University of Macau Department of Civil and Environmental Engineering CEEB220 – Fluid Mechanics Syllabus

Coordinating Units	Department of Civil and Environmental Engineering,							
Coordinating Unit:	Faculty of Science and Technology							
Supporting Unit(s):	Nil							
Course Code:	CEEB220 Year of Study: 2							
Course Title:	Fluid Mechanics							
Compulsory/Elective:	Compulsory							
Course Prerequisites:	MATB110, PHYS120							
Prerequisite Knowledge:	Basic integral and differential calculus, vectors, engineering mechanics							
Duration:	One semester Credit Units: 3							
Class/Laboratory Schedule:	Three hours of lecture, and one hour of practice per week.							
Laboratory/Software Usage:	Hydraulics Laboratory							
Course Description:	Properties of fluids; Fluid statics; Fluid in motion and the conservation of mass; Pressure variation in flows; Momentum and energy principles; Dimensional analysis and similitude; Application in civil engineering: pipe flow, pipe networks, and open channel analysis.							
Course Objectives:	 Identify and obtain values of fluid properties and relationship between them. Understand the principles of continuity, momentum, and energy as applied to fluid motions. Recognize these principles written in form of mathematical equations. Apply these equations to analyze problems by making good assumptions and learn systematic engineering method to solve practical fluid mechanics problems. Apply fundamental principles of fluid mechanics for the solution of practical civil engineering problems of water conveyance in pipes, pipe networks, and open channels. 							
Learning Outcomes (LO):	 Upon completion of this course, students should be able to: apply fundamental knowledge of mathematics to modeling and analysis of fluid flow problems in civil and environmental engineering. [POs: a, b, e]; conduct experiments (in teams) in pipe flows and open-channel flows and interpreting data from model studies to prototype cases, as well as documenting them in engineering reports. [POs: a, b, d, g, k]: 							
	3. understand or become aware of disasters caused by an incorrect analysis in hydraulic engineering system. [POs: a, e];							

	1. "Fluid Mechanics" by F. M. White, 7th	ed., McGraw-Hill.*					
	2. "Fundamentals of Fluid Mechanics" by Munson, Young & Okiishi, 2nd ed.,						
Texts & References:	Wiley						
	3. "Fluid Mechanics" by Streeter and Wylie, McGraw-Hill						
* recommended	4. "Fluid Mechanics with Engineering Application" by Daugherty, Franzini						
textbook	and Finnemore, McGraw Hill						
	5. An introduction to Fluid Mechanics (5. "An Introduction to Fluid Mechanics" by Bachelor, Cambridge University					
	• Assignments: 100/						
	• Assignments: 10%						
Student Assessment:	• Laboratory reports: 10%						
	• One mid-term examination: 40%						
	• One final examination: 40%						
Learning Outcome	Assignments, laboratory reports and examinat	ions					
Assessment:	Course evaluation						
	☑ Lecture	□ Service learning					
	□ Guest speakers	□ Internship					
Pedagogical Methods:	□ Case study	□ Field study					
	□ Role playing	□ Company visits					
	□ Student presentation	□ e-learning					
	Project	☑ Independent study					
	□ Simulation game	☑ Others: <u>Hydraulics Laboratory</u>					
	☑ Exercises and problems						

Major Assessment Methods:	Case Study	Role Playing	Student Presentation	Individual project/paper	Group project/paper	Simulation Game	Exercises & problems	Service learning	Internship	Field Study	Company visits	Written examination	Oral examination	Others (please specify)
Class Participation/														
Discussion														
Assignment(s)							~							
Mid-term												./		
Examination												v		
Final												~		
Examination												-		
Others (please specify)					~									
_Lab Reports														
Course Web: (if any)														

	Week	Topics	Assignment	LO
	no.	-	no.	no.
	1,2	Introduction	1	1
		Fluid Concept and the Continuum Hypothesis; Properties of fluids		
	2,3,4	Fluid Statics	2,3	1,2,3
		Pressure and Its Variation in a Static Fluid; Measurement of Static		
		Fluid Pressure: Manometers; Hydrostatic Forces on Plane and		
		Curved Surfaces; Buoyancy and Stability		
		Laboratory Experiments		
		Hydrostatic Pressure Center on Partially Submerged Surfaces		
	5	Kinematics of Fluid Flow	4	1,2
		Properties of the Fluid Velocity Field; Flow Classification and		
		Flow Patterns; Reynold's Transport Theorem		
	5,6,7	Finite Control Volume Analysis	4,5,6	1,2,3
		Conservation of Mass; The Linear Momentum Equation and the		
		Moment-of-Momentum Equation; The Energy Equation;		
Course		Enorgy and Hydraulic Grade Lines		
Content:		Laboratory Experiments		
(topic		Impact of let: Verification of The Bernoulli Theorem		
outline)	89	Differential Analysis of Fluid Flow	7.8	12
outilite)	0,7	Fluid Element Kinematics: Conservation of Mass and	7,0	1,2
		Introduction of Stream Function: Conservation of Linear		
		Momentum and Equation of Motion: Inviscid and Potential Flow:		
		Viscous Flow		
	9,10	Dimensional Analysis and Similarity	9	1,2,3
		The Buckingham Pi Theorem; Common Dimensionless numbers;		
		Geometric and Dynamic Similitude; Model Study		
	11-14	Application of Fluid Mechanics in Civil Engineering	9,10	1,2,3
		Criterion for Laminar and Turbulent Flow in a Pipe: The		
		Reynolds Number; Energy Losses in Laminar and Turbulent Pipe		
		Flow: The Darcy-Weisbach Equation; Pipe Friction: Moody		
		Diagram and its Alternate Form; Minor Losses in Pipe Flow, Pipe		
		Flow Problems; Steady Flow in Pressure Conduits; Open Channel		
		Flow Allalysis		
		Pipe Eriction		
	15	Final Examination		
	1.5	r mai Ezammauvn		

Percentage Content of:	Mathematics and Basic Sciences	Engineering Subjects	Complementary Studies	Total
	25	70	5	100
Timetabled work in hours per week:	Lecture	Tutorial	Practice	Total
	3		1	4

	Programma Outcomes	Contribu	tion to POs				
		Primary	Secondary				
	(a) an ability to apply knowledge of mathematics, science, and engineering	1					
	appropriate to the degree discipline	•					
	(b) an ability to design and conduct experiments, as well as to analyse and interpret data	~					
	(c) an ability to design a system, component or process to meet desired						
	needs within realistic constraints, such as economic, environmental,						
	social, political, ethical, health and safety, manufacturability and sustainability						
	(d) an ability to function on multi-disciplinary teams		✓				
Contribution	(e) an ability to identify, formulate and solve engineering problems	✓					
to Programme	(f) an ability to understand professional and ethical responsibility						
Outcomes:	(g) an ability to communicate effectively		\checkmark				
	(h) an ability to understand the impact of engineering solutions in a global						
	and societal context, especially the importance of health, safety and						
	environmental considerations to both workers and the general public						
	(i) an ability to stay abreast of contemporary issues						
	(j) an ability to recognise the need for, and to engage in life-long learning						
	(k) an ability to use the techniques, skills, and modern engineering tools		1				
	necessary for engineering practice appropriate to the degree discipline		v				
	(1) an ability to use the computer/IT tools relevant to the discipline along						
	with an understanding of their processes and limitations						
Course	Prof. K. M. Mok						
Instructor(s):	(Please refer to the following link for the consultation hours of the course instructor:						
	http://www.fst.umac.mo/cee/contacthour.html)						