$\left(\frac{T_{2}}{2}, \frac{t_{2}}{2}, 2\right) \quad 1 t_{2} 1=[2]_{2}=0$
Example 44 The addition and multiplication tables for \mathbb{Z}_{4} are:

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

.4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

* correction

Proposition 46 For all natural numbers $m>1$, the modular-arithmetic structure

$$
\left(\mathbb{Z}_{\mathfrak{m}}, 0,+_{\mathfrak{m}}, 1, \cdot \mathfrak{m}\right)
$$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

Important mathematical jargon: Sets

Very roughly, sets are the mathematicians' datatypes. Informally, we will consider a set as a (well-defined, unordered) collection of mathematical objects, called the elements (or members) of the set.

Set membership

The symbol ' \in ' known as the set membership predicate is central to the theory of sets, and its purpose is to build statements of the form

$$
x \in A
$$

that are true whenever it is the case that the object x is an element of the set A, and false otherwise.

Defining sets

The set \(\left|\begin{array}{c}of even primes

of booleans

{[-2.3]}\end{array}\right|\) is $|$| $\{2\}$ |
| :---: |
| $\{$ true, false $\}$ |
| $\{-2,-1,0,1,2,3\}$ |

Set comprehension

The basic idea behind set comprehension is to define a set by means of a property that precisely characterises all the elements of the set.

Notations:

$$
a \in\{\operatorname{cts}[P(x)\} \Leftrightarrow(a \in A) \& P(Q)
$$

$$
\{x \in A \mid P(x)\} \quad, \quad\{x \in A: P(x)\}
$$

* correction

 Greatest common divisorGiven a natural number n, the set of its divisors is defined by set-comprehension as follows

$$
D(n)=\{d \in \mathbb{N}: d \mid n\} .
$$

Example 47

$$
\text { 1. } \mathrm{D}(0)=\mathbb{N}
$$

2. $\mathrm{D}(1224)=\left\{\begin{array}{c}1,2,3,4,6,8,9,12,17,18,24,34,36,51, \\ 68,72,102,153,204,306,612,<, 1224 \\ 408\end{array}\right\}$

Remark Sets of divisors are hard to compute. However, the computation of the greatest divisor is straightforward. :)

Going a step further, what about the common divisors of pairs of natural numbers? That is, the set

$$
\mathrm{CD}(\mathrm{~m}, \mathfrak{n})=\{\mathrm{d} \in \mathbb{N}: \mathrm{d}|\mathrm{~m} \& \mathrm{~d}| \mathrm{n}\}
$$

Example 48

$$
\mathrm{CD}(1224,660)=\{1,2,3,4,6,12\}
$$

Since $C D(n, n)=D(n)$, the computation of common divisors is as hard as that of divisors. But, what about the computation of the greatest common divisor?

$$
d|a \& d| b \Rightarrow d / a+b
$$

Lemma 50 （Key Lemma）Let m and m^{\prime} be natural numbers and let n be a positive integer such that $\mathrm{m} \equiv \mathrm{m}^{\prime}(\bmod \mathfrak{n})$ ．Then，
\square Could tons
Proof：$m-m^{\prime}=k \cdot n$ for sine $k \quad m_{n}^{\prime}=\operatorname{rem}(m, n)$

$$
\begin{aligned}
& \text { aTP: } \\
& (d / m e d / n) \Leftrightarrow\left(d l_{m} \mid \& d l_{n}\right) \\
& \Leftrightarrow(1) \text { dlm} \in \sqrt{d l m} \text { aTP } d / m^{l} \& d / n \\
& \xrightarrow{\text { L } l k n ~} \xrightarrow{m^{1}=n-k n} \\
& \text { (4) } k \text { (2) } \Rightarrow d / m-k_{n}=m^{\prime} \\
& \text { Ex解活 }
\end{aligned}
$$

Lemma 52 For all positive integers m and n,

$$
\begin{aligned}
& \operatorname{CD}(m, n)= \begin{cases}\operatorname{D}(n) & , \text { if } n \mid m \\
\operatorname{CD}(n, \operatorname{rem}(m, n)) & \text {, otherwise }\end{cases} \\
& n / m ; \text { Ut is } k n=m \\
& C D(k n, n)=D(n)
\end{aligned}
$$

Lemma 52 For all positive integers m and n,

$$
\mathrm{CD}(\mathrm{~m}, n)= \begin{cases}\mathrm{D}(\mathfrak{n}) & , \text { if } \mathfrak{n} \mid \mathrm{m} \\ \mathrm{CD}(\mathrm{n}, \operatorname{rem}(\mathrm{~m}, \mathfrak{n})) & , \text { otherwise }\end{cases}
$$

Since a positive integer n is the greatest divisor in $D(n)$, the lemma suggests a recursive procedure:

$$
\operatorname{gcd}(m, n)= \begin{cases}n & , \text { if } n \mid m \\ \operatorname{gcd}(n, \operatorname{rem}(m, n)) & , \text { otherwise }\end{cases}
$$

for computing the greatest common divisor, of two positive integers m and n. This is

Euclid's Algorithm

$$
\operatorname{gcd}
$$

fun $\operatorname{gcd}(\mathrm{m}, \mathrm{n})$

$$
=\text { let }
$$

val (q , r) = divalg (m , n)
in
if $\mathrm{r}=0$ then n
else $\operatorname{gcd}(\mathrm{n}, \mathrm{r})$
end

$$
\begin{aligned}
& \operatorname{gcd}(m, n) \stackrel{m<n}{=} g c d(n, m)=\cdots \\
& \qquad \begin{aligned}
& \text { Example } 53(\operatorname{gcd}(13,34)=1) \\
& \operatorname{gcd}(13,34)=\operatorname{gcd}(34,13) \quad \operatorname{gcd}(m, n) \quad \downarrow \\
&\left.=\operatorname{gcd}(13,8) \quad \text { qcd }(n, r)^{n}\right) \\
&=\operatorname{gcd}(8,5) \quad \downarrow \\
&=\operatorname{gcd}(5,3) \\
&=\operatorname{gcd}(3,2) \\
&=\operatorname{gcd}(2,1) \\
&=1 \\
&-108
\end{aligned}
\end{aligned}
$$

Theorem 54 Euclid's Algorithm ged terminates on all pairs of positive integers and, for such m and $n, \operatorname{gcd}(m, n)$ is the greatest common divisor of m and n in the sense that the following two properties hold:
(i) both $\operatorname{gcd}(m, n) \mid m$ and $\operatorname{gcd}(m, n) \mid n$, and
(ii) for all positive integers d such that $\mathrm{d} \mid \mathrm{m}$ and $\mathrm{d} \mid \mathrm{n}$ it necessarily follows that $\mathrm{d} \mid \operatorname{gcd}(\mathrm{m}, \mathrm{n})$.

Proof:

$$
\operatorname{gcd}(k n, n) \stackrel{\text { claim }}{=} n
$$

(i) $n / k_{n} \sqrt{ }$ and $n \ln \sqrt{ }$
(ii) $\left(\left.d\right|_{k n} \&^{d} / n\right) \Rightarrow d / n$

(1) $r \leqslant n / 2 \Rightarrow r^{1} \leqslant n / 2$
(2) $r>n / 2 \Rightarrow r^{\prime}=n-r \leqslant n / 2$

```
\[
\operatorname{gcd}\left(\frac{m}{\operatorname{gcd}(m, n)}, \frac{n}{\operatorname{gcd}(m, n)}\right)=1
\] Fractions in lowest terms
fun lowterms( m , n )
    = let
        val gcdval = gcd( m , n )
        in
            ( m div gcdval , n div gcdval )
        end
```

Some fundamental properties of gads
Lemma 56 For all positive integers l, m, and n ,

1. (Commutativity) $\operatorname{gcd}(\mathfrak{m}, \mathfrak{n})=\operatorname{gcd}(n, m)$,
2. (Associativity) $\operatorname{gcd}(l, \operatorname{gcd}(\mathfrak{m}, \mathfrak{n}))=\operatorname{gcd}(\operatorname{gcd}(l, \mathfrak{m}), \mathfrak{n})$,
3. (Linearity $)^{\mathrm{a}} \operatorname{gcd}(l \cdot \mathfrak{m}, l \cdot \mathfrak{n})=l \cdot \operatorname{gcd}(m, n)$.

Proof:

$$
\begin{aligned}
&(m, n) \rightarrow(n, r) \rightarrow \\
&\left(r, r^{\prime}\right) \rightarrow \lg \operatorname{ld}(m, n) \\
&(l m, l n) \rightarrow(\ln , l r) \rightarrow \\
&\left(l r, l r^{\prime}\right) \rightarrow \operatorname{logcd}(m, n) \\
& g \underline{d}(l m, l n)
\end{aligned}
$$

${ }^{\text {a }}$ Aka (Distributivity).
\longrightarrow need ww show r that $\quad \underset{\text { Euclid's Theorem } \frac{(p-7)!}{m!(p-m)!} \in \mathbb{Z}}{ }$ for $0<m<p$
Theorem 57 For positive integers k, m, and n , if $\mathrm{k} \mid(\mathrm{m} \cdot \mathrm{n})$ and $\operatorname{gcd}(\mathrm{k}, \mathrm{m})=1$ then $\mathrm{k} \mid \mathrm{n}$.

Proof:

$$
\exists l \cdot l k=m \cdot n
$$

$$
\begin{aligned}
\operatorname{gcd}(k, m) & =1 \\
\Rightarrow n \cdot \operatorname{gcd}(k, m) & =n \\
\operatorname{gcd}(n k, n m) & =\operatorname{gcd}(n k, l k) \\
& =\operatorname{gcd}(n, l) \cdot k
\end{aligned}
$$

