
Chapter 3

Fields and Vector Spaces

3.1 Elementary Properties of Fields

3.1.1 The Definition of a Field

In the previous chapter, we noted unecessarily that one of the main concerns
of algebra is the business of solving equations. Beginning with the simplest,
most trivial equation, the equation ax = b, we see that there is a subtle point.
We are used to considering equations which involve integers. To divide
three apples among 4 persons, we have to consider the equation 4x = 3.
This doesn’t have an integer solution. More generally, we obviously cannot
function without all quotients p/q, where p, q are integers and q 6= 0. The set
Q of all such quotients is the set of rational numbers. Recall that addition
and multiplication in Q is defined by:

a

b
+

c

d
=

ad + bc

bd
, (3.1)

and
a

b
· c
d

=
ac

bd
. (3.2)

Clearly the sum and product of two rational numbers is another rational
number.

Next suppose we have been given the less trivial job of solving two linear
equations in two unknowns, say x an y. These equations might be written
out as

ax + by = m

cx + dy = n.
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Assuming ad− bc 6= 0, there is a unique solution which is expressed as

x =
dm− bn

ad− bc

y =
−cm + an

ad− bc
.

(In fact we derived this in the previous chapter.) The main point of this
is that to express the solutions of such a linear system, one needs all the
available algebraic operations: addition, subtraction, multiplication and di-
vision. A set, such as the rationals or reals, where all these operations exist
is called a field.

Before defining the notion of a field, we need to define the notion of a
binary operation on a set. Addition and multiplication on the set of integers,
Z, are two basic examples of binary operations. Let S be any set, finite or
infinite. Recall that the Cartesian product of S with itself is the set S×S of
all ordered pairs (x, y) of elements x, y ∈ S. Note, we call (x, y) an ordered
pair since (x, y) 6= (y, x) unless x = y. Thus,

S × S = {(x, y) | x, y ∈ S}.

Definition 3.1. A binary operation on S is a function F : S × S → S, that
is, a function F whose domain is S × S which takes its values F (x, y) in S.

Note: when A and B are sets, we will write F : A→ B to indicate that
F is a function with domain A and values in B. Also, we often express a
binary operation by writing something like x · y or x ∗ y for F (x, y). So,
for example, the operation of addition on Z may be thought of as being a
binary operation + on Z such that +(x, y) = x+y. We also need the notion
of a subset being closed with respect to a binary operation.

Definition 3.2. Let F be a binary operation on a set S. A subset T of S
such that F (x, y) ∈ T for all x, y ∈ T is said to be closed under the binary
operation.

For example, the positive integers are closed underboth addition and
multiplication. The odd integers are closed under multiplication, but not
closed under addition.

We now define the notion of a field.

Definition 3.3. Assume given a set F with two binary operations called
addition and multiplication. The sum and product of two elements a, b ∈ F
will be denoted by a + b and ab respectively. Suppose addition and multi-
plication satisfy the following properties:
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(i) a + b = b + a (addition is commutative);

(ii) (a + b) + c = a + (b + c) (addition is associative);

(iii) ab = ba (multiplication is commutative);

(iv) a(bc) = (ab)c (multiplication is associative);

(v) a(b + c) = ab + ac (multiplication is distributive);

(vi) F contains an additive identity 0 and a multiplicative identity 1 distinct
from 0; the additive and multiplicative identities have the property
that a + 0 = a and 1a = a for every a ∈ F;

(vii) for every a ∈ F, there is an element −a called the additive inverse of
a such that a + (−a) = 0; and

(viii) for every a 6= 0 in F, there is an element a−1, called the multiplicative
inverse of a such that aa−1 = 1.

Then F is called a field.

Note that we will often express a+(−b) as a−b. In particular, a−a = 0.
In any field F, a0 = 0 for all a. For

a0 = a(0 + 0) = a0 + a0,

so adding −a0 to both sides and using the associativity of addition, we get

0 = a0− a0 = (a0 + a0) − a0 = a0 + (a0− a0) = a0 + 0 = a0.

Hence a0 = 0 for all a ∈ F.
Using this fact, we next show

Proposition 3.1. In any field F, whenever ab = 0, either a or b is zero.
Put another way, if neither a nor b is zero, then ab 6= 0.

Proof. Suppose a 6= 0 and b 6= 0. If ab = 0, it follows that

0 = a−10 = a−1(ab) = (a−1a)b = 1b = b.

This is a contradiction, so ab 6= 0.

The conclusion that ab = 0 implies either a or b is zero is one of the field
properties that is used repeatedly. We also have
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Proposition 3.2. In any field F, the additive and multiplicative identi-
ties are unique. Moreover, the additive and multiplicative inverses are also
unique.

Proof. We will show 0 is unique. The proof that 1 is unique is is done in
exactly the same way after replacing addition by multiplication. Let 0 and
0′ be two additive identities. Then

0′ = 0′ + 0 = 0

so 0 is indeed unique. We next show additive inverses are unique. Let a ∈ F
have two additive inverses b and c. Using associativity, we see that

b = b + 0 = b + (a + c) = (b + a) + c = 0 + c = c.

Thus b = c. The rest of the proof is similar.

3.1.2 Arbitrary Sums and Products

In a field, we can take the sum and product of any finite number of elements.
However, we have to say how to define and interpret expressions such as

k∑
i=1

xi and
k∏
i=1

xi.

Suppose we want to define the sum x1 +x2 + · · ·+xn of n arbitrary elements
of a field F. We do this by induction. Suppose x1 +x2 + · · ·+xn−1 has been
defined, and put

x1 + x2 + · · ·+ xn−1 + xn = (x1 + x2 + · · ·+ xn−1) + xn.

Likewise, put
x1x2 · · · xn = (x1x2 · · · xn−1)xn.

In fact, in the above sum and product, the parens can be put anywhere, as
we now show.

Proposition 3.3. In any field F,

x1 + x2 + · · · + xn−1 + xn =
( r∑
i=1

xi
)

+
( n∑
i=r+1

xi
)
,



79

for any r with 1 ≤ r < n. Similarly,

x1x2 · · · xn =
( r∏
i=1

xi
)( n∏

j=r+1

xj
)
,

for all r with 1 ≤ r ≤ n− 1.

Proof. We will give the proof for sums and leave products to the reader, as
the details in both cases are the same. We use induction on n. There is
nothing to show for n = 1, so suppose n > 1 and the result is true for n− 1.
If r = n− 1, there is also nothing to show. Thus assume r < n− 1. Then

x1 + x2 + · · ·+ xn−1 + xn = (x1 + x2 + · · ·+ xn−1) + xn

=
( r∑
i=1

xi +
n−1∑
j=r+1

xj
)

+ xn

=
r∑
i=1

xi +
( n−1∑
j=r+1

xj + xn
)

=
( r∑
i=1

xi
)

+
( n∑
j=r+1

xj
)

Hence the result is true for n, which completes the proof.

3.1.3 Examples

We now give some examples.
First of all, it’s easy to see that the rational numbers satisfy all the field

axioms, so Q is a field. In fact, verifying the field axioms for Q simply
boils down to the basic arithmetic properties of the integers: associativity,
commutativity and distributivity and the existence of 0 and 1. Indeed, all
one needs to do is to use (3.1) and (3.2) to prove the field axioms for Q from
these properties of the integers.

The integers Z are not a field, since field axiom (viii) isn’t satisfied by
Z. Indeed, the only integers which have multiplicative inverses are ±1.

The second example of a field is the set of real numbers R. The con-
struction of the real numbers is actually somewhat technical, so we will skip
it. For most purposes, it suffices to think of R as being the set of all decimal
expansions

a1a2 · · · ar.b1b2 · · · ,
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where all ai and bj are integers between 0 and 9. Note that there can be
infinitely many bj to the right of the decimal point. We also have to make
appropriate identifications for repeating decimals such as 1 = .999999 . . . .
A very useful fact is that R is ordered; that is, any real number x is either
positive , negative or 0, and the product of two numbers with the same sign
is positive. This makes it possible to solve systems of linear inequalities such
as a1x1 + a2x2 + · · · + anxn > c. In addition, the reals have what is called
the Archimedian property: if a, b > 0, then there exists an x > 0 so that
ax > b.

The third basic field is C, the field of complex numbers. This is a very
important field. We will discuss it in the next section.

3.1.4 An Algebraic Number Field

Many examples of fields arise by extending an already given field. We will
now give an example of a field called an algebraic number field which is
obtained by adjoining the square root of an integer to the rationals Q. Let
us first recall the

Theorem 3.4 (Fundamental Theorem of Arithmetic). Let m be an
integer greater than 1. Then m can be factored m = p1p2 · · · pk, where
p1, p2, . . . , pk are primes. Moreover, this factorization is unique up to the
order of the factors.

Recall that a positive integer p is called prime if p > 1 and its only
positive factors are 1 and itself. For a proof of the Fundamental Theorem
of Arithmetic, the reader is referred to a text on elementary number theory.
We say that a positive integer m is square free if its prime factorization has
no repeated factors. For example, 10 = 2 · 5 is square free while 12 = 4 · 3
isn’t.

Let m ∈ Z be positive and square free, and let Q(
√

m) denote the set of
all real numbers of the form a + b

√
m, where a and b are arbitrary rational

numbers. It is easy to see that sums and products of elements of Q(
√

m)
give elements of Q(

√
m). Clearly 0 and 1 are elements of Q(

√
m). Hence,

assuming the field axioms for R allows us to conclude without any effort
that all but one of the field axioms are satisfied in Q(

√
m). We still have to

prove that any non zero element of Q(
√

m) has a multiplicative inverse.
So assume a + b

√
m 6= 0. Thus at least one of a or b is non zero. By

clearing away the denominators, we can assume the a and b are integers
(why?). Furthermore, we can assume they don’t have any common prime
factors; that is, a and b are relatively prime. (This will also mean that both
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a and b are non zero.) The trick is to notice that

(a + b
√

m)(a− b
√

m) = a2 −mb2.

Hence
1

a + b
√

m
=

a− b
√

m

a2 −mb2
.

Thus, if a2 −mb2 6= 0, then (a + b
√

m)−1 exists in R and is an element of
Q(
√

m).
To see that indeed a2 −mb2 6= 0, suppose to the contrary. Then

a2 = mb2.

But this implies that m divides a2, hence any prime factor pi of m has to
divide a itself. In other words, m divides a. Given that, we may cancel m
on both sides and get an equation

cm = b2,

where c is an integer. Repeating the argument, any prime factor of m has to
divide b2, hence b. The upshot of this is that the original assumption that
a and b had no common factor has been violated, so the equation a2 = mb2

is impossible. Therefore we have proven

Proposition 3.5. If m is a square free positive integer, then Q(
√

m) is a
field.

The field Q(
√

m) is in fact the smallest field containing both the rationals
Q and

√
m.

3.1.5 The Integers Modulo a Prime p

As we have just seen, the real number field R admits a number of subfields.
These fields are all infinite. However, not all fields are infinite. In fact the
fields we will now define, the prime fields, are the first examples we will see
of an important family known as the Galois fields.

Definition 3.4. A field with only a finite number of elements is called a
Galois field.

The prime fields are so named because the number of elements of a prime
field is a prime. In fact, it turns out that the number of elements in any
Galois field F is a prime power, i.e. is pn for some prime p. Furthermore,
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we will show in due course that for every prime p and integer n > 0, there
eists a Galois field with pn elements, which is unique up to isomorphism.

The simplest example of a prime field occurs when p = 2. (This is also
the most important example for computer scientists as will soon be clear.)
Recall that every field has an additive identity 0 and a multiplicative identity
1. Thus every field has at least two elements. Now define the field F2 to be
{0, 1}, where 0 is the additive identity and 1 is the multiplicative identity.
Then addition and multiplication for F2 are partly determined by the field
axioms. That is, we have to have the following:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0, 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

Thus it remains to determine 1 + 1. But 1 has to have an additive inverse
x such that 1 + x = 0, and x 6= 0, since otherwise 1 + x = 1, contradicting
0 6= 1. Hence the only possibility is that x = 1, so we are forced to define
1 + 1 = 0. Now we state the first result.

Proposition 3.6. F2 is a field.

Proof. By going through all possible cases, we could check that the 8 field
axioms are true. But we can also obtain F2 via arithmetic modulo 2, as we
will see below.

Notice that we can think of the two elements of F2 as representing on
(1) and off (0). Adding 1 causes the state to change: off becomes on and on
becomes off. What turns out to be useful is that a sequence of 0’s and 1’s
can now be viewed in a much more useful way as a sequence of elements of
F2. This fact plays a very important role in coding theory and information
theory, two disciplines that all sorts of everyday things such as PC’s, CD
players, modems etc. couldn’t exist without. We will study linear coding
theory in some detail in Chapter ??.

Next consider a prime p > 1. We now define the field Fp with p elements.
We will use modular arithmetic to make Fp into a Galois field. Doing mod-
ular arithmetic is like telling time on a clock. In fact, telling time on a
clock requires addition modulo 12. In general, modular arithmetic can be
succinctly described as addition and multiplication with remainders.

Put
Fp = {0, 1, 2, . . . p− 1}. (3.3)

We have to define addition and multiplication so that all eight field axioms
are satisfied. To add two elements a and b in Fp, first take their sum in the
usual way to get the integer a + b. If a + b < p, then we define their sum in
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Fp to be a+b. However, if a+b ≥ p, we need to use division with remainder.
This is the principle explained in the next Proposition.

Proposition 3.7. Suppose a and b are non-negative integers with b 6= 0.
Then one can uniquely express a as a = qb + r, where q is a non-negative
integer and 0 ≤ r < b.

Proof. If a < b, put r = a, and if a = b, put r = 0. If a > b, some
positive multiple sb of b satisfies sb > a. Let s be the least positive integer
such that this happens. Here we are using the assumption that every non-
empty set of positive integers has a least element. Put q = s − 1. Thus
a = qb + (a − qb), so we have to show that r = a − qb satisfies 0 ≤ r < b.
Now a− qb = a− (s− 1)b ≥ 0 by definition. Also a− qb = (a− sb) + b < b
since a < sb. This finishes the proof.

Thus, if a + b ≥ p, write

a + b = qp + r,

where q is a nonnegative integer and r is an integer such that 0 ≤ r < p.
Then the sum of a and b in Fp is defined to be r. This operation is called
addition modulo p. It is a special case of modular addition.

To define the product of a and b in Fp, we use (in exactly the same way)
the remainder upon dividing ab by p.

Example 3.1. Let’s carry out the definitions of addition and multiplication
in F3 = {0, 1, 2}. Of course, 0 and 1 are always the identities, so all sums
and products involving them are determined. To completely determine the
addition, we therefore only have to define 1 + 1, 1 + 2 and 2 + 2. First of
all, 1 + 1 < 3, so by definition, 1 + 1 = 2. To find 2 + 2, first take the usual
sum 4, then express 4 = 3 + 1 as in Proposition 3.7. The remainder is 1, so
2 + 2 = 1 in F3. Similarly, 1 + 2 = 0 in F3. Thus −2 = 1 and −1 = 2. To
find all products, it remains to find 2 · 2. But 2 · 2 = 4 in usual arithmetic,
so 2 · 2 = 1 in F3. Thus 2−1 = 2. A good way to summarize addition
and multiplication is to construct addition and multiplication tables. The
addition table for F3 is

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

We suggest that the reader construct the multiplication table for F3.
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For arbitrary primes, the existence of additive inverses is easy to see (the
inverse of a is p − a), but it is not so obvious that multiplicative inverses
always exist. To prove that they do, we will make a short diversion to prove
the pigeon hole principle. First recall the following definition.

Definition 3.5. If X and Y are two sets, then a map φ : X → Y is called
one to one or injective if φ(x) = φ(x′) implies x = x′. Also, φ is onto or
surjective if for every y ∈ Y , y = φ(x) for some x ∈ X. In other words, φ is
surjective if the image of φ

φ(X) = {φ(x) | x ∈ X} ⊂ Y

is all of Y : φ(X) = Y . If φ is both injective and surjective, it is said to be
bijective.

If X is finite, recall that the number of elements of X is denoted by |X|.
Proposition 3.8 (The Pigeon Hole Principle). Let X and Y be finite
sets with |X| = |Y |, and suppose φ : X → Y is a map. If φ is either injective
or surjective, then φ is a bijection.

Proof. If φ is injective, then X and its image φ(X) have the same number of
elements. But this implies φ(X) = Y , so φ is surjective, hence is a bijection.
On the other hand, suppose φ is surjective, i.e. φ(X) = Y . Then |X| ≥ |Y |.
But if φ(x) = φ(x′) where x 6= x′, then infact |X| > |Y |. This contradicts
the assumption that |X| = |Y |, hence φ is bijective.

We now return to the proof that every nonzero element a of Fp has an
inverse a−1. First, we show Fp satisfies the conclusion of Proposition 3.1:

Proposition 3.9. Let p be a prime number. If ab = 0 in Fp, then either
a = 0 or b = 0 (or both).

Proof. Since ab = 0 in Fp is the same thing as saying that p divides the usual
product ab, the Proposition follows from the fact that if the prime number
p divides ab, then it divides a or it divides b. This fact follows immediately
from the Fundamental Theorem of Arithmetic (Theorem 3.4).

This Proposition says that multiplication by a fixed non-zero element
a ∈ Fp induces an injective map

φa : Fp \ {0} −→ Fp \ {0}
x 7−→ ax
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Here Fp \{0} is the set Fp without 0. To see that φa is injective, let φa(x) =
φa(y), that is ax = ay. Thus a(x − y) = 0, so x − y = 0 since a 6= 0
(Proposition 3.9). Therefore x = y. Since Fp \ {0} is a finite set, the Pigeon
Hole Principle says that φa is a bijection. In particular, there exists an
x ∈ Fp \ {0}, such that ax = 1. Hence x is the required inverse of a.

We will skip the proofs that addition and multiplication defined on Fp
using modular arithmetic satisfy the field axioms (i) through (v). Thus,
putting the above facts together, we get
Theorem 3.10. If p is a prime, then Fp, as defined above, is a field.

If the requirement of having multiplicative inverses is taken out of the
definition of a field, the resulting system is called a ring. For example, Z4

is a ring, but not a field since, in Z4, 2 · 2 = 0. In fact, if q is a composite
number, then Zq (defined exactly as above) is a ring but not a field. Note
that the integers Z also form a ring. We will take up ring theory in due
course.

3.1.6 A Field with Four Elements

As we mentioned at the beginning of this section, there exist Galois fields
of order pn for every prime p and integer n > 0. We now write down the
addition and multiplication tables for a field with four elements. However,
the actual construction of this field will be left until Example 15.17. Let
F4 = {0, 1, α, β}. Define the addition table (omitting addition by 0) as
follows.

+ 1 α β

1 0 β α
α β 0 1
β α 1 0

The multiplication table (omitting the obvious cases) is defined by

· α β

α β 1
β 1 α

Then we have
Proposition 3.11. The set F4 = {0, 1, α, β} having 0 and 1 as identities
and addition and multiplication defined as above is a field.

The verification of this Proposition requires that we check all the field
axioms. Again, this has to be done by hand, and so we will omit it. This
somewhat unsatisfactory situation will be fixed Chapter 15, where we will



86

give the uniform construction of all the Galois fields and prove their unique-
ness.

The reader may have noticed that the only possible way multiplication
can be defined is to require that α2 = β and β2 = α. It thus follows that
α3 = β3 = 1. Hence α4 = α and β4 = β, so all elements of F4 satisfy
the equation x4 − x = 0 since 0 and 1 trivially do. Now by Section 3.1.9
below, we can view x4 − x as a polynomial in a variable x over the field
F2, where we have the identity x4 − x = x4 + x. Thus, we can factor
x4 − x = x(x + 1)(x2 + x + 1) (remember 1 + 1 = 0 so 2x = 2x2 = 0).
The elements α and β are therefore roots of x(x + 1)(x2 + x + 1) = 0, and
the only possible way this can occur is when they satisfy x2 + x + 1 = 0.
This accounts for the definition of addition in F4. As we will see, there are
appropriate generalizations of these statements for all Galois fields.

3.1.7 Some Elementary Number Theory

We now make some definitions from elementary number theory. For any
integers a and b which are not both 0, let d > 0 be the largest integer which
divides both a and b. We call d the greatest common divisor of a and b. The
greatest common divisor, or simply, gcd of a and b is traditionally denoted
(a, b). For example, (4, 10) = 2. The first fact is

Proposition 3.12. Let a and b be integers which are not both 0, and let
d be their gcd. Then there exist integers u and v such that au + bv = d.
Conversely, if there exist integers u and v such that au + bv = d, then
d = (a, b).

Proof. The proof is accomplished by repeated application of Proposition 3.7.
We refer the reader to a book on number theory for complete details.

Definition 3.6. Let a, b, c be integers. Then we say a is congruent to b
modulo c if a− b is divisible by c. If a is congruent to b modulo c, we write
a ≡ b mod c.

Proposition 3.13. Let a, b, q be positive integers. Then the congruence
equation ax ≡ 1 mod q has a solution if and only if (a, q) = 1.

This proposition again implies that non-zero elements of Fp have multi-
plicative inverses. The following classical result of Fermat gives a formula
for finding the inverse of any element in Fp.
Fermat’s Little Theorem: Suppose p is a prime greater than 1. Then for
any integer a 6≡ 0 mod p, a(p−1) ≡ 1 mod p.
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We will give a group theoretic proof of Fermat’s Little Theorem in Chap-
ter 13. Fermat’s Little Theorem gives a well known test an integer m to be
prime: in order that m be prime, a(m−1) ≡ 1 mod m has to hold for all
integers a. One also gets a formula for the inverse in Fp.
Proposition 3.14. If p is a prime and a 6= 0 in Fp, then the reduction
modulo p of a(p−2) is the inverse of a in Fp.

For example, suppose we want to compute the inverse of 5 in F23. Since
521 = 476837158203125, we simply reduce 476837158203125 modulo 23,
which gives 14. If you weren’t able to do this calculation in your head, it is
useful to have a math package such as Maple or Mathematica. Of course,
5 · 14 = 70 = 3 · 23 + 1, which is easier to see than the above value of 521.

The proof of Fermat’s Little Theorem rests on the following identity in
Fp:

(a + b)p = ap + bp (3.4)

for all a, b ∈ Fp. This identity an application of the Binomial Theorem:
Let x and y be any pair of commuting vaiables. Then, for any positive
integer n,

(x + y)n =
n∑
i=0

(
n

i

)
xn−iyi, (3.5)

where (
n

i

)
=

n!
(n− i)!i!

.

The identity (3.4) does not in general hold in Zn unless n is prime.
Note that Fermat’s Little Theorem is not the fact known as Fermat’s

Last Theorem which Fermat famously stated without proof and which was
finally proved some 350 years later by Andrew Wiles: namely, there are no
integer solutions m > 2 of am + bm = cm where a, b, c ∈ Z are all non zero.
Amusingly, Fermat’s Last Theorem is false in Fp, since, by the Binomial
Theorem,

(a + b)p = ap + bp (3.6)

for all a, b ∈ Fp. Hence the sum of two pth powers is a pth power.

3.1.8 The Characteristic of a Field

If F is a finite field, then some multiple r of the identity 1 ∈ F has to be
0. The reason for this is that since F is finite, the multiples r1 of 1 can’t
all be different. Hence there have to be m > n such that m1 = n1 in F.
But this implies (m−n)1 = 0. Now I claim that the least positive integer r
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such that r1 = 0 is a prime. For if r can be expressed as a product r = st,
where s, t are positive integers, then, r1 = (st)1 = (s1)(t1) = 0. But, by the
minimality of r, s1 6= 0 and t1 6= 0, so a factorization r = st is impossible
unless either s or t is 1. Therefore r is a prime, say r = p. One calls p the
characteristic of F. In general, one makes the following definition:

Definition 3.7. Let F be an arbitrary field. If some multiple q1 of 1 equals 0,
we say that F has positive characteristic, and, in that case, the characteristic
of F is defined to be the least positive integer q such that q1 = 0. If all
multiples q1 are nonzero, we say F has characteristic 0.

Summarizing the above discussion, we state
Proposition 3.15. If a field F has positive characteristic, then its charac-
teristic is a prime. Otherwise its characteristic is zero.

Clearly the characteristics of Q, R and C are all 0. Moreover, the char-
acteristic of any subfield of a field of characteristic 0 is also 0.

3.1.9 Polynomials

Let F be a field and suppose x denotes a variable. We will assume it makes
sense to talk about the powers xi, where i is any positive integer. Define
F[x] to be the set of all polynomials

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

with coefficients ai ∈ F for each i, where n is an arbitrary non-negative
integer. If an 6= 0, we say that f has degree n. Of course, if ai = 0, we
interpret aix

i as being zero also. Addition of polynomials is defined by
adding the coefficients of each xi. We may also multiply two polynomials in
the natural way using xixj = xi+j and the distributive law.

Note that by definition, two polynomials p(x) = anx
n+an−1x

n−1 + · · ·+
a1x + a0 and q(x) = bkx

k + bk−1x
k−1 + · · · + b1x + b0 are equal if and only

if ai = bi for each index i.



89

Exercises

Exercise 3.1. Prove that in any field (−1)a = −a.

Exercise 3.2. Find the characteristic of the field Fp.

Exercise 3.3. Suppose the field F contains Fp as a subfield. Show that the
characteristic of F is p.

Exercise 3.4. Show that if F is a finite field of characteristic p, then for
any a, b ∈ F, we have (a + b)p = ap + bp. Also, show by example that this
identity fails in Zp when p isn’t prime.

Exercise 3.5. Use (3.6) to show that ap = a in Fp. Deduce Fermat’s Little
Theorem for this.

Exercise 3.6. Suppose F is a field of characteristic p. Show that if a, b ∈ F
and ap = bp, then a = b.

Exercise 3.7. Show that F is a finite field of characteristic p, then F is
perfect. That is, every element in Fp is a pth power. (Hint: use the pigeon
hole principle.)

Exercise 3.8. Show directly that F = {a + b
√

2 | a, b ∈ Q} is a field
under the usual operations of addition and multiplication in R. Also, find
(1−

√
2)−1 and (3− 4

√
2)−1.

Exercise 3.9. Describe addition and multiplication for the field Fp having p
elements for p = 5. That is, construct addition and multiplication tables for
F5 as in Example 1.1. Check that every element a 6= 0 has a multiplicative
inverse.

Exercise 3.10. Use Fermat’s Theorem to find 9−1 in F13. Use this to solve
the equation 9x ≡ 15 mod 13.

Exercise 3.11. Find at least one primitive element β for F13? (Calculators
should be used here.) Also, express 9−1 using this primitive element instead
of Fermat’s Theorem.

Exercise 3.12. Let Z denote the integers. Consider the set Q of all pairs
(a, b) where a, b ∈ Z and b 6= 0. Consider two pairs (a, b) and (c, d) to be
the same if ad = bc. Now define operations of addition and multiplication
on Q as follows:

(a, b) + (c, d) = (ad + bc, bd) and (a, b)(c, d) = (ac, bd).

Show that Q is a field. Can you identify Q?.
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Exercise 3.13. Write out the addition and multiplication tables for F6. Is
F6 is a field? If not, why not?

Exercise 3.14. Find both −(6 + 6) and (6 + 6)−1 in F7.

Exercise 3.15. Let F be a field and suppose that F′ ⊂ F is a subfield, that
is, F′ is a field for the operations of F. Show that F and F′ have the same
characteristic.
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3.2 The Field of Complex Numbers

We will now introduce the field C of complex numbers. The complex num-
bers are incredibly rich. Without them, mathematics would be a far less
interesting discipline. From our standpoint, the most notable fact about the
complex numbers is that they form an algebraically closed field. That is, C
contains all roots of any polynomial

xn + a1x
n−1 + . . . an−1x + an = 0

with complex coefficients. This statement, which is due to C. F. Gauss, is
called the Fundamental Theorem of Algebra.

3.2.1 The Definition

The starting point for considering complex numbers is the problem that if a
is a positive real number, then x2 +a = 0 apparently doesn’t have any roots.
In order to give it roots, we have to make sense of an expression such as

√
−a.

The solution turns turns out to be extremely natural. The real xy-plane R2

with its usual component-wise addition also has a multiplication such that
certain points (namely points on the y-axis), when squared, give points on
the negative x-axis. If we interpret the points on the x-axis as real numbers,
this solves our problem. It also turns out that under this multiplication on
R2, every nonzero pair (a, b)T has a multiplicative inverse. The upshot is
that we obtain the field C of complex numbers. The marvelous and deep
consequence of this definition is that C contains not only numbers such as√
−a, it contains the roots of all polynomial equations with real coefficients.

Let us now give the details. The definition of multiplication on R2 is
easy to state and has a natural geometric meaning discussed below. First
of all, we will call the x-axis the real axis, and identify a point of the form
(a, 0)T with the real number a. That is, (a, 0)T = a. Hence multiplication
on R can be reformulated as ab = (a, 0)T · (b, 0)T = (ab, 0)T . We extend this
multiplication to all of R2 by putting

(a, b)T · (c, d)T = (ac− bd, ad + bc)T . (3.7)

(Note: do not confuse this with the dot product on R2.)
We now make the following definition.

Definition 3.8. Define C to be R2 with the usual component-wise addition
(vector addition) and with the multiplication defined by (3.7).
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Addition and multiplication are clearly binary operations. Notice that
(0, a)T · (0, a)T = (−a2, 0)T , so that (0, a)T is a square root of −a2. It is
customary to denote (0, 1)T by i so

i =
√
−1.

Since any point of R2 can be uniquely represented

(a, b)T = a(1, 0)T + b(0, 1)T , (3.8)

we can therefore write
(a, b)T = a + ib.

In other words, by identifying the real number a with the vector a(1, 0)T on
the real axis, we can express any element of C as a sum of a real number, its
real part, and a multiple of i, its imaginary part. Thus multiplication takes
the form

(a + ib)(c + id) = (ac− bd) + i(ad + bc).

Of course, R is explicitly given as a subset of C, namely the real axis.
The Fundamental Theorem of Algebra is formally stated as follows:

Theorem 3.16. A polynomial equation

p(z) = zn + an−1z
n−1 + · · · + a1z + a0 = 0

with complex (but possibly real) coefficients has n complex roots.

There are many proofs of this theorem, but none of them are elementary
enough to repeat here. Every known proof draws on some deep result from
another field, such as complex analysis or topology.

An easy consequence is that given any polynomial p(z) with complex
coefficients, there exist r1, . . . , rn ∈ C which are not necessarily all distinct
such that

p(z) = (z − r1)(z − r2) . . . (z − rn).

We now prove
Theorem 3.17. C is a field containing R as a subfield.

Proof. The verification of this theorem is simply a computation. The real
number 1 is the identity for multiplication in C, and 0 = (0, 0)T is the
identity for addition. If a + ib 6= 0, then a + ib has a multiplicative inverse,
namely

(a + ib)−1 =
a− ib

a2 + b2
. (3.9)

The other properties of a field follow easily from the fact that R is a field.
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3.2.2 The Geometry of C

We now make some more definitions which lead to some beautiful geometric
properties of C. First of all, the conjugate z of z = a + ib is defined by
z = a− ib. It is easy to check the following identities:

w + z = w + z and (3.10)
wz = w z. (3.11)

The real numbers are obviously the numbers which are equal to their con-
jugates. Complex conjugation is the transformation from R2 to itself which
sends a point to its reflection through the real axis.

Formula (3.9) for (a + ib)−1 above can now be expressed in a new way.
Let z = a + ib 6= 0. Since zz = a2 + b2, we get

z−1 =
z

a2 + b2
.

Notice that the denominator of the above formula is the square of the length
of z. The length of a complex number z = a + ib is called its modulus and
is denoted by |z|. Thus

|z| = (zz)1/2 = (a2 + b2)1/2.

Since wz = w z, we obtain the nice formula for the modulus of a product,
namely

|wz| = |w||z|. (3.12)

In particular, the product of two unit length complex numbers also has
length one. Now the complex numbers of unit length are just those on the
unit circle C={x2 + y2 = 1}. Every point of C can be represented in the
form (cos θ, sin θ) for a unique angle θ such that 0 ≤ θ < 2π. It is convenient
to use a complex valued function of θ ∈ R to express this. We define the
complex exponential to be the function

eiθ := cos θ + i sin θ. (3.13)

The following proposition is geometrically clear.
Proposition 3.18. Any z ∈ C can be represented as z = |z|eiθ for some
θ ∈ R. θ is unique up to a multiple of 2π.

The value of θ in [0, 2π) such that z = |z|eiθ is called the argument of z.
The key property of the complex exponential is the identity

ei(θ+µ) = eiθeiµ, (3.14)
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which follows from the standard trigonometric formulas for the sine and
cosine of the sum of two angles. (We will give a simple proof of this when we
study rotations in the plane.) This gives complex multiplication a geometric
interpretation. Writing w = |w|eiµ, we see that

wz = (|w|eiµ)(|z|eiθ) = (|w||z|)(eiµeiθ) = |wz|ei(µ+θ).

In other words, the product wz is obtained by multiplying the lengths of w
and z and adding their arguments.
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Exercises

Exercise 3.16. Find all solutions of the equation z3 + 1 = 0 and interpret
them as complex numbers. Do the same for z4 − 1 = 0.

Exercise 3.17. Find all solutions of the linear system

ix1 + 2x2 + (1− i)x3 = 0
−x1 + ix2 − (2 + i)x3 = 0

Exercise 3.18. Suppose p(x) ∈ R[x]. Show that the roots of p(x) = 0 occur
in conjugate pairs, that is λ, µ ∈ C where λ = µ.
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3.3 Vector spaces

3.3.1 The notion of a vector space

In mathematics, there many situations in which one deals with sets of objects
which can be added and multiplied by scalars, so that these two operations
behave like vector addition and scalar multiplication in Rn. A fundamental
example of this is the set of all real valued functions whose domain is a
closed interval [a, b] in R, which one frequently denotes as R[a,b]. Addition
and scalar multiplication of functions is defined pointwise, as in calculus.
That is, if f and g are functions on [a, b], then f + g is the function whose
value at x ∈ [a, b] is

(f + g)(x) = f(x) + g(x),

and if r is any real number, then rf is the function whose value at x ∈ [a, b]
is

(rf)(x) = rf(x).

The key point is that we have defined sums and scalar multiples so
that the sum of f, g ∈ R[a,b] and all scalar multiples of a single f ∈ R[a,b]

are also elements of R[a,b]. When a set S admits an addition (resp. scalar
multiplication) with this property, we will say that S is closed under addition
(resp. scalar multiplication).

A more familiar example is the set C(a, b) of all continuous real valued
functions on [a, b]. Since C(a, b) ⊂ R[a,b], we will of course use the definitions
of addition and scalar multiplication already given for R[a,b]. In order to
know that C(a, b) is closed under addition and scalar multiplication, we
need to know that sums and scalar multiples of continuous functions are
continuous. But this is guaranteed by a basic theorem usually discussed in
calculus: the sum of two continuous functions is continuous and any scalar
multiple of a continuous function is continuous. Hence

f + g and rf belong to C(a, b) for all f and g in C(a, b) and any real
scalar r.

We now give the definition of a vector space over a field F. It will be
clear that, under the definitions of addition and scalar multiplication given
above, R[a,b] is a vector space over R.

Definition 3.9. Let F be a field and V a set. Assume that there is a binary
operation on V called addition which assigns to each pair of elements a
and b of V a unique sum a + b ∈ V . Assume also that there is a second
operation, called scalar multiplication, which assigns to any r ∈ F and any
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a ∈ V a unique scalar multiple ra ∈ V . Suppose that addition and scalar
multiplication satisfy the following axioms.

(1) Vector addition is commutative. That is, a+b = b+a for all a,b ∈ V .

(2) Vector addition is also associative. That is, (a + b) + c = a + (b + c)
for all a,b, c ∈ V .

(3) There is an additive identity 0 ∈ V so that 0 + a = a for all a ∈ V .

(4) Every element of V has an additive inverse. That is, given a ∈ V ,
there is an element denoted −a ∈ V so that a + (−a) = 0.

(5) 1a = a, for all a ∈ V .

(6) Scalar multiplication is associative. If r, s ∈ F and a ∈ V , then (rs)a =
r(s(a)).

(7) Scalar multiplication is distributive. If r, s ∈ F and a,b ∈ V , then
r(a + b) = ra + rb, and (r + s)a = ra + sa.

Then V is called a vector space over F.

You will eventually come to realize that all of the above conditions are
needed. Just as for fields, the additive identity 0 and additive inverses
unique: each vector has exactly one negative. We will call 0 the zero vector.

Let’s consider some more examples.

Example 3.2. The first example is the obvious one: if n ≥ 1, then Rn with
the usual component-wise addition and scalar multiplication is a real vector
space, that is a vector space over R. We usually call Rn real n-space.

Example 3.3. More generally, for any field F and n ≥ 1, the set Fn of all
n-tuples (a1, a2, . . . , an)T of elements of F can be made into a vector space
over F in exactly the same way. That is,

(a1, a2, . . . , an)T + (b1, b2, . . . , bn)T = (a1 + b1, a2 + b2, . . . , an + bn)T

and, for all r ∈ F,

r(a1, a2, . . . , an)T = (ra1, ra2, . . . , ran)T .
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Example 3.4. When F = F2, the elements of Fn are called n-bit strings.
For example, if n = 4, we have 4-bit strings such as 0000, 1000, 0100, 1100
and so forth. Since there are 4 places to put either a 0 or a 1, there are
24 = 16 4-bit strings. Binary strings have the nice property that each string
is its own additive inverse. Also, the string 1111 changes the parity of each
component. That is, 0101 + 1111 = 1010. The space of n-bit strings are the
fundamental objects of coding theory.

Example 3.5. Similarly, if F = Zp, we can consider the space of all p-ary
strings a1a2 . . . an of elements of Fp. Note that when we consider strings,
we often, for simplicity, drop the commas. However, you have to remember
that a string a1a2 . . . an can also be confused with a product in F. The space
(Fp)n is frequently denoted as V (n, p).

Example 3.6. This example generalizes R[a,b]. Let S be any set and define
RS to be the set of all real valued functions whose domain is S. We define
addition and scalar multiplication pointwise, exactly as for R[a,b]. Then RS

is a vector space over R. Notice that Rn is nothing but RS, where S =
{1, 2, . . . , n}. This is because specifying the n-tuple a = (a1, a2, . . . an)T ∈
Rn is the same as defining a function fa : S → R by setting fa(i) = ai.

Example 3.7. The set Pn of all polynomials

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

with real coefficients having degree at most n is a real vector space under
pointwise addition and scalar multiplication defined as above. Pointwise
addition of two polynomials amounts to adding the coefficients of xi in each
polynomial, for every i. Scalar multiplication by r is multiplying each term
aix

i by r. Notice the similarity between these operations on polynomials
and component-wise addition and scalar multiplication on Rn+1.

(anxn + an−1x
n−1 + · · ·+ a1x + a0) + (bnxn + bn−1x

n−1 + · · ·+ b1x + b0) =

(an + bn)xn + (an−1 + bn−1)xn−1 + · · ·+ (a1 + b1)x + (a0 + b0),

while
a + b = (a0, a1, a2, . . . an)T + (b0, b1, b2, . . . bn)T

= (a0 + b0, a1 + b1, a2 + b2, . . . an + bn)T .

In this sense, Pn and Rn+1 are indistinguishable as vector spaces.
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Example 3.8. Consider the differential equation

y′′ + ay′ + by = 0, (3.15)

where a and b are real constants. This is an example of a homogeneous
linear second order differential equation with constant coefficients. The set
of twice differentiable functions on R which satisfy (3.15) is a real vector
space.

3.3.2 Inner product spaces

The set C(a, b) of continuous real valued functions on the interval [a, b]
defined in the previous subsection is one of the most basic vector spaces in
mathematics. Although C(a, b) is much more complicated than Rn, it has
an important structure in common with Rn which lets us partially extend
our intuition about Rn to C(a, b). Namely, we can define an inner product
(f, g) of f, g ∈ C(a, b) by

(f, g) =
∫ b

a
f(t)g(t)dt.

The first three axioms for the Euclidean inner product (dot product) on
Rn are verified by applying standard facts about integration proved (or at
least stated) in any calculus book. Recall that the last axiom requires that
(f, f) ≥ 0 and (f, f) = 0 only if f = 0. The verification of this requires
some argument, and we leave it as an exercise in elementary real analysis.

If a real vector space admits an inner product, then the notions of length
and distance can be introduced by just copying the definitions used for Rn
in Chapter 1. The length ||f || of any f ∈ C(a, b) is defined to be

||f || := (f, f)1/2 =
( ∫ b

a
f(t)2dt

)1/2
,

and the distance between f, g ∈ C(a, b) is defined to be

d(f, g) = ||f − g|| =
( ∫ b

a
(f(t)− g(t))2dt

)1/2
.

Just as for the Euclidean inner product on Rn, we can say two functions
f, g ∈ C(a, b) are orthogonal if (f, g) =

∫ b
a f(t)g(t)dt = 0. Then the tools

we developed from the Euclidean inner product on Rn such as projections
and orthogonal decompositions extend word by word to C(a, b). For ex-
ample, cos t and sin t are orthogonal on [0, 2π] because

∫ 2π
0 cos t sin tdt = 0.
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Although the notion of orthogonality for C(a, b) doesn’t have any obvious
geometric meaning, it nevertheless enables us to extend our intuitive concept
of orthogonality into a new situation. In fact, this extension turns out to
be extremely important since it leads to the idea of expanding a function in
terms of possibly infinitely many mutually orthogonal functions. These in-
finite series expansions are called Fourier series. For example, the functions
cos mx, m = 0, 1, 2, . . . are orthogonal on [0, 2π], and the Fourier cosine
series for f ∈ C(0, 2π) has the form

f(x) =
∞∑
m=0

am cos mx,

where

am =
∫ 2π

0
f(t) cos mtdt/

∫ π

0
cos2 mtdt.

We call am the Fourier coefficient of f with respect to cos mt. Notice that
am cos mx is the projection of f on cos mx. This series is an infinite version
of the formula in Proposition 1.3.

If we only take finitely many terms of the above Fourier series, we obtain
a least squares approximation to f .

Example 3.9. Suppose [a, b] = [−1, 1]. Then the functions 1 and x are
orthogonal. In fact, xk and xm are orthogonal if k is even and m is odd, or
vice versa. Indeed,

(xk, xm) =
∫ 1

−1
xk · xmdx =

∫ 1

−1
xk+mdx = 0,

since k + m is odd. On the other hand, the projection of x2 on the constant
function 1 is r1, where r = 1

2

∫ 1
−1 1·x2dx = 1

3 . Thus, x2−1/3 is orthogonal to
the constant function 1 on [−1, 1], and x2 = (x2−1/3)+1/3 is an orthogonal
decomposition of x2 on [−1, 1].

Similarly, by arguing exactly as in §2, we immediately obtain a Cauchy-
Schwartz inequality on C(a, b).
Cauchy-Schwartz Inequality for C(a, b). For any f, g ∈ C(a, b), the
inequality

|
∫ b

a
f(t)g(t)dt| ≤

(∫ b

a
f(t)2dt

)1/2(∫ b

a
g(t)2dt

)1/2
holds. Equality holds if and only if one of the functions is a constant multiple
of the other.
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3.3.3 Subspaces and Spanning Sets

We next consider the extremely important notion of a subspace.

Definition 3.10. Let V be vector space over a field F. A non-empty subset
W of V is called a linear subspace of V , or simply a subspace, provided
a + b ∈W and ra are in W whenever a,b ∈W and r ∈ F.

The following Proposition is immediate.
Proposition 3.19. Every subspace W of V is a vector space over F in its
own right.

Proof. This is left as an exercise.

Notice that every subspace of a vector space contains the zero vector 0
(why?). In fact, {0} is itself a subspace, called the trivial subspace. Hence, if
the constant term of a homogeneous linear equation ax + by + cz = d above
is nonzero, then the solution set cannot be a subspace.

Here is a fundamental example of a subspace of R3.

Example 3.10. The solutions (x, y, z)T ∈ R3 of a homogeneous linear equa-
tion ax + by + cz = 0, with a, b, c ∈ R make up the plane consisting of all
vectors orthogonal to (a, b, c)T . By the properties of the dot product, the
sum of any two solutions is another solution, and any scalar multiple of a
solution is a solution. Hence the solution set of a homogeneous linear equa-
tion in three variables is a subspace of R3. More generally, the solution set
of a homogeneous linear equation in n variables with real coefficients is a
subspace of Rn. If the coefficients are in the field F, then the solutions in
Fn make up a subspace of Fn.

The subspaces of R2 are easily described. They are {0}, any line through
0 and R2 itself. We will consider the subspaces of R3 below. Try to guess
what they are before reading further.

A basic method for constructing subspaces of a given vector space is to
take linear combinations.

Definition 3.11. Let v1, . . . ,vk be vectors in V , and let r1, . . . , rk be any
elements of F. Then the vector

w =
k∑
i=1

rivi

is called a linear combination of v1, . . . ,vk. A subspace W which consists
of all linear combinations of an arbitrary collection of vectors in V , say
v1, . . . ,vk, is said to be spanned by v1, . . . ,vk.
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Remark: We only need to mention that a sum such as w =
∑k

i=1 rivi is
defined inductively in the same way arbitrary sums in a field are defined
(see Section 3.1.2). Moreover, vector sums can be grouped arbitrarily in the
same way as sums and products in a field are in Proposition 3.3. The details
are the same as Section 3.1.2.

Proposition 3.19 says that subspaces are closed under taking linear com-
binations. It also asserts the converse. The set of all linear combinations of
a collection of vectors in V is a subspace of V . We will denote the subspace
spanned by v1, . . . ,vk by span{v1, . . . ,vk}.

As previously noted, lines L and planes P in R3 containing 0 are sub-
spaces of R3. Every line L is by definition span{a} for some (in fact, any)
nonzero a ∈ L. Is every plane P the span of a set of vectors? Well, if a and b
are two non-collinear vectors in P , then W := span{a,b} is contained in P .
The question remains as to whether W = P . To see why the answer is yes,
as expected, you can argue as follows. Let n denote any non-zero normal to
P , and take any c ∈ P . The line through a and 0 and the line through b
and 0 both lie on P . Now any vector of the form c + tb is orthogonal to n,
so the line through c parallel to b also lies on P . This line meets the line
through a and 0 at some ra (why?). Next construct sb in the same way by
interchanging the roles of a and b. Then clearly, c = ra + sb, because c is
the intersection of the line through ra parallel to b and the line through sb
parallel to a. Hence c ∈ span{a,b}, so P = span{a,b}.

On the other hand, if a and b are two non-collinear vectors in R3, then
n = a × b is orthogonal to any linear combination of a and b. Thus we
obtain a homogeneous equation satisfied by exactly those vectors in P =
span{a,b}. (We just showed above that every vector orthogonal to n is on
P .) If n = (r, s, t)T , then an equation is rx + sy + tz = 0.

Example 3.11. Let P be the plane spanned by (1, 1, 2)T and (−1, 0, 1)T .
Then (1, 1, 2)T × (−1, 0, 1)T = (1,−3, 1)T is a normal to P , so an equation
for P is x− 3y + z = 0.

3.3.4 Linear Systems and Matrices Over an Arbitrary Field

Although we developed the theory of linear systems over the reals, the only
reason we didn’t use an arbitrary field is that the definition hadn’t yet
been made. In fact, the material covered in Chapter 2 pertaining to linear
systems and matrices goes through word for word when we use an arbitrary
field F. Thus we have m × n matrices over F, which will be denoted by
Fm×n, and linear systems Ax = b, where A ∈ Fm×n, x ∈ Fn and b ∈ Fm.
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Row reduction, matrix inversion etc. all go through as for R. We will not
bother to restate all the results, but we will use them when needed. The
matrix group GL(n,R) is replaced by its counterpart GL(n,F), which is
also a matrix group. One thing to be careful of, however, is that in Rn, if
xTx = 0, then x = 0. This is false for most other fields such as Fp. It is

even false for C since (1 i)
(

1
i

)
= 1 + i2 = 0.
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Exercises

Exercise 3.19. Let V be a vector space. Show that 0a = 0.

Exercise 3.20. Let V be a vector space. Show that for any a ∈ V , the
vector (−1)a is an additive inverse of V . In other words, prove the formula
(−1)a = −a.

Exercise 3.21. Describe all subspaces of R3.

Exercise 3.22. Which of the following subsets of R2 is not a subspace?

(a) The line x = y;

(b) The unit circle;

(c) The line 2x + y = 1;

s(d) The first octant x, y ≥ 0.

Exercise 3.23. Prove that every line through the origin and plane through
the origin in R3 are subspaces.

Exercise 3.24. Find all the subspaces of the vector space V (n, p) = (Fp)n
in the following cases:

(i) n = p = 2;

(ii) n = 2, p = 3; and

(iii) n = 3, p = 2.

Exercise 3.25. How many points lie on a line in V (n, p)? On a plane?

Exercise 3.26. Let F = F2. Find all solutions in F4 of the equation w+x+
y + z = 0. Compare the number of solutions with the number of elements
F4 itself has?

Exercise 3.27. Consider the real vector space V = C(0, 2π) with the inner
product defined in §3.3.2.

(a) Find the length of sin2 t in V .

(b) Compute the inner product (cos t, sin2 t).

(c) Find the projection of sin2 t on each of the functions 1, cos t, and sin t in
V .

(d) Are 1, cos t and sin t mutually orthogonal as elements of V ?
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(e) How would you define the orthogonal projection of sin2 t onto the sub-
space W of V spanned by 1, cos t, and sin t?

(f) Describe the subspace W of part (e).

Exercise 3.28. Assume f ∈ C(a, b). Recall that the average value of f over
[a, b] is defined to be

1
b− a

∫ b

a
f(t)dt.

Show that the average value of f over [a, b] is the projection of f on 1. Does
this suggest an interpretation of the average value?

Exercise 3.29. Let f, g ∈ C(a, b). Give a formula for the scalar t which
minimizes

||f − tg||2 =
∫ b

a
(f(x)− tg(x))2dx.

Exercise 3.30. Find a spanning set for the plane 3x− y + 2z = 0 in R3.

Exercise 3.31. Find an equation for the plane in R3 through the origin
containing both (1, 2,−1)T and (3, 0, 1)T .

Exercise 3.32. Let L be the line obtained by intersecting the two planes
in the previous two exercises. Express L as span{a} for some a.

Exercise 3.33. Describe all subspaces of R4 and R5.
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3.4 Summary

The purpose of this chapter was to introduce two fundamental notions: fields
and vector spaces. Fields are the number systems where we can add, sub-
tract, multiply and divide in the usual sense. The basic examples were the
rationals Q, which form the smallest field containing the integers, the reals
(which are hard to define, so we didn’t), the prime fields Fp, which are the
systems which support modular arithmetic, and the queen of all fields, the
complex numbers C. The basic property of C is that it contains R and is
algebraically closed. A vector space is what happens when a field is cloned.
That is, we get the space Fn of n-tuples of elements in F. In a vector space,
we can add elements and operate on them by scalars. General vector spaces
do not have a multiplication, although some specific examples do. Vector
spaces V have subspaces, the most common example of a subspace being the
set of all linear combinations of a subcollection of the vectors in V . We men-
tioned a special class of vector spaces over R, namely inner product spaces.
These spaces are just like Rn except for the fact that they are frequently
not spanned by finite sets as Rn is. However, some of the properties we
developed for Rn, such as orthogonal projection and the Cauchy-Schwartz
Inequalty, go through in the general case just as they did in Rn.

For example, C(a, b) is an inner product space that doesn’t have this
property. We also pointed out that the theory of linear systems and matrix
theory, two themes that were carried out over R in Chapter 2, have identical
versions over an arbitrary field.


