

)
dξ

∣∣∣∣ ≤ (1 + θ). (65)

Combining (64) and (65), we now obtain (58) in the case of 0 < η < π. Using the

definition of G− in (48), it may also be shown in a similar manner to the above that

(58) holds in the case of π < η < 2π. Thus, claim (58) holds.

For our final result of this section, we have the following.

Proposition 5.8. For each x > Uα,θ(1), we have that

lim
δ↓0

(G(x+ iδ)− G(x− iδ)) = −π(U−1
α,θ⋆)

′
(x).

Proof. First recall by Proposition 5.5 that for each s ∈ C \ [Uα,θ(1),∞), we may

write

G(s) =
1

2
i

∫ 1

−θ

1

s− Uα,θ(φ)
dφ.

Hence, as in the proof of Proposition 5.3, we may use the change-of-variables x =

Uα,θ(φ) for −θ < φ ≤ 1, together with Proposition 5.1, in order to write

G(s) =
1

2
i

∫ ∞

Uα,θ(1)

1

x− s
(U−1

α,θ)
′
(x)dx, s ∈ C \ [Uα,θ(1),∞). (66)

The result now follows by (66) and the Sokhotski-Plemelj theorem (see Theorem I.1.6.1

of [10]).

6. Proofs of Series Expansions for H1 and H2

In Section 6.1 below we provide the proof of Proposition 3.2, and in Section 6.2 we

provide the proof of Proposition 3.4.

6.1. Proof of Proposition 3.2

Proof of Proposition 3.2 . First recall from (49) of Section 5.3 above the definition

of the function G and also recall from Proposition 5.8 above that for each x > Uα,θ(1),
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we have that

lim
δ↓0

(G(x+ iδ)− G(x− iδ)) = −π(U−1
α,θ)

′
(x).

Our goal now is to integrate the function G around a properly chosen contour in the

complex plane in order to recover the integral on the righthand side of (17) .

We begin with the totally skewed to the left case. Specifically, let 1 < α < 2 and β =

−1. Next, note that since by assumption we have that 0 < ν < α(2π/(α− 1))(α−1)/α,

it follows that we may fix a pair of numbers

a > (α− 1)αα/(1−α) and (α− 1)αα/(1−α) < b < 2π/να/(α−1). (67)

Next, for each R > (α− 1)αα/(1−α) and

0 < r < min((α− 1)αα/(1−α), R− (α− 1)αα/(1−α), b) and 0 < δ < min(b, r) (68)

consider the contour Cr,δ,R in the complex plane depicted in Figure 1 below. Specifically,

Uα,θ(1)0

Zδ,r

Dr,δ

Lr,δ,R

Lr,δ,R

−a+ ib

−a− ib

Figure 1: The contour Cr,δ,R in the case of 1 < α < 2 and β = −1.

we write Cr,δ,R = Zδ,R + Lr,δ,R +Dr,δ, where

Zδ,R = {R+ iy : δ ≤ y ≤ b}+ {x+ ib : R ≥ x ≥ −a} (69)

+{−a+ iy : b ≥ y ≥ −b}

+{x− ib : −a ≤ x ≤ R}+ {R+ iy : −b ≤ y ≤ −δ},
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and

Lr,δ,R = {x+ iδ : (α− 1)αα/(1−α) + (r2 − δ2)1/2 ≤ x ≤ R}

+{x− iδ : R ≥ x ≥ (α− 1)αα/(1−α) + (r2 − δ2)1/2},

and

Dr,δ = {(α− 1)αα/(1−α) + reiθ : arcsin(δ/r) ≤ θ ≤ 2π − arcsin(δ/r)}. (70)

Now note that by Proposition 5.5 and since by assumption (α − 1)αα/(1−α) < b <

2π/να/(α−1), it is clear that the function

s

exp
(
να/(α−1)s

)
− 1

G(s), s ∈ C \ (Uα,θ(1),+∞), s ̸= 2kπ/να/(α−1), k ∈ Z,

is analytic everywhere inside the closed contour Cr,δ,R. Hence, using Cauchy’s integral

theorem [23] and the definition of Cr,δ,R given above, it follows that we may write∮
Lr,δ,R

s

exp
(
να/(α−1)s

)
− 1

G(s)ds = −
∮
Zδ,R

s

exp
(
να/(α−1)s

)
− 1

G(s)ds (71)

−
∮
Dr,δ

s

exp
(
να/(α−1)s

)
− 1

G(s)ds.

We now take limits on both sides of the above, first as δ → 0, then as r → 0, and

finally as R → ∞.

First note that by Proposition 5.8 and the Dominated Convergence Theorem [24],

it is clear that

lim
R→∞

lim
r→0

lim
δ→0

∮
Lr,δ,R

s

exp
(
να/(α−1)s

)
− 1

G(s)ds (72)

= −π

∫ ∞

Uα,θ(1)

x

exp
(
να/(α−1)x

)
− 1

(U−1
α,θ)

′
(x)dx.

Next, note that by Proposition 5.6 we have that uniformly on its domain of definition,

|G(s)| → 0 as |s| → ∞, which implies that

lim
R→∞

lim
δ→0

(∫ R+bi

R+δi

+

∫ R−δi

R−bi

)
s

exp
(
να/(α−1)s

)
− 1

G(s)ds = 0.

Hence, using the definition of the contour Zδ,R in (69) we obtain that

lim
R→∞

lim
δ→0

∮
Zδ,R

s

exp
(
να/(α−1)s

)
− 1

G(s)ds (73)

=

∮
Z

s

exp
(
να/(α−1)s

)
− 1

G(s)ds,
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where the contour Z is defined by

Z = {x+ ib : ∞ > x ≥ −a}+ {−a+ iy : b ≥ y ≥ −b} (74)

+{x− ib : −a ≤ x < ∞}.

Finally, note that using the definition of the contour Dr,δ in (70) together with Propo-

sition 5.7, it is straightforward to show that

lim
r→∞

lim
δ→0

∮
Dr,δ

s

exp
(
να/(α−1)s

)
− 1

G(s)ds = 0. (75)

Now placing the identities (71), (72), (73) and (75) together, we obtain that∫ ∞

Uα,θ(1)

x

exp
(
να/(α−1)x

)
− 1

(U−1
α,θ⋆)

′
(x)dx (76)

=
1

π

∮
Z

s

exp
(
να/(α−1)s

)
− 1

G(s)ds.

We now analyze the contour integral on the righthand side of (76) above. First note

that since a, b > (α − 1)αα/(1−α), we have from Proposition 5.6 that the function G

may be expressed as the uniformly convergent power series (53) along the contour Z.

Moreover, it is clear from (53) that G is uniformly bounded along Z. Thus using the

Dominated Convergence Theorem [24] we obtain from (76) that

1

i

∮
Z

s

exp
(
να/(α−1)s

)
− 1

G(s)ds (77)

=
1

2
(1 + θ)

∮
Z

1

exp
(
να/(α−1)s

)
− 1

ds

+
1

π

1

α

α− 1

α

( ∞∑
n=1

(−1)n
Γ(nα )Γ(n(

α−1
α ))

Γ(n)
sin(n(π/2)(1 + θ))

∮
Z

1

exp
(
να/(α−1)s

)
− 1

(−s)n(1−α)/αds

)
.

Next, note that by Cauchy’s residue theorem [23], it follows that

1

2
(1 + θ)

∮
Z

1

exp
(
να/(α−1)s

)
− 1

ds =
1

2
(1 + θ)2πiνα/(1−α). (78)

Moreover, using the fact that (α − 1)αα/(1−α) < b < 2π/να/(α−1) and making the

change-of-variables z = να/(α−1)s in the integral below, it follows by Riemann’s [27]

contour integral representation of the analytic continuation of the zeta function that
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for n ≥ 1, we may write ∮
Z

1

exp
(
να/(α−1)s

)
− 1

(−s)n(1−α)/αds (79)

= −να/(1−α) 2πi

Γ(n(α−1
α ))

ζ(n(1− α)/α+ 1)νn.

Now placing (8), (17), (76), (77), (78) and (79) together, along with a little bit of

algebra, we obtain (18) for the case of β = −1.

The proof of Proposition 3.2 for the case of 1 < α < 2 and −1 < β ≤ 1 follows

in a similar manner to the case of 1 < α < 2 and β = −1 above. Indeed, the only

significant difference is that one must now redefine the contour Cr,δ,R as depicted in

Figure 2 below. We omit the remainder of the proof for the case of 1 < α < 2 and

0

Zδ,r

Dr,δ

Lr,δ,R

Lr,δ,R

−a+ ib

−a− ib

Figure 2: The contour Cr,δ,R in the case of 1 < α < 2 and −1 < β ≤ 1.

−1 < β ≤ 1 for the sake of brevity.

As noted in Section 3, one may also prove Proposition 3.2 in the Gaussian case of

α = 2 and β = 0. Moreover, the proof is simpler in this case. Specifically, using the

definition of Uα,θ in (5), it follows after some algebra that if α = 2 and β = 0, then we

may write

H1(ν) =
1

ν
− 1

2π
ν

∫ ∞

1/4

1

exp (ν2x)− 1

1√
x− 1/4

dx, ν > 0.

One may then proceed in a similar manner to the proof of Proposition 3.2 but without

the need of the detailed analysis of U−1
α,θ provided in Section 5. We also mention that

another method for proving Proposition 3.2 in the Gaussian case of α = 2 and β = 0,
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recently suggested by Janssen [14], is to express the function H1 in terms of Lerch’s

transcendent.

6.2. Proof of Proposition 3.4

Proof of Proposition 3.4 . We proceed in a similar manner to the proof of Proposi-

tion 3.2 in the case of 1 < α < 2 and β = −1. First note that since by assumption

0 < ν < α(2π/(α− 1))(α−1)/α, we may fix a pair of numbers a, b satisfying (67). Next,

for each R > (α − 1)αα/(1−α) and r, δ satisfying (68), consider the closed contour

Cr,δ,R in the complex plane depicted in Figure 1 above. Our goal now is to integrate

the function G around the closed contour Cr,δ,R in order to recover the integral on the

righthand side of (24).

Note that by Proposition 5.5 and since by assumption (α − 1)αα/(1−α) < b <

2π/να/(α−1), it is clear that the function

1

exp
(
να/(α−1)s

)
− 1

G(s), s ∈ C \ (Uα,θ(1),+∞), s ̸= 2kπ/να/(α−1), k ∈ Z,

is analytic everywhere in the closed contour Cr,δ,R, with the exception of a simple pole

at s = 0 which, by Proposition 5.5 and (39) in the proof of Proposition 3.3, has residue

G(0) 1

να/(α−1)
= −1

2
i

∫ 1

−θ

1

Uα,θ(φ)
dφ

1

να/(α−1)
= − 1

α− 1
i

1

να/(α−1)
.

Now using Cauchy’s residue theorem [23] and the definition of Cr,δ,R, it follows taking

limits first as δ → 0, then as r → 0, and finally as R → ∞ that we obtain in a similar

manner to (71) through (76) of Proposition 3.2 that we may write

1

2

∫ ∞

Uα,θ(1)

1

exp
(
να/(α−1)x

)
− 1

(U−1
α,θ⋆)

′
(x)dx = − 1

α− 1

1

να/(α−1)
(80)

+
1

2π

∮
Z

1

exp
(
να/(α−1)s

)
− 1

G(s)ds,

where the contour Z is as defined in (74).

We now proceed to analyze the contour integral on the righthand side of (80)

above. Similar to the analysis in (77) through (79) of Proposition 3.2, it follows from

assumption (67) on a, b, Proposition 5.6, the Dominated Convergence Theorem [24]

and Riemann’s [27] contour integral representation of the analytic continuation of the
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zeta function that we may write

1

i

∮
Z

1

exp
(
να/(α−1)s

)
− 1

G(s)ds (81)

= −π

2
(1 + θ)i

− 1

π

1

α

α− 1

α

( ∞∑
n=1

(−1)n−1Γ(
n
α )Γ(n(

α−1
α ))

Γ(n)
sin(n(π/2)(1 + θ))

α

α− 1

1

n

2πi

Γ(n
(
α−1
α

)
)
ζ(n(1− α)/α)νn

)
.

Now placing (8), (24), (80) and (81) together, along with some algebra, we obtain (25)

as desired.

One may also prove Proposition 3.4 in the Gaussian case of α = 2 and β = 0.

Specifically, using the definition of Uα,θ in (5), it follows after some algebra that if

α = 2 and β = 0, then we may write

H2(ν) =
1

ν2
− 1

4π

∫ ∞

1/4

1

exp (ν2x)− 1

1

x

1√
x− 1/4

dx, ν > 0.

In order to prove Proposition 3.4, one may then proceed in a similar manner to the

above but without the need of the results in Section 5.

7. Application to a Problem Arising in Queueing Theory

We now demonstrate how Theorem 3.1 may used to obtain approximations of the

limiting waiting time distribution for the GI/D/N queue. The precise setup for the

GI/D/N queue is as follows. We assume that the system is initially empty at time 0.

Next, let {Aj , j ≥ 1} be a sequence of non-negative, i.i.d random variables with mean

1. The kth arrival to the system then occurs at time

τλ,k =
1

λ

k∑
j=1

Aj , k ≥ 1,

where λ > 0 is the arrival rate to the system. Each customer arriving to the system

has a service time that is deterministic and equal to 1/µ, where µ > 0. The number

of servers in the system is allowed to vary with the arrival rate λ and is denoted by

Nλ. Customers arriving to the system are served on a first-come-first-served basis.
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Moreover, we assume that the system is non-idling in the sense that customers are

never waiting in the queue while there are servers idle.

Now, for each k ≥ 1, let Wλ,k denote the waiting time of the kth customer to arrive

to the system. Then, assuming that ρ = λ/(Nλµ) < 1, it follows by the results of Kiefer

and Wolfowitz [20] that Wλ,k ⇒ Wλ as k → ∞. Moreover, following the analysis of

Jelenković, Mandelbaum and Momčilović [19], one has the equality in distribution

Wλ
d
= max

Wλ +
1

µ
− 1

λ

Nλ∑
j=1

Aj , 0

 . (82)

Suppose now that the i.i.d. sequence {Aj , j ≥ 1} lies in the normal domain of

attraction of the stable law Sα(1, 0, 1) for some 1 < α < 2. That is, there exists a

constant ς > 0 such that

1

k1/α

k∑
j=1

(Aj − 1) ⇒ ςSα(1, 0, 1) as k → ∞. (83)

Note that since the sequence of random variables {Aj , j ≥ 1} is non-negative, we have

by necessity that the α-stable random variable appearing on the righthand side of (83)

is totally skewed to the right. Now let

Nλ =

⌈
λ

µ
+ κ

(
λ

µ

)1/α
⌉
, κ > 0. (84)

The fact that κ > 0 implies by [20] that the limiting waiting time distribution Wλ is

well-defined. Hence, let

Ŵλ = µ1/αλ(α−1)/αWλ, λ > 0,

and set

M = sup
k≥0

Sk,

where S0 = 0 and Sk for k ≥ 1 is the kth partial sum of i.i.d. α-stable random variables

with distribution ςSα(−1, 0, 1) − κ. We then have the following result which may be

proven in a similar manner to Theorem 1 and Corollary 1 of Jelenković, Mandelbaum

and Momčilović [19] or Theorem 1 of Janssen, van Leeuwaarden and Zwart [17], both

of whom treated the Gaussian case of Var(A1) < ∞.
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Theorem 7.1. As λ → ∞, it follows that

1. Ŵλ ⇒ M ,

2. P(Ŵλ = 0) → P(M = 0).

Proof. Note that using (82) above we may write

Ŵλ
d
= max

(
Ŵλ + X̂λ − κ, 0

)
,

where

X̂λ
d
=

(
λ

µ

)−1/α Nλ∑
j=1

(1−Aj) + µ1/αλ(α−1)/α

(
1

µ
− Nλ

λ

)
+ κ.

However, note that by (83) above and the definition of Nλ in (84), we have that

X̂λ ⇒ ςSα(−1, 0, 1) as λ → ∞. Moreover, by Theorem 1 of Owen [26] and (3.18)

of Billingsley [3], it follows that the sequence {(X̂λ)
+, λ > 0} is uniformly integrable.

Hence, by Theorem X.6.1 of Asmussen [2], we have that Item 1 above holds. The proof

of Item 2 above follows in the same manner as the proof of Item 2 of Theorem 2 of

Janssen, van Leeuwaarden and Zwart [17].

Now note that M is equal in distribution to the all-time maximum of an α-stable

random walk with increments that are distributed according to ςSα(−1, 0, 1) − κ.

Hence, we may use Theorem 3.1 above in order to obtain approximations to P(Ŵλ = 0)

for λ large.
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