

Opportunities for children to explore and apply

Share rhymes and songs that involve counting in twos, fives and tens forwards and backwards, for example ' $2,4,6,8$, Mary at the cottage gate'; ' 1,2 , buckle my shoe'; ' 10 fat sausages sizzling in the pan'. Provide resources for retelling these rhymes independently through rhyme sacks or scanned images for the interactive whiteboard or a story board.

Encourage counting in groups of the same size during role-play. For example: we'll need enough for 6 of us. 2, 4 , etc. If 2 can fit on each seat in the train, how many passengers can you take? 2,4 , etc. When organising groups, ask whether they can get in pairs to go to lunch. Have we got everyone? Let's see, that's 2, 4, etc.

Provide transparent number squares and glass beads on light boxes or OHPs for pattern making. Model covering up every other one or covering up the row of tens and counting out the pattern. Can they make their own patterns?

Put up pictures, for example balloons, on an interactive whiteboard or felt board and numerals in multiples of 2,5 or 10 . The objects can be sorted into sets, numbered and counted

Written Methods

Review multiplication as repeated addition by counting hops on a number line. For example, find 6 fours by making 6 hops of 4 .

Use practical and informal methods to solve simple TU $\times U$ calculations. For example, to find $12 \times$ 5 understand that 10 fives are 50 and add on another 2 fives to make 60.

Explain how to multiply a number by 10 or 100 . Extend this to multiply one-digit numbers by multiples of 10 , recording methods informally.

Use partitioning to multiply two-digit numbers by one-digit numbers. For example, work out 13 $\times 3$ by finding 10×3 and adding 3×3. Record working using informal methods:

Informal recording in Year 3 involving partitioning might be:
$15 \times 3=$
$10+5$
$\downarrow \downarrow \times 3$
$30+15=45$

$30+9=39$

ITP Multiplication Grid

Written Methods

Continue to use informal jottings for 2-digit by one digit e.g. $43 \times 6=258$

```
43
\
```


The Grid Method

Use knowledge of multiplication facts to 10×10 to develop written methods for multiplying a two-
digit by a one-digit number. When calculating 38×7 approximate first (approximately $40 \times 10=400$),
partition into 30×7 and 8×7 and represent this on a grid.
$38 \times 7=(30 \times 7)+(8 \times 7)=210+56=266$

x	7
30	210
8	56
	266

The number with the most digits is always placed in the left-hand column of the grid so that it is easier to add the partial products.

Develop and use written methods to record, support and explain multiplication of two-digit numbers by a one-digit number.

One length of the swimming pool is 25 metres
Jane swims 5 lengths of the pool.
How far does Jane swim altogether?
Kiz swims 225 metres in the pool.
How many lengths does he swim?
Explain how you solved these problems. Could you have done them differently?

ITP Multiplication Grid and BBC Skillswise.

Year 5 Calculating strand: MULTIPLICATION

SHOULD
End of year expectations in bold

Recall quickly multiplication facts up to 10×10, use to multiply pairs of multiples of 10 and 100 (Y5)
Pupil learning outcomes (changes depending on unit) e.g.: I can use tables facts to multiply multiples of 10 and 100
Extend mental methods for whole-number calculations, e.g. to multiply a two-digit by one-digit number (e.g. 12×9), to multiply by 25 (e.g. 16×25)(Y5)
Pupil learning outcomes (changes depending on unit) e.g:: I can use different mental strategies for multiplication depending on the numbers involved. I can explain why I chose a particular method
Refine and use efficient written methods to multiply HTU $\times \mathrm{U}, \mathrm{TU} \times \mathrm{TU}, \mathrm{U} . \mathrm{t} \times \mathrm{U}(\mathrm{Y} 5)$
Pupil learning outcomes (changes depending on unit) e.g.: I can solve multiplication calculations using written methods. I can explain each step

Written Methods

Knowing and Using Number Facts
Continue to secure speed of recall of multiplication tables to 10×10. Use this knowledge to recall, for example, 8 squared or the seventh multiple of 8 . Derive families of calculations such as $8 \times 3,80 \times 3$, $800 \times 3,80 \times 30,80 \times 300$.

Number Spinners ITP e.g. 12×9

Moving Digits ITP

Identify the factors of a two-digit number such as 56 by listing its factor pairs: 1 and 56,2 and 28,4 and 14,8 and 7 . Establish that 70 and 8 , and 7 and 80 , are factor pairs of 560 . Use lists of factors to find common factors of two numbers such as 36 and 54. Find common multiples of two numbers such as 8 and 12 , identifying 24,48 and 72 as numbers in a sequence of common multiples.
Multiply and divide whole numbers and decimals by 10,100 and 1000 , describing the effects. Recognise, for example, that 3400 is 100 times larger than 34 and that 0.4 is 10 times smaller than 4 . Round whole numbers to the nearest 10,100 or 1000 and decimals to the nearest whole number, and use this to find approximate answers to calculations.

Assessment for Learning (AfL) See primary framework planning tools - AfL questions within the relevant units www.standards.dfes.gov. uk/primaryframeworks/ mathematics/planning/Y ear5/relationships/Unit2

Vocabulary

calculate, calculation, equation, operation, symbol, inverse, answer, method, strategy, explain, predict, reason, reasoning, pattern, relationship, decimal, decimal point, decimal place, estimate, approximate, pound (ε), penny/pence (p), units of measurement and abbreviations, degrees Celsius lots of, groups of,times, multiply, multiplication, multiplied by ,multiple of, product, once, twice, three times, four times, five times... ten times times as (big, long, wide, and so on), repeated addition, array, row, column, factor, inverse

Test Questions

Use all five digit cards to make this correct.
$\square \square \times 2=\square \square \square$

KS2 2004 Paper B Level 3
This relationship connects the number of pencils and the number of boxes.

number of pencils $=$ number of boxes \times

 12How many pencils are in 18 boxes?
Y5 Optional Test 1998 Paper B Level 4

John says: 'Multiples of 4 always end in 2, 4, 6 or 8 .'
Is he correct? Write YES or NO. Explain how you know.

Use the digits 2, 3 and 4 once to make the multiplication which has the greatest product.

$\square \square \times \square$

KS2 2004 Paper B Level 4
An apple costs seventeen pence. How much will three cost?
Y4 optional test 1999 Mental Test L4

Written Methods

Use partitioning to multiply and divide whole numbers by a one-digit number, using jottings to help. For example, find 73×5 by adding 70×5 to 3×5, link mental methods to the written methods that children use.
Refine and use efficient written methods to multiply whole numbers and decimals. Approximate first then check answers. Discuss when to record methods and how the method helps children to keep track of the steps to an answer that they can use to check later.

Begin to recognise the efficiency of different methods
TU x TU
47×36
(estimate: $50 \times 40=2000$)

\times	40	7	
30	1200	210	1410
6	240	42	282
			1692

HTU $\times \mathrm{U}$
327×6

Use the grid method to solve U.t $\times \mathrm{U}$
4.9×3

sHOULD
End of year expectations in bold

Use knowledge of place value and multiplication facts to 10×10 to derive related multiplication facts involving decimals, e.g. 0.8×7
Use knowledge of multiplication facts to derive quickly squares of numbers to 12×12 and the corresponding squares of multiples of 10 (V 6) Pupil learning outcomes (changes depending on unit) e.g.: I can say the squares of numbers to 12×12 and work out the squares of multiples of 10 Calculate mentally with integers and decimals: TU $\times \mathrm{U}, \mathrm{U} . t \times \mathrm{U},(\mathrm{Y} 6)$ Pupil learning outcomes (changes depending on unit) e.g. I can use different mental strategies for multiplication depending on the numbers involved. I can explain why I chose a particular method
Use efficient written methods to multiply integers and decimals by a one-digit integer, and to multiply two- and three-digit integers by a twodigit integer (Y6)
Pupil learning outcomes (changes depending on unit) e.g.: I can use efficient written methods to multiply whole numbers and decimals

Written Methods		Vocabular	
Knowing and Using Number Facts Continue to consolidate knowledge of multiplication facts. For example work out numbers in the 13 timestable by combining multiplication facts from the 10 and 3 times-tables. Work out products and quotients involving decimals (e.g. 0.6×8 and $5.6 \div 8$) using facts from the 8 timestable. Given a fact such as $17 \times 14=238$, work out $18 \times 14=252$ by adding a further 14 . Similarly, multiplying by a near-multiple of 10 , such as 51 or 49 , multiply by the multiple of 10 and adjust by adding or subtracting the appropriate number. Derive quickly the square numbers to 12×12 and squares of multiples of 10 , such as 40×40.	Learning (AfL) See primary framework planning tools - AfL questions within the relevant units www.standards.dfes. gov.uk/primaryframe works/mathematics/ planning/Year6/relat ionships/Unit1/	calculate, calculatio inverse, answer, me predict, reason, rea decimal, decimal poi approximate, pound measurement and ab lots of, groups of, multiplied by, multip three times, four t times as (big, long, addition, array, row inverse, integer	equation, operation, symbol, hod, strategy, explain, oning, pattern, relationship, t, decimal place, estimate, $(£)$, penny/pence (p), units of breviations, degrees Celsius mes, multiplication, multiply e of, product, once, twice, mes, five times... ten times ide, and so on), repeated column, double, factor,
	Test Questions		
determine, say, that 47 is prime and that 51 is not prime. Find the prime factors of a two-digit number and use tests of divisibility to decide whether a number such as 342 is divisible by $2,3,4,5,6,9$ or 10 . Use knowledge of inverse operations and estimation skills to check results.	Some children do a sponsored walk. Jason is sponsored for $£ 3.45$ for each lap. He does 23 laps. How much money does he raise? Lynne wants to raise $£ 100$. She is sponsored for $£ 6.50$ for each lap. What is the least number of whole laps she must do? KS2 1997 Paper B Level 4		Explain why 16 is a square number. Y5 Optional Test 1998 L3
Apply knowledge of multiplication and division facts to multiplication and division of two-digit numbers, including decimals such as 5.6 or 0.56 . Use knowledge of place value to multiply and divide whole numbers and decimals by 1000, 100 or 10, and by multiples of these, and explain the effect. Recognise, for example, that 25×0.3 is equivalent to $25 \times 3 \div 10$.			Multiply seven by nought point six. KS2 2003 Mental Test L4
Use calculators to explore, for example, the effect of multiplying and dividing whole numbers by a positive number greater than 1 and a positive number less than 1.	Four biscuits cost twenty pence altogether. How much do twelve biscuits cost? KS2 2005 Mental Test Level 4		What is the next square number after thirty-six? Y7 Progress Test 2005 L4 \qquad What is nought point four multiplied by nine? KS2 2005 Mental Test Level 4

Moving Digits ITP

Written Methods

Use a secure，reliable method of written calculation for each operation．Recognise when one method is more efficient than another，for both whole and decimal numbers．
Continue to check first if a mental method will work and then decide which method is most appropriate．Check results by rounding to approximate answers．

Use efficient written methods to multiply two－and three－digit whole numbers and decimals by one－digit whole numbers，and to multiply two－and three－digit whole numbers by two－digit numbers．Continue to approximate first and to check answers．Explain the method used and the steps involved．

The Grid Method
5.65×9（estimate： $6 \times 9=54$ ）

\times	5	0.6	0.05	
9	45	5.4	0.45	50.85

Answer： $5.65 \times 9=50.85$
4.92×3（Approximately 5×3 ）

Year 6+	Calculating strand: MULTIPLICATION		
COULD End of year expectations in bold	gnise the square roots of perfect squares to $12 \times 12(\mathrm{Y} 6 / 7)$ nise and use multiples, factors, divisors, common factors, hig learning outcomes (changes depending on unit) e.g:: rstand how the commutative, associative and distributive law late more efficiently; use the order of operations, including brat olidate and extend mental methods of calculation to include dec	est common factors and lowest common m and the relationships between operations ackets(Y6/7) imals, fractions and percentages($\mathrm{Y} 6 / 7$)	tiples in simple cases(Y6/7) including inverse operations, can be used to
Rules \& Laws of arithmetic summary - see guidance paper 'methods of calculation' for more detail			Test Questions
Rules of arithmetic	Instructions	Examples	Six times a number is three thousand. What is the number? KS2 2005 Mental Test Level 5
Brackets	Always carry out first any calculations that are within brackets	$\begin{aligned} & 40-(3+2)=40-5=35 \\ & 20 \div(18-13)=20 \div 5=4 \end{aligned}$	
Multiplication and division	After working out those calculations in the brackets do the multiplication and division calculations next before addition and subtraction. If the expression involves only multiplication and division calculations work from left to right or reorder moving a number with its associated operation.	$5 \times 2-8 \div 2=10-4=6$	$\square 0 \times \square 0=3000$ KS2 2002 Paper A Level 5
		$9 \times 8 \div 3=9 \div 3 \times 8=3 \times 8=24$	Circle two different numbers which multiply together to make 1 million. $\begin{array}{lllll}10 & 100 & 1000 & 10000 & 100 \\ 000\end{array}$ KS2 2000 Paper A Level 5
Addition and subtraction	Finally do the addition and subtraction calculations. If the expression involves only addition and subtraction calculations work from left to right or reorder moving a number with its associated operation.	$\begin{aligned} & 25+19-11-18=44-11-19=33-19=14 \\ & 25+19-11-18=25-11+19-18=13+1= \\ & 14 \end{aligned}$	Write the three missing digits. \square $\square \times$ \square $=371$ KS2 1997 Paper B Level 5
Laws of arithmetic	Description	Examples	
Commutative laws for addition and multiplication	When adding two numbers the order of the numbers can be reversed. When multiplying two numbers the order of the two numbers can be reversed.	$\begin{aligned} & 4+18=18+4 \\ & 5 \times 7=7 \times 5 \end{aligned}$	The same number is missing from each box. Write the same missing number in each box. \square \square \square $\square \times \square$ \square $=1331$ KS2 1999 Paper B Level 5
Associative laws for addition and multiplication	When adding three or more numbers any adjacent pair of numbers can be added first. When multiplying three or more numbers, any pair of adjacent numbers can be multiplied together first.	$\begin{aligned} & 3+6+4=(3+6)+4=3+(6+4) \\ & 3 \times 4 \times 5=(3 \times 4) \times 5=3 \times(4 \times 5) \end{aligned}$	Estimate the value of nine point two multiplied by two point nine. KS3 2005 Mental Test Level 6
Distributive laws for multiplication and division over addition and subtraction	When a sum or difference is being multiplied by a number, each number in the sum or difference can be multiplied first and the products are then used to find the sum or difference. When a sum or difference is being divided by a number, each number in the sum or difference can be divided first and the dividends are then used to find the sum or difference.	$\begin{aligned} & (30+8) \times 7=(30 \times 7)+(8 \times 7) \\ & (30-3) \times 9=(30 \times 9)-(3 \times 9) \\ & (20+8) \div 4=(20 \div 4)+(8 \div 4) \\ & (60-12) \div 3=(60 \div 3)-(12 \div 3) \end{aligned}$	Kim knows that $137 \times 28=3836$ Explain how she can use this information to work out this multiplication. 138×28 KS2 1997 Paper A Level 5

