
Chapter 1

Mathematical Logic and Sets

In this chapter we introduce symbolic logic and set theory. These are not specific to calculus, but
are shared among all branches of mathematics. There are various symbolic logic systems, and
indeed mathematical logic is its own branch of mathematics, but here we look at that portion of
mathematical logic which should be understood by any professional mathematician or advanced
student. The set theory is a natural extension of logic, and provides further useful notation as
well as some interesting insights of its own.

The importance of logic to mathematics cannot be overstated.1 No conjecture in mathemat-
ics is considered fact until it has been logically proven, and truly valid mathematical analysis is
done only within the rigors of logic. Because of this dependence, mathematicians have carefully
developed and formalized logic beyond some of the murkier “common sense” we learn from child-
hood, and given it the precision required to explore, manipulate and communicate mathematical
ideas unambiguously. Part of that development is the codification of mathematical logic into
symbols. With logic symbols and their rules for use, we can analyze and rewrite complicated
logic statements much like we do with algebraic statements.

Symbolic logic is a powerful tool for analysis and communication, but we will not abandon
written English altogether. In fact, most of our ideas will be expressed in sentences which mix
English with mathematical expressions including symbolic logic. We will strive for a pleasant
style of mixed prose, but we will always keep in mind the formal logic upon which we base our
arguments, and resort to the symbolic logic when the logic-in-prose is complicated or can be
illuminated by a symbolic representation.

Because we will use English phrases as well as symbolic logic, it is important that we clarify
exactly what we mean by the English versions of our logic statements. Part of our effort in this
chapter is devoted toward that end.

The symbolic language developed here is used throughout the text. It is descriptive and
precise, and learning its correct use forces clarity in thinking and presentation. It is not common
for a calculus textbook to include a study of logic, since authors have more than enough to
accomplish in trying to offer a respectably complete treatment of the calculus itself. However, it

1In fact Bertrand Russell (1872–1970)—one of the greatest mathematicians of the twentieth century—argued
successfully that mathematics and logic are exactly the same discipline. Indeed, they seem to be supersets of
each other, implying they are the same set. It just happens that to many a lay person, mathematics may be
associated only with numbers and computations while logic deals with argument. The field of geometry belies
this categorization, but there are many other vast mathematical disciplines which are not so interested in our
everyday number systems. These include graph theory (useful for network design and analysis), topology (used
to study surfaces, relativity), and abstract algebra (used for instance in coding theory) to name a few. Indeed
both mathematics and logic can be defined as interested in abstract, coherent structural systems. Thus, to a
modern mathematician, logic-versus-mathematics may be considered a “distinction without a difference.”
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2 CHAPTER 1. MATHEMATICAL LOGIC AND SETS

Symbol Read Example Also Read

∼ not ∼ P P is not true
P is false

∧ and P ∧Q P and Q
both P and Q are true

∨ or P ∨Q P or Q
P is true or Q is true (or both)

−→ implies P −→ Q if P then Q
P only if Q

←→ if and only if P ←→ Q P bi-implies Q
P iff Q

Table 1.1: Some basic logic notation.

is quite common for teachers and professors to insert some of the logic notation into the class lec-
tures because of its usefulness for presenting and explaining calculus to students. Unfortunately
a casual or “on the fly” introduction to these devices can cause as many problems as it solves.
In this text we will instead commit early to developing and using the symbolic logic notation so
we can take advantage of its correct use.

We begin with the first section (Section 1.1) devoted to the construction of truth tables,
which ultimately define our first group of logic symbols. Subsequent sections in this chapter will
explore valid logical equivalences (Section 1.2), valid implications and some general argument
types (Section 1.3), quantifiers (Section 1.4) and sets (Section 1.5). An optional, final section
(Section 1.6) considers further symbolic logic manipulations based upon those built up in the
previous sections.

1.1 Logic Symbols and Truth Tables

The first logic symbols we develop in the text are listed in Table 1.1. In what follows we will
explain their meanings and give their English versions, while also pointing out where casual
English interpretations often differ, from each other as well as their formal meanings. It is useful
to learn to read the symbols above as they would usually be said out loud. For instance, P ∧Q
can be read, “P and Q,” while P −→ Q is usually read “P implies Q.”2 One reads ∼ P as “not
P ,” while more elaborate means for verbalizing, say, ∼ (P ∨Q) would include “it is not the case
that P or Q.” In fact, if P is any statement, such as “it is raining,” then we can graft the words
“it is the case that” and have a new statement with exactly the same meaning: “it is the case
that it is raining.” This allows us more flexibility to read negations in a more natural order:
∼ P becomes “it is not the case that it is raining.”

Now we look again at the symbols in Table 1.1. The symbol ∼ is called a unary logic
operation because it operates on one (albeit possibly compound) statement, say P . The symbols
∨,∧,−→,←→ are called connectives or binary logic operations, connecting two statements, such
as P , Q. Both types will be developed in detail in this chapter.

2Occasionally some of these are verbalized using what amounts to their typographical descriptions, so for
instance P ∧Q becomes “P wedge Q,” while P ∨Q becomes “P vee Q.”
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P
T
F

P Q
T T
T F
F T
F F

P Q R
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Figure 1.1: Lexicographical ordering of the possibilities for one, two, or three independent
statements’ truth values. The extra horizontal line in the third table is for ease of reading
only.

1.1.1 Lexicographical Listings of Possible Truth Values

In the next subsection we develop the logic operators listed previously in Table 1.1, page 2. These
operators connect statements, such as P , Q, etc., forming new, compound statements P −→ Q,
∼ P , P ∧Q, etc. In doing so, we analyze the truth or falsity of the compound statements based
upon the truth or falsity of the underlying, component statements P , Q, etc.3

We always assume a particular statement can be either true or false, but not simultaneously
both.4 We signify these possibilities by the truth values, T or F, respectively. Note that for n
independent statements P1, · · · , Pn there are 2n different combinations of T and F.5 Thus for
a single statement P , we have 21 = 2 truth value possibilities, T or F. For two independent
statements P and Q, we have 22 = 4 possible combinations of truth values: TT,TF,FT,FF, i.e.,
P and Q both true, P true and Q false, P false and Q true, or P and Q both false. For three
statements P, Q, R, the possibilities are 23 = 8-fold. To list exhaustively all possible orders,
we will employ a lexicographical order, as shown in Figure 1.1. If there are n ≥ 2 independent
statements, then for the first we write half (2n−1) T’s and the same number of F’s. For the next
statement we write half (2n−2) T’s, and the same number of F’s, and then repeat. If there is a
third, we simply alternate T’s with F’s twice as fast, i.e., 2n−3 T’s, as many F’s, and then repeat
following that pattern until we fill out 2n entries. The last statement’s entries are TFTF· · ·TF,
until 2n entries are made. Figure 1.1 illustrates this pattern, for n = 1, 2, 3

3In our analyses, the component statements will consist of single letters P , Q, and so on, and be allowed truth
value T or F. Compound statements are not necessarily allowed either truth value, but their truth values are
determined by those of the underlying component statements. For instance, we will see P ∨ (∼ P ) can only have
truth value T, and P ∧ (∼ P ) can have only F, while P −→ Q is sometimes T, sometimes F.

4This is sometimes referred to as the “law of the excluded middle.” It is useful in future discussions since it is
often easier to prove P is not false (i.e., (∼ P ) is false) than to prove P is true.

5This is a simple counting principle. For another example suppose we have four shirts and three pairs of pants,
and we want to know how many different combinations of these we can wear, assuming we will wear exactly one
shirt and one pair of pants. Since we can wear any of the shirts with any of the pants, the choices—for counting
purposes—are independent. We have four choices of shirts, and for each of those we have three choices of pants.
It is not difficult to see that we have 4 · 3 = 12 possible combinations to choose from.

If we also include two choices of belts, and assume we will wear exactly one belt, then we have 4 · 3 · 2 = 24
possible combinations of shirt, pants, and belt.

Here, there are 2 choices for the truth values (T or F) of each of the P1, · · · , Pn, so there are 2n possible
truth-value combinations.

Whole textbooks are written regarding this and other counting principles, but in this text we will only encounter
a few. For undergraduates, some of these principles are often found embedded in probability courses or courses
relying upon probability such as genetics, or in combinatorics which appears especially in computer science and
electrical engineering.
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P ∼ P
T F
F T

P Q P ∧Q P ∨Q P → Q P ↔ Q
T T T T T T
T F F T F F
F T F T T F
F F F F T T

Table 1.2: The basic logic operations defined for all possible truth values of their arguments

1.1.2 The Logic Operations

The basic five logic operations we will use in this text are given in Table 1.2 for every possible
truth value of underlying component statements. We say that the operation ∼ takes one argu-
ment (not to be confused with the colloquial meaning of the term), that argument being P in
the table above. The other operators ∧, ∨, → and ↔ each take two arguments, which for the
table above we dub P and Q.

We begin with the logical negation ∼, which is a unary operation, i.e., acting on one (possibly
compound) statement. For example consider the statement ∼ P , usually read “not P .” This is
the negation of the statement P . Of course ∼ P is not independent of P , but its truth value
is based upon that of P ; stating that ∼ P is true is the same as stating that P is false, and
stating that ∼ P is false is the same as stating that P is true. We can completely describe the
relationship between P and ∼ P in the following truth table diagram:6

P ∼ P
T F
F T

This also completely describes the action of the operation ∼: it takes a statement with truth
value T and returns a statement with truth value F, and vice-versa. For an English example, if
we define a statement P by

P : I will go to the store,

then the resultant statement for ∼ P is simply

∼ P : I will not go to the store.

We can also read ∼ as “it is not the case that,” so our example above could read

∼ P : It is not the case that I will go to the store.

Even in an English example as above, it is not difficult to see that P is true exactly when ∼ P is
false, and P is false exactly when ∼ P is true. For truth value computations, we can summarize
the action of ∼ as follows:

∼ switches the truth value of the statement on which it operates, from T to F or from F to T.

It will be interesting to see how ∼ operates on compound statements as we proceed. How
it interacts “with itself” is rather straightforward. Indeed, it is not difficult to see that the
statement ∼ (∼ P ) is the same as the statement P . We might read

∼ (∼ P ) : It is not the case that it is not the case that I will go to the store.

6We will always use double lines to separate the independent component statements P , Q, etc., from compound
statements based upon them.
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Perhaps a better English translation of ∼ (∼ P ) here would be, “it is not the case that I will
not go to the store,” which clearly states that I will go to the store, i.e., P . In the next section
we will look at ways to calculate when two logic statements in fact mean the same thing, such
as P and ∼ (∼ P ).7

We next turn our attention to the binary operation ∧. This is called the logical conjunction,
or just simply and: the statement P ∧Q is usually read “P and Q.” This compound statement
P ∧Q is true exactly when both P and Q are true, and false if a component statement is false.
Thus its truth table is given by the following:

P Q P ∧Q
T T T
T F F
F T F
F F F

As an operation, ∧ returns T if both statements it connects have truth value T, and returns F
otherwise, i.e., if either of the statements connected by ∧ is false.

Example 1.1.1 Suppose we set P and Q to be the statements

P : I will eat pizza,

Q : I will drink soda.

Connecting these with ∧ gives

P ∧Q : I will eat pizza and I will drink soda.

This is true exactly when I do both, eat pizza and drink soda, and is false if I fail to do one, or
the other, or both.

Next we look at the binary operation ∨, called the logical disjunction, or simply or. The
statement P ∨ Q is usually read “P or Q.” For P ∨ Q to be true we only need one of the
underlying component statements to be true; for P ∨Q to be false we need both P and Q to be
false. The truth table for P ∨Q is thus as follows:

P Q P ∨Q
T T T
T F T
F T T
F F F

It is important to note that P ∨Q is not an exclusive or,8 so we still take P ∨Q to be true
for the case that both P and Q are true. At times it is not interpreted this way in spoken
English, but our standard for a statement being false, i.e., having truth value F, is that it is in
fact contradicted. If we state “P or Q,” to a logician we are only taken to be lying if both P
and Q are false.

7It will be taken for granted throughout the text that the reader has some familiarity with the use of parentheses
( ), brackets [ ], and similar devices for grouping quantities—logical, numerical, or otherwise—to be treated as
single quantities. For instance, ∼ (∼ P ) means that the “outer” (or first) ∼ will operate on the statement
∼ P , treated as a single, albeit “compound” statement. Thus we first find ∼ P , and then its logical negation is
∼ (∼ P ). This type of device is used throughout the chapter and the rest of the text.

8The case where we have P or Q but not both is called an exclusive or. Computer scientists and electrical
engineers know this as XOR. For our purposes the inclusive or ∨ will suffice, and anyhow is much simpler to
deal with computationally in symbolic logic manipulations, though XOR will appear in the exercises.
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Example 1.1.2 For the P and Q from the previous example, we have

P ∨Q : I will eat pizza or I will drink soda.

Again, this is still true if I do both, eat pizza and drink soda, or just do one of these; it is
sufficient that one be true, but it is not contradicted if both are true. Note that this is false
exactly when both P and Q are false, i.e., for the case that I do not eat pizza and do not drink
soda.

Sometimes in spoken English the above example of P ∨ Q would be considered false if I
did both, eat the pizza and drink the soda. According to abstract logic, doing both does not
technically make the speaker a liar. For many reasons, symbolic logic defines the operation ∨ to
be inclusive, so that P ∨Q is considered true in the case in which P and Q are both true.9

Next we consider −→. Arguably the most common and therefore important logic statements
in mathematics are of the form P −→ Q, read “P implies Q” or “if P then Q.” These are also
the most misunderstood by novice mathematics students, and so we will discuss them at length.
As before, a truth table summarizes the action of this (binary) operation:

P Q P −→ Q
T T T
T F F
F T T
F F T

Note that the only circumstance we take P −→ Q to be false is when P is true, but Q is false.
As before, our standard for falsity is when the statement is actually contradicted, and that can
be seen to be exactly when we have the truth of the antecedent P , but not of the consequent Q.
In particular, if P is false, then P −→ Q cannot be contradicted, so we take those two cases to
be true, dubbing P −→ Q vacuously true for those two cases where P is false.

In summary, the connection −→ returns T for all cases except when the first statement is
true, but the second is false.

The importance of the implication extends beyond mathematics and into philosophy and
other studies. Because of its ubiquity, logical implication has several syntaxes which all mean
the same to a logician. It is interesting to compare the various phrases, but first we will look at
an example in the same spirit as we had for ∼, ∧ and ∨.

Example 1.1.3 For the P, Q in the previous examples, we have

P −→ Q : If I will eat pizza then I will drink soda.

It is useful to see when this is clearly false: when P is true but Q is false, which for these P, Q
would be the case that I eat pizza but do not drink soda. In fact, it is important that that is the
only case in which we consider P −→ Q to be false. In particular, if P is false, then P −→ Q is
vacuously true. The idea is that if I do not eat pizza, then whether or not I drink soda I do not
contradict the stating, “If I will eat pizza then I will drink soda.”

9To see how English understanding is context-driven, consider the following situations. First, suppose a parent
tells the child to “clean the bedroom or the garage” before dinner. If the child does both, the parent will likely take
the request to be fulfilled. Next, suppose instead that parent tells the child to “take a cookie or a brownie” after
dinner, and the child takes one of each. In this second context the parent may have a very different understanding
of the child’s compliance to the parental instructions. To a logician (and perhaps to any self-respecting smart
aleck) ∨ must be context-independent.
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There are several English phrases which mean P −→ Q. Below are five equivalent ways to
write the corresponding English version of P −→ Q for the P, Q in the examples. (That the
fourth and fifth versions are equivalent will be proved in the next section.)

1. My eating pizza implies my drinking soda (P implies Q).

2. If I will eat pizza then I will drink soda (if P then Q).

3. I will eat pizza only if I will drink soda (P only if Q).

4. I will drink soda or I will not eat pizza (Q or not P ).

5. If I will not drink soda, then I will not eat pizza (if not Q then not P ).

These five ways of stating P −→ Q might not all be immediately obvious, and so are worth
reflection and eventual commitment to memory. Two other common—and rather elegant—ways
of stating the same thing are given below in the abstract:

6. My drinking soda is necessary for my eating pizza (Q is necessary for P ).

7. My eating pizza is sufficient for my drinking soda (P is sufficient for Q).

The kind of diction in 6 and 7 is very common in philosophical as well as mathematical discus-
sions. We will return to implication after next discussing bi-implication, since a very common
mistake for novice mathematics students is to confuse the two.

The bi-implication is denoted P ←→ Q, and often read “P if and only if Q.” This is
sometimes also abbreviated “P iff Q”. It states that P implies Q and Q implies P simultaneously.
Thus truth of P gives truth of Q, while truth of Q would give truth of P . Furthermore, if P is
false, then so must be Q, because Q being true would have forced P to be true as well. Similarly
Q false would imply P false (since if P were instead true, so would be Q). The truth table for
the bi-implication is the following:

P Q P ←→ Q
T T T
T F F
F T F
F F T

An important, alternative way to describe the operation←→ is to note that P ←→ Q is true
exactly when P and Q have the same truth values (TT or FF). Thus the connective←→ can be
used to detect when the connected statements’ truth values match, and when they do not. This
will be crucial in the next section.

Example 1.1.4 Consider the statement P ←→ Q for our earlier P and Q, for which we have

P ←→ Q : I will eat pizza if and only if I will drink soda.

This is the idea that I can not have one without the other: if I have the pizza, I must also have
the soda (“only if”), and I will have the pizza if I have the soda (“if”). This is false for the
cases that I have one but not the other. Importantly it is not false if I have neither.

In fact a bi-implication P ←→ Q is well-named as such since it is actually the same as (P −→
Q) ∧ (Q −→ P ). (The proof of this fact is given in the next section.) Note that we can switch
the order of statements connected by ∧ (and), so we can instead write (Q −→ P ) ∧ (P −→ Q),
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i.e., Q←→ P . In prose we can write “P is necessary and sufficient for Q,” for P ←→ Q, which
is then the same as “Q is necessary and sufficient for P ,” i.e., Q←→ P .

At this point we will make a few more observations concerning the differences between the
English and formal logic uses of terms in common. The cases below illustrate how casual English
users are often unclear about when “if,” “only if,” or “if and only if” are meant in both speaking
and listening. Again, mathematics requires absolute precision in these things.

The first difference involves the phrase “only if.” This is often misunderstood to mean “if
and only if” in everyday speech. When we combine the two words “only if,” the standard logic
meaning is not the same as “if” modified by the adverb “only.” Taken together, the words “only
if” have a different, but precise meaning in logic. Consider the following statements:� You can drive that car only if there is gasoline in the tank.� You can drive that car only if there is air in the tires.� You can drive that car only if the ignition system is working.

Clearly it is not the case that you can drive that car if and only if there is gasoline in the
tank, since the gasoline is necessary but not sufficient for running the car; you also need the air,
ignition, etc., or the car still will not drive regardless of the state of the gasoline tank. Similarly
a father telling his teenaged child, “you can go out with your friends only if your homework
is finished” might justifiably find another reason to keep the child from joining the friends
even after the homework is done. (Sudden severe weather, inappropriate activities planned,
mechanical problems, and several of other reasons quickly come to mind.) Note that these are
all mathematical implications −→: that you can drive the car would imply there is gas, air and
ignition; that the child can go out implies that the homework is done. One has to be careful not
to read bi-implications (if and only if) into any of these statements which are only implications.

The other difference deals with another way to state implications: if/then. This is also often
misunderstood to mean if and only if. Consider the colloquial English statements:10

(a) If it stops raining, I’ll go to the store.

(b) If I win the lottery, I’ll buy a new car.

Unfortunately the “if” in statement (a) might be intended to mean “if and only if.” Thus by
stating (a) the speaker leads the listener to believe he will definitely go to the store if it stops
raining, but also that he will go to the store only if it stops raining (and thus will not go if it
does not stop raining). To the strict logician (a) is not violated in the case it does not stop
raining, but the speaker still goes to the store. Recall that in such a case (a) is vacuously true.

On the other hand, it seems somewhat more likely (b) is understood the same by the logician
and the casual user of English; though we are tempted to understand the speaker to mean if and
only if, upon reflection we would not consider him a liar for buying the car without having first
won the lottery.11

In both (a) and (b) the personalities and shared experiences of the speaker and listener will
likely play roles in what was meant by the speaker and what was understood by the listener. In
mathematics we cannot have this kind of subjectivity.

10This is related by Steven Zucker, Ph.D. from Johns Hopkins University, writing in the appendix of Steven
Krantz’s How to Teach Mathematics, second edition, American Mathematical Society, 1999.

11In everyday English, context may be important to our interpretations. For instance, if the first person were
asked, “Will you go to the store,” we might interpret (a) as an if and only if. For the second person, if he were
asked, “what will you do if you win the lottery,” then (b) might be interpreted as an “if,” while if he were instead
asked, “will you buy a new car,” this answer might be interpreted as an “only if.”
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1.1.3 Constructing Further Truth Tables

Here we look at truth tables of more complicated compound statements. To do so, we first list the
underlying component statements P , Q, and so on in lexicographical order. We then proceed—
working “inside-out” and step by step—to construct the resulting truth values of the desired
compound statement for each possible truth value combinations of the component statements.

It will be necessary to recall the actions of each of the operations introduced earlier. These are
completely summarized by their truth tables in the previous subsection, but we can summarize
the actions in words:

∼ changes T to F, and F to T.

∧ returns F unless both statements it connects are true, in which case it returns T.

∨ returns T if either statements it connects are true, and F exactly when both statements are
false.

−→ returns T except when the first statement is true and the second false. In particular, if the
first statement is false, then this returns T (vacuously).

←→ returns T if truth values of both statements match, and F if they differ.

Example 1.1.5 Construct a truth table for ∼ (P −→ Q).
Solution: The underlying component statements are P and Q, so we first list these, and

then their possible truth value combinations in lexicographical order. In order to construct the
resulting truth table values for ∼ (P −→ Q), we build this statement one step at a time with the
operations, in an “inside-out” fashion. By this we mean that we write the truth table column
for P −→ Q, and then apply the negation to get the truth table column for ∼ (P −→ Q):

P Q P −→ Q ∼ (P −→ Q)
T T T F
T F F T
F T T F
F F T F

This reflects a fact we had before: that we have ∼ (P −→ Q) true—i.e., we have P −→ Q
false—exactly when we have P true but Q false.

Note that in the example above the third column, which represents P −→ Q, essentially
connects the statements represented by the first and second columns with the connective −→,
while the last column applied the operation ∼ to the statement represented by that third column.
Thus the example reads easily from left to right without interruption. It is not always possible
(or easiest) to do so; often we will add a column connecting statements from previous columns
which are some distance from where we want to place our new column, though our style here
will always have our final column representing the desired compound statement.

Example 1.1.6 Compute the truth table for (P ∨Q) −→ (P ∧Q).
Solution: Our “inside-out” strategy is still the same. Here we list P and Q, construct P ∨Q

and P ∧Q respectively, and the connect these with −→:

P Q P ∨Q P ∧Q (P ∨Q) −→ (P ∧Q)
T T T T T
T F T F F
F T T F F
F F F F T
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Some texts refer to the −→ above as the “major connective,” since ultimately the statement
(P ∨ Q) −→ (P ∧ Q) is an implication, albeit connecting two already-compound statements
(P ∨ Q) and (P ∧ Q). Thus “major connective” can be seen as referring to the last operator
whose action was computed in making the truth table for the statement as a whole. (In the
previous example, ∼ would be the major connective, though we do not refer to unitary operators
as “connectives.”)

After constructing such a truth table step-by-step, it is also instructive to step back and
examine the result. In particular, it is always useful to see which circumstances render the
whole statement false, which here are the second and third combinations. In those, we have (the
antecedent) P ∨ Q true since one of the P , Q is true, but (the consequent) P ∧ Q is not true,
since P and Q are not both true.

Example 1.1.7 Construct the truth table for P −→ [∼ (Q ∨R)].
Solution Here we need 23 = 8 different combinations of truth values for the underlying

component statements P , Q and R. Once we list these combinations in lexicographical order,
we then compute Q∨R, ∼ (Q∨R), and then compute P −→ [∼ (Q∨R)], in essence computing
the major connective −→.

P Q R Q ∨R ∼ (Q ∨R) P −→ [∼ (Q ∨R)]
T T T T F F
T T F T F F
T F T T F F
T F F F T T
F T T T F T
F T F T F T
F F T T F T
F F F F T T

Note that the last four cases are true vacuously. The cases where this is false are when we have
P , but ∼ (Q ∨R) is false, i.e., when we have P and Q ∨R true, i.e., when P is true and either
Q or R is true.

Example 1.1.8 Construct the truth table for P ∧ (Q ∨R).
Solution: Again we need 23 = 8 rows. The column for P is repeated, though this is not

necessary or always desirable (see the above example), but here was done so that the last column
represents the major connective operating on the two columns immediately preceding it.

P Q R P Q ∨R P ∧ (Q ∨R)
T T T T T T
T T F T T T
T F T T T T
T F F T F F
F T T F T F
F T F F T F
F F T F T F
F F F F F F

In fact it is not difficult to spot which entries in the final column should have value T, since
what was required was that P be true, and at least one of the Q or R also be true. Later we will
see that this has exactly the same truth value, in all circumstances, as (P ∧Q)∨ (P ∧R), which
is true if we have both P and Q true, or we have both P and R true. That these two compound
statements, P ∧ (Q ∨R) and (P ∧Q) ∨ (P ∧R) basically state the same thing will be explored
in Section 1.2, as will other “logical equivalences.”
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1.1.4 Tautologies and Contradictions, A First Look

Two very important classes of compound statements are those which form tautologies, and those
which form contradictions. As we will see throughout the text, the tautologies loom especially
large in our study and use of logic. We will study both tautologies and contradictions further
in the next section. Here we introduce the concepts and begin to develop an intuition for these
types of statements. We begin with the definitions and most obvious examples.

Definition 1.1.1 A compound statement formed by the component statements P1, P2, · · · , Pn is
called a tautology iff its truth table column consists entirely of entries with truth value T for
each of the 2n possible truth value combinations (T and F) of the component statements.

Definition 1.1.2 A compound statement formed by the component statements P1, P2, · · · , Pn is
called a contradiction iff its truth table column consists entirely of entries with truth value F
for each of the 2n possible truth value combinations (T and F) of the component statements.

Example 1.1.9 Consider the statement P ∨ (∼ P ), which is a tautology:

P ∼ P P ∨ (∼ P )
T F T
F T T

Example 1.1.10 Next consider the statement P ∧ (∼ P ), which is a contradiction:

P ∼ P P ∧ (∼ P )
T F F
F T F

We see that the statement P ∨ (∼ P ) is always true, whereas P ∧ (∼ P ) is always false. There
are other interesting tautologies, as well as other interesting contradictions. For the moment let
us concentrate on the tautologies.

That the statement P ∨ (∼ P ) is a tautology—especially when a particular example is
examined—should be obvious when we consider what the statement says: P is true or (∼ P ) is
true. If P is the statement that I will eat pizza, then we get the always true statement

P ∨ (∼ P ) : I will eat pizza or I will not eat pizza.

In some contexts, tautologies seem to provide no useful information. Indeed, there are times in
formal speech that declaring a statement to be a tautology is meant to be demeaning. However,
we will see that there are many nontrivial tautologies, and it can be quite useful to recognize
complex statements which are always true.12 For the moment we will look at the most basic
of tautologies. For instance, the next tautology is obvious if we can read and understand its
symbolic representation.

Example 1.1.11 (P ∧Q) −→ P is a tautology:

P Q P ∧Q P (P ∧Q) −→ P
T T T T T
T F F T T
F T F F T
F F F F T

12In fact, we will essentially devote the next whole section to tautologies, though we use different terms there.
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Note that the last three cases were true vacuously.

A simple English example shows how the above is a tautology. If we take P as before, and
Q as the statement, “I will drink soda,” then (P ∧ Q) −→ P becomes, “If I will eat pizza and
drink soda then I will eat pizza.” Looking at it abstractly, if we have both P and Q true, then
we have P true. Note that we cannot replace the implication −→ with a bi-implication ←→.

In the next section we will be very much interested in tautologies in which the major connec-
tive is the bi-implication ←→. In fact we will develop a variation of the notation for just those
cases. The following tautology is one such example.

Example 1.1.12 Show that [∼ (P ∨Q)]←→ [(∼ P ) ∧ (∼ Q)] is a tautology.13

Solution:

P Q P ∨Q ∼ (P ∨Q) ∼ P ∼ Q (∼ P ) ∧ (∼ Q)
[∼ (P ∨Q)]

←→ [(∼ P ) ∧ (∼ Q)]
T T T F F F F T
T F T F F T F T
F T T F T F F T
F F F T T T T T

Later we will get into the habit of just pointing out how the two columns representing, say,
∼ (P ∨ Q) and (∼ P ) ∧ (∼ Q) have the same truth values, so when connected by ←→ we get
a tautology. That will be more convenient, as the entire statement does not fit easily into a
relatively narrow truth table column heading.

With reflection the various tautologies and contradictions become intuitive, and easy to iden-
tify. (For the above example consider the discussion of when P ∨Q is false, as in Example 1.1.1,
page 5.) However, not all things which appear to be contradictions are in fact contradictions.
At the heart of the problem in such examples is usually the nature of the implication operation
−→. Consider the following:

Example 1.1.13 Write a truth table for P −→ (∼ P ) to demonstrate that it is not a contra-
diction.

Solution: Note that there is only one independent statement P , so we need only 21 = 2 rows.

P ∼ P P −→ (∼ P )
T F F
F T T

Note that the second case is true vacuously. It is also interesting to note that the statement
P −→ (∼ P ) has the same truth values as ∼ P , which can be interpreted as saying ∼ P is the
same as P −→ (∼ P ). That is worth pondering, but for the moment we will not elaborate.

It is perhaps easier to spot contradictions which do not involve the implication. For instance,
P ←→ (∼ P ) is a contradiction, but the demonstration of that (by truth tables) is left to the
reader. (Simply replace −→ with ←→ in the above truth table.)

13Some texts employ a strict hierarchy of “precedence” or “order of operations” on logic operations. It is akin
to arithmetic, where 4 · 52 + 3/5 has us computing 52, multiplying that by 4, separately computing 3/5, and
then adding our two results. With grouping symbols one might write

ˆ

4
`

52
´˜

+ [3/5], but through conventions
designed for convenience the grouping is understood in the original expression. For our example above, some
texts will simply write

∼ (P ∨Q)←→∼ P∧ ∼ Q,

understanding the precedence to be ∼, then ∧ and ∨, and then −→ and ←→ in the order of appearance. Thus
we need the first parentheses to override the precedence of the ∼, else we would interpret ∼ P ∨ Q to mean
(∼ P ) ∨ Q. As this text is not for a course in logic per se, we will continue to use grouping symbols rather
than spend the effort to develop and practice a procedure for precedence. (Besides, the authors find the claerly
grouped statements easier and more pleasing to read and write.)
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Exercises

1. A very useful way to learn the nuances of
the logic operations is to consider when
their compound statements are false. For
each of the following compound state-
ments, discuss all possible circumstances
in which the given statement is false.

For example, P ←→ Q is false exactly
when P is true and Q false, or Q true
and P false.

(a) ∼ P

(b) P ∧Q

(c) P ∨Q

(d) P −→ Q

(e) P ←→ Q

(f) P −→ (∼ Q).

2. Repeat 1(a)–(f) above, except using truth
tables for each to answer the question of
when each statement is false. Compare
and reconcile your answers to Exercise 1
above.

3. Consider the statement

(∼ Q) −→ (∼ P ).

(a) When is it false?

(b) Now consider P −→ Q. When is it
false?

(c) Do you believe these two compound
statements mean the same thing?

(d) Construct the truth table for the
statement (∼ Q) −→ (∼ P ). Then
revisit your answer to (c).

4. Construct the truth table for P XOR Q.
(See Footnote 8, page 5.)

5. Construct the truth table for the state-
ment ∼ (P ←→ Q). Compare your an-
swer to the previous exercise.

6. Construct truth tables for the following
statements:

(a) (∼ P ) ←→ (∼ Q) (Compare to
P ←→ Q.)

(b) [P ∨ (∼ Q)] −→ P

(c) ∼ [P ∧ (Q ∨R)]

7. Find six other English statements which
are equivalent to the statement,

“You can go out with your
friends only if your homework
is finished.”

(See page 7. Some of your answers may
seem very formal.)

8. Construct truth tables for the following
statements.

(a) ∼ (P ∧Q)

(b) P ∨ (Q ∧R)

(c) P ∨ (Q ∨R)

(d) (P ∨Q)∨R (Compare to the previous
statement.)

(e) (P −→ Q) ∧ (Q −→ P )

9. Decide which are tautologies, which are
contradictions, and which are neither.
Try to decide using intuition, and then
check with truth tables.

(a) P −→ P

(b) P ←→ P

(c) P ∨ (∼ P )

(d) P ∧ (∼ P )

(e) P ←→ (∼ P )

(f) P −→ (∼ P )

(g) ((P ) ∧ (∼ P )) −→ Q

(h) (P −→ (∼ P )) −→ (∼ P )

(i) (P ∧Q) −→ P

(j) (P ∨Q) −→ P

(k) P −→ (P ∧Q)

(l) P −→ (P ∨Q)

10. Some confuse implication−→ with causa-
tion, interpreting P −→ Q as “P causes
Q.” However, the implication is in fact
weaker than the layman’s concept of cau-
sation. Answer the following:
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(a) Show that (P −→ Q)∨ (Q −→ P ) is
a tautology.

(b) Explain why, replacing −→ with the
phrase “causes” clearly does not give
us a tautology.

(c) On the other hand, if P being true

causes Q to be true, can we say
P −→ Q is true?

11. Write the lexicographical ordering of the
possible truth value combinations for four
statements P, Q, R, S.
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1.2 Valid Logical Equivalences as Tautologies

1.2.1 The Idea, and Definition, of Logical Equivalence

In lay terms, two statements are logically equivalent when they say the same thing, albeit
perhaps in different ways. To a mathematician, two statements are called logically equivalent
when they will always be simultaneously true or simultaneously false. To see that these notions
are compatible, consider an example of a man named John N. Smith who lives alone at 12345
North Fictional Avenue in Miami, Florida, and has a United States Social Security number 987-
65-4325.14 Of course there should be exactly one person with a given Social Security number.
Hence, when we ask any person the questions, “are you John N. Smith of 12345 North Fictional
Avenue in Miami, Florida?” and “is your U.S. Social Security number 987-65-4325?” we would
be in essence asking the same question in both cases. Indeed, the answers to these two questions
would always be both yes, or both no, so the statements “you are John N. Smith of 12345 North
Fictional Avenue in Miami, Florida,” and “your U.S. Social Security number is 987-65-4325,”
are logically equivalent. The notation we would use is the following:

you are John N. Smith of 12345 North Fictional Avenue in Miami, Florida

⇐⇒ your U.S. Social Security number is 987-65-4325.

The motivation for the notation “⇐⇒ ” will be explained shortly.
On a more abstract note, consider the statements ∼ (P ∨Q) and (∼ P ) ∧ (∼ Q). Below we

compute both of these compound statements’ truth values in one table:

P Q P ∨Q ∼ (P ∨Q) ∼ P ∼ Q (∼ P ) ∧ (∼ Q)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

the same

We see that these two statements are both true or both false, under any of the 22 = 4 possible
circumstances, those being the possible truth value combinations of the underlying, independent
component statements P and Q. Thus the statements ∼ (P ∨Q) and (∼ P )∧ (∼ Q) are indeed
logically equivalent in the sense of always having the same truth value. Having established this,
we would write

∼ (P ∨Q) ⇐⇒ (∼ P ) ∧ (∼ Q).

Note that in logic, this symbol “⇐⇒ ” is similar to the symbol “=” in algebra and elsewhere.15

There are a couple of ways it is read out loud, which we will consider momentarily. For now we
take the occasion to list the formal definition of logical equivalence:

Definition 1.2.1 Given n independent statements P1, · · · , Pn, and two statements R, S which
are compound statements of the P1, · · · , Pn, we say that R and S are logically equivalent,
which we then denote R ⇐⇒ S, if and only if their truth table columns have the same entries
for each of the 2n distinct combinations of truth values for the P1, · · · , Pn. When R and S are
logically equivalent, we will also call R ⇐⇒ S a valid equivalence.

14This is all, of course, fictitious.
15Some texts use the symbol “≡” for logical equivalence. However there is another standard use for this symbol,

and so we will reserve that symbol for that use later in the text.



16 CHAPTER 1. MATHEMATICAL LOGIC AND SETS

Again, this is consistent with the idea that to say statements R and S are logically equivalent
is to say that, under any circumstances, they are both true or both false, so that asking if R is
true is—functionally—exactly the same as asking if S is true. (Recall our example of John N.
Smith’s Social Security number.)

Note that if two statements’ truth values always match, then connecting them with←→ yields
a tautology. Indeed, the bi-implication yields T if the connected statements have the same truth
value, and F otherwise. Since two logically equivalent statements will have matching truth values
in all cases, connecting with←→ will always yield T, and we will have a tautology. On the other
hand, if connecting two statements with ←→ forms a tautology, then the connected statements
must have always-matching truth values, and thus be equivalent. This argument yields our first
theorem:16

Theorem 1.2.1 Suppose R and S are compound statements of P1 · · · , Pn. Then R and S are
logically equivalent if and only if R←→ S is a tautology.

The theorem above gives us the motivation behind the notation ⇐⇒ . Assuming R and S
are compound statements built upon component statements P1 · · · , Pn, then

R ⇐⇒ S means that R←→ S is a tautology. (1.1)

To be clear, when we write R←→ S we understand that this might have truth value T or F, i.e.,
it might be true or false. However, when we write R ⇐⇒ S, we mean that R ←→ S is always
true (i.e., a tautology), which partially explains why we call R ⇐⇒ S a valid equivalence.17

To prove R ⇐⇒ S, we could (but usually will not) construct R ←→ S, and show that it is
a tautology. We do so below to prove

∼ (P ∨Q)
︸ ︷︷ ︸

“R”

⇐⇒ (∼ P ) ∧ (∼ Q)
︸ ︷︷ ︸

“S”

.

P Q P ∨Q

R
︷ ︸︸ ︷

∼ (P ∨Q) ∼ P ∼ Q

S
︷ ︸︸ ︷

(∼ P ) ∧ (∼ Q)

R←→S
︷ ︸︸ ︷

[∼ (P ∨Q)]

←→[(∼ P ) ∧ (∼ Q)]
T T T F F F F T
T F T F F T F T
F T T F T F F T
F F F T T T T T

However, our preferred method will be as in the previous truth table, where we simply show
that the truth table columns for R and S have the same entries at each horizontal level, i.e.,
for each truth value combination of the component statements. That approach saves space
and reinforces our original notion of equivalence (matching truth values). However it is still
important to understand the connection between ←→ and ⇐⇒ , as given in (1.1).

16A theorem is a fact which has been proven to be true, particularly dealing with mathematics. We will state
numerous theorems in this text. Most we will prove, though occasionally we will include a theorem which is too
relevant to omit, but whose proof is too technical to include in an undergraduate calculus book. Such proofs are
left to courses with titles such as mathematical (or real) analysis, topology, or advanced calculus.

Some theorems are also called lemmas (or, more archaically, lemmata) when they are mostly useful as steps in
larger proofs of the more interesting results. Still others are called corollaries if they are themselves interesting,
but follow with very few extra steps after the underlying theorem is proved.

17Depending upon the author, both R←→ S and R ⇐⇒ S are sometimes verbalized “R is equivalent to S,”
or “R if and only if S.” We distinguish the cases by using the term “equivalent” for the double-lined arrow, and
“if and only if” for the single-lined arrow. To help avoid confusion, we emphasize this more restrictive use of
“equivalences” (denoted with ⇐⇒ ) by calling them “valid equivalences.”
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1.2.2 Equivalences for Negations

Much of the intuition achieved from studying symbolic logic comes from examining various logical
equivalences. Indeed we will make much use of these, for the theorems we use throughout the
text are often stated in one form, and then used in a different, but logically equivalent form.
When we prove a theorem, we may prove even a third, logically equivalent form.

The first logical equivalences we will look at here are the negations of the our basic operations.
We already looked at the negations of ∼ P and P ∨Q. Below we also look at negations of P ∧Q,
P −→ Q and P ←→ Q. Historically, (1.3) and (1.4) below are called De Morgan’s Laws, but
each basic negation is important. We now list these negations.

∼ (∼ P ) ⇐⇒ P (1.2)

∼ (P ∨Q) ⇐⇒ (∼ P ) ∧ (∼ Q) (1.3)

∼ (P ∧Q) ⇐⇒ (∼ P ) ∨ (∼ Q) (1.4)

∼ (P −→ Q) ⇐⇒ P ∧ (∼ Q) (1.5)

∼ (P ←→ Q) ⇐⇒ [P ∧ (∼ Q)] ∨ [Q ∧ (∼ P )]. (1.6)

Fortunately, with a well chosen perspective these are intuitive. Recall that any statement R can
also be read “R is true,” while the negation asserts the original statement is false. For example
∼ R can be read as the statement “R is false,” or a similar wording (such as “it is not the case
that R”). Similarly the statement ∼ (P ∨Q) is the same as “ ‘P or Q’ is false.” With that it is
not difficult to see that for ∼ (P ∨Q) to be true requires both that P be false and Q be false.
For a specific example, consider our earlier P and Q:

P : I will eat pizza

Q : I will drink soda

P ∨Q : I will eat pizza or I will drink soda

∼ (P ∨Q) : It is not the case that (either) I will eat pizza or I will drink soda

(∼ P ) ∧ (∼ Q) : It is not the case that I will eat pizza, and it is not the case that I

will drink soda

That these last two statements essentially have the same content, as stated in (1.3), should be
intuitive. An actual proof of (1.3) is best given by truth tables, and can be found on page 15.

Next we consider (1.5). This states that ∼ (P −→ Q) ⇐⇒ P ∧ (∼ Q). Now we can read
∼ (P −→ Q) as “it is not the case that P −→ Q,” or “P −→ Q is false.” Recall that there
was only one case for which we considered P −→ Q to be false, which was the case that P was
true but Q was false, which itself can be translated to P ∧ (∼ Q). For our earlier example, the
negation of the statement “if I eat pizza then I will drink soda” is the statement “I will eat
pizza but (and) I will not drink soda.” While this discussion is correct and may be intuitive, the
actual proof (1.5) is by truth table:

P Q P → Q ∼ (P → Q) P ∼ Q P ∧ (∼ Q)
T T T F T F F
T F F T T T T
F T T F T F F
F F T F F T F

the same
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We leave the proof of (1.6) by truth tables to the exercises. Recall that P ←→ Q states that
we have P true if and only if we also have Q true, which we further translated as the idea that we
cannot have P true without Q true, and cannot have Q true without P true. Now ∼ (P ←→ Q)
is the statement that P ←→ Q is false, which means that P is true and Q false, or Q is true and
P false, which taken together form the statement [P ∧ (∼ Q)]∨ [Q∧ (∼ P )], as reflected in (1.6)
above. For our example P and Q from before, P ←→ Q is the statement “I will at pizza if and
only if I will drink soda,” the negation of which is “I will eat pizza and not drink soda, or I will
drink soda and not eat pizza.”

Another intuitive way to look at these negations is to consider the question of exactly when
is someone uttering the original statement lying? For instance, if someone states P ∧Q (or some
English equivalent), when are they lying? Since they stated “P and Q,” it is not difficult to see
they are lying exactly when at least one of the statements P, Q is false, i.e., when P is false or
Q is false,18 i.e., when we can truthfully state (∼ P ) ∨ (∼ Q). That is the kind of thinking one
should employ when examining (1.4), that is ∼ (P ∧Q) ⇐⇒ (∼ P ) ∨ (∼ Q), intuitively.

1.2.3 Equivalent Forms of the Implication

In this subsection we examine two statements which are equivalent to P −→ Q. The first is
more important conceptually, and the second is more important computationally. We list them
both now before contemplating them further:

P −→ Q ⇐⇒ (∼ Q) −→ (∼ P ) (1.7)

P −→ Q ⇐⇒ (∼ P ) ∨Q. (1.8)

We will combine the proofs into one truth table, where we compute P −→ Q, followed in turn
by (∼ Q) −→ (∼ P ) and (∼ P ) ∨Q.

P Q P → Q ∼ Q ∼ P (∼ Q)→ (∼ P ) ∼ P Q (∼ P ) ∨Q
T T T F F T F T T
T F F T F F F F F
F T T F T T T T T
F F T T T T T F T

the same

The form (1.7) is important enough that it warrants a name:

Definition 1.2.2 Given any implication P −→ Q, we call the (logically equivalent) statement
(∼ Q) −→ (∼ P ) its contrapositive (and vice-versa, see below).

In fact, note that the contrapositive of (∼ Q) −→ (∼ P ) would be [∼ (∼ P )] −→ [∼ (∼ Q)], i.e.,
P −→ Q, so P −→ Q and (∼ Q) −→ (∼ P ) are contrapositives of each other.

We have proved that P −→ Q, its contrapositive (∼ Q) −→ (∼ P ), and the other form
(∼ P ) ∨ Q are equivalent using the truth table above, but developing the intuition that these
should be equivalent can require some effort. Some examples can help to clarify this.

18Note that here as always we use the inclusive “or,” so when we write “P is false or Q is false,” we include
the case in which both P and Q are false. (See Footnote 8, page 5 for remarks on the exclusive “or.”)
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P : I will eat pizza

Q : I will drink soda

P −→ Q : If I eat pizza, then I will drink soda

(∼ Q) −→ (∼ P ) : If I do not drink soda, then I will not eat pizza

(∼ P ) ∨Q : I will not eat pizza, or I will drink soda.

Perhaps more intuition can be found when Q is a more natural consequence of P . Consider the
following P, Q combination which might be used by parents communicating to their children.

P : you leave your room messy

Q : you get spanked

P −→ Q : if you leave your room messy, then you get spanked

(∼ Q) −→ (∼ P ) : if you do not get spanked, then you do (did) not leave your room messy

(∼ P ) ∨Q : you do not leave your room messy, or you get spanked.

A mathematical example could look like the following (assuming x is a “real number,” as dis-
cussed later in this text):

P : x = 10

Q : x2 = 100

P −→ Q : if x = 10, then x2 = 100

(∼ Q) −→ (∼ P ) : if x2 6= 100, then x 6= 10

(∼ P ) ∨Q : x 6= 10 or x2 = 100.

The contrapositive is very important because many theorems are given as implications, but
are often used in their logically equivalent, contrapositive forms. However, it is equally important
to avoid confusing P −→ Q with either of the statements P ←→ Q or Q −→ P . For instance,
in the second example above, the child may get spanked without leaving the room messy, as
there are quite possibly other infractions which would result in a spanking. Thus leaving the
room messy does not follow from being spanked, and leaving the room messy is not necessarily
connected with the spanking by an “if and only if.” In the last, algebraic example above, all the
forms of the statement are true, but x2 = 100 does not imply x = 10. Indeed, it is possible that
x = −10. In fact, the correct bi-implication is x2 = 100←→ [(x = 10) ∨ (x = −10)].

1.2.4 Other Valid Equivalences

While negations and equivalent alternatives to the implication are arguably the most important
of our valid logical equivalences, there are several others. Some are rather trivial, such as

P ∧ P ⇐⇒ P ⇐⇒ P ∨ P. (1.9)

Also rather easy to see are the “commutativities” of ∧,∨ and ←→:

P ∧Q ⇐⇒ Q ∧ P, P ∨Q ⇐⇒ Q ∨ P, P ←→ Q ⇐⇒ Q←→ P. (1.10)

There are also associative rules. The latter was in fact a topic in the previous exercises:

P ∧ (Q ∧R) ⇐⇒ (P ∧Q) ∧R (1.11)

P ∨ (Q ∨R) ⇐⇒ (P ∨Q) ∨R. (1.12)
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However, it is not so clear when we mix together ∨ and ∧. In fact, these “distribute over
each other” in the following ways:

P ∧ (Q ∨R) ⇐⇒ (P ∧Q) ∨ (P ∧R), (1.13)

P ∨ (Q ∧R) ⇐⇒ (P ∨Q) ∧ (P ∨R). (1.14)

We prove the first of these distributive rules below, and leave the other for the exercises.

P Q R Q ∨R P ∧ (Q ∨R) P ∧Q P ∧R (P ∧Q) ∨ (P ∧R)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

the same

To show that this is reasonable, consider the following:

P : I will eat pizza;

Q : I will drink cola;

R : I will drink lemon-lime soda.

Then our logically equivalent statements become

P ∧ (Q ∨R) : I will eat pizza, and drink cola or lemon-lime soda;

(P ∧Q) ∨ (P ∧R) : I will eat pizza and drink cola, or

I will eat pizza and drink lemon-lime soda.

Table 1.3, page 22 gives these and some further valid equivalences. It is important to be able
to read these and, through reflection and the exercises, to be able to see the reasonableness of
each of these. Each can be proved using truth tables.

For instance we can prove that P ←→ Q ⇐⇒ (P −→ Q) ∧ (Q −→ P ), justifying the choice
of the double-arrow symbol ←→:

P Q P ←→ Q P −→ Q Q −→ P (P −→ Q) ∧ (Q −→ P )
T T T T T T
T F F F T F
F T F T F F
F F T T T T

the same

This was discussed in Example 1.1.4 on page 7.
For another example of such a proof, we next demonstrate the following interesting equiva-

lence:
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P −→ (Q ∧R) ⇐⇒ (P −→ Q) ∧ (P −→ R)

P Q R Q ∧R P −→ (Q ∧R) P −→ Q P −→ R (P −→ Q) ∧ (P −→ R)
T T T T T T T T
T T F F F T F F
T F T F F F T F
T F F F F F F F
F T T T T T T T
F T F F T T T T
F F T F T T T T
F F F F T T T T

the same

This should be somewhat intuitive: if P is to imply Q∧R, that should be the same as P implying
Q and P implying R. This equivalence will be (1.33), page 22. According to (1.34) below it, we
can replace ∧ with ∨ and get another valid equivalence.

Still one must be careful about declaring two statements to be equivalent. These are all
ultimately intuitive, but intuition must be informed.19 For instance, left to the exercises are
some valid equivalences which may seem counter-intuitive. These are in fact left off of our
Table 1.3 because they are somewhat obscure, but we include them here to illustrate that not
all equivalences are transparent. Consider

(P ∨Q) −→ R ⇐⇒ (P −→ R) ∧ (Q −→ R), (1.15)

(P ∧Q) −→ R ⇐⇒ (P −→ R) ∨ (Q −→ R). (1.16)

Upon reflection one can see how these are reasonable. For instance, we can look more closely at
(1.15) with the following P, Q and R:

P : I eat pizza,

Q : I eat chicken,

R : I drink cola.

Then the left and right sides of (1.15) become

(P ∨Q) −→ R : If I eat pizza or chicken, then I drink cola

(P −→ R) ∧ (Q −→ R) : If I eat pizza then I drink cola, and if I eat chicken then I drink cola.

In fact (1.16) is perhaps more difficult to see.
At the end of the chapter there will be an optional section for the reader interested in achieving

a higher level of symbolic logic sophistication. That section is devoted to finding and proving
valid equivalences (and implications as seen in the next section) without relying on truth tables.
The technique centers on using a small number of established equivalences to rewrite compound
statements into alternative, equivalent forms. With those techniques one can quickly prove (1.15)
and (1.16), again without truth tables. It is akin to proving trigonometric identities, or the leap
from memorizing single-digit multiplication tables and applying them to several-digit problems.

19It is a truism in mathematics and other fields that, while one part of learning is discovering what is true,
another part is discovering what is not true, especially when the latter seems reasonable at first glance.
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P ∧ P ⇐⇒ P ⇐⇒ P ∨ P (1.17)

∼ (∼ P ) ⇐⇒ P (1.18)

∼ (P ∨Q) ⇐⇒ (∼ P ) ∧ (∼ Q) (1.19)

∼ (P ∧Q) ⇐⇒ (∼ P ) ∨ (∼ Q) (1.20)

∼ (P −→ Q) ⇐⇒ P ∧ (∼ Q) (1.21)

∼ (P ←→ Q) ⇐⇒ [P ∧ (∼ Q)] ∨ [Q ∧ (∼ P )] (1.22)

P ∨Q ⇐⇒ Q ∨ P (1.23)

P ∧Q ⇐⇒ Q ∧ P (1.24)

P ∨ (Q ∨R) ⇐⇒ (P ∨Q) ∨R (1.25)

P ∧ (Q ∧R) ⇐⇒ (P ∧Q) ∧R (1.26)

P ∧ (Q ∨R) ⇐⇒ (P ∧Q) ∨ (P ∧R) (1.27)

P ∨ (Q ∧R) ⇐⇒ (P ∨Q) ∧ (P ∨R) (1.28)

P −→ Q ⇐⇒ (∼ P ) ∨Q (1.29)

P −→ Q ⇐⇒ (∼ Q) −→ (∼ P ) (1.30)

P −→ Q ⇐⇒ ∼ [P ∧ (∼ Q)] (1.31)

P ←→ Q ⇐⇒ (∼ P )←→ (∼ Q) (1.32)

P −→ (Q ∧R) ⇐⇒ (P −→ Q) ∧ (P −→ R) (1.33)

P −→ (Q ∨R) ⇐⇒ (P −→ Q) ∨ (P −→ R) (1.34)

(P −→ Q) ∧ (Q −→ P ) ⇐⇒ P ←→ Q (1.35)

(P −→ Q) ∧ (Q −→ R) ∧ (R −→ P ) ⇐⇒ (P ←→ Q) ∧ (Q←→ R)

∧ (P ←→ R) (1.36)

Table 1.3: Table of common valid logical equivalence.

For a glance at the process, we can look at such a proof of the equivalence of the contrapositive:
P −→ Q ⇐⇒ (∼ Q) −→ (∼ P ). To do so, we require (1.29), that P −→ Q ⇐⇒ (∼ P ) ∨Q.
The proof runs as follows:

P −→ Q ⇐⇒ (∼ P ) ∨Q

⇐⇒ Q ∨ (∼ P )

⇐⇒ [∼ (∼ Q)] ∨ (∼ P )

⇐⇒ (∼ Q) −→ (∼ P ).

The first line used (1.29), the second commutativity (1.23), the third that Q ⇐⇒ ∼ (∼ Q)
(1.18), and the fourth used (1.29) again but with the part of “P” played by (∼ Q) and the part
of “Q” played by (∼ P ). This proof is not much more efficient than a truth table proof, but
for (1.15) and (1.16) this technique of proofs without truth tables is much faster. However that
technique assumes that the more primitive equivalences used in the proof are valid, and those are
ultimately proved using truth tables. The extra section which develops such techniques, namely
Section 1.6, is supplemental and not required reading for understanding sufficient symbolic logic
to aid in developing the calculus. For that we need only up through Section 1.4.
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1.2.5 Circuits and Logic

While we will not develop this next theory deeply, it is worthwhile to consider a short intro-
duction. The idea is that we can model compound logic statements with electrical switching
circuits.20 When current is allowed to flow across a switch, the switch is considered “on” when
the statement it represents has truth value T and current can flow through the switch, and
“off” and not allowing current to flow through when the truth value is F. We can decide if the
compound circuit is “on” or “off” based upon whether or not current could flow from one end
to the other, based on whether the compound statement has truth value T or F. The analysis
can be complicated if the switches are not necessarily independent (P is “on” when ∼ P is “off”
for instance), but this approach is interesting nonetheless.

For example, the statement P ∨Q is represented by a parallel circuit:

in

P

Q

out

If either P or Q is on (T), then the current can flow from the “in” side to the “out” side of the
circuit. On the other hand, we can represent P ∧Q by a series circuit:

P Qin out

Of course P ∧Q is only true when both P and Q are true, and the circuit reflects this: current
can flow exactly when both “switches” P and Q are “on.”

It is interesting to see diagrams of some equivalent compound statements, illustrated as
circuits. For instance, (1.27), i.e., the distributive-type equivalence

P ∧ (Q ∨R) ⇐⇒ (P ∧Q) ∨ (P ∧R)

can be seen as the equivalence of the two cicruits below:

P

Q

R

in out

P Q

P R

in out

20Technically a circuit would allow current to flow from a source, through components and back to the source.
Here we only show part of the possible path. We will encounter some complete circuits later in the text.
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In both circuits, we must have P “on,” and also either Q or R for current to flow. Note that in
the second circuit, P is represented in two places, so it is either “on” in both places, or “off” in
both places. Situations such as these can complicate analyses of switching circuits but this one
is relatively simple.

We can also represent negations of simple statements. To represent∼ P we simply put “∼ P”
into the circuit, where it is “on” if ∼ P is true, i.e., if P is false. This allows us to construct
circuits for the implication by using (1.29), i.e., that P −→ Q ⇐⇒ (∼ P ) ∨Q:

∼ P

Q

in out

We see that the only time the circuit does not flow is when P is true (∼ P is false) and Q is
false, so this matches what we know of when P −→ Q is false. From another perspective, if P
is true, then the top part of the circuit won’t flow so Q must be true, for the whole circuit to be
“on,” or “true.”

When negating a whole circuit it gets even more complicated. In fact, it is arguably easier
to look at the original circuit and simply note when current will not flow. For instance, we know
∼ (P ∧Q) ⇐⇒ (∼ P ) ∨ (∼ Q), so we can construct P ∧Q:

P Qin out

and note that it is off exactly when either P is off or Q is off. We then note that that is exactly
when the circuit for (∼ P ) ∨ (∼ Q) is on.

in

∼ P

∼ Q

out

There are, in fact, electrical/mechanical means by which one can take a circuit and “negate”
its truth value, for instance with relays or reverse-position switch levers, but that subject is more
complicated than we wish to pursue here.

It is interesting to consider P ←→ Q as a circuit. It will be “on” if P and Q are both “on”
or both “off,” and the circuit will be “off” if P and Q do not match. Such a circuit is actually
used commonly, such as for a room with two light switches for the same light. To construct such
a circuit we note that

P ←→ Q ⇐⇒ (P −→ Q) ∧ (Q −→ P )

⇐⇒ [(∼ P ) ∨Q] ∧ [(∼ Q) ∨ P ]

We will use the last form to draw our diagram:
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∼ P ∼ Q

Q P

in out

The reader is invited to study the above diagram to be convinced it represents P ←→ Q,
perhaps most easily in the sense that, “you can not have one (P or Q) without the other, but
you can have neither.” While the above diagram does represent P ←→ Q by the more easily
diagrammed [(∼ P ) ∨Q] ∧ [(∼ Q) ∨ P ], it also suggests another equivalence, since the circuits
below seems to be functionally equvialent. In the first, we can add two more wires to replace
the “center” wire, and also switch the ∼ Q and P , since (∼ Q) ∨ P is the same as P ∨ (∼ Q):

∼ P ∼ Q

Q P

in out

∼ P ∼ Q

P Q

in out

This circuit represents [(∼ P ) ∧ (∼ Q)] ∨ [P ∧Q], and so we have (as the reader can check)

P ←→ Q ⇐⇒ [(∼ P ) ∧ (∼ Q)] ∨ [P ∧Q], (1.37)

which could be added to our previous Table 1.3, page 22 of valid equivalences. It is also consistent
with a more colloquial way of expressing P ←→ Q, such as “neither or both.”

Incidentally, the circuit above is used in applications where we wish to have two switches
within a room which can both change a light (or other device) from on to off or vice versa. When
switch P is “on,” switch Q can turn the circuit on or off by matching P or being its negation.
Similarly when P is “off.” Mechanically this is accomplished with “single pole, double throw
(SPDT)” switches.

P Qin out

In the above, the switch P is in the “up” position when P is ‘true, and “down” when P is false.
Similarly with Q.
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Because there are many possible “mechanical” diagrams for switching circuits, reading and
writing such circuits is its own skill. However, for many simpler cases there is a relatively easy
connection to our symbolic logic.

1.2.6 The Statements T and F
Just as there is a need for zero in addition, we have use for a symbol representing a statement
which is always true, and for another symbol representing a statement which is always false. For
convenience, we will make the following definitions:

Definition 1.2.3 Let T represent any compound statement which is a tautology, i.e., whose
truth value is always T. Similarly, let F represent any compound statement which is a contra-
diction, i.e., whose truth value is always F.

We will assume there is a universal T and a universalF , i.e., statements which are respectively
true regardless of any other statements’ truth values, and false regardless of any other statements’
truth values. In doing so, we consider any tautology to be logically equivalent to T , and any
contradiction similarly equivalent to F .21

So, for any given P1 · · · , Pn, we have that T is exactly that statement whose column in the
truth table consists entirely of T’s, and F is exactly that statement whose column in the truth
table consists entirely of F’s. For example, we can write

P ∨ (∼ P ) ⇐⇒ T ; (1.38)

P ∧ (∼ P ) ⇐⇒ F . (1.39)

These are easily seen by observing the truth tables.

P ∼ P P ∨ (∼ P ) P ∧ (∼ P )
T F T F
F T T F

We see that P ∨ (∼ P ) is always true, and P ∧ (∼ P ) is always false. Anything which is always
true we will dub T , and anything which is always false we will call F . In the table above, the
third column represents T , and the last column represents F .

From the definitions we can also eventually get the following.

P ∨ T ⇐⇒ T (1.40)

P ∧ T ⇐⇒ P (1.41)

P ∨ F ⇐⇒ P (1.42)

P ∧ F ⇐⇒ F . (1.43)

21In fact it is not difficult to see that all tautologies are logically equivalent. Consider the tautologies P ∨(∼ P ),
(P −→ Q)←→ [(∼ Q) −→ (∼ P )], and R −→ R. A truth table for all three must contain independent component
statements P, Q, R, and the abridged version of the table would look like

P Q R P ∨ (∼ P ) (P −→ Q)←→ [(∼ Q) −→ (∼ P )] R −→ R
T T T T T T
T T F T T T
T F T T T T
T F F T T T
F T T T T T
F T F T T T
F F T T T T
F F F T T T

So when all possible underlying independent component statements are included, we see the truth table columns
of these tautologies are indeed the same (all T’s!). Similarly all contradictions are equivalent.
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To demonstrate how one would prove these, we prove here the first two, (1.40) and (1.41),
using a truth table. Notice that all entries for T are simply T:

P T P ∨ T P ∧ T
T T T T
F T T F

Equivalence (1.40) is demonstrated by the equivalence of the second and third columns, while
(1.41) is shown by the equivalence of the first and fourth columns. The others are left as exercises.

These are also worth reflecting upon. Consider the equivalence P ∧T ⇐⇒ P . When we use
∧ to connect P to a statement which is always true, then the truth of the compound statement
only depends upon the truth of P . There are similar explanations for the rest of (1.40)–(1.43).

Some other interesting equivalences involving these are the following:

T −→ P ⇐⇒ P (1.44)

P −→ F ⇐⇒ ∼ P. (1.45)

We leave the proofs of these for the exercises. These are in fact interesting to interpret. The
first says that if a true statement implies P , that is the same as in fact having P . The second
says that if P implies a false statement, that is the same as having ∼ P , i.e., as having P false.
Both types of reasoning are useful in mathematics and other disciplines.

If a statement contains only T or F , then in fact that statement itself must be a tautology
(T ) or a contradiction (F). This is because there is only one possible combination of truth
values. For instance, consider the statement T −→ F , which is a contradiction. One proof is in
the table:

T F T −→ F
T F F

Since the component statement T −→ F always has truth value F, it is a contradiction. Thus
T −→ F ⇐⇒ F .

Exercises

Some of these were solved within the section. It is useful to attempt them here again, in the
context of the other problems. Unless otherwise specified, all proofs should be via truth tables.

1. Prove (1.18): ∼ (∼ P ) ⇐⇒ P .

2. Prove (1.32):

P ←→ Q ⇐⇒ (∼ P )←→ (∼ Q).

3. Prove the logical equivalence of the con-
trapositive (1.30):

P −→ Q ⇐⇒ (∼ Q) −→ (∼ P ).

4. Prove (1.29): P −→ Q ⇐⇒ (∼ P ) ∨Q.

5. Show that P −→ Q and Q −→ P are not
equivalent.

6. Prove De Morgan’s Laws (1.19) and
(1.20), which are listed again below:

(a) ∼ (P ∨Q) ⇐⇒ (∼ P ) ∧ (∼ Q).

(b) ∼ (P ∧Q) ⇐⇒ (∼ P ) ∨ (∼ Q).

7. Use truth tables to prove the distributive-
type laws (1.27) and (1.28):

(a) P ∧ (Q∨R) ⇐⇒ (P ∧Q)∨ (P ∧R).

(b) P ∨ (Q∧R) ⇐⇒ (P ∨Q)∧ (P ∨R).

8. Repeat the previous problem but using
circuit diagrams.
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9. Prove (1.33): P −→ (Q ∧R)

⇐⇒ (P −→ Q) ∧ (P −→ R).

10. Prove (1.34): P −→ (Q ∨R)

⇐⇒ (P −→ Q) ∨ (P −→ R).

11. Prove (1.21):

∼ (P −→ Q) ⇐⇒ P ∧ (∼ Q).

12. Prove (1.35), which we write below as

P ←→ Q ⇐⇒ (P −→ Q) ∧ (Q −→ P ).
Note that this justifies the choice of the
double-arrow notation ←→.

13. Prove (1.22): ∼ (P ←→ Q)

⇐⇒ (P ∧ (∼ Q)) ∨ (Q ∧ (∼ P )).

14. Recall the description of XOR in foot-
note 8, page 5.

(a) Construct a truth table for
P XOR Q.

(b) Compare to the previous problem.
Can you make a conclusion?

(c) Find an expression for P XOR Q us-
ing P , Q, ∼, ∧ and ∨.

15. Prove that (P ∨Q) −→ (P ∧Q) is equiva-
lent to P ←→ Q. How would you explain
in words why this is reasonable? (Per-
haps you can think of a colloquial way to
verbalize the statement so it will sound
equivalent to P ←→ Q.)

16. Prove (1.31). How would you explain in
words why this is reasonable?

17. Prove the following:

(a) (1.40): P ∨ T ⇐⇒ T .

(b) (1.41): P ∧ T ⇐⇒ P .

(c) (1.42): P ∨ F ⇐⇒ P .

(d) (1.43): P ∧ F ⇐⇒ F .

18. For each of the following, find a simple,
equivalent statement, using truth tables
if necessary.

(a) T ∨ T
(b) F ∨ F
(c) T ∨ F
(d) T ∧ T
(e) F ∧ F

(f) T ∧ F
(g) T −→ T
(h) F −→ F
(i) T −→ F
(j) F −→ T

19. Repeat the previous exercise for the fol-
lowing:

(a) T −→ P

(b) F −→ P

(c) P −→ T
(d) P −→ F

(e) P ←→ T
(f) P ←→ F
(g) P ←→ (∼ P )

(h) P −→ (∼ P )

20. Prove the associative rules (1.25) and
(1.26), page 22.

21. Prove (1.36), page 22.

22. Show (P ∨ Q) → R ⇐⇒ [(P →
R) ∧ (Q → R)]. Try to explain why this
makes sense.

23. Show (P ∧ Q) → R ⇐⇒ [(P →
R) ∨ (Q→ R)]. (This is not so easily ex-
plained as is the previous exercise.)

24. There is a notion in logic theory regarding
“strong” versus “weak” statements, the
stronger ones claiming in a sense more in-
formation regarding the underlying state-
ments such as P, Q. For instance, P ∧Q
is considered “stronger” than P ∨Q, be-
cause P ∧ Q tells us more about P, Q
(both are declared true) than P ∨ Q (at
least one is true but both may be). Sim-
ilarly P ↔ Q is stronger than P → Q.

Each of the following statements
may appear “strong” but in fact give little
interesting content regarding P, Q. Con-
struct a truth table for each and use the
truth tables to then explain why they are
not terribly “interesting” statements to
make about P, Q. (Hint: what are these
equivalent to?)

(a) (P → Q) ∨ (Q→ P )

(b) (P → Q)→ (P ↔ Q)
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1.3 Valid Implications and Arguments

Most theorems in this text are in the form of implications, rather than the more rigid equivalences
of the last section. Indeed, our theorems are usually of the form “hypothesis implies conclusion.”
So we have need of an analog to our valid equivalences, namely a notion of valid implications.

1.3.1 Valid Implications Defined

Our definition of valid implications is similar to our previous definition of valid equivalences:

Definition 1.3.1 Suppose that R and S are compound statements of some independent compo-
nent statements P1, · · · , Pn. If R −→ S is a tautology (always true), then we write

R =⇒ S, (1.46)

which we then call a valid logical implication.22

Example 1.3.1 Perhaps the simplest example is the following: P =⇒ P. This seems obvious
enough on its face. It can be proved using a truth table (note the vacuous case):23

P P P −→ P
T T T
F F T

Thus we see that there are logical implications which are tautologies. A slightly more
complicated—and very instructive—example is the following:

Example 1.3.2 The following is a valid implication:

(P ∧Q) =⇒ P. (1.47)

To prove this, we will use a truth table to show that the following is a tautology:

(P ∧Q) −→ P.

P Q P ∧Q P (P ∧Q) −→ P
T T T T T
T F F T T
F T F F T
F F F F T

Notice that three of the four cases have the implication true vacuously.

The above example is fairly easy to interpret: if P and Q are true, then (of course) P is true.
Another intuitive example follows, bascially stating that if we have bi-implication then we have
implication.

22In this text we will differentiate between implications as statements, such as P −→ Q, which may be true
or false, and valid implications which are declarations that a particular implication is always true. For example
R =⇒ S means R −→ S is a tautology. (We similarly differentiated ←→ from ⇐⇒ .)

23We could also show that P −→ P is a tautology by way of previously proved results. For instance, with
P −→ Q ⇐⇒ (∼ P ) ∨Q ((1.29), page 22), with the part of Q played by P , we have

P −→ P ⇐⇒ (∼ P ) ∨ P ⇐⇒ T ,

the second statement being in effect our original example of a tautology (Example 1.1.9, page 11).
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Example 1.3.3 The following is a valid implication:

P ←→ Q =⇒ P −→ Q. (1.48)

As before, we prove that replacing =⇒ with −→ gives us a tautology.

P Q P ←→ Q P −→ Q (P ←→ Q) −→ (P −→ Q)
T T T T T
T F F F T
F T F T T
F F T T T

Also as before, we see the importance of the vacuous cases in the final implication. In fact,
this is just an application of the previous implication (1.47), if we remember that P ←→ Q is
equivalent to (P −→ Q) ∧ (Q −→ P ):

(P −→ Q)
︸ ︷︷ ︸

“P”

∧ (Q −→ P )
︸ ︷︷ ︸

“Q”

=⇒ (P −→ Q)
︸ ︷︷ ︸

“P”

.

The quotes indicate what roles in (1.47) are played by the parts of (1.48).

Another interesting valid implication is given next. (The reader should reflect on its apparent
meaning.)

Example 1.3.4 (P −→ Q) ∧ (Q −→ R) =⇒ (P −→ R).
Note that to prove this, we must show that the following statement is a tautology:

[(P −→ Q) ∧ (Q −→ R)] −→ (P −→ R).

P Q R P → Q Q→ R (P → Q) ∧ (Q→ R) P → R
[(P → Q) ∧ (Q→ R)]
−→ (P → R)

T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

At this stage in the development it is perhaps best to check such things using truth tables,
however unwieldy they can be. Of course with practice comes intuition, informed memory and
many shortcuts, but for now we will use this brute force method of truth tables to determine if
an implication is valid.

For a simple algebraic perspective of the difference between a valid implication and a valid
equivalence, consider the following list of algebraic facts:

x = 5 =⇒ x2 = 25,

x = −5 =⇒ x2 = 25,

x2 = 25 ⇐⇒ (x = 5) ∨ (x = −5).
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Knowing x = 5 is not equivalent to knowing x2 = 25. That is because there is an alternative
explanation for x2 = 25, namely that perhaps x = −5. But it is true that knowing x = 5 implies
knowing—at least in principle—that x2 = 25 (just as knowing x = −5 implies knowing x2 = 25).
If an equivalence is desired, a valid one is that knowing x2 = 25 is equivalent to knowing that x
must be either 5 or −5.

Later in the text we will briefly focus on algebra in earnest, bringing our symbolic logic to
bear on that topic. In algebra (and in calculus) it is often important to know when we have an
equivalence and when we have only an implication. For some algebraic problems, the implication
often means we need to check our answer while the equivalence means we do not. For an example
of this phenomenon, consider

√
x + 2 = x =⇒ x + 2 = x2 ⇐⇒ 0 = x2 − x− 2 ⇐⇒ 0 = (x− 2)(x + 1)

⇐⇒ (x− 2 = 0) ∨ (x − 1 = 0) ⇐⇒ (x = 2) ∨ (x = −1).

We lost the equivalence at the first step, and so we can only conclude from the logic that
√

x + 2 = x =⇒ (x = 2) ∨ (x = −1).

All this tells us is that if there is a a number x so that
√

x + 2 = x, then the number must be
either x = 2 or x = −1 (or perhaps both work; recall that we always interpret or inclusively).
When we check x = 2 in the original equation, we get

√
4 = 2, which is true. However, x = −1

gives
√

1 = −1, which is not true. Since we have now solved the original equation we can say
that24 √

x + 2 = x ⇐⇒ x = 2.

For another example, consider how one can solve a linear equation:

2x + 1 = 3 ⇐⇒ 2x = 2 ⇐⇒ x = 1.

Here we subtracted 1 from both sides, and then divided by 2, neither of which break the logical
equivalence. We do not have to check the answer (unless we believe our arithmetic or reasoning
may be faulty). In Chapter 2 we will delve more deeply into algebra.

1.3.2 Partial List of Valid Implications

Table 1.4, page 32 lists some basic valid equivalences and implications. All can be proved using
truth tables. However, it is important to learn to recognize validity without always resorting to
truth tables. Each can be viewed in light of English examples. Still, it is the rigorous mathe-
matical framework which gives us the precise rules for rewriting and analyzing statements.25

It is useful to see why (1.49)–(1.58) are not equivalences.26 For instance a little reflection
should make clear that27 P 6=⇒ P ∧ Q (unless there is some underlying relationship between
P and Q which is not stated), and so we cannot replace =⇒ with ⇐⇒ in (1.49). Similarly,
in (1.52) having P −→ R in itself says nothing about Q, so there is no reason to believe
(P −→ Q) ∧ (Q −→ R) is implied by P −→ R.

Implicit in the above discussion is the fact that having ⇐⇒ is the same as simultaneously
having both =⇒ and ⇐=. Put another way, R ⇐⇒ S is the same as collectively having

24Later, in Chapter 2 we will define
√

z to be only the nonnegative square root of z, assuming z ≥ 0 lest
√

z
be undefined, at least as a real number.

25Similarly we use the rules of algebra to rewrite and analyze equations in hopes of solving for the variables.
26The exceptions in the table are (1.60) and (1.61), which are valid if we replace =⇒ with⇐⇒, as was discussed

in the previous section. See (1.45), page 27 and the exercises of that section.
27Note that it is common to negate a statement by including a “slash” through the main symbol, as in
∼ (x = 3) ⇐⇒ x 6= 3. What we mean by R 6=⇒ S is that it is not true that R −→ S is a tautology.
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P ∧Q =⇒ P (1.49)

P =⇒ P ∨Q (1.50)

P ←→ Q =⇒ P −→ Q (1.51)

(P −→ Q) ∧ (Q −→ R) =⇒ P −→ R (1.52)

(P ←→ Q) ∧ (Q −→ R) =⇒ (P −→ R) (1.53)

(P −→ Q) ∧ (Q←→ R) =⇒ (P −→ R) (1.54)

(P ←→ Q) ∧ (Q←→ R) =⇒ (P ←→ R) (1.55)

(P −→ Q) ∧ P =⇒ Q (1.56)

(P −→ Q) ∧ (∼ Q) =⇒ ∼ P (1.57)

(P ∨Q) ∧ (∼ Q) =⇒ P (1.58)

P −→ (∼ P ) =⇒ ∼ P (1.59)

P −→ F =⇒ ∼ P (1.60)

T −→ P =⇒ P (1.61)

Table 1.4: Table of Valid Logical Implications. If we replace =⇒ with −→ in each of the
above (perhaps enclosing each side in brackets [· · · ]), we would have tautologies.

both R =⇒ S and S =⇒ R.28 In fact it is important to note that all of the valid logical
equivalences, for instance in Table 1.3, page 22 can be also considered to be combinations of two
valid implications, one with =⇒, and the other with ⇐=, replacing ⇐⇒. We do not list them
all here, but rather list the most commonly used implications which are not equivalences, except
for the last three in the table.

1.3.3 Fallacies and Valid Arguments29

The name fallacy is usually reserved for typical faults in arguments that we never-
theless find persuasive. Studying them is therefore a good defense against deception.
—Peter Suber, Department of Philosophy, Earlham College, Richmond, Indiana,
1996.

Here we look at some classical argument styles, some of which are valid, and some of which are
invalid and therefore called fallacies (whether or not they may seem persuasive at first glance).
The valid styles will mostly mirror the valid logical implications of Table 1.4.

A common method for diagramming simple arguments is to have a horizontal line separating
the premises 30 from the conclusions. Usually we will have multiple premises and a single con-
clusion. For style considerations, the conclusion is often announced with the symbol ∴ which is
read “therefore.”31

In this subsection we look at several of these arguments, both valid and fallacious. Many are
classical, with classical names. We will see how to analyze arguments for validity. In all cases
here, it will amount to determining if a related implication is valid.

28Note that R⇐= S would be interpreted as S =⇒ R. We will not make extensive use of “⇐=.”
29Valid argument forms are also called rules of inference.
30Premises are also called hypotheses. The singular forms are premise and hypothesis.
31In fact most texts use either the horizontal line or the symbol ∴ but not both. We use both to emphasize

where the hypotheses end and the conclusion begins.
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Example 1.3.5 Our first example we consider is the argument form which is classically known
as modus ponens, or law of detachment. It is outlined as follows:32

P −→ Q
P

∴ Q

The idea is that if we assume P −→ Q and P are true, then we must conclude that Q is also
true. This is ultimately an implication. The key is that checking to see if this is valid is the
same as checking to see if

(P −→ Q) ∧ P =⇒ Q,

i.e., that [(P −→ Q) ∧ P ] −→ Q is a tautology. We know this to be the case already, as this
is just (1.56), though we should prove this by producing the relevant truth table to show that
[(P −→ Q) ∧ P ] −→ Q is indeed a tautology, i.e., has truth value T for all cases of truth values
of P, Q:

P Q P → Q (P → Q) ∧ P Q [(P → Q) ∧ P ] −→ Q
T T T T T T
T F F F F T
F T T F T T
F F T F F T

Thus to test the validity of an argument is to test whether or not the argument, written
as an implication, is a tautology. This gives us a powerful, computational tool to analyze the
classical argument styles. It also connects some of our symbolic logic to this style of diagramming
arguments, so the intuition of these two flavors of logic can illuminate each other.

To repeat and emphasize the criterion for validity we list the following definition:

Definition 1.3.2 A valid argument is one which, when diagrammed as an implication, rep-
resents a tautology. In other words, if the premises are P1,P2 · · · ,Pm and the conclusion is Q
(where P1,P2, · · · ,Pm and Q are compound statements based upon some underlying independent
statements P1, · · · , Pn), then the argument is valid if and only if

P1 ∧ P2 ∧ · · · ∧ Pm =⇒ Q,

i.e., if and only if [P1 ∧ P2 ∧ · · · ∧ Pm] −→ Q is a tautology. If not, then the argument is a
called a fallacy.

Note that the validity of any argument does not depend upon the truth or falsity of the
conclusion. Indeed the modus ponens argument in Example 1.3.5 is perfectly valid, regardless of
whether or not Q is true. That is because we do not know—or even ask for purposes of discovering
if the logic is valid—whether or not the premises are true. What we do know is that, if the
premises are true, then so is the conclusion. In other words, the statement [(P → Q)∧P ] −→ Q
is always true. (If one or more of the premises are false, the implication is true vacuously.)

32Modus ponens is short for modus ponendo ponens, which is Latin for ”the way that affirms by affirming.” It
is important enough that it has been extensively studied through the ages, and thus has many names, another
being “affirmation argument.” As for “law of detachment,” it is pointed out in J.E. Rubin’s Mathematical Logic:

Applications and Theory (Saunders, 1990), that the idea is that we can validly “detach” the consequent Q of the
conditional P −→ Q when we also assume the antecedent P .
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One example often used to shed light on the law of detachment above, and other argument
styles as well, uses the following choices for P and Q.

P : It rained

Q : The ground is wet

The argument above could then be diagrammed again but using the words represented by P, Q:

If it rained, then the ground is wet.
It rained.

∴ The ground is wet.

This is a perfectly valid argument, meaning that if we accept the premises we must accept the
conclusion. In other words, the logic is flawless. That said, one need not necessarily accept the
conclusion just because the argument is valid, since one can always debate the truthfulness of
the premises. Again the key is that the logic here is valid, even if the premises may be faulty.33

Next we look at an example of an invalid argument, i.e., a fallacy. The following is called the
fallacy of the converse:34

Example 1.3.6 Show that the following argument is a fallacy:

P −→ Q
Q

∴ P (Invalid)

As before, we analyze the corresponding implication, in this case [(P → Q) ∧Q] −→ P , with a
truth table:

P Q P → Q (P → Q) ∧Q P [(P → Q) ∧Q] −→ P
T T T T T T
T F F F T T
F T T T F F
F F T F F T

It is always useful to review an invalid argument to see which conditions were problematic.
In the third row of our truth table, P → Q is vacuously true, and Q is true so the premises hold
true, but the conclusion P is false (which was why P → Q was vacuously true!). From a more
common-sense standpoint, while P → Q is assumed, P may not be the only condition which
forces Q to be true. (If it were, we would instead have P ←→ Q.) Consider again our previous
choices for P and Q:

If it rained, then the ground is wet.
The ground is wet.

∴ It rained. (Invalid)

33In mature philosophical discussions, the logic is rarely in question because the valid models of argument are
well known. When a conclusion seems unacceptable or just questionable, it is usually the premises which then
come under scrutiny.

34The converse of an implication R −→ S is the statement S −→ R (or R ←− S if we want to preserve the
order). An implication and its converse are not logically equivalent, as a quick check of their truth tables would
reveal. However, it is a common mistake to forget which direction an implication follows, or to just be careless
and mistake an implication for a bi-implication. The “fallacy of the converse” refers to a state of mind where
one mistakenly believes the converse true, based upon the assumption that the original implication is true. (Note
that if we mistakenly replace P −→ Q with Q −→ P in Example 1.3.6, the new argument would be valid. In fact
it is modus ponens.)
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Even if the premises are correct in Example 1.3.6, the ground being wet does not guarantee that
it rained. Perhaps it is wet from dew, or a sprinkler, or flooding from some other source. Here
one can accept the premises, but the conclusion given above is not valid.

There is a subtle—perhaps difficult—general point in this subsection which bears repeating:
the truth table associated with an argument reflects the validity or invalidity of the logic of the
argument (i.e., the validity of the corresponding implication), regardless of the truthfulness of
the premises. Indeed, note how the truth table for the valid form modus ponens of Example 1.3.5
(page 33) contains cases where the premises, P −→ Q and P , can have truth value F as well as
T.35

For completeness, we mention that some use the adjective sound to describe an argument
which is not only valid, but whose premises (and therefore conclusions) are in fact true. Of
course in reality those are usually the arguments which we seek, but (arguably) one must first
understand validity before probing the soundness of arguments, and so for this text, we are
mostly interested in abstract, valid arguments, and worry about soundness only in context.

The next example is also very common. It is a valid form of argument often known by its
Latin name modus tollens.36

Example 1.3.7 Analyze the following (modus tollens) argument.

P −→ Q
∼ Q

∴ ∼ P

As before, we analyze the following associated implication (which we leave as a single-arrow
implication until we establish it is a tautology):

[(P → Q) ∧ (∼ Q)] −→ (∼ P ).

P Q P → Q ∼ Q (P → Q) ∧ (∼ Q) ∼ P [(P → Q) ∧ (∼ Q)] −→ (∼ P )
T T T F F F T
T F F T F F T
F T T F F T T
F F T T T T T

That the final column is all T’s thus establishes its validity. In fact, we see that the argument
above is just a re-diagrammed version of (1.57), page 32.

A short chapter could be written just on the insights which can be found studying the above
modus tollens argument. For instance, for a couple of reasons one could make the case that
modus tollens and modus ponens are the same type of argument. We will see one of these
reasons momentarily, but first we will look at modus tollens by itself. Inserting our previous P
and Q into this form, we would have

35Another, perhaps more subtle point here is the extensive role of the vacuous cases in the underlying implication
of an argument. If the premises are not true, then the conclusion can not contradict them. This gives rise to some
strange forms of argument indeed, for the premises can be self-contradictory and therefore, taken as a group of
statements joined by ∧, can be equivalent to F . (Recall F → P is a tautology.) However, the only practical uses of
arguments come when we know the premises to be true, or we think they are false and demonstrate it by showing
the valid conclusions they imply are demonstrably false. The latter use is often called proof by contradiction or
indirect proof, but there are many structures which use the same idea. Modus tollens (Example 1.3.7) is one
permutation of the idea behind indirect proof.

36Short for modus tollendo tollens, Latin for ”the way that denies by denying.” It is also called “denying the
consequent,” which contrasts it to “affirming the consequent,” another name for the fallacy of the converse,
Example 1.3.6, page 34. As the reader can deduce, most of these common arguments—valid or not—have many
names, inspired by different contexts and considerations. Computationally they are simple enough, once seen as
implications to be analyzed and found to be tautologies (in cases of valid implications) or non-tautologies (in
cases of fallacies).
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If it rained, then the ground is wet.
The ground is not wet.

∴ It did not rain.

The validity of the above argument should be intuitive. A common way of explaining it is that
it must not have rained, because (first premise) if it had rained the ground would be wet, and
(second premise) it is not wet. Of course that explanation is probably no simpler than just
reading the argument as it stands.

Another way to look at it is to recall the equivalence of the implication to the contrapositive
((1.30), page 22 and elsewhere):

P −→ Q ⇐⇒ (∼ Q) −→ (∼ P ).

Thus we can replace in the modus tollens argument the first premise, P → Q, with its (equivalent)
contrapositive:

(∼ Q) −→ (∼ P )
∼ Q

∴ ∼ P

This is valid by modus ponens (Example 1.3.5, page 33), with the part of P there played by ∼ Q
here, and the part of Q by ∼ P . In fact the next valid argument form further unifies modus
ponens and modus tollens, as will be explained below, though this next form is interesting in its
own right.

Example 1.3.8 Consider the following form of argument, called disjunctive syllogism, which is
valid.37

P ∨Q
∼ P
∴ Q

The proof of this is left as an exercise. To prove this one needs to show

(P ∨Q) ∧ (∼ P ) =⇒ Q,

that is, to show [(P ∨Q) ∧ (∼ P )] −→ Q to be a tautology. Of course the idea of this argument
style is that when we assume “P or Q” to be true, and then further assume P is false (by
assuming “∼ P” is true), we are forced to conclude Q must be true. Note that this is just a
re-diagrammed version of (1.58), page 32 except with P and Q exchanging roles. For an example,
we will use a different pair of statements P and Q:

P : I will eat pizza

Q : I will eat spaghetti

The argument above becomes (after minor colloquial adjustment):

I will eat pizza or spaghetti.
I will not eat pizza.

∴ I will eat spaghetti.

To see how this unifies both modus ponens and modus tollens as two manifestations of the
same principle, recall the following (easily proved by a truth table):

P −→ Q ⇐⇒ (∼ P ) ∨Q.

This appeared as (1.29), page 22, for instance. Thus the modus ponens and modus tollens
become, respectively,

37A lay person might call this a form of “process of elmination.”
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(∼ P ) ∨Q
∼ (∼ P )

∴ Q,

and (∼ P ) ∨Q
∼ Q

∴ ∼ P.

Compare these to the original forms, respectively, to see they are the same:

P −→ Q
P

∴ Q,

and P −→ Q
∼ Q

∴ ∼ P.

For another fallacy, consider the fallacy of the inverse:38

Example 1.3.9 Show that the following statement is a fallacy.

P −→ Q
∼ P

∴ ∼ Q (Invalid)

Solution: We check to see if the statement

[(P → Q) ∧ (∼ P )] −→ (∼ Q)

is a tautology (in which case we could replace the major operation −→ with =⇒).

P Q P → Q ∼ P (P → Q) ∧ (∼ P ) ∼ Q [(P → Q) ∧ (∼ P )] −→ (∼ Q)
T T T F F F T
T F F F F T T
F T T T T F F
F F T T T T T

We note that the argument—as an implication—is false in the case P is false and Q is true. In
fact, in that case we have both premises of the argument (P → Q vacuously, and ∼ P obviously),
but not the conclusion. Let us return to our rain and wet grass statements from before:

If it rained then the grass is wet.
It did not rain.

∴ The grass is not wet. (Invalid)

For another example, consider the following obviously fallacious argument:

If you drink the hemlock then you will die.
You do not drink the hemlock.
∴ You will not die. (Invalid)

There are, of course, other reasons why you might die (or why the grass might be wet). The
case we see in the truth table example which ruins the bid for the corresponding implication to
be a tautology is that case in which you do not drink the hemlock, and still die, contradicting
the conclusion but not the hypotheses.

38The inverse of an implication R −→ S is the statement (∼ R) −→ (∼ S). It is not equivalent to the
original implication. In fact, it is equivalent to the converse (see Footnote 34, page 34), the proof of which is left
to the exercises. A course on logic would emphasize these two statements which are related to the implication.
However, they are a source of some confusion so we do not elaborate extensively here. It is much more important
to realize that R −→ S is equivalent to its contrapositive (∼ S) −→ (∼ R), and not equivalent to these other
two related implications, namely the converse S −→ R and inverse (∼ R) −→ (∼ S). These facts should become
more self-evident as the material is studied and utilized.
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There are many other forms of argument, both valid and invalid. A rudimentary strategy
for detecting if an argument is valid or a fallacy is the same: to look at the corresponding
implication and see if it is a tautology. If so, the argument is valid and if not, the argument is
a fallacy. In the next subsection we introduce a slightly more sophisticated method, in which
we use previously established valid implications and equivalences to make shorter work of some
complicated arguments, but for now we will continue to use the truth table test of the validity
of the underlying implication.

Our next example was proved earlier in the form of a valid implication. As such it was the
subject of Example 1.3.4, page 30, and was listed as (1.52), page 32. We will not rework the
truth table here.

Example 1.3.10 The following is a valid form of argument:

P −→ Q
Q −→ R

∴ P −→ R

For an example of an application, consider the following assignments for P, Q and R:

P : I am paid

Q : I will buy you a present

R : You will be happy

The argument then becomes the following, the validity of which is reasonably clear:

If I am paid, then I will buy you a present.
If I will buy you a present, then you will be happy.

∴ If I am paid, then you will be happy.

Next we look at an example which contains three underlying component statements, and three
premises. Before doing so, we point out that we can compute the truth tables for P ∧ Q ∧ R
and P ∨Q ∨R relatively quickly; the former is true whenever all three are true (and false if at
least one is false), and the latter is true if any of the three are true (and false only if all three
are false). The reason we can do this is that there is no ambiguity in computing, for instance,
P ∧ (Q ∧ R) or (P ∧ Q) ∧ R, as these are known to be equivalent (see page 22). Similarly for
∨.39 To be clearer, we note the truth tables.

P Q R P ∧Q ∧R P ∨Q ∨R
T T T T T
T T F F T
T F T F T
T F F F T
F T T F T
F T F F T
F F T F T
F F F F F

39This is similar to the arithmetic rules that A + B + C = A + (B + C) = (A + B) + C. The first expression
is not at first defined per se, but because the second and third are the same we allow for the first. Similarly
A ·B ·C = A · (B ·C) = (A ·B) ·C. However, this does not extend to all operations, such as subtraction: Usually
A− (B−C) 6= (A−B)−C, so when we write A−B−C we have to choose one, and in fact we choose the latter.
Similarly, we have to be careful with other logical operations besides ∧ and ∨. For instance, P −→ Q −→ R
would probably be interpreted (P −→ Q) −→ R, but it would depend upon the author.
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With this observation, we can more easily analyze arguments with more than two premises.

Example 1.3.11 Consider the argument

P −→ (Q ∨R)
P
∼ R
∴ Q

We need to see if the following conditional—which we dub ARG (for “argument”) for space
considerations—is a tautology:

ARG : {[P −→ (Q ∨R)] ∧ P ∧ (∼ R)} −→ Q.

P Q R Q ∨R P → (Q ∨R) ∼ R (P → (Q ∨R)) ∧ P ∧ (∼ R) Q ARG
T T T T T F F T T
T T F T T T T T T
T F T T T F F F T
T F F F F T F F T
F T T T T F F T T
F T F T T T F T T
F F T T T F F F T
F F F F T T F F T

Note that “ARG” connects the two immediately preceding columns with the logical operation
−→. Also notice that most of the cases are true vacuously (as often happens when we have more
premises to be met, connected by ∧), and eventually we see that the argument is valid.

Reading more examples, and perhaps some trial and error, one’s intuition for what is valid
and what is not should develop. With English examples one might be able to see that the above
argument style is reasonable. For instance, consider the following.

P : I will eat pizza

Q : I will drink soda

R : I will drink beer

Then the premises become

P −→ (Q ∨R) : If I eat pizza, then I will drink soda or beer.

P : I will eat pizza.

∼ R : I will not drink beer.

It is reasonable to believe that, after declaring that if I eat pizza then I will drink soda or beer,
and that I indeed will eat pizza, but not drink the beer, then I must drink the soda.40

1.3.4 Analyzing Arguments Without Truth Tables

In fact there is another approach for analyzing complicated arguments such as the one above.
The strategy is manipulative, and there are two tools we can make use of. The first is the some-
what obvious fact that we can always replace one of the hypotheses with a logically equivalent

40Or else I was lying when I recited my premises. The argument, anyhow, is valid.
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statement. That is because the truth table column entries are what matter in our computations
there. But there is another strategy which is not quite so obvious. It relies upon the following
logical equivalence, which is left as an exercise:

P −→ Q ⇐⇒ P ←→ (P ∧Q). (1.62)

For our purposes, it means that if our premises P imply Q, then we can replace them with P∧Q,
in effect attaching Q to the list of hypotheses. Note also this is true if P is instead just a single
hypothesis in the list of hypotheses, which are joined by “ands” ∧, which is commutative and
associative so Q can be attached anywhere in the list as another hypothesis.

If one or more of the hypotheses taken collectively validly imply a statement Q, then Q can
be attached to the list of hypotheses, again due to the commutative and associative nature of ∧.

Example 1.3.12 Let us re-examine the previous example, but this time we append some in-
termediate conclusions.

P −→ (Q ∨R)
P
∼ R
∴ Q

}

∴ Q ∨R
}

∴ Q

The first conclusion Q ∨R is implied by the first two premises by a simple modus ponens, and
the second came from the third original hypothesis ∼ R and our newly attached hypothesis
(Q ∨ R) by the way of the disjunctive syllogism (Example 1.3.8, page 36 and (1.57), page 32).
It requires more creativity than a truth table verification, but is clearly less tedious.

Example 1.3.13 Consider the following argument style:

(P ∨Q) −→ R
∼ R

∴ ∼ P.

Here again we can work backwards. (A reasonable alternative style would skip some steps.)

(P ∨Q) −→ R
∼ R

∴ ∼ P.

}

∴∼ (P ∨Q)

}

∴ (∼ P ) ∧ (∼ Q)

}

∴ ∼ P

Note that in this latest example we could have appended our original hypotheses to include
(∼ P ) ∧ (∼ Q), which would be the same as appending ∼ P and ∼ Q separately.

This method is often quite useful for verifying validity, but it is not, by itself, a way to detect
a fallacy. However, since common fallacies rest upon the fallacy of the inverse (page 37) or the
fallacy of the converse (page 34), we can sometimes detect when an argument tempts us to agree
with the conclusion because of such invalid, but common, reasoning.

Example 1.3.14 Consider the following argument.

(P ∨Q) −→ R
∼ Q
R

∴ P. (Invalid!)

What is tempting (but invalid) to do with this argument, is to reason that the first and third
hypotheses imply P ∨Q, and with the second reading ∼ Q, we would then (seemingly validly)
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conclude P . However, we can not concluded P from our premises. Indeed, R does not imply
anything about P and Q, and if nothing else, a truth table will prove this style invalid. An
errant diagram might look like the following:

(P ∨Q) −→ R

∼ Q

R
∴ P






∴ (P ∨Q) (INVALID!)

∼ Q

}

∴ P

An example in English might help to see that indeed this is invalid. If we define P , Q and R as
below, it seems pretty clear this style is a fallacy.

P : I shot you.

Q : I stabbed you.

R : You died.

This partuclar argument then reads:

If I shot you or stabbed you, then you died.
I did not stab you.

You died.
∴ I shot you. (Invalid!)

Clearly this is fallacious reasoning. The “alternative explanation” for the consequent, i.e., Q
where P −→ Q, should always be looming when we look at implications and try to read them
backwards. (In this case there is nothing in the premises that do not allow for other causes of
your dying.)

From the above discussion, one might conclude that we can often intuitively detect the
likelihood of an argument being invalid, but unless we can rewrite it as a known fallacy—or
clearly see a case where the premises hold true and the conclusion does not41—we would need
to go back to our primitive but absolutely reliable method of constructing the truth table for
the underlying implication to see if we have a tautology. If we do not have a tautolgy then the
argument is a fallacy; if we do, then the argument is valid.42

Still, this new method of proving validity for arguments can be very useful, especial in lieu
of long truth tables, but of course it necessarily rests upon the styles we previously proved to be
valid, or the valid equivalences or implications from before. (It also requires a bit of creativity in

41Some texts have the reader check the validity of an argument by checking only the cases in which all premises
are true, to see if the conclusions are also true for those cases. Indeed it is only the cases in which the premises are
true and the conclusion is false which invalidate an argument style. However, that kind of analysis de-emphasizes
the connection between valid argument styles and valid implications, and the role of tautologies and so we prefer
to include these ideas, at the cost of looking at every case of truth values for the underlying statements P, Q, and
so on when analyzing an argument for validity.

42By now the reader, having encountered abstract and applied implications on many abstract levels, should be
aware of the reason to write both sides of semicolon in the sentence above, namely, “If we do not have a tautolgy
then the argument is a fallacy; if we do, then the argument is valid.” To spell this out better, consider

P :we have a tautology (in the form of the argument as an implication)

Q :the argument is valid

Then the sentence in quotes reads [(∼ P ) → (∼ Q)] ∧ [P → Q], which is equivalent to [Q → P ] ∧ [P → Q], i.e.,
P ↔ Q. If we wrote only the first part, (∼ P ) → (∼ Q), that alone would not declare the second part P → Q,
though many casual readers would assume that it would (in words if not symbols).
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using them.) The more known valid styles, equivalences and implications one has available, the
larger the number of argument styles which can be proven without resorting to truth tables. Of
course it was the truth tables which allowed us to prove the preliminary equivalences, implications
and argument styles to be valid, so ultimately all these things rest upon the truth tables. They
are the one device at our disposal that allowed logic to be rendered computational (and at a
very fundamental level), rather than just intuitive.

Exercises

Some of these were proved previously in the text. The reader should attempt to prove these first
for himself/herself without referring back to the text for the proofs.

1. Prove P −→ Q ⇐⇒ P ←→ (P ∧ Q).
This is essentially (1.62), page 40.

2. Consider the statement P −→ (∼ P ).

(a) Use a truth table to prove the valid-
ity of P −→ (∼ P ) =⇒ (∼ P ). Is
this reasonable?

(b) If possible without truth tables, and
using a short string of known equiv-
alences, show that in fact

P −→ (∼ P ) ⇐⇒ (∼ P ).

(See (1.29), page 22 and (1.17),
page 22.)

3. Use truth tables to show (1.49) and
(1.50):

P ∧Q =⇒ P,

P =⇒ P ∨Q.43

4. Prove the following without using truth
tables.

P =⇒ (P ∨Q)

by proving that P −→ (P ∨ Q) is a tau-
tology. (Again, see (1.29), page 22.)

5. Prove the following two valid implica-
tions:

(a) (1.56): (P −→ Q) ∧ P =⇒ Q.

(b) (1.57): (P −→ Q)∧(∼ Q) =⇒ ∼ P .

6. Prove the following using truth tables.
Note that there are 24 = 16 different com-
binations of truth values for P , Q, R and
S.

(P −→ R) ∧ (Q −→ S)

=⇒ (P ∧Q) −→ (R ∧ S), (1.63)

(P −→ R) ∧ (Q −→ S)

=⇒ (P ∨Q) −→ (R ∨ S) (1.64)

These are useful because we often have
a string of statements A1, · · · , An con-
nected entirely by ∧ or entirely by ∨, and
wish to replace them with B1, · · · , Bn

(or just some of them), where A1 =⇒
B1, A2 =⇒ B2, · · · , An =⇒ Bn.44

With (1.63) and (1.64) we can generalize
and write

A1 ∧A2 ∧ · · · ∧An

=⇒ B1 ∧B2 ∧ · · · ∧Bn,
(1.65)

A1 ∨A2 ∨ · · · ∨An

=⇒ B1 ∨B2 ∨ · · · ∨Bn.
(1.66)

Valid implications (1.63) and (1.64)
would be quite laborious to prove with-
out truth tables.

43Some would characterize P ∧Q =⇒ P =⇒ P ∨Q to be a progression from the strongest statement, P ∧Q,
to the weakest, P ∨Q of the three. A similar form would be P ∧Q =⇒ P =⇒ P ∨ R.

44Here the parts of P −→ R and Q −→ S are played by the Ai =⇒ Bi, but the idea is the same. We could
instead attach T ⇐⇒ (A1 −→ B1) ∧ · · · ∧ (An −→ Bn) to the left-hand sides of (1.65) and (1.66) with the
wedge operation, since T ∧ U ⇐⇒ U .
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7. For each of the following, decide if you
believe it is a valid argument or a fal-
lacy. Then check by constructing the cor-
responding truth table.

(a)
P −→ Q
Q −→ P

∴ P ←→ Q

(b)
P ←→ Q

P
∴ Q

(c)
P −→ Q

Q
∴ P

(d)
P ←→ Q

Q
∴ P

(e)
∼ (P −→ Q)

P
∴∼ Q

(f)
P −→ Q

P −→ (∼ Q)
∴∼ P

(g)
P
∼ P
∴ Q

(For this last case, see Footnote 35,
page 35.)

8. For each of the following, decide if it
is valid or a fallacy. For those marked
“(Prove),” offer a truth table proof or a
manipulation of the hypotheses to justify
your answer.

(a)

(P ∧Q) −→ R
P
Q

∴ R

(b)

(P ∧Q) −→ R
P
∼ R

∴ ∼ Q

(c)

(P ∧Q) −→ R
Q
∼ P

∴ ∼ R (Prove)

(d)

P −→ Q
Q −→ R
∼ R

∴ ∼ P (Prove)

(e)

P −→ Q
Q −→ R
∼ P

∴ ∼ R

(f)

P −→ Q
Q −→ R
R −→ P

∴ (P ←→ R)

(g)

P ∨Q ∨R
∼ P
∼ R

∴ Q (Prove)

(h)

P −→ Q
Q −→ (∼ R)

R
∴ ∼ P

(i)

P ∨Q ∨R
P −→ Q
∼ Q
∴ R

(j)
P −→ (Q ∧R)

∼ R
∴ ∼ P (Prove)

(k)

P −→ (Q ∨R)
P
∼ R
∴ Q

(l)
(∼ P ) −→ (∼ Q)

∼ Q
∴ ∼ P

(m)

(P ∧Q)→ R
S → P
U → Q
S ∧ U
∴ R

(n)

(P ∧Q)→ R
S → P
U → Q

(∼ S) ∧ (∼ U)
∴ ∼ R
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(o)

(P ∧Q)→ R
S → P
U → Q
∼ R

∴ (∼ S) ∨ (∼ U)

(p)
F

∴ P

(q)
P

∴ T

(r)
T −→ P

∴ P

(s)
P −→ F
∴∼ P

(t)
P −→ R
R −→ P

∴ P ←→ R (Prove)

(u)
P ←→ R
Q←→ R

∴ P ←→ R
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1.4 Quantifiers and Sets

In this section we introduce quantifiers, which form the last class of logic symbols we will consider
in this text. To use quantifiers, we also need some notions and notation from set theory. This
section introduces sets and quantifiers to the extent required for our study of calculus here. For
the interested reader, Section 1.5 will extend this introduction, though even with that section
we would be only just beginng to delve into these topics if studying them for their own sakes.
Fortunately what we need of these topics for our study of calculus is contained in this section.

1.4.1 Sets

Put simply, a set is a collection of objects, which are then called elements or members of the
set. We give sets names just as we do variables and statements. For an example of the notation,
consider a set A defined by

A = {2, 3, 5, 7, 11, 13, 17}.
We usually define a particular set by describing or listing the elements between “curly braces”
{ } (so the reader understands it is indeed a set we are discussing). The defining of A above was
accomplished by a complete listing, but some sets are too large for that to be possible, let alone
practical. As an alternative, the set A above can also be written

A = {x | x is a prime number less than 18}.

The above equation is usually read, “A is the set of all x such that x is a prime number less
than 18.” Here x is a “dummy variable,” used only briefly to describe the set.45 Sometimes it
is convenient to simply write

A = {prime numbers between 2 and 17, inclusive}.

(Usually “inclusive” is meant by default, so here we would include 2 and 17 as possible elements,
if they also fit the rest of the description.) Of course there are often several ways of describing
a list of items. For instance, we can replace “between 2 and 17, inclusive” with “less than 18,”
as before.

Often an ellipsis “· · · ” is used when a pattern should be understood from a partial listing.
This is particularly useful if a complete listing is either impractical or impossible. For instance,
the set B of integers from 1 to 100 could be written

B = {1, 2, 3, · · · , 100}.

To note that an object is in a set, we use the symbol ∈. For instance we may write 5 ∈ B,
read “5 is an element of B.” To indicate concisely that 5, 6, 7 and 8 are in B, we can write
5, 6, 7, 8 ∈ B.

Just as we have use for zero in addition, we also define the empty set, or null set as the set
which has no elements. We denote that set ∅. Note that x ∈ ∅ is always false, i.e.,

x ∈ ∅ ⇐⇒ F ,

because it is impossible to find any element of any kind inside ∅. We will revisit this set repeatedly
in the optional, more advanced Section 1.5.

45“Dummy variables” are also used to describe the actions of functions, as in f(x) = x2 + 1. In this context,
the function is considered to be the action of taking an input number, squaring it, and adding 1. The x is only
there so we can easily trace the action on an arbitrary input. We will revisit functions later.
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−5 −4 −3 −2 −1 0 1 2 3 4 5

−2.5
√

2 π 4.8

Figure 1.2: The number line representing the set R of real numbers, with a few points
plotted. On this graph, the hash marks fall at the integers.

Of course for calculus we are mostly interested in sets of numbers. While not the most
important, the following three sets will occur from time to time in this text:

Natural Numbers46: N = {1, 2, 3, 4, · · · }, (1.67)

Integers: Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · ·}, (1.68)

Rational Numbers: Q =

{
p

q

∣
∣
∣
∣

(p, q ∈ Z) ∧ (q 6= 0)

}

. (1.69)

Here we again use the ellipsis to show that the established pattern continues forever in each of
the cases N and Z. The sets N, Z and Q are examples of infinite sets, i.e., sets that do not have
a finite number of elements. The rational numbers are those which are ratios of integers, except
that division by zero is not allowed, for reasons we will consider later.47

For calculus the most important set is the set R of real numbers, which cannot be defined
by a simple listing or by a simple reference to N, Z or Q. One intuitive way to describe the
real numbers is to consider the horizontal number line, where geometric points on the line are
represented by their displacements (meaning distances, but counted as positive if to the right
and negative if to the left) from a fixed point, called the origin in this context. That fixed
point is represented by the number 0, since the fixed point is a displacement of zero units from
itself. In Figure 1.2 the number line representation of R is shown. Hash marks at convenient
intervals are often included. In this case, they are at the integers. The arrowheads indicate the
number line is an actual line and thus infinite in both directions. The points −2.5 and 4.8 on the
graph are not integers, but are rational numbers, since they can be written −25/10 = −5/2, and
48/10 = 24/5, respectively. The points

√
2 and π are real, but not rational, and so are called

irrational. To summarize,

Definition 1.4.1 The set of all real numbers is the set R of all possible displacements, to the
right or left, of a fixed point 0 on a line. If the displacement is to the right, the number is the
positive distance from 0. If to the left, the number is the negative of the distance from 0.48

Thus
R = {displacements from 0 on the number line}. (1.70)

This is not a rigorous definition, not least because “right” and “left” require a fixed perspective.
Even worse, the definition is really a kind of “circular reasoning,” since we are effectively defining

46The natural numbers are also called counting numbers in some texts.
47For a hint, think about what should be x = 1/0. If we multiply both sides by zero, we might think we get

0x = (1/0) · 0, giving 0 = 1, which is absurd. In fact there was no such x, so x = 1/0 → 0 = 1, which is of the
form P −→ F which we may recall to be equivalent to ∼ P .

48It should be noted that we have to choose a direction to call “right,” the other then being “left.” It will
depend upon our perspective. When we look at the Cartesian Plane, the horizontal axis measures displacements
as right (positive horizontal) or left (negative horizontal), and the vertical axis measures displacements as upward
(positive vertical) or downward (negative vertical). In that context the origin is where the axes intersect.
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the number line in terms of R, and then defining R in terms of (displacements on) the number
line. We will give a more rigorous definition in Chapter 2 for the interested reader. For now this
should do, since the number line is a simple and intuitive image.

1.4.2 Quantifiers

The three quantifiers used by nearly every professional mathematician are as follow:

universal quantifier: ∀, read, “for all,” or “for every;”
existential quantifier: ∃, read, “there exists;”
uniqueness quantifier: !, read, “unique.”

The first two are of equal importance, and far more important than the third which is usually
only found after the second. Quantified statements are usually found in forms such as:

(∀x ∈ S)P (x), i.e., for all x ∈ S, P (x) is true;

(∃x ∈ S)P (x), i.e., there exists an x ∈ S such that P (x) is true;

(∃!x ∈ S)P (x), i.e., there exists a unique (exactly one) x ∈ S such that

P (x) is true.

Here S is a set and P (x) is some statement about x. The meanings of these quickly become
straightforward. For instance, consider

(∀x ∈ R)(x + x = 2x) : for all x ∈ R, x + x = 2x;

(∃x ∈ R)(x + 2 = 2) : there exists (an) x ∈ R such that x + 2 = 2;

(∃!x ∈ R)(x + 2 = 2) : there exists a unique x ∈ R such that x + 2 = 2.

All three quantified statements above are true. In fact they are true under any circumstances,
and can thus be considered tautologies. Unlike unquantified statements P, Q, R, etc., from our
first three sections, a quantified statement is either true always or false always, and is thus, for
our purposes, equivalent to either T or F . Each has to be analyzed on its face, based upon known
mathematical principles; we do not have a brute-force mechanism analogous to truth tables to
analyze these systematically.49 For a couple more short examples, consider the following cases
from algebra which should be clear enough:

(∀x ∈ R)(0 · x = 0) ⇐⇒ T ;

(∃x ∈ R)(x2 = −1) ⇐⇒ F .

The optional advanced section shows how we can still find equivalent or implied statements from
quantified statements in many circumstances.

1.4.3 Statements with Multiple Quantifiers

Many of the interesting statements in mathematics contain more than one quantifier. To il-
lustrate the mechanics of multiply quantified statements, we will first turn to a more worldly
setting. Consider the following sets:

M = {men},
W = {women}.

49This is part of what makes quantified statements interesting!
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In other words, M is the set of all men, and W the set of all women. Consider the statement50

(∀m ∈M)(∃w ∈W )[w loves m]. (1.71)

Set to English, (1.71) could be written, “for every man there exists a woman who loves him.”51

So if (1.71) is true, we can in principle arbitrarily choose a man m, and then know that there
is a woman w who loves him. It is important that the man m was quantified first. A common
syntax that would be used by a logician or mathematician would be to say here that, once our
choice of a man is fixed, we can in principle find a woman who loves him. Note that (1.71) allows
that different men may need different women to love them, and also that a given man may be
loved by more than (but not less than) one woman.

Alternatively, consider the statement

(∃w ∈ W )(∀m ∈M)[w loves m]. (1.72)

A reasonable English interpretation would be, “there exists a woman who loves every man.”
Granted that is a summary, for the word-for-word English would read more like, “there exists
a woman such that, for every man, she loves him.” This says something very different from
(1.71), because that earlier statement does not assert that we can find a woman who, herself,
loves every man, but that for each man there is a woman who loves him.52

We can also consider the statement

(∀m ∈M)(∀w ∈W )[w loves m]. (1.73)

This can be read, “for every man and every woman, the woman loves the man.” In other words,
every man is loved by every woman. In this case we can reverse the order of quantification:

(∀w ∈ W )(∀m ∈M)[w loves m]. (1.74)

In fact, if the two quantifiers are the same type—both universal or both existential—then the
order does not matter. Thus

(∀m ∈M)(∀w ∈W )[w loves m] ⇐⇒ (∀w ∈ W )(∀m ∈M)[w loves m],

(∃m ∈M)(∃w ∈W )[w loves m] ⇐⇒ (∃w ∈ W )(∃m ∈M)[w loves m].

In both representations in the existential statements, we are stating that there is at least one
man and one woman such that she loves him. In fact that above equivalence is also valid if we
replace ∃ with ∃!, though it would mean then that there is exactly one man and exactly one
woman such that the woman loves the man, but we will not delve too deeply into uniqueness
here.

Note that in cases where the sets are the same, we can combine two similar quantifications
into one, as in

(∀x ∈ R)(∀y ∈ R)[x + y = y + x] ⇐⇒ (∀x, y ∈ R)[x + y = y + x]. (1.75)

Similarly with existence.

50Note that this is of the form (∀m ∈ M)(∃w ∈ W )P (m, w), that is, the statement P says something about
both m and w. We will avoid a protracted discussion of the difference between statements regarding one variable
object—as in P (x) from our previous discussion—and statements which involve more than one as in P (m, w)
here. Statements of multiple (variable) quantities will recur in subsequent examples.

51At times it seems appropriate to translate “∀” as “for all,” and at other times it seems better to translate it
as “for every.” Both mean the same.

52We do not pretend to know the truth values of either (1.71) or (1.72).
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However, we repeat the point at the beginning of the subsection, which is that the order does
matter if the types of quantification are different.

For another, short example which is algebraic in nature, consider

(∀x ∈ R)(∃K ∈ R)(x = 2K). (True.) (1.76)

This is read, “for every x ∈ R, there exists K ∈ R such that x = 2K.” That K = x/2 exists
(and is actually unique) makes this true, while it would be false if we were to reverse the order
of quantification:

(∃K ∈ R)(∀x ∈ R)(x = 2K). (False.) (1.77)

Statement (1.77) claims (erroneously) that there exists K ∈ R so that, for every x ∈ R, x = 2K.
That is impossible, because no value of K is half of every real number x. For example the value
of K which works for x = 4 is not the same as the value of K which works for x = 100.

1.4.4 Detour: Uniqueness as an Independent Concept

We will have occasional statements in the text which include uniqueness. However, most of those
will not require us to rewrite the statements in ways which require actual manipulation of the
uniqueness quantifier. Still, it is worth noting a couple of interesting points about this quantifier.

First we note that uniqueness can be formulated as a separate concept from existence, inter-
estingly instead requiring the universal quantifier.

Definition 1.4.2 Uniqueness is the notion that if x1, x2 ∈ S satisfy the same particular state-
ment P ( ), then they must in fact be the same object. That is, if x1, x2 ∈ S and P (x1) and
P (x2) are true, then x1 = x2. This may or may not be true, depending upon the set S and the
statement P ( ).

Note that there is the vacuous case where nothing satisfies the statement P ( ), in which case the
uniqueness of any such hypothetical object is proved but there is actually no existence. Consider
the following, symbolic representation of the uniqueness of an object x which satisfies P (x):53

(∀x, y ∈ S)[(P (x) ∧ P (y)) −→ x = y]. (1.78)

Finally we note that a proof of a statement such as (∃!x ∈ S)P (x) is thus usually divided
into two separate proofs:

(1) Existence: (∃x ∈ S)P (x);

(2) Uniqueness: (∀x, y ∈ S)[(P (x) ∧ P (y)) −→ x = y].

For example, in the next chapter we rigorously, axiomatically define the set of real numbers R.
One of the axioms54 defining the real numbers is the existence of an additive identity:

(∃z ∈ R)(∀x ∈ R)(z + x = x). (1.79)

53The above statement indeed says that any two elements x, y ∈ S which both satisfy P must be the same.
Note that we use a single arrow here, because the statement between the brackets [ ] is not likely to be a tautology,
but may be true for enough cases for the entire quantified statement to be true. Indeed, the symbols =⇒ and
⇐⇒ belong between quantified statements, not inside them.

54Recall that an axiom is an assumption, usually self-evident, from which we can logically argue towards theo-
rems. Axioms are also known as postulates. If we attempt to argue only using “pure logic” (as a mathematician
does when developing theorems, for instance), it eventually becomes clear that we still need to make some assump-
tions because one can not argue “from nothing.” Indeed, some “starting points” from which to argue towards
the conclusions are required. These are then called axioms.

The word “axiomatic” is often used colloquially to mean clearly evident and therefore not requiring proof. In
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In fact it follows quickly that such a “z” must be unique, so we have

(∃!z ∈ R)(∀x ∈ R)(z + x = x). (1.80)

To prove (1.80), we need to prove (1) existence, and (2) uniqueness. In this setting, the existence
is an axiom so there is nothing to prove. We turn then to the uniqueness. A proof is best written
in prose, but it is based upon proving that the following is true:

(∀z1, z2 ∈ R)[(z1 an additive identity) ∧ (z2 an additive identity) −→ z1 = z2].

Now we prove this. Suppose z1 and z2 are additive identities, i.e., they can stand in for z in
(1.79), which could also read (∃z ∈ R)(∀x ∈ R)(x = z + x). Note the order there, where the
identity z (think “zero”) is placed on the left of x in the equation x = z + x. So, assuming z1, z2

are additive identities, we have:

z1 = z2 + z1 (since z2 is an additive identity)

= z1 + z2 (since addition is commutative—order is irrelevant)

= z2 (since z1 is an additive identity).

This argument showed that if z1 and z2 are any real numbers which act as additive identities,
then z1 = z2. In other words, if there are any additive identities, there must be only one. Of
course, assuming its existence we call that unique real number zero. (It should be noted that the
commutativity used above is another axiom of the real numbers. We will list fourteen in all.)

The distinction between existence and uniqueness of an object with some property P is often
summarized as follows:

(1) Existence asserts that there is at least one such object.

(2) Uniqueness asserts that there is at most one such object.

If both hold, then there is exactly one such object.

1.4.5 Negating Universally and Existentially Quantified Statements

For statements with a single universal or existential quantifier, we have the following negations.

∼ [(∀x ∈ S)P (x)] ⇐⇒ (∃x ∈ S)[∼ P (x)], (1.81)

∼ [(∃x ∈ S)P (x)] ⇐⇒ (∀x ∈ S)[∼ P (x)], (1.82)

The left side of (1.81) states that it is not the case that P (x) is true for all x ∈ S; the right
side states that there is an x ∈ S for which P (x) is false. We could ask when is it a lie that for
all x, P (x) is true? The answer is when there is an x for which P (x) is false, i.e., ∼ P (x) is true.

The left side of (1.82) states that it is not the case that there exists an x ∈ S so that P (x)
is true; the right side says that P (x) is false for all x ∈ S. When is it a lie that there is an x
making P (x) true? When P (x) is false for all x.

Thus when we negate such a statement as (∀x)P (x) or (∃x)P (x), we change ∀ to ∃ or vice-
versa, and negate the statement after the quantifiers.

fact that is not always the case with mathematical axioms. Indeed, the postulates required for defining the real
numbers seem rather strange at first. They were, in fact, developed to be a minimal number of assumptions
required to give the real numbers their apparent properties which could be observed. In that case, it seemed we
worked towards a foundation, after seeing the outer structure. A similar phenomenon can be seem in Einstein’s
Special Relativity, where his two simple—yet at the time quite counterintuitive—axioms were able to completely
replace a much larger set of postulates required to explain many of the electromagnetic phenomena discovered
early during his time, and predict many new phenomena that were later observed.



1.4. QUANTIFIERS AND SETS 51

Example 1.4.1 Negate (∀x ∈ S)[P (x) −→ Q(x)].
Solution: We will need (1.21), page 22, namely ∼ (P −→ Q) ⇐⇒ P ∧ (∼ Q).

∼ [(∀x ∈ S)(P (x) −→ Q(x))] ⇐⇒ (∃x ∈ S)[∼ (P (x) −→ Q(x))]

⇐⇒ (∃x ∈ S)[P (x) ∧ (∼ (Q(x)))].

The above example should also be intuitive. To say that it is not the case that, for all x ∈ S,
P (x) −→ Q(x) is to say there exists an x so that we do have P (x), but not the consequent Q(x).

Example 1.4.2 Negate (∃x ∈ S)[P (x) ∧Q(x)].
Solution: Here we use ∼ (P ∧Q) ⇐⇒ (∼ P ) ∨ (∼ Q), so we can write

∼ [(∃x ∈ S)(P (x) ∧Q(x))] ⇐⇒ (∀x)[(∼ P (x)) ∨ (∼ (Q(x)))].

This last example shows that if it is not the case that there exists an x ∈ S so that P (x) and
Q(x) are both true, that is the same as saying that for all x, either P (x) is false or Q(x) is false.

1.4.6 Negating Statements Containing Mixed Quantifiers

Here we simply apply (1.81) and (1.82) two or more times, as appropriate. For a typical case of
a statement first quantified by ∀, and then be ∃, we note that we can group these as follows:55

(∀x ∈ R)(∃y ∈ S)P (x, y) ⇐⇒ (∀x ∈ R)[(∃y ∈ S)P (x, y)].

(Here “R ” is another set, not to be confused with the set of real numbers R.) Thus

∼ [(∀x ∈ R)(∃y ∈ S)P (x, y)] ⇐⇒ ∼ {(∀x ∈ R)[(∃y ∈ S)P (x, y)]}
⇐⇒ (∃x ∈ R){∼ [(∃y ∈ S)P (x, y)]}
⇐⇒ (∃x ∈ R)(∀y ∈ S)[∼ P (x, y)].

Ultimately we have, in turn, the ∀’s become ∃’s, the ∃’s become ∀’s, the variables are quantified
in the same order as before, and finally the statement P is replaced by its negation ∼ P . The
pattern would continue no matter how many universal and existential quantifiers arise. (The
uniqueness quantifier is left for the exercises.) To summarize for the case of two quantifiers,

∼ [(∀x ∈ R)(∃y ∈ S)P (x, y)] ⇐⇒ (∃x ∈ R)(∀y ∈ S)[∼ P (x, y)] (1.83)

∼ [(∃x ∈ R)(∀y ∈ S)P (x, y)] ⇐⇒ (∀x ∈ R)(∃y ∈ S)[∼ P (x, y)]. (1.84)

Example 1.4.3 Consider the following statement, which is false:

(∀x ∈ R)(∃y ∈ R)[xy = 1].

One could say that the statement says every real number x has a real number reciprocal y. This
is false, but before that is explained, we compute the negation which must be true:

∼ [(∀x ∈ R)(∃y ∈ R)(xy = 1)] ⇐⇒ (∃x ∈ R)(∀y ∈ R)(xy 6= 1).

Indeed, there exists such an x, namely x = 0, such that xy 6= 1 for all y.56

55This may not be the most transparent fact, and indeed there are somewhat deep subtleties involved, but
eventually this should be clear. The subtleties lie in the idea that once a variable is quantified, it is fixed for that
part of the statement which follows it. For instance, that part (∃y ∈ S)P (x, y) treats x as if it were “constant.”

56Note that in using English, the quantification often follows after the variable quantified, as in Example 1.4.3
above. That can become quite confusing when statements get complicated. Indeed, much of the motivation of
this section is so that we can use the notation to, in essence, diagram the logic of such statements, and analyze
them to see if they may be false (by seeing if their negations ring true).
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In the above, we borrowed one of the many convenient mathematical notations for the negations
of various symbols. Some common negations follow:

∼ (x = y) ⇐⇒ x 6= y,

∼ (x < y) ⇐⇒ x ≥ y,

∼ (x ≤ y) ⇐⇒ x > y,

∼ (x ∈ S) ⇐⇒ x 6∈ S.

Of course we can negate both sides of any one of these and get, for example, x ∈ S ⇐⇒ ∼ (x 6∈
S). Reading one of these backwards, we can have ∼ (x ≥ y) ⇐⇒ x < y.

Exercises

1. Consider the sets

P = {prisons},
M = {methods of escape}.

For each of the following, write a short English version of the given statement.

(a) (∀p ∈ P )(∃m ∈M)[m will get you out of P ]

(b) (∃m ∈M)(∀p ∈ P )[m will get you out of P ]

(c) (∃p ∈ P )(∀m ∈M)[m will get you out of P ]

(d) (∀m ∈M)(∃p ∈ P )[m will get you out of P ]

(e) (∃m ∈M)(∃p ∈ P )[m will get you out of P ]

(f) (∀m ∈M)(∀p ∈ P )[m will get you out of P ]

2. For parts (a)–(d) above, write the negation of the statment both symbolically and in
English.

3. Write negations for each of the following. If in the process a logical statement within
the quantified statement is negated, write the negation in the clearest possible form. For
instance, instead of writing ∼ (P → Q), write P ∧ (∼ Q). Similarly instead of writing
∼ (x > y) write x ≤ y.

(a) (∀x ∈ R)[x ∈ S]

(b) (∀x ∈ R)(∃y ∈ S)[y ≤ x]

(c) (∀x, y ∈ R)(∃r, t ∈ S)[rx + ty = 1]

Hint: This can also be written (∀x ∈ R)(∀y ∈ R)(∃r ∈ S)(∃t ∈ S)[rx + ty = 1].

(d) (∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ R)
[
|x− a| < δ −→ |f(x) − f(a)| < ε

]

Hint: consider P : |x − a| < δ and Q : |f(x) − f(a)| < ε. Then consider the usual
negation of P → Q, with these statements inserted literally, and then rewrite it in a
more “understandable” way.
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4. For each of the following, write the negation of the statement and decide which is true, the
original statement or its negation.

(a) (∃x ∈ R)(x2 < 0)

(b) (∀x ∈ R)(| − x| 6= x)

(c) (∀x ∈ R)(∃y ∈ R)(y = 2x + 1)

5. Consider (∀c ∈ C)(∃b ∈ B)(b would buy c). Here C = {cars} and B = {buyers}.

(a) Write in English what this statement says.

(b) Write in English what the negation of the statement should be.

(c) Write in symbolic logic what the negation of the statement should be.

6. Consider the statement (∀x, y ∈ R)(x < y −→ x2 < y2).

(a) Write the negation of this statement.

(b) In fact it is the negation that is true. Can you explain why?

7. Using the fact that

(∃!x ∈ S)P (x) ⇐⇒
[

(∃x ∈ S)P (x)

]

︸ ︷︷ ︸

existence

∧
[

(∀x, y ∈ S)[(P (x) ∧ P (y)) −→ x = y]

]

︸ ︷︷ ︸

uniqueness

,

compute the form of the negation of the unique existence:

∼ [(∃!x ∈ S)P (x)].
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1.5 Sets Proper

In this section we introduce set theory in its own right. We also apply the earlier symbolic
logic to the theory of sets (rather than vice-versa). We also approach set theory visually and
intuitively, while simultaneously introducing all the set-theoretic notation we will use throughout
the text. To begin we make the following definition:

Definition 1.5.1 A set is a well-defined collection of objects.

By well-defined, we mean that once we define the set, the objects contained in the set are
totally determined, and so any given object is either in the set or not in the set. We might also
note that in a sense a set is defined (or determined) by its elements; sets which are different
collections of elements are different sets, while sets with exactly the same elements are the same
set. We can also define equality by means of quantifiers:

Definition 1.5.2 Given two sets A and B, we defined the statement A = B as being equivalent
to the statement (∀x)[(x ∈ A)←→ (x ∈ B)]:

A = B ⇐⇒ (∀x)[(x ∈ A)←→ (x ∈ B)]. (1.85)

If we allow ourselves to understand that x is quantified universally (that is, we assume “ (∀x)”
is understood) unless otherwise stated, we can write, instead of A = B, that x ∈ A ⇐⇒ x ∈ B.

When we say a set is well-defined we also mean that once defined the set is fixed, and does not
change. If elements can be listed in a table (finite or otherwise),57 then the order we list the
elements is not relevant; sets are defined by exactly which objects are elements, and which are
not. Moreover, it is also irrelevant if objects are listed more than once in the set, such as when
we list Q = {x | x = p/q, p, q ∈ Z, q 6= 0}. In that definition 2 = 2/1 = 4/2 = 6/3 is “listed”
infinitely many times, but it is simply one element of the set of rational numbers Q. While it
actually is possible to “list” the elements of Q if we allow for the elipsis (· · · ), it is more practical
to describe the set, as we did, using some defining property of its elements (here they were ratios
of integers, without dividing by zero), as long as it is exactly those elements in the set—no more
and no fewer—which share that property. One usually uses a “dummy variable” such as x and
then describes what properties all such x in the set should have. We could have just as easily
used z or any other variable.58

1.5.1 Subsets and Set Equality

When all the elements of a set A are also elements of another set B, we say A is a subset of B. To
express this in set notation, we write A ⊆ B. In this case we can also take another perspective,
and say B is a superset of A, written B ⊇ A. Both symbols represent types of set inclusions,
i.e., they show one set is contained in another.

A useful graphical device which can illustrate the notion that A ⊆ B and other set relations
is the Venn Diagram, as in Figure 1.3. There we see a visual representation of what it means
for A ⊆ B. The sets are represented by enclosed areas in which we imagine the elements reside.
In each representation given in Figure 1.3, all the elements inside A are also inside B.

57Note that not all sets can be listed in a table, even if it is infinitely long. We can list N = {1, 2, 3, ·} and
Z = {0, 1,−1, 2,−2, 3,−3, · · · }, and even with a little ingenuity list the elements of Q, but we cannot do so with
R or R− Q. Those sets which can be listed in a table are called countable, and the others uncountable. All sets
with a finite number of elements are also countable. Of the others, some are countably infinite, and the others
are uncountably infinite (or simply uncountable, as the “infinite” in “uncountably infinite” is redundant).

58Of course we would not use fixed elements of the set as “variables,” which they are not since each has a
unique identity.
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B
A

A

B

A

B

Figure 1.3: Three possible Venn Diagrams illustrating A ⊆ B. (Note that in the first
figure, for example, B is the set of all elements within the interior of the larger circle.) What
is important is that all elements of A are necessarily contained in B as well. We do not
necessarily know “where” in A are the elements of A, except that they are in the area which
is marked by A. Since the area in A is also in B, we know the elements of A must also be
contained in B in the illustrations above.

Using symbolic logic, we can define subsets, and the notation, as follows:

A ⊆ B ⇐⇒ (∀x)(x ∈ A −→ x ∈ B). (1.86)

The role of the implication which is the main feature of (1.86) should seem intuitive. Perhaps
less intuitive are some of the statements which are therefore logically equivalent to (1.86):

A ⊆ B ⇐⇒ (∀x)(x ∈ A −→ x ∈ B)

⇐⇒ (∀x) [(∼ (x ∈ A)) ∨ (x ∈ B)]

⇐⇒ (∀x) [(x /∈ A) ∨ (x ∈ B)] ,

which uses the fact that P −→ Q ⇐⇒ (∼ P ) ∨Q, and

A ⊆ B ⇐⇒ (∀x) [(∼ (x ∈ B)) −→ (∼ (x ∈ A))]

⇐⇒ (∀x) [(x /∈ B) −→ (x /∈ A)]

which uses the contrapositive P −→ Q ⇐⇒ (∼ Q) −→ (∼ P ). Note that we used the
shorthand notation ∼ (x ∈ A) ⇐⇒ x /∈ A. With the definition (1.86) we can quickly see two
more, technically interesting facts about subsets:

Theorem 1.5.1 For any sets A and B, the following hold true:

A ⊆ A, and (1.87)

A = B ⇐⇒ (A ⊆ B) ∧ (B ⊆ A). (1.88)

Now we take a moment to remind ourselves of what is meant by theorem:

Definition 1.5.3 A theorem is a statement which we know to be true because we have a proof
of it. We can therefore accept it as a tautology.

A theorem’s scope may be very limited (the above theorem only applies to sets and subsets as we
have defined them.) Furthermore, a theorem’s scope and “truth” depends upon the axiomatic
system upon which it rests, such the definitions we gave our symbolic logic symbols (which
might not have always been completely obvious to the novice, as in our definitions of “∨” and
“longrightarrow”). For another example there is Euclidean geometry, the theroems of which
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N

Z
Q

R

Figure 1.4: Venn Diagram illustrating N ⊆ Z ⊆ Q ⊆ R.

rest upon Euclid’s Postulates (or axioms, or original assumptions), while other geometric systems
begin with different postulates.

Nonetheless once we have the definitions and postulates one can say that a theorem is a
statement which is always true (demonstrated by some form of proof), and in fact therefore
equivalent to T (introduced on page 26). We will use that fact in the proof of (1.87), but
for (1.88) we will instead demonstrate the validity of the equivalence ( ⇐⇒ ). For the first
statement’s proof, we have

A ⊆ A ⇐⇒ (∀x)[(x ∈ A) −→ (x ∈ A)] ⇐⇒ T .

Note that the above proof is based upon the fact that P −→ P is a tautology (i.e., equivalent
to T ). A glance at a Venn Diagram with a set A can also convince one of this fact, that any set
is a subset of itself. For the proof of (1.88) we offer the following:

A = B ⇐⇒ (∀x)[(x ∈ A)←→ (x ∈ B)]

⇐⇒ (∀x)[((x ∈ A) −→ (x ∈ B)) ∧ ((x ∈ B) −→ (x ∈ A))]

⇐⇒
[
(∀x)[(x ∈ A) −→ (x ∈ B)

]
∧

[
(∀x)[(x ∈ B) −→ (x ∈ A)

]

⇐⇒ (A ⊆ B) ∧ (B ⊆ A), q.e.d.59

A consideration of Venn diagrams also leads one to believe that for all the area in A to be
contained in B and vice versa, it must be the case that A = B. That A = B implies they are
mutual subsets is perhaps easier to see.

Note that the above arguments can also be made with supersets instead of subsets, with ⊇
replacing ⊆ and ←− replacing −→.

One needs to be careful with quantifiers and symbolic logic, as is discussed later in Section ??,
but in what we did above the (∀x) effectively went along for the ride.

Of course, Venn Diagrams can accommodate more than two sets. For example, we can
illustrate the chain of set inclusions

N ⊆ Z ⊆ Q ⊆ R (1.89)

using a Venn Diagram, as in Figure 1.4. Note that this is a compact way of writing six different
set inclusions: N ⊆ Z, N ⊆ Q, N ⊆ R, Z ⊆ Q, Z ⊆ R, and Q ⊆ R.

59Latin, quod erat demonstrandum), the traditional ending of a proof meaning that which was to be proved.
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b

R

a < b a = b a > b

Figure 1.5: For any two real numbers a and b, we have the three cases concerning their
relative positions on the real line: a < b, a = b, a > b. Arrows indicate the possible positions
of a for the three cases.

1.5.2 Intervals and Inequalities in R

The number line, which we will henceforth dub the real line, has an inherent order in which the
numbers are arranged. Suppose we have two numbers a, b ∈ R. Then the order relation between
a and b has three possibilities, each with its own notation:

1. a is to the left of b, written a < b and spoken “a is less than b.”

2. a is to the right of b, written a > b and spoken “a is greater than b.”

3. a is at the same location as b, written a = b and spoken “a equals b.”

Figure 1.5 shows these three possibilities. Note that “less than” and “greater than” refer to
relative positions on the real line, not how “large” or “small” the numbers are. For instance,
4 < 5 but −5 < −4, though it is natural to consider −5 to be a “larger” number than −4.
Similarly −1000 < 1.60 Of course if a < b ⇐⇒ b > a. We have further notation which
describes when a is left of or at b, and when a is right of or at b:

4. a is at or left of b, written a ≤ b and spoken “a is less than or equal to b.”

5. a is at or right of b, written a ≥ b and spoken “a is greater than or equal to b.”

Using inequalities, we can describe intervals in R, which are exactly the connected subsets of
R, meaning those sets which can be represented by darkening the real line at only those points
which are in the subset, and where doing so can be theoretically accomplished without lifting
our pencils as we darken. In other words, these are “unbroken” subsets of R. Later we will see
that intervals are subsets of particular interest in calculus.

Intervals can be classified as finite or infinite (referring to their lengths), and open, closed or
half-open (referring to their “endpoints”). The finite intervals are of three types: closed, open
and half-open. Intervals of these types, with real endpoints a and b, where a < b (though the idea
extends to work with a ≤ b) are shown below respectively by graphical illustration, in interval
notation, and using earlier set-theoretic notation:

60Later we will refer to a number’s absolute size, in which context we will describe −1000 as “larger” than 1.
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open:
a b

(a, b)
{

x ∈ R
∣
∣ a < x < b

}

closed:
a b

[a, b]
{

x ∈ R
∣
∣ a ≤ x ≤ b

}

half-open:
a b

[a, b)
{

x ∈ R
∣
∣ a ≤ x < b

}

half-open:
a b

(a, b]
{

x ∈ R
∣
∣ a < x ≤ b

}

Note that a < x < b is short for (a < x)∧ (x < b), i.e., (x > a)∧ (x < b). The others are similar.

We will concentrate on the open and closed intervals in calculus. For the finite open interval
above, we see that we do not include the endpoints a and b in the set, denoting this fact with
parentheses in the interval notation and an “open” circle at each endpoint on the graph. What is
crucial to calculus is that immediately surrounding any point x ∈ (a, b) are only other points still
inside the interval; if we pick a point x anywhere in the interval (a, b), we see that just left and
just right of x are only points in the interval. Indeed, we have to travel some distance—albeit
possibly short—to leave the interval from a point x ∈ (a, b). Thus no point inside of (a, b) is on
the boundary, and so each point in (a, b) is “safely” on the interior of the interval. This will be
crucial to the concepts of continuity, limits and (especially) derivatives later in the text.

For a closed interval [a, b], we do include the endpoints a and b, which are not surrounded
by other points in the interval. For instance, immediately left of a is outside the interval [a, b],
though immediately right of a is on the interior.61 We denote this fact with brackets in the
interval notation, and a “closed” circle at each endpoint when we sketch the graph. Half-open
(or half-closed) intervals are simple extensions of these ideas, as illustrated above.

For infinite intervals, we have either one or no endpoints. If there is an endpoint it is either
not included in the interval or it is, the former giving an open interval and the latter a closed
interval. An open interval which is infinite in one direction will be written (a,∞) or (−∞, a),
depending upon the direction in which it is infinite. Here ∞ (infinity) means that we can move
along the interval to the right “forever,” and −∞ means we can move left without end. For
infinite closed intervals the notation is similar: [a,∞) and (−∞, a]. The whole real line is also
considered an interval, which we denote R = (−∞,∞).62 When an interval continues without
bound in a direction, we also darken the arrow in that direction. Thus we have the following:

61For a closed interval [a, b], later we will sometimes refer to the interior of the interval, meaning all points
whose immediate neighbors left and right are also in the interval. This means that the interior of [a, b] is simply
(a, b).

62For technical reasons which will be partially explained later, R is considered to be both an open and a
closed interval. Roughly, it is open because every point is interior, but closed because every point that can be
approached as close as we want from the interior is contained in the interval. Those are the topological factors
which characterize open and closed intervals as such. Topology as a subject is rarely taught before the junior
level of college, or even graduate school, though advanced calculus usually includes some topology of R.
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open:
a

(a,∞)
{

x ∈ R
∣
∣ x > a

}

open:
a

(−∞, a)
{

x ∈ R
∣
∣ x < a

}

closed:
a

[a,∞)
{

x ∈ R
∣
∣ x ≥ a

}

closed:
a

(−∞, a]
{

x ∈ R
∣
∣ x ≤ a

}

Note that we never use brackets to enclose an infinite “endpoint,” since −∞,∞ are not actual
boundaries but rather are concepts of unending continuance. Indeed, −∞,∞ /∈ R, i.e., they are
not points on the real line, so they can not be boundaries of subsets of R; there are no elements
“beyond” them.

1.5.3 Most General Venn Diagrams

Before we get to the title of this subsection, we will introduce a notion which we will have
occasional use for, which is the concept of proper subset.

Definition 1.5.4 If (A ⊆ B) ∧ (A 6= B), we call A a proper subset of B, and write A ⊂ B63.

Thus A ⊂ B means A is contained in B, but A is not all of B. Note that A ⊂ B =⇒ A ⊆ B
(just as P ∧ Q =⇒ P ). When we have that A is a subset of B and are not interested in
emphasizing whether or not A 6= B (or are not sure if this is true), we will use the “inclusive”
notation ⊆. In fact, the inclusive case is less complicated logically (just as P ∨Q is easier than
P XOR Q) and so we will usually opt for it even when we do know that A 6= B. We mention
the exclusive case here mainly because it is useful in explaining the most general Venn Diagram
for two sets A and B.

Of course it is possible to have two sets, A and B, where neither is a subset of the other.
Then A and B may share some elements, or no elements. In fact, for any given sets A and B,
exactly one of the following will be true:

case 1: A = B;

case 2: A ⊂ B, i.e., A is a proper subset of B;

case 3: B ⊂ A, i.e., B is a proper subset of A;

case 4: A and B share common elements, but neither is a subset of the other;

case 5: A and B have no common elements. In such a case the two sets are said to be disjoint.

Even if we do not know which of the five cases is correct, we can use a single illustration which
covers all of these. That illustration is given in Figure 1.6, with the various regions labeled. (We
will explain the meaning of U in the next subsection.) To see that this covers all cases, we take
them in turn:

63The notation has changed over the years. Many current texts use “⊂” the way we use “⊆” here. This is
unfortunate, because the notations “⊆,⊂” here are strongly analogous to the notations ≤, < from arithmetic.
One has to take care to know how notation is being used in a given context. (A few authors even use ⊆, ( !)
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I

II III
IV

A B

U

Figure 1.6: Most general Venn diagram for two arbitrary sets A and B. Here U is some
superset of both A and B.

A B

C

U

Figure 1.7: The most general Venn Diagram for three sets A, B and C.

case 1: A = B: all elements of A and B are in Region IV; there are no elements in Regions II
and III.

case 2: A ⊂ B: there are elements in Regions III and IV, and no elements in Region II.

case 3: B ⊂ A: there are elements in Regions II and IV, and no elements in Region III.

case 4: A and B share common elements, but neither is a subset of the other: there are elements
in Region II, III and IV.

case 5: A and B have no common elements: there are no elements in Region IV.

Note that whether or not Region I has elements is irrelevant in the discussion above, though it
will become important shortly.

The most general Venn diagram for three sets is given in Figure 1.7, though we will not
exhaustively show this to be the most general. It is not important that the sets are represented
by circles, but only that there are sufficiently many separate regions and that every case of an
element being, or not being, in A, B and C is represented. Note that there are three sets for an
element to be or not to be a member of, and so there are 23 = 8 subregions needed.

1.5.4 Set Operations

When we are given two sets A and B, it is natural to combine or compare their memberships
with each other and the universe of all elements of interest. In particular, we form new sets
called the union and intersection of A and B, the difference of A and B (and of B and A), and
the complement of A (and of B). The first three are straightforward, but the fourth requires
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A B

A ∪B

U

A B

A ∩B

U

A B

A−B

U

A B

A′
U

A B

B′
U

A B

B −A

U

Figure 1.8: Some Venn Diagrams involving two sets A and B inside a universal set U , which
is represented by the whole “box.”

some clarification. Usually A and B contain only objects of a certain class like numbers, colors,
etc. Thus we take elements of A and B from a specific universal set U of objects rather than an
all-encompassing universe of all objects. It is unlikely in mathematics that we would need, for
instance, to mix numbers with persons and planets and verbs, so we find it convenient to limit
our universe U of considered objects. With that in mind (but without presently defining U), the
notations for these new sets are as follow:

Definition 1.5.5

A ∪B =
{
x

∣
∣ (x ∈ A) ∨ (x ∈ B)

}
(1.90)

A ∩B =
{
x

∣
∣ (x ∈ A) ∧ (x ∈ B)

}
(1.91)

A−B =
{
x

∣
∣ (x ∈ A) ∧ (x 6∈ B)

}
(1.92)

A′ =
{
x ∈ U

∣
∣ (x 6∈ A)

}
. (1.93)

These are read “A union B,” “A intersect B,” “A minus B,” and “A complement,” respectively.
Note that in the first three, we could have also written

{
x ∈ U

∣
∣ · · ·

}
, but since A, B ⊆ U , there

it is unnecessary. Also note that one could define the complement in the following way, though
(1.93) is more convenient for symbolic logic computations:

A′ =
{
x

∣
∣ (x ∈ U) ∧ (x 6∈ A)

}
= U −A. (1.94)

These operations are illustrated by the Venn diagrams of Figure 1.8, where we also construct B′

and B−A. Note the connection between the logical ∨ and ∧, and the set-theoretical ∪ and ∩.64

Example 1.5.1 Find A ∪B, A ∩B, A−B and B −A if

A = {1, 2, 3, 4, 5, 6, 7}
B = {5, 6, 7, 8, 9, 10}.

64The set-theoretical “−” could be interpreted as “∧ ∼ · · · ∈,” and if we always assume we know what is the
universal set, we can interpret the complement symbol “ ′ ” as “∼ · · · ∈.”
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Solution: Though not necessary (and often impossible), we will list these set elements in a
table from which we can easily compare the membership.

A = { 1, 2, 3, 4, 5, 6, 7, } ,
B = { 5, 6, 7, 8, 9, 10 } .

Now we can compare the memberships using the operations defined earlier.

A ∪B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
A ∩B = {5, 6, 7},
A−B = {1, 2, 3, 4},
B −A = {8, 9, 10}.

The complements depend upon the identity of the assumed universal set. If in the above example
we had U = N, then A′ = {8, 9, 10, 11, · · · } and B′ = {1, 2, 3, 4, 11, 12, 13, 14, 15 · · ·}. If instead
we took U = Z we have A′ = {· · · ,−3,−2,−1, 0, 8, 9, 10, 11, · · ·}, for instance. (We leave B′ to
the interested reader.)

Just as it is important to have a zero element in R for arithmetic and other purposes, it is
also useful in set theory to define a set which contains no elements:

Definition 1.5.6 The set with no elements is called the empty set,65 denoted ∅.

One reason we need such a device is for cases of intersections of disjoint sets. If A = {1, 2, 3} and
B = {4, 5, 6, 7, 8, 9, 10}, then A ∪B = {1, 2, 3, · · · , 10}, while A ∩B = ∅. Notice that regardless
of the set A, we will always have A− A = ∅, A− ∅ = A, A ∪∅ = A, A ∩∅ = ∅, and ∅ ⊆ A.
The last statement is true because, after all, every element of ∅ is also an element of A.66 Note
also that ∅′ = U and U ′ = ∅.

The set operations for two sets A and B can only give us finitely many combinations of the
areas enumerated in Figure 1.6. In fact, since each such area is either included or not, there are
24 = 16 different diagram shadings possible for the general case as in Figure 1.6. The situation
is more interesting if we have three sets A, B and C. Using Figure 1.7, we can prove several
interesting set equalities. First we have some fairly obvious commutative laws (1.95), (1.96) and
associative laws (1.97), (1.98):

A ∪B = B ∪A (1.95)

A ∩B = B ∩A (1.96)

A ∪ (B ∪ C) = (A ∪B) ∪ C (1.97)

A ∩ (B ∩ C) = (A ∩B) ∩ C (1.98)

Next are the following two distributive laws, which are the set-theory analogs to the logical
equivalences (1.27) and (1.28), found on page 22.

A ∩ (B ∪C) = (A ∩B) ∪ (A ∩ C), (1.99)

A ∪ (B ∩C) = (A ∪B) ∩ (A ∪ C). (1.100)

65It is also called the null set. Some older texts use empty braces ∅ = { }.
66This is precisely because there are no elements of ∅; the statement x ∈ ∅−→ x ∈ A is vacuously true because

x ∈ ∅ is false, regardless of x.
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(A ∩B) ∪ (A ∩ C)
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Figure 1.9: Venn Diagrams for Example 1.5.2 verifying one of the distributive laws, specifi-
cally A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). It is especially important to note how one constructs
the third box in each line from the first two.

Example 1.5.2 We will show how to prove (1.99) using our previous symbolic logic, and then
give a visual proof using Venn diagrams. Similar techniques can be used to prove (1.100). For
the proof that A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C), we use definitions, and (1.27) from page 22 to
get the following:

x ∈ A ∩ (B ∪ C) ⇐⇒ (x ∈ A) ∧ (x ∈ B ∪ C)

⇐⇒ (x ∈ A) ∧ [(x ∈ B) ∨ (x ∈ C)]

⇐⇒ [(x ∈ A) ∧ (x ∈ B)] ∨ [(x ∈ A) ∧ (x ∈ C)]

⇐⇒ [x ∈ (A ∩B)] ∨ [x ∈ (A ∩C)]

⇐⇒ x ∈ [(A ∩B) ∪ (A ∩C)], q.e.d.

We proved that (∀x)[(x ∈ A∩ (B ∪C))←→ (x ∈ (A∩B)∪ (A∩C))], which is the definition for
the sets in question to be equal. The visual demonstration of A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C)
is given in Figure 1.9, where we construct both sets of the equality in stages.

To construct the left-hand side of the equation, in the first box we color A, then B ∪ C in
the second, and finally we take the area from the first, remove the area from the second, and are
left with the difference A− (B ∪C). To construct the right-hand side of the equation, we color
A − B and A− C in separate boxes. Then we color the intersection of these, which is the area
colored in the previous two boxes. This gives us our Venn Diagram for (A−B) ∩ (A− C). We
see that the left- and right-hand sides are the same, and conclude the equality is valid.

The next two are distributive in nature also:

A− (B ∪ C) = (A−B) ∩ (A− C) (1.101)

A− (B ∩ C) = (A−B) ∪ (A− C). (1.102)
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Finally, if we replace A with U , we get the set-theoretic version of de Morgan’s Laws:

(B ∪C)′ = B′ ∩ C′ (1.103)

(B ∩C)′ = B′ ∪ C′. (1.104)

Note that these are very much like our earlier de Morgan’s laws, and indeed use the previous
versions (1.3) and (1.4), page 17 (also see page 22) in their proofs. For instance, assuming x ∈ U
where U is fixed, we have

x ∈ (B ∪ C)′ ⇐⇒ ∼ (x ∈ B ∪ C)

⇐⇒ ∼ ((x ∈ B) ∨ (x ∈ C))

⇐⇒ [∼ (x ∈ B)] ∧ [∼ (x ∈ C)]

⇐⇒ [x ∈ B′] ∧ [x ∈ C′]

⇐⇒ x ∈ B′ ∩C′, q.e.d.

That proves (1.103), and (1.104) has a similar proof. It is interesting to prove these using Venn
Diagrams as well (see exercises).

Example 1.5.3 Another example of how to prove these using logic and Venn diagrams is in
order. We will prove (1.101) using both methods. First, with symbolic logic:

x ∈ A− (B ∪ C) ⇐⇒ (x ∈ A) ∧ [∼ (x ∈ B ∪ C)]

⇐⇒ (x ∈ A) ∧ [∼ ((x ∈ B) ∨ (x ∈ C))]

⇐⇒ (x ∈ A) ∧ [(∼ (x ∈ B)) ∧ (∼ (x ∈ C))]

⇐⇒ (x ∈ A) ∧ (∼ (x ∈ B)) ∧ (∼ (x ∈ C))

⇐⇒ (x ∈ A) ∧ (∼ (x ∈ B)) ∧ (x ∈ A) ∧ (∼ (x ∈ C))

⇐⇒ [(x ∈ A) ∧ (∼ (x ∈ B)] ∧ [(x ∈ A) ∧ (∼ (x ∈ C))]

⇐⇒ (x ∈ A−B) ∧ (x ∈ A− C)

⇐⇒ x ∈ (A−B) ∩ (A− C), q.e.d.

If we took the steps above in turn, we used the definition of set subtraction, the definition
of union, (1.19), associative property of ∧, added a redundant (x ∈ A), regrouped, used the
definition of set subtraction, and finally the definition of intersection.

Now we will see how we can use Venn diagrams to prove (1.101). As before, we will do this
by constructing Venn Diagrams for the sets A− (B ∪C) and (A−B)∩ (A−C) separately, and
verify that we get the same sets. We do this in Figure 1.10. (If it is not visually clear how we
proceed from one diagram to the next “all at once,” a careful look at each of the 23 = 8 distinct
regions can verify the constructions.)

1.5.5 More on Subsets

Before closing this section, a few more remarks should be included on the subject of subsets.
Consider for instance the following:

Example 1.5.4 Let A = {1, 2}. List all subsets of A.
Solution: As A = {1, 2} has two elements, it can have subsets which contain zero elements,

one element, or two elements. The subsets are thus ∅, {1}, {2} and {1, 2} = A.
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Figure 1.10: Venn Diagrams for Example 1.5.3 verifying that A−(B∪C) = (A−B)∩(A−C).

It is common for novices studying sets to forget that ∅ ⊆ A, and A ⊆ A, though by definition,

x ∈ ∅ =⇒ x ∈ A (vacuously),

x ∈ A =⇒ x ∈ A (trivially).

If one wanted only proper subsets of A, those would be ∅, {1}, {2} (we omit the set A).

Note that with our set A = {1, 2}, we can reduce rephrase the question of which subset we
might refer to, instead into a question of exactly which elements are in it, from the choices 1 and
2. In other words, given a subset B ⊆ A, which (if any) of the following are true: 1 ∈ B, 2 ∈ B.
From these statements we can construct a truth table-like structure to describe every possible
subset of A:

A = {1, 2}
1 ∈ B 2 ∈ B subset B

T T {1, 2} = A
T F {1}
F T {2}
F F ∅

Similarly, a question about subsets B of A = {a, b, c} can be placed in context of a truth table-like
construct:

A = {a, b, c}
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a ∈ B b ∈ B c ∈ B subset B
T T T {a, b, c} = A
T T F {a, b}
T F T {a, c}
T F F {a}
F T T {b, c}
F T F {b}
F F T {c}
F F F ∅

It would not be too difficult to list the elements of A = {1, 2, 3} by listing subsets with zero,
one, two and three elements separately, i.e., ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, but
if we were to need to list subsets of a set with significantly more elements, it might be easier to
use the lexicographical order embedded in the truth table format to exhaust all the possibilities.
The only disadvantage is that the order in which subsets are listed might not be quite as natural
as the order we would likely find if we listed subsets with zero, one, two elements and so on.
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Exercises

1. Draw all the 24 = 16 possible shadings
for Figure 1.6, page 60. Then use the
sets A, B and U , together with unions,
intersections, complements and set differ-
ences (∪,∩, ′,−) to write a corresponding
expression for the each of the shaded ar-
eas. Note that Figure 1.8 illustrates six of
them. Also note that there may be more
than one way of representing a set. For
example, A′ = U −A.

2. Use symbolic logic and Venn Diagrams
(as in Examples 1.5.2 and 1.5.3) to prove
the other set equalities:

(a) (1.97): A ∪ (B ∪ C) = (A ∪B) ∪ C

(b) (1.98): A ∩ (B ∩ C) = (A ∩B) ∩ C

(c) (1.102): A − (B ∩ C) = (A − B) ∪
(A− C)

(d) (1.99): A∩(B∪C) = (A∩B)∪(A∩
C)

(e) (1.103): (B ∪ C)′ = B′ ∩ C′

(f) (1.104): (B ∩ C)′ = B′ ∪ C′

3. Use Venn Diagrams to draw and deter-
mine a simpler way of writing the follow-
ing sets:

(a) A− (B −A) =

(b) A− (A−B) =

(c) (A−B) ∩ (B −A) =

4. Answer each of the following.

(a) If A ⊆ B, what is A−B?

(b) If A ⊂ B, what can you say about
B −A?

(c) Referring to Figure 1.8, what are U ′

and ∅′?

(d) Suppose A ⊆ B. How are A′ and B′

related?

(e) Suppose A−B = A. What is A∩B?

(f) Suppose A − B = B. What is B?
What is A?

(g) Is it possible that A ⊆ B and B ⊆
A?

5. The set of irrational numbers is the set

I =
{

x ∈ R
∣
∣ x is not rational

}
.

Using previously-defined sets and set no-
tation, find a concise definition of I.

6. Many books define the symmetric differ-
ence between two sets A and B by

A △ B = (A−B) ∪ (B −A). (1.105)

(a) Use a Venn Diagram to show that
A △ B = (A ∪B)− (A ∩B).

(b) Is it true that A △ B = B △ A?

(c) Use a Venn Diagram to show that
A △ (B △ C) = (A △ B) △ C.

(d) Calculate A △ A, A △ U , and
A △ ∅.

(e) If A ⊆ B, what is A △ B? What is
B △ A?

(f) Define A △ B in a manner similar to
the definitions (1.90)–(1.93). That
is, replace the dots with a descrip-
tion of x in the following:

A △ B =
{

x
∣
∣ · · ·

}
.

7. Redraw the Venn Diagram of Figure 1.7
and label each of the eight disjoint areas
I–VIII. Then use the sets U , A, B and C,
together with the operations ∪, ∩, − and
′, to find a definition of each of these sets
I–VIII.

8. How many different shading combina-
tions are there for the general Venn Di-
agram for 3 sets A, B and C? (See Fig-
ure 1.7.) Speculate about how many com-
binations there are for 4 sets, 5 sets, and
n sets. Test your hypothesis for n = 0
and n = 1.

9. Show that A ⊆ B ⇐⇒ B′ ⊆ A′.
(See the discussion immediately following
(1.86), page 55.)
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10. A useful concept in set theory is cardi-
nality of a set S, which we denote n(S),
which can be defined to be the number of
elements in a set if the set is finite. Thus
n({1, 2, 3, 8, 9, 10}) = 6.

(a) Use a Venn Diagram to show that

n(S ∪ T ) = n(S) + n(T )−n(S ∩ T ).
(1.106)

(b) Show that if n(S∪T ) = n(S)+n(T ),
then S ∩ T = ∅.

11. Given

U = {1, 2, 3, · · · , 12},
A = {1, 2, 3, 4, 5, 6},
B = {2, 3, 4, 6, 7, 8},
C = {3, 5, 7},
D = {3, 5, 7, 11},

find each of the following:

(a) (A−B) ∪ (B −A),

(b) (A−D)′,

(c) the number of subsets C,

(d) the number of subsets of D.

(e) Use the results from (c) and (d)
to determine the number of subsets
that a set of 5 elements should have.
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1.6 Epilogue: Proofs Without Truth Tables

Truth tables are the most exhaustive tools for studying compound statements, because they
simply check every case. This makes them useful tools to fall back upon if necessary, but as we
learn and memorize more equivalences it is useful to put what we already showed to work in
other proofs. For instance, recall the following equivalences, here written with our new notation:

1. P −→ Q ⇐⇒ (∼ P ) ∨Q,

2. ∼ [P ∨Q] ⇐⇒ (∼ P ) ∧ (∼ Q),

3. ∼ (∼ P ) ⇐⇒ P .

We will use these principles, in exactly the order above, to produce a very concise proof in the
following example.

Example 1.6.1 Prove without truth tables that ∼ (P −→ Q) ⇐⇒ P ∧ (∼ Q).
Solution:

∼ (P −→ Q) ⇐⇒ ∼ [(∼ P ) ∨Q]

⇐⇒ [∼ (∼ P )] ∧ (∼ Q)

⇐⇒ P ∧ (∼ Q), q.e.d.

To show a statement is a tautology it is enough to show that it is logically equivalent to T .
We can use this fact to prove valid logical equivalences (i.e., show ←→ gives a tautology) and
valid logical implications (i.e., show −→ gives a tautology). There are often easier ways to prove
valid equivalences, but for valid implications this method can be useful, as in the example below.

Example 1.6.2 We revisit Example 1.3.2, proving (1.47), page 29 using this notation. That is,
we wish to show that (P ∧Q) =⇒ P by showing

(P ∧Q) −→ P ⇐⇒ T .

The proof will run as follows:

(P ∧Q) −→ P ⇐⇒ ∼ (P ∧Q) ∨ P

⇐⇒ (∼ P ) ∨ (∼ Q) ∨ P

⇐⇒ (∼ P ) ∨ P ∨ (∼ Q)

⇐⇒ T ∨ (∼ Q)

⇐⇒ T , q.e.d.

This kind of proof requires much practice, but also can be very satisfying when completely
mastered. The highly interested student can work all of the exercises, and perhaps continue by
attempting, without truth tables, proofs of the remaining valid equivalences and implications
listed in the next subsection. We leave a couple of more difficult examples for later in the next
(and final) subsection.

Example 1.6.3 Here we expand the simple statement P ←→ Q using, respectively, the obvious
equivalent statement, followed by (1.29), page 22, several applications of the distributive rule
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(1.27), page 22 and finally (1.39), page 26.67

P ←→ Q ⇐⇒ (P −→ Q) ∧ (Q −→ P )

⇐⇒ [(∼ P ) ∨Q] ∧ [(∼ Q) ∨ P ]

⇐⇒
{

[(∼ P ) ∨Q] ∧ (∼ Q)

}
∨

{

[(∼ P ) ∨Q] ∧ P

}

⇐⇒
{

[(∼ P ) ∧ (∼ Q)] ∨ [Q ∧ (∼ Q)]

}
∨

{

[(∼ P ) ∧ P ] ∨ [Q ∧ P )]

}

⇐⇒
{

[(∼ P ) ∧ (∼ Q)] ∨ F
}

∨
{

F ∨ [Q ∧ P )]

}

⇐⇒ {(∼ P ) ∧ (∼ Q)} ∨ {P ∧Q}.

Though we had a good understanding of P ←→ Q before—that it is true if and only if P and Q
are both true or both false—we might not have been as quick to declare obvious what we just
derived when read backwards:

(P ∧Q) ∨ ((∼ P ) ∧ (∼ Q)) ⇐⇒ P ←→ Q. (1.107)

Example 1.6.4 (A Rather Sophisticated Proof) We will prove (1.52), page 32 using its
predecessors, particularly (1.49) and the distributive laws. The proof is not as straightforward
as using truth tables, but it is worthwhile to follow along.

(P −→ Q) ∧ (Q −→ R) ⇐⇒ [(∼ P ) ∨Q] ∧ [(∼ Q) ∨R]

⇐⇒
{

[(∼ P ) ∨Q] ∧ (∼ Q)]
}

∨
{

[(∼ P ) ∨Q] ∧R
}

⇐⇒
{

[(∼ P ) ∧ (∼ Q)] ∨ [Q ∧ (∼ Q]
}

∨
{

[(∼ P ) ∨Q] ∧R
}

⇐⇒
{

[(∼ P ) ∧ (∼ Q)] ∨ F
}

∨
{

[(∼ P ) ∨Q] ∧R
}

⇐⇒
{

(∼ P ) ∧ (∼ Q)
︸ ︷︷ ︸

A

}

∨
{

[(∼ P ) ∨Q]
︸ ︷︷ ︸

B

∧ R
︸︷︷︸

C

}

⇐⇒
{

[(∼ P ) ∧ (∼ Q)
︸ ︷︷ ︸

A

] ∨ [(∼ P ) ∨Q]
︸ ︷︷ ︸

B

}

∧
{

[(∼ P ) ∧ (∼ Q)]
︸ ︷︷ ︸

A

∨ R
︸︷︷︸

C

}

⇐⇒ (A ∨B) ∧
{(

(∼ P ) ∨R
)

∧
(

(∼ Q) ∨R
)}

⇐⇒
{(

A ∨B
)

∨
(

(∼ Q) ∨R
)

︸ ︷︷ ︸

D

}

∧
{

(∼ P ) ∨R
}

⇐⇒
{(

A ∨B
)

∨
(

(∼ Q) ∨R
)

︸ ︷︷ ︸

D

}

∧
{

P −→ R
}

=⇒ P −→ R, q.e.d.

Here we used some labels and substitutions A, B, C, D for clarity and space considerations. The
actual form of D did not matter. Our final step was of the form D ∧ (P −→ R) =⇒ P −→ R,
i.e., (1.49), page 32. Note also that it is enough to have =⇒ all the way down in such a proof,

67We include the references to previous valid equivalences and implications in case they are needed, but the
reader should attempt to read the proof first without resorting to the references. Indeed the reader might not
feel the need to look up the previous results at all, if comfortable with each step.
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since we could then follow the “arrows” from the first statement through to the last. However
it is best to work with equivalences as long as possible, to avoid losing too much information in
early steps where the goal is not so easily concluded.

Clearly this can be a messy process. Fortunately, we rarely need to expand things out so
far. What is important is that we now have a language of logic and some very general valid
equivalences and implications which

1. we can prove using truth tables—a process with an obvious road map—if necessary;

2. will become more and more natural for us to see as valid by inspection, and be prepared
to use;

3. and (later) will make shorter, clearer work of our mathematical arguments.

Some further observations and insights are introduced in the exercises. Many are very im-
portant and will be referred to throughout the text.



72 CHAPTER 1. MATHEMATICAL LOGIC AND SETS

Exercises

1. Show without truth tables the following.
(Hint: There is a very easy way and a

very long way.)

(P −→ Q) ∧ ((∼ P ) −→ (∼ Q))

⇐⇒ P ←→ Q. (1.108)

Does this make sense? (You should re-
late this to English statements of these
forms.)


