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1. Uniform Distribution
The definition of uniform distributionisfairly intuitive:

DEFINITION 1. Asequence {u,} € T isuniformly distributedif forany o, 0 < a < 1,
we have

1
lim —card{l<n<N:u, €[0,a) (modl)}=a.
N—o00 N
Let Uy be a measure with unit masses at the points «,, for 1 < n < N. Then the

Fourier transform of Uy isthe exponential sum

N

Un(k) =Y e(—kuy)

n=1
where e(f) = €2 . (This notation was introduced by I. M. Vinogradov.) H. Weyl [36, 37]
introduced an important criterion for uniform distribution in terms of the size of the Uy,
namely that the following are equivalent statements concerning a sequence {u,,} :
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() Thesequence {u,} isuniformly distributed;
(b) For eachinteger k £ 0, Uy (k) = o(N) as N — oo
(c) If F isproperly Riemann-integableon T then

From the formulafor the value of a geometric series it isimmediate that

N

1 1
)< <
‘;e(”) I

where ||0]| is the distance from 6 to the nearest integer, ||| = min,cz |0 — n|. If 0 is
irrational and £ isanon-zero integer then k6 isnot an integer, and hence by the above with
0 replaced by k6 we seethat Uy (k) = O4(1) when u, = nf. Inthisway we see easily
that the sequence nd isuniformly distributed if 6 isirrational.

The proof of Weyl’s Criterion depends on the existence of one-sided approximations to
the characteristic function y, of aninterval by trigonometric polynomials; these approxima-
tions should be closeinthe L' norm. Of course the existence of such trigonometric polyno-
mialsfollows easily from the uniform approximation to continuous functions by trigonomet-
ric polynomials, but it is aso useful to put thisin a quantitative form. Erdés and Turan [9]
showed that there exist trigonometric polynomials 7 and 7', of degree at most K such
that T_(z) < x,(z) < Ty (z) forall = andsuchthat [Ty = o+ O(1/K), and thus that

k)]
P

=
N

card{l<n < N:u, €[0,a) (modl)}— Na‘ < C'? +C
k=1
In the 1970’s Selberg considered how the large sieve could be refined, and in doing so discov-
ered more natural functions that yield very sharp constants (see Selberg [32], pp. 213-226).

Indeed, Beurling [5] defined the entire function

B (SW)Z(%Q%(;W_EI(ZTZ)Q),

7r p— p—

and observed that B(z) = O(e?"19?1) , that B(z) > sgn(x) for al red =z, and that

/RB(x) —sgn(x)dr =1.

Indeed, Beurling showed that among functions with the prior properties, thisfunction unique-
ly minimizes the above integral .
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FIGURE 1. Beurling's function B(z) .

If I = [a,b] isaninterval of therea lineand 6 > 0 then the Selberg majorant and
minorant are

S4(2) = 5 B(3(= — a)) + 5 BO(b - 2)),

S_(2) = —%B(é(a _ ) — %B((S(z — ).

Then S_(z) < x,(z) < Sy (x) foralrea x, S(t) =0 for || > ¢, and [, Su(z)dx =
b—a+1/§. Thisapproximation is optima when (b — a) is an integer, and in any case
is quite good. To obtain corresponding approximations for the circle group we apply the
Poisson summation formula. Suppose that b — a < 1, so that the interval [a,b] defines
anacof T. Wetake 6 = K+ 1 andset T (z) = Y, Si(n+ ). Then T isa
trigonometric polynomial of degree not exceeding K, T_(v) < x,(z) < T} (z) foral z,
and [ T4 (z)dr =b—a+1/(K+1). Thisisoptima when (b — a)(K + 1) isaninteger,
and is close to optimal in any case.

Weyl’s criterion has since been vastly generalized to describe the weak convergence of a
sequence of measures 1,, to alimiting measure p interms of the convergence of the Fourier
transforms of these measures. One fruitful generalizationisto T¢. Supposethat {u,} isa
sequence of pointsin T¢ and let B = [a;,b] x -+ - X [ag, by] denoteabox in T¢. Then the
following are equivalent:

(@) limy_o »card{l <n < N:u, € B} =vol B forevery box B in T¢;
(b) If k€, k#0,then - e(k-u,) =o(N) as N = oo;

(c) If F isproperly Riemann-integrableon T? then limy_,o ij:l F(u,) =
Jpa F(z) de.
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Quantitative majorants in T¢ are easily obtained by forming a product of one-dimen-
sional majorants. Minorants are alittle more elusive, but Barton, Vaaler and Montgomery [2]
have given a construction that works pretty well.

In the sameway that we used Wey!’s Criterion to see that the sequence {n6} isuniformly
distributed if ¢ isirrational, we can use Weyl’s Criterion for T? to obtain a sharpening of
Kronecker’s Theorem. Supposethat 1,6,,...,0, are linearly independent over the field Q
of rational numbers. Then the points n@ = (nfy,nb,,...,nd,;) are not only densein T¢
(Kronecker’s Theorem) but are actually uniformly distributed. Indeed, suppose that B is a
b(;x in T¢, and let T'(x) beatrigonometric polynomial that minorizes Xg With JpaT > 0.
Then

M+N
card{ M +1<n<M+N:nfeB}> Y T(nb)
n=M+1
R M+N
=> T(k) ) e(nk-6)
k n=M-+1
= 1 |T(R)|
> — = :
> NTO) =5 2 ]

Here the last sum is finite because there are only finitely many k for which f(kz) # 0 and
because k - 6 isnever aninteger. Since 7/(0) > 0, the aboveis positiveif N is sufficiently
large. Theremarkable feature hereisthat the expression aboveisindependent of A . Thatis,
if ny <mny <nz<--- aethen forwhich na € B thenthegaps n;,; — n; areuniformly
bounded above. Thisinsight is critical to Bohr’s definition of almost periodicity.

DEFINITION 2. Let f : R — C be continuous. We say that a real number ¢ is an ¢
-almost period of f if |f(z +t) — f(x)] < e for all real x. The function f is amost
periodic if for every ¢ > 0 there is a number C' = C'(e) such that any interval of length at
least C' contains an ¢ -almost period.

It isby the strengthened form of Kronecker’s Theorem that we see that the almost periodic

polynomial
N

T(x) = Z ane(Apx)
n=1
is indeed an almost periodic function. It can also be shown that the aimost periodic poly-
nomials are dense in the space of almost periodic functions. Let ((s) = > >° n~* bethe
Riemann zetafunction. Wewrite s = o+it . If o isfixed, ¢ > 1,then ((o+it) isanamost
periodic function of ¢. The concept of almost periodicity can be generalized to other norms.
For example, when o isfixed, 1/2 < o < 1 thefunction (o + it) isamean-square amost
periodic function, even though it is not an almost periodic function in the uniform norm. One
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might expect that by almost periodicity one could show that if the zeta function has a zero
with real part > 1/2 then it would have many such zeros, all with approximately the same
real part. However, attempts to prove such an assertion have so far been unsuccessful. If one
could prove such a thing then the Riemann Hypothesis would likely follow, since we have
fairly good upper bounds on the number of zeros of the zeta function with large real part. Let
N(«, T) denote the number of zerosof ((s) intherectangle a« <o <1,0<t<T.Then
N(o,T) < T*?) log T where ¢(0) < 1 if o > 1/2. (Following Vinogradov, we say that
[ < g if f=0(g). Thisnotation saves a set of parentheses when there is no main term.)
Although we have not succeeded so far to use amost periodicity to produce many zeros from
one, we do know that tranglates of the zeta function are universal among non-zero analytic
functions, in the following sense: Let R bearectangle, R = {s: 01 < 0 < 09,11 <t < ta}
with 1/2 < 0 < 09 < 1. Let f beanaytic and non-zero on a domain containing R. Then
forany ¢ > 0 thereexistsareal number 7 suchthat |f(s) — (s + i7)| < e uniformly for
seR.

almost periodicity also arisesin the error term in the Prime Number Theorem. Let A(n)
be von Mangoldt’s lambda function, which is to say that A(n) = logp when n = p* for
some positive integer %, and A(n) = 0 otherwise. We put ¢(z) = >, A(n). By
integration by parts we see that the Prime Number Theorem in the form 7« (z) ~ li(z) is
equivalent to the assertion that ¢ (z) ~ = . Since —('(s)/¢(s) = >_o2  A(n)n~* for o > 1,
we can recover ¢ (x) from thelogarithmic derivative of the zetafunction by aninverse Mellin
transform:

-1 c+1i00 CI x5
v =5 [ EeSds.
By moving the contour to the left we see that thisis

o
:x_z%_ﬁ_' +%Zx

p k=1

Here p runsover al the non-trivial zeros of the zeta function, which isto say all those zeros
with positivereal part. Thisexplicit formulafor the error term in the Prime Number Theorem
is essentially one that Riemann stated and von Mangoldt later proved. Write p = 5+ iy . In
the quantity 2 = 22", the second factor oscillates, but more slowly as z increases. To
make it periodic we make an exponential change of variables. Suppose aso that the Riemann
Hypothesisistrue, whichisto say that 5 = 1/2 for al p. Then

W) e _
ey/Z o Z

Z’Yy
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This expression is mean-square almost periodic, and the sum on the right is its Fourier ex-
pansion. It isgenerally believed that the v > 0 are linearly independent over Q, so that the
terms ¢ behave like independent random variables.

2. Exponential Sums

In his seminal work [36, 37], Hermann Weyl not only gave his criterion for uniform distri-
bution, but also a useful method for estimating exponential sums of the form Z,]Ll e(P(n))
where P isapolynomia with real coefficients. Indeed, today such an exponential sum is
called aWeyl sum. Wey!’s basic observation was that

‘z]j:e(P(n

=ZZe(P<n+h> P(n))
-y Z (P(n+ 1) - P(w)
—N+2§RZZ P(n+h) = P(n)).

This manipulation is known as ‘Wey! differencing’. If P(z) hasdegree d then P(xz + h) —
P(z) hasdegree d — 1 when h # 0. Hence if we perform this differencing d — 1 times
then we are left with a geometric series, which we know how to estimate. In this way, Weyl
showed that if P(z) = 3¢, a;2" isapolynomial with real coefficients, and if at least one of
the numbers a;, as, . .., a4 isirrational, then the sequence {P(n)} isuniformly distributed
modulo 1.

In the Weyl differencing, it is somewhat a disadvantage that the parameter / runsall the
way from1to N — 1. Later, van der Corput found that  can berestricted. For 1 <n < N
let y,, beacomplex number, and supposethat y, =0 if n <1 or n > N. Then

o
(H+1)2‘Zyn g ‘ZZynM‘Z
n h=0 Z 2

= ‘Zzyn+h

n  h=0
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By Cauchy’sinequality thisis

H
(N + H) Z\Z i
Y
N+H ZZ yn+hyn+k

h=0 k= n

=(N+H)(H+1))_ |yl
H
+2AN+H)RY (H+1-7)> ynisTn-
r=1 n

Thus we obtain van der Corput’s inequality, which asserts that

N2 N+H 2(N + H)

Ontaking v, = e(ku,) and applyl ng Wey!’s Criterion twice, we obtain

THEOREM 1. (van der Corput) If for each positive integer A the sequence {u,p — u,}
is uniformly distributed (mod 1), then the sequence {u,} is uniformly distributed (mod 1).

More recently it has been recognized that the above remains true even when h isre-
stricted to lie in certain subsets of positive integers, we say that JH is a van der Corput set
if the above is true when h isrestricted to lie in H. This is equivaent to the existence of
non-negative cosine polynomials

T(x)=ap+ Z ap, cos 2mhx
1<h<H
heX

with 7(0) = 1 and a, arbitrarily small. In this context it is no accident that we see the
coefficients of the Fgjér kernel in van der Corput’sinequality. Since the set of perfect squares
constitute avan der Corput set, there exist non-negative cosine polynomials of the form

H
T(x) =ag+ Z ay, cos 2mh*x
h=1

with 7(0) = 1 and aq arbitrarily small, but it is not known how rapidly a, tendsto 0 as
H — .
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van der Corput devised a general method for estimating exponential sums of the form
> acncy €(f(n)) where f isasufficiently smooth real valued function. As an example of a
simple first result of this type, we mention that if 0 < Ay < f"(x) < AXg for a <z < b
then

Yo elf(n) <a M b —a)+ 2517

a<n<b

In Process A of van der Corput, one exponential sum is made to give rise to another by a
suitable application of the van der Corput inequality. This method is destructive in the sense
that usually some cancellation is lost. In van der Corput’s Process B, one takes r(z) =
e(f(x)) for a <z < b,and r(x) = 0 otherwise. Then by the Poisson summation formula,

b

S elfm) = 3o rln) = 3 7w) = 3 [ el ) - v de.
a<n<b n v v Y@

If f" isstrictly increasing with f'(a) = «, f'(b) = 5, thenfor o < v < [ weobtain a

stationary phase at x, where f'(x,) = v. If f"(z) > 0 for a < = < b then the aboveis

approximately

e(f(x,) — vz, +1/8)
agzyéﬂ fr(wy) ‘

Thusthe problem of estimating one sum isreduced to that of estimating another. ProcessB is
non-destructive, since a second application of it takes us back to our initial sum. For acertain
class of functions [, these two processes lead to estimates of the form

S e(f(n) < (max|f) (b~ a)f

a<n<b

for certain pairs (k,¢) inthesquare 0 < k£ < 1/2 < ¢ < 1. If (k,¢) isan exponent pair

then Process A givesthe exponent pair (52, 575!) , and Process B gives the exponent pair

(¢ —1/2,k+1/2). Itistrivia that (0,1) isan exponent pair. By Process B it follows that
(1/2,1/2) isan exponent pair, and by Process A thisyields the further pair (1/6,2/3). The
collection of exponent pairs that can be obtained in thisway isindicated in Figure 2 below.
Recently, Huxley [17], building on work of Bombieri and Iwaniec [6], has dightly en-
larged the region of known exponent pairs, but we are still far from proving the conjecture
that (k,¢) is an exponent pair if £ > 0 and ¢ > 1/2. Thisis a quite deep conjecture,
since the special case f(x) = tloga yields the Lindelof Hypothesis, which asserts that
((1/2 +it) < t* for every € > 0. Some useful exponent pairs are given in Table 1.
Quantitative estimates can also be derived for the Weyl sum -2 ¢(P(n)) in terms of
the rational approximationsto the coefficientsof P . For example, by Weyl’s method we find
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FIGURE 2. Exponent Pairs derived by van der Corput’s processes.

that if P(x) = Z?:o ozt and |ag — a/q| < 1/¢* where (a,q) =1, then

Here the most favorable circumstance iswhen N < ¢ < N1, in which case the upper

bound is of the order N''~2'~“+¢_ Thisis only dlightly better than the trivial bound N if d
islarge, and it falls far short of what we conjecture, which isthat

Y 1+e 1 q l/d
Here the most favorable situation arises when ¢ ~ N%?, and then the upper bound is of the
order N1/t

Thisleadsto anon-trivial estimate for |S(a)] .
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TABLE 1. Some Exponent Pairs.

(k,2) Operation
(0,1)

(1/254,247/254) AAAAAAB
(1/126,20/21) AAAAAB
(1/86,161/172) AAAABAAB
(1/62,57/62) AAAAAB
(1/50,181/200) AAABABAAB
(1/42,25/28) AAABAAB
(2/53,181/212) AABABAAAB
(1/24,27/32) AABABAAB
(1/22,101/121) AABABABAAB
(1/20,33/40) AABAAB
(13/238,97/119) AABAABAAB
(11/186,25/31) AABAAAB
(4/49,75/98) ABABAAAB
(11/128,97/128) ABABAABAAB
(1/11,3/4) ABABAAB
(1/10,81/110) ABABABAAB
(13/106,75/106) ABAABAAB
(11/86,181/258) ABAABABAAB
(11/78,161/234) ABAAABAAB
(22/117,25/39) BABAAABAAB
(26/129,27/43) BABAABABAAB
(11/53,33/53) BABAABAAB
(13/55,3/5) BABABABAAB
(1/4,13/22) BABABAAB
(33/128,75/128) BABABAABAAB
(13/49,57/98) BABABAAAB
(19/62,52/93) BAABAAAB
(75/238,66/119) BAABAABAAB
(13/40,11/20) BAABAAB
(81/242,6/11) BAABABABAAB
(11/32,13/24) BAABABAAB
(75/212,57/106) BAABABAAAB
(11/28,11/21) BAAABAAB
(81/200,13/25) BAAABABAAB
(13/31,16/31) BAAAAB
(75/172,22/43) BAAAABAAB
(19/42,32/63) BAAAAAB
(60/127,64/127) BAAAAAAB

(1/2,1/2)

B
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3. Power Sums

Although we spend alot of effort to estimate exponential sums, in the opposite directioniitis
sometimes useful to show that a cancelling sum is not always too cancelling. Turan’s method
of power sums providestools of exactly thissort. Since error termsin analytic number theory
are often expressed as a sum of oscillatory terms (as we have already seen in the case of the
error term in the Prime Number Theorem), Turan’s method assists us in proving that such
error terms are sometimes large. To exemplify the method, we describe Turan’s First Main
Theorem. Let

N
S, = E bz,
n=1

and suppose that |z,| > 1 for al n. Supposethat M isa given non-negative integer. We
wish to show that thereisa v, M +1 < v < M + N, such that |s,| is not too small
compared with |sq|. To this end we employ a simple duality argument, which is typical of
Turan’s method. Suppose that numbers «,, have been determined so that

N-1
(3.1) So = Z AySM+1+v-
v=0
Then
N-1
50l < (2% a,]) , max [sari
V=

By the definition of s, we seethat (3.1) assertsthat

N N N-1

_ M+1 v
E b, = E bnz, E ayz, .
n=1 n=1 v=0

Thisidentity certainly holdsfor arbitrary b,, provided that

N-1

— ,M+1 v

1=z, E ay 2,
v=0

for 1 <n < N. Thatis, P(z) = Zivgol a,z” should be a polynomial of degree at most

N — 1 that satisfiesthe N conditions P(z,) = z;™~!'. Without loss of generality the z,
are distinct, and hence P(z) is uniquely determined. It can be shown that 32" "a,| <
o (MEEY2F | and thus we find thet

max |s,| = ¢(M, N)|so
MA1<v<MAN
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where

(M, N) = (g (M]:k)zk)_l.

The constant here is best-possible, but it is disappointingly small, sinceitisonly alittle larger
than

N N—-1
(2€(M + N)) '
Suppose that 7'(x) isan exponential polynomia of N termsand period 1, say

N
= Z bre(Apx)
n=1

wherethe )\, areintegers. Let I beaclosed arc of thecirclegroup T, and let L. denote the
length of 1. Then by Turan’s First Main Theorem, it is easy to show that
L\N-1
> -
max |T'(@)] > (26) max |T()]

Although the constant here depends on the number N of termsin T'(x), it is noteworthy
that it is independent of the size of the frequencies )\, . Thisinequality makes it possible to
give asimple and motivated proof of the Fabry Gap Theorem.

The small constant ¢(M, N) can be replaced by a larger constant if one is prepared to
allow v to run over arange longer than N . In more restricted situations the lower bound
can be very good indeed. For example, suppose that

(3.2) sy=> e(vb,)

Then

f(l—K—H)w ZZZ( ) e = 6,).

v= m=1 n=1 v=

Since the expressionisreal, we may take real parts to see that the aboveis
N N K

_ZZZ( )(30827ru ZZ;AKJA —0,)—1)

m=1 n=1 v=1 =1 n=1

where Ak, 1(0) denotesthe Fejér kernel. Since Ak ,1(0) > 0 forall 6, and Agx,(0) =
K + 1, it followsthat the aboveis

1
(K + )N — oN*

[\.’JlF—‘
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Thusif K > (14 ¢)N then max;¢,<x |5,| = C(e)v/N, and in particular

max_|s,| > v/N/2.
1<v<2N

By working similarly with higher moments one can obtain still better lower bounds over
longer ranges of v: If s, isgivenby (3.2) and 1 < m < N/2 thenthereisav, 1 < v <
(12N/m)™ suchthat |s,| > 1v/mN . It would be useful to have examples to show that this
is close to best-possible.

For a more extensive survey of Turan’s method one may consult Montgomery [21], pp.
85-107. For adetailed account of the subject and important applications, one should see the
book of Turan [33].

4. Irregularities of Distribution

We now consider how well-distributed N pointscan be. If the pointsaretofall in [0, 1] then
we could take u,, = n/N . These points are extremely well-distributed in the sense that the
number of theminasubinterval [0, o] is Na+ O(1). However, wefind that it isnot so easy
to distribute points well in T2 . Suppose that our pointsare w,, = (uy,us), let R(a) bethe
rectangle R(ax) = [0, a4 x [0, 2], and let D () be the discrepancy function

D(a) =card{l < n < N:u, € Rla)} — Najay.
Roth [30] used a construction suggestive of wavelets to show that

D(a)? da > log N .
’]TZ

Sinceit is also possible to construct points that are this well-distributed, this solves the prob-
lem as to distribution in mean-square. Ostrowski [27] had observed that D(a) < log N
when u,, = (n/N,n/2). The problem of showing that in any case || D||. > log N was
solved by Schmidt [31] by means of a complicated induction. However, a curious difference
arises here. Roth’s argument generalizes easily to T* to show that || D|| > (log N)*—1/2
forany £ > 1. However, Schmidt's approach has not been extended to £ > 2. It has
been conjectured that || D||s >« (log N)**. Thiswould be best possible, in view of con-
structions of Halton [14]. On the other hand, Pollington has recently mounted a wavelet
approach to this problem that has led him to conclude that one should be able to show that
|D]|ss > (log N)*/2, and that this sup norm need not be larger. Hence one should regard
the question of how large || D||.. need be to be awide open unsolved problem when & > 2.
Halasz [13] devised a variant of Roth’'s method that gives Schmidt’'s Theorem concerning
ID||sc When k& = 2, and aso givesthe lower bound ||D||; > /log N when k = 2. This
is best possible, since Chen [8] has shown that if 0 < p < oo and £ isgiven, £ > 2, then
there exists a configuration of N pointsin T* for which || D||, <, (log N)*~1/2.
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Roth obtained his lower bound by the Cauchy—Schwarz inequality,

[ DleyFeydas ( WD(a)?da)l/Q( / kF(a)2da)1/2

where F is a test function defined to be a sum, F' = »_ F,, of more basic orthogonal
functions. Halasz similarly used the inequality

| Pl@)F(a)de < [Pl Flh
where F' = [[.(1 + cF;) . This bears a strong resemblance to a Riesz product, as occursin
the theory of lacunary trigonometric series. For the lower bound of ||D||; , he wrote

| Pl@)F(a)do < DI Flle

where "
F = 1+ —=
[1(t+757)
Since —1 < F, < 1,itfollowsthat |F| < (1 + 1/R) < 1.

Let e(xy),e(zs),... bean infinite sequence of unimodular complex numbers, and put
Py(2) = 17, (2 - e(xn)) . Erd6s asked whether it is possible to choose the z,, in such a
way that the numbers max, <, |Py(2)| areboundedas N — oo . Notethat 3log Py (e(x))
isjust the discrepancy of thefirst N points, while the problem now being considered involves
the harmonic conjugate R log Py (e(x)) , but with the important difference that we need this
quantity to be large and positive, not just large in absolute value. That this sequence can not
remain bounded was first proved by Wagner [35], by means of a modified form of Schmidt’'s
method. Later Beck [3] used Halasz's modified form of Roth’s method to obtain thisin the
following sharp quantitative form: Thereis an absolute constant 6 > 0 such that

max |Py(2)| > N°
|z|<1

for infinitely many N .
M easuring the distribution of pointsin T* relative to rectangles with sides parallel to the
coordinate axes is only one of many possibilities. If S isameasurable set then the quantity
D(8)=card{l1<n<N:u, €8 —Nvol§
provides a measure of the distribution of the u,, . But when we consider § we would also
include itstranslates, sowe put d(a) = D(S+ «) . Then d(0) = 0, butfor k # 0 we have
d(k) = X (—k)Uy (k) where Ux(k) = 3, e(—k - u,) . Hence by Parseval'sidentity,

[t doc= 37 5, (k) T ()

k0
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The rate that ys(k) tendsto 0 as k tends to infinity in a particular direction depends on
how much of the boundary of 8§ is orthogonal to the direction in question. Thusin the case
of arectangle the Fourier coefficients decay slowly in the direction of the coordinate axes,
but comparatively rapidly in other directions. Thus one may expect that points may be found
sothat Uy (k) issmall when X (k) islarge, and vice versa. By using the Fejér kernel asin
our discussion of power sums we can show that

> Un(k)? > NX X, — N?

k1|<X1

k2| <X

k0
for any positive real numbers X, X, . In this way we can recover Roth's lower bound for
|D||.- By averaging over disks (and averaging over the radius as well) we find that there
isadisk D for which D(D) > NY*. More generdly, if we start with a set §, and are
allowed to shrink, trandate, and rotate S, then we obtain this larger order of magnitude, in
view of agenera principle governing the mean square decay of the Fourier transform of the
characteristic function of aset: If € isasimple, closed, piecewise C'! curvein R?, and § is
itsinterior, then

o €|
[, s @ a5 o

as R — oo. Thisisdueto Montgomery [19], [20] pp. 114-119; see also Herz [15, 16].

5. TheLarge Sieve

Thelarge sieve was originated by Linnik [18] in asomewhat obscure form. It gained new life
in the hands of Rényi [28], who viewed it as a statement about almost independent vectors.
Today we usually think of this as an extension of Bessel’s inequality for vectors in an inner
product space: Let ¢,...,¢r be arbitrary vectors in an inner product space. Then the
following three assertions concerning the constant C' are equivalent:

(a) For any vector ¢ inthe space,

R
D 1 o) < Ol
r=1

(b) For any complex numbers u, we have

Z uru_s(qsra ¢s)

1<r,s<R

(© C = p([(¢r, 5)]) -

R
<O el
r=1
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(Here p(A) denotes the spectral radius of the matrix A.) Rényi took the coordinates of his
vectors to depend on arithmetic progressions or on Dirichlet characters, but the vectors he
obtained in doing so were not very close to orthogonal, so the estimates he obtained were
imperfect. Roth [29] had the excellent idea of taking ¢, = (e(n«,)) wherethe o, arewell-
gpaced in T . These vectors are quite close to being orthogonal, and we now think of the most
basic form of the large sieve as being a statement about the mean square of a trigonometric
polynomial at well-spaced points. That is, we take

M+N

S(a) = Z ane(na),

n=M+1
and we consider inequalities of the shape

M+N

R
DS <a > fal
r=1

n=M+1

We suppose that ||a, — 4]l > 6 for r # s, and want A to dependon N and o. If
a, = e(—nay) then S(ay) = N, and thus we must have A > N. By averaging over
trandations of the o, wecanalsoshowthat A > 6! — 1. Wefindthat A doesnot haveto
be much larger than is required by these considerations.

Gallagher [10] used an inequality of the Sobolev type,

1 a+6/2 1 Oz+(5/2
f@l<s [ i@l [ 1)
0 a—4/2 2 a—4/2
to show that one can teke A = 1/6 + 7N . Thisis the best constant with respect to ¢,
but in arithmetic settings the coefficient of N is more important. The main advantage of
Gallagher’'s approach is that it generalizes readily to other families of functions. To obtain
good dependence on N we note that by duality the stated inequality is equivalent to the
inequality

M+N R 9 R
> Y wetman)| <A Iyl
n=M+1 r=1 r=1

On the left hand side we sgquare out and take the sum over n inside. The diagonal terms give
N |y.|*, so it remains to consider the non-diagonal terms. This brings us to Hilbert's
Inequality, which asserts that

YrYs

rZ£s

< 772 |yr|2'
T
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Montgomery and Vaughan [23], with some assistance from Selberg, found that this can be

generalized, so that
YrYs ™ 2
< =
‘;)\r—)\s S 52"”’“'

r#s
provided that |\, — A\;|] > ¢ whenever r # s. Moreover for the circle group we have,

correspondingly, thei nequal ity
<3 Z |

‘ Z yrys
sin 7 (a, — ag)
;é

where ||, — ail| > § for r # s. Thisgivesthe large sieve with thefactor A = N +1/6.
With alittle more care one can obtain A = N + 1/§ — 1, and with this constant there are
situationsin which equality can occur.

In arithmetic situations the «,. are usually taken to be the Farey fractions a/q , in which
(a,q) =1 and ¢ < Q. Since |la/q —d'/¢|| = 1/(¢qq') > 1/Q? when a/q and d'/q are
distinct modulo 1, we find that

Z Z S(@/g)F <(N+@Q%) D laal”

n=M+1
(a 'I) 1

The generalized Hilbert Inequality can also be established in a weighted form, in which

we find that e
yrys 3 Yr
‘ Z A 2" Z 5
7&
where |\, — A\,| > &, when s # r. Herethe constant 2r is certainly not best possible. The

above also has a counterpart for the circle group, and hence we have a weighted form of the

large sieve,
M+N

2
Z|S Qr | < Z |an|2
n=M-+1
Many other variants of the Iarge Seve have been derived, involving, for example, maxi-
mal partial sums (viathe Carleson—Hunt Theorem), or the Hardy—L ittlewood Maximal Theo-
rem. Asfor further generalizations of Hilbert’s Inequality, Montgomery and Vaaler [22] have
shownthat if p, = 3, + i, with 3, > 0 foradl r and |’yr — 7| = 6, for s # r, then

‘ yrys
S Pr + P

r;és
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The proof depends on the theory of H? functionsthat are analytic in a half-plane.

6. Dirichlet Series
Let D(s) = 3.~ a,n~*. By Hilbert's Inequality we see that

T
/|D(it)|2dt (T +O(N Z|an|2
0

and the weighted Hilbert Inequality gives

/0 D(it)dt =3 lan (T + O(n))

Thus we have some limitation on the amount of timethat |D| islarge. Supposethat |a,| < 1
for al n. Then by applying the aboveto D? we find that

T
/ D@it)| dt < (T + N*)N**<.
0
It would be very useful if we could interpolate between these estimates, in the sense that
T
/ ID@t)|7 dt < (T + N9/2) N9/2+e
0

forrea ¢, 2 < ¢ < 4. Indeed, thisimpliesthe Density Hypothesis concerning the Riemann
zeta function. Many years ago, Hardy and Littlewood had conjectured that if | (k)| < F(k)
foral £ and ¢ > 2 then || f||, <, ||F],, and it can be shown that this majorant conjecture
would imply the conjecture above. However, Bachelis [1] used a method of Katznelson to
show that thisistrue only when ¢ isan even integer (in which case it holds with constant 1).

In any casethereismorethat can be said about the number of timesaDirichlet polynomial
can be large than follows from moment estimates. For example, if 0 <t <ty < ... <tr <
T and t, 41 —t, > 1 foradl r,if |D(it,)| > V foradl r,andif |a,| <1 foral n, then
itisknownthat R < N2V ~2T¢ providedthat V2 > NT'/2*¢ It has been conjectured that
thisestimatefor R holdswhen the last conditionisweakenedtoread V2 > NT¢ . However,
Bourgain [7] has shown that if thisis so then every Kakeyaset in R?, d > 2, has Hausdorff
dimension d . Thusthere are those that doubt such a strong conjecture.

7. Spectral Characteristics of Zeros of the Zeta Function

Let h(d) denote the class number of the quadratic number field with discriminant d. Inan
effort to derive a useful lower bound for h(d) when d is negative, it was recognized that
it would suffice to have a good supply of pairs of zeros of the Riemann zeta function that
are < c@ apart where ¢ < 1/2. With this motivation, an attempt was made in 1971 to
determine the distribution of v — +' as v and ~' run over nearby ordinates of zeros of the
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zeta function. One begins with a generalization of the explicit formula noted earlier. We
observe that

-1 c+ico 1 w
S = [ S s
n<a i c—100 C w
B CI P—s o0 x—Qn—s
N C —s+nz::12n+s'

We assume the Riemann Hypothesis and comb| ne two such explicit formulaeto see that

iy

Tt (S ™ ) )

ne n>x

+ 2 (logt + O(1)) + O(a'/%/t).

We take the modulus squared of both sides, and integrateover 0 <t < 7. Wewrite x = T
for 0 < a < 1, and note that the expression on the right hand side can be asymptotically
evaluated by using our mean sguare estimate for Dirichlet polynomials. Let

F) = (L) ¥ 10 u( - )

0<y<T

0<y'<T
where w(u) = 4/(4 + v?*). Then we find that F' isreal, even, non-negative, and F(a) =
(14 0(1))T2*logT + a + o(1) a T — oo, uniformly for 0 < o < 1. When a > 1
the method fails because the Dirichlet polynomial istoo long. But only the terms near the
diagona contribute, and one can use the Hardy—L ittlewood quantitative form of the Twin
Prime Conjecture to estimate that those terms contribute. In thisway one is led to guess that
F(a) =1+40(1) uniformly for 1 < a < A,forany A > 1. Thisisknown asthe Strong Pair
Correlation Conjecture. By taking Fourier transforms, we are led to a conjecture concerning
the distribution of the frequencies v — ~': The number of pairs +,~’ of ordinates of zeros,
0<y<T,0<y <T,forwhich 2ra/logT < v—~' < 2nf3/logT isasymptotic to

g sin Tu 2 T
<5+/a 1—( — ) du>§logT.
Here 6 = 1 if 0 € [a, ], and § = 0 otherwise. That is, ¢ isaDirac point massat 0.
This arises because of the possibility that v = +" when o < 0 < . Thisis the Weak
Pair Correlation Conjecture. Freeman Dyson observed that the density function here is that

of a random hermitian matrix of unitary type, and thus we take the above, although only a
conjecture, as evidence that the zeros of the zeta function are spectral in nature.
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Goldston and Montgomery [12] showed that if the Riemann Hypothesisis true then the
Strong Pair Correlation Conjecture is equivalent to the estimate

X
/ (Y(z +h) —(x) — h)*dz ~ hX log X/h
0
for 2° < h < 2'7°. A heuristic argument in favor of this can be obtained by expanding out
and using the Hardy—L ittlewood Conjecture concerning the number of d-twin primes not

exceeding z .
Recently Montgomery and Soundararajan [26] considered the higher moments

(X = ¢ [0+ 0) = ota) = .

On expanding, one encounters enumerations of prime k-tuples. The Hardy—L ittlewood Prime
k -tuple Conjecture assertsthat if d;,d,, ... d, aredistinct integersthen

> T[An+d) = 8(D)X + E(X, D)

n<X =1

where &(D) isthe‘singular series

e = ¥ II5%5 ¥

i aidi>‘

1<gi<oo i=1 (g 1<a; <qi i—1 &
(1<igk) (ai,q:)=1
Eai/inZ

Gallagher [11] considered the moments (X, h) for smaller 4 of theform h = clog X,
and for that purpose showed that

}» &(D) ~ X*
0<d; <X
d; distinct
(1<i<k)

as X — oo. Forlarger h, the mean value & is much larger than the usua size of the
difference ¢(z + h) — ¢(x) — h, and o it is useful to consider the arithmetic function
Ao(n) = A(n) — 1, whose mean value is asymptotically zero. For this function we have an
alternative formulation of the prime k-tuple Conjecture, which asserts that

> Ao+ di) = So(D)X + Eo(X, D)

n<X =1



H.L. Montgomery / Harmonic Analysis as found in Analytic Number Theory 291

where now
g ~ aid;
So(D) = Z H¢(.) Z e( )
1<gi<oo i=1 4 1<a; <q; i1 ¢
(1<i<k) (aiqi)=1
> ai/qiEL

Thus &, isthesameas G except that the possibility that ¢; = 1 isnow excluded. The mean
value of &, isof course smaller, and hence more difficult to determine, but by elaborating
on work of Montgomery and Vaughan [24] concerning the distribution of reduced residues
modulo ¢ in short intervalsit can be shown that

(k227

!
Z & (D) K (=X log X)*/? + O(Xk/Q(logX)k/‘l) if £ iseven,
0 pu—
dogddigx O(X’f/Z*l/(”“)“) if £isodd.
; distinct

(1<i<k)
This is established unconditionally; when combined with plausible hypotheses concerning
the size and behavior of the error terms E(X, h) we are led to expect that
(X, h) = (e + 0(1)) X h**(log X/h)*/?
where the ¢, are the moments of the normalized normal variable,
k!
Cp = (k/2)12k/2
0 if k£ isodd.
Since these moments occur uniquely in the case of normal distribution, we are led to expect
that the distribution of ¢ (x + h) — ¥(z), for 0 < = < X, is approximately normal with
mean h and variance hlog X/h.

Supposethat X > T'. Interms of zeros of the zeta function, the Strong Pair Correlation
Conjecture seems to be telling us that the mean square size of the sum

Z cosylogx (0<z<X)

if kiseven,

is the same as if the terms were uncorrelated random variables. (We recall from the theory
of probability that if X; are uncorrelated variables then Var (> X;) = > Var(X;).) It
seems that our new speculations concerning the 1, can similarly be interpreted as asserting
that the above sum is distributed as if the terms are independent random variables (asin the
Central Limit Theorem). How this relates to the spectral nature of the zeros, or any possible
underlying operators remains to be seen.
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