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We consider velocities u = (u, v, w). The Lagrangian description tracks particular particles;
whereas the Eulerian description looks at a window in space.

1 Proofs

1.1 Prove {∇(φa) = φ(∇ · a) + (a · ∇)φ}

Starting with:

∇(φa) = φ(∇ · a) + (a · ∇)φ (1)

Now, in suffix notation, using the chain rule for differentiation:

∂

∂xi
(φai) = φ

∂ai
∂xi

+ ai
∂φ

∂xi
(2)

Which, putting back into vector notation, gives:

∇(φa) = φ(∇ · a) + (a · ∇)φ (3)

1.2 Use the Divergence Theorem to Prove That {
∫
V ∇φ dV =

∫
S φn dS}

Now, the divergence theorem is: ∫
V
∇ · a dV =

∫
S
a · n dS (4)

Now, let a = φc, where c is an arbitrary constant vector. Thus:

∇ · a = ∇ · (φc) = φ(∇ · c) + (c · ∇)φ (5)
= (c · ∇)φ (6)

Thus, (4) becomes: ∫
V

(c · ∇)φ dV =
∫
S
φc · n dS (7)

⇒ c ·
∫
V
∇φ dV = c ·

∫
S
φn dS (8)

⇒
∫
V
∇φ dV =

∫
S
φn dS (9)

Thus proven.

1.3 Prove {∇ × (φa) = φ(∇× a) + (∇φ)× a}

Now, looking at the LHS of:

∇× (φa) = φ(∇× a) + (∇φ)× a (10)
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We have that the i-component is:

∇× (φa)|i =
∂

∂y
(φa3)−

∂

∂z
(φa2) (11)

Which can be expanded by the chain rule:

∇× (φa)|i = φ
∂a3

∂y
+ a3

∂φ

∂y
− φ

∂a2

∂z
− a2

∂φ

∂z
(12)

= φ

(
∂a3

∂y
− ∂a2

∂z

)
+
(
a3
∂φ

∂y
− a2

∂φ

∂z

)
(13)

= φ(∇× a)|i + (∇φ)× a|i (14)

All other components will be similar. Thus, we have proven:

∇× (φa) = φ(∇× a) + (∇φ)× a (15)

1.4 Prove {u×∇× u = ∇(1
2
u · u)− (u · ∇)u}

Now, looking at the i-component of u×∇× u, we have:

u×∇× u|i = v

(
∂w

∂z
− ∂v

∂z

)
+ w

(
∂w

∂x
− ∂u

∂z

)
(16)

=
(
u
∂u

∂x
+ v

∂v

∂x
+ w

∂w

∂x

)
−
(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
(17)

=
∂

∂x

(
1
2
u2 +

1
2
v2 +

1
2
w2
)
− (u · ∇)u (18)

Thus, all other components will work similarly to prove:

u×∇× u = ∇(
1
2
u · u)− (u · ∇)u (19)

2 Derivations

2.1 Streamlines

Consider the section of a streamline. We have one coordinate at x, another at x+δx; with velocites
at each given by u and u + δu. Thus, as δx → 0, δx and u become more and more parallel. Thus,
a streamline will have u as a tangent vector:

δx ∝ u (20)
⇒ dx = ku (21)

⇒ (dx, dy, dz) = k(u, v, w) (22)

Thus, we have the equation for a streamline:

dx

u
=
dy

v
=
dz

w
(23)

When u = v = w = 0 we have stagnation points; and are the only places where streamlines cross.
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2.2 Particle Path

The Lagrangian description yields:

u =
dx
dt

(24)

⇒ (25)
dx

dt
= u

dy

dt
= v

dz

dt
= w (26)

If the velocity flow is not a function of time (i.e. is a steady flow), then the streamlines are the
same as the particle paths.

2.2.1 Proof of Streamline and Particle Path Coincidence for Steady Flows

Now:

u =
dx

dt
(27)

⇒
∫ x

x0

dx

u
=
∫ t

t0
dt (28)

Which can only be done is u is not a function of time.
Now: ∫ t

t0
dt = t− t0 (29)

It follows that: ∫ x

x0

dx

u
=
∫ y

y0

dy

v
=
∫ z

z0

dz

w
= t− t0 (30)

Now, differentiating w.r.t x, say:

d

dx

∫ x

x0

dx

u
=

1
u

=
d

dx

∫ y

y0

dy

v
(31)

=
dy

dx

d

dy

∫ y

y0

dy

v
(32)

=
1
v

dy

dx
(33)

=
1
w

dz

dx
(34)

That is:

1
u

=
1
v

dy

dx
=

1
w

dz

dx
(35)

Which is back to the streamline equation:

dx

u
=
dy

v
=
dz

w
(36)
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2.3 The Material Derivative D
Dt

Now, if we have the density as

ρ = ρ(x, y, x, t) (37)

Then, for small changes we have:

δρ =
∂ρ

∂t
δt+

∂ρ

∂xi
δxi (38)

And, dividing by δt, and taking the limit δt→ 0:

lim
δt→0

(
δρ

δt

)
=
∂ρ

∂t
+ lim
δt→0

(
δxi
δt

)
(39)

And, we have that:

lim
δt→0

(
δxi
δt

)
=

∂xi
∂t

(40)

= ui (41)

And, we define the LHS of (39) as the material derivative:

Dρ

Dt
≡ lim

δt→0

(
δρ

δt

)
(42)

Hence, putting all this together, (39) can be written as:

Dρ

Dt
=
∂ρ

∂t
+ ui

∂ρ

∂xi
(43)

Which is equivalent to:

Dρ

Dt
=
∂ρ

∂t
+ (u · ∇)ρ (44)

So, the material derivative itself is:

D

Dt
=

∂

∂t
+ (u · ∇) (45)

Notice that it is an operator.

2.4 Integral Form of the Continuity Equation

The mass in a volume V is: ∫
V
ρ dV (46)

Hence, the rate of change of mass in V is:

d

dt

∫
V
ρ dV =

∫
V

∂ρ

∂t
dV (47)
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The rate of mass flow out of V , through a bounding closed surface S is;∫
S
ρu · n dS (48)

Hence, if mass is conserved,(47) and (48) must balance:∫
V

∂ρ

∂t
dV = −

∫
S
ρu · n dS (49)

Which is the integral form of the continuity equation

2.5 Derivative Form of the Continuity Equation

Starting with the divergence theorem, and the integral form of the continuity equation:∫
V

(∇ · a) dV =
∫
S
a · n dS (50)∫

V

∂ρ

∂t
dV = −

∫
S
ρu · n dS (51)

Now, the RHS of (51), using (50) becomes:∫
S
ρu · n dS =

∫
V
∇ · (ρu) dV (52)

Now, expanding out the divergence in the RHS of (52), by vector calculus:

∇ · (ρu) = ρ(∇ · u) + (u · ∇)ρ (53)

Hence, (52) becomes: ∫
S
ρu · n dS =

∫
V
{ρ(∇ · u) + (u · ∇)ρ} dV (54)

Now, putting (54) into (51); bringing everything over to the other side & putting under a single
integral: ∫

V

∂ρ

∂t
+ ρ(∇ · u) + (u · ∇)ρ dV = 0 (55)

Now, the volume V can be shrunk down to a point, hence the integrand is zero:

∂ρ

∂t
+ ρ(∇ · u) + (u · ∇)ρ = 0 (56)

We notice elements of the material derivative:

∂ρ

∂t
+ (u · ∇)ρ ≡ Dρ

Dt
(57)

Hence, we have:

Dρ

Dt
+ ρ(∇ · u) = 0 (58)

Which is the pointwise (derivative) form of the continuity equation.
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2.6 Hydrostatic Equilibrium

Now, suppose there is a body force F(x, t) per unit mass. Thus, the total body force is:∫
V
ρF dV (59)

The internal pressure force is:

−
∫
S
pn dS (60)

If the system is in equilibrium, (59) and (60) must balance. Hence:∫
V
ρF dV =

∫
S
pn dS (61)

Now, if we use the divergence theorem in the form:∫
V
∇φ dV =

∫
S
φn dS (62)

the RHS of (61) becomes: ∫
S
pn dS =

∫
V
∇p dV (63)

Hence, (61) becomes: ∫
V
ρF−∇p dV = 0 (64)

Again, we can shrink the volume down to a point, giving the equation for hydrostatic equlibrium:

ρF = ∇p (65)

2.7 Euler’s Equation

Now, if we start from Newtons 2nd law:

F =
dp
dt

=
d

dt
(mu) (66)

The fluid analogue is:

d

dt

(∫
V

uρ dV
)

= −
∫
S
ρu(u · n) dS +

∫
V
ρF−∇p dV (67)

That is, the rate of change of momentum is mass flux in, plus the resultant force.
Now, if we look at the middle integral in (67):∫

S
ρu(u · n) dS =

(∫
S
ρu(u · n) dS,

∫
S
ρv(u · n) dS,

∫
S
ρw(u · n) dS

)
(68)
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Using the divergence theorem (50) on one of the components of (68):∫
S
ρu(u · n) dS =

∫
V
∇ · (ρuu) dV (69)

Which, upon expansion of the RHS of (69) gives:∫
V
∇ · (ρuu) dV =

∫
V
{u∇ · (ρu) + ρ(u · ∇)u} dV (70)

And, doing this for all components of (68), the middle integral in (67) becomes:∫
S
ρu(u · n) dS =

∫
V
{u(∇ · (ρu)) + ρ(u · ∇)u)} dV (71)

Hence, (67) becomes:∫
V

(
ρ
∂u
∂t

+ u
∂ρ

∂t
+ u(∇ · ρu) + ρ(u · ∇)u− ρF +∇p

)
dV = 0 (72)

Now, notice that some components can be simplified:

ρ
∂u
∂t

+ ρ(u · ∇)u = ρ
Du
Dt

(73)

u
(
∂ρ

∂t
+∇ · ρu

)
= 0 (74)

(74) by the continuity equation (58). After doing these simplifications, and shrinking the volume
V down to a point, we have that (72) becomes:

ρ
Du
Dt

− ρF +∇p = 0 (75)

Or, rearanging:
Du
Dt

= F− 1
ρ
∇p (76)

Which is known as Euler’s equation.

2.8 Bernoulli’s Equation

Starting with Euler’s equation:
Du
Dt

= F− 1
ρ
∇p (77)

Now, under the assumption that ρ is barotropic ⇒ ρ = ρ(p), we have:
1
ρ
∇p =

1
ρ

∂p

∂xi
(78)

=
d

dp

(∫
dp

ρ

)
∂p

∂xi
(79)

=
∂

∂xi

∫
dp

ρ
(80)

= ∇
(∫

dp

ρ

)
(81)

⇒ 1
ρ
∇p = ∇

(∫
dp

ρ

)
(82)
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Under the assumption that F is a conservative force, we can write an associated scalar potential:

F = −∇Ω (83)

Under the assumption that u is a steady flow (⇒ ∂u
∂t = 0), the material derivative compresses to:

Du
Dt

= (u · ∇)u (84)

Now, there is a vector identity:

(u · ∇)u = ∇(
1
2
u · u)− u×∇× u (85)

We shall define the vorticity ω ≡ ∇× u.
Hence, putting (85) on the LHS of (77); and using (82) and (83) on the RHS of (77), we have:

∇
(

1
2
u · u +

∫
dp

ρ
+ Ω

)
= u× ω (86)

Now, if the flow is irrotational, i.e. ω = 0, then the object in the grad is a constant. Hence:

1
2
u · u +

∫
dp

ρ
+ Ω = const (87)

Which is known as Bernoulli’s equation.

3 Complex Potential

We define vorticity as ω ≡ ∇× u. Now, if a flow is irrotational, then:

ω = ∇× u = 0 (88)

Hence, we can introduce some scalar potential:

u = ∇φ ⇒ ∇×∇φ = 0 (89)

If a flow is incompressible, then:

∇ · u = 0 ⇒ ∇ · ∇φ = ∇2φ = 0 (90)

That is, in a 2D incompressible flow, with u = (u, v):

∇ · u =
∂u

∂x
+
∂v

∂y
= 0 (91)

Now, if we let:

u =
∂ψ

∂y
(92)

v = −∂ψ
∂x

(93)
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Then:

∇ · u =
∂u

∂x
+
∂v

∂y
(94)

=
∂

∂x

(
∂ψ

∂y

)
+

∂

∂y

(
−∂ψ
∂x

)
(95)

= 0 (96)

Hence, with this condition for the stream function ψ, the condition for incompressibility is satisfied.
The same is true for the divergence expressed in plane- or spherical-polars.
Now, for a 2D irrotational flow, we have u = (u, v) =

(
∂ψ
∂y ,−

∂ψ
∂x

)
:

ω = ∇× u (97)

= −k

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
(98)

= 0 (99)

⇒ ∂2ψ

∂x2
+
∂2ψ

∂y2
= ∇2ψ = 0 (100)

Thus, Laplace’s equation is satisfied for both the stream function ψ, and scalar potential φ, in an
incompressible, irrotational 2D flow.
Notice:

u =
∂φ

∂x
=
∂ψ

∂y
(101)

v =
∂φ

∂y
= −∂ψ

∂x
(102)

That is:

∂φ

∂x
=

∂ψ

∂y
(103)

∂φ

∂y
= −∂ψ

∂x
(104)

Which are the Cauchy-Riemann equations.
That is, there exists an analytic complex function w(z) = φ + iψ. This is known as the complex
potential.

w(z) = φ+ iψ (105)

Lines on which ={w(z)} = ψ = const are streamlines.
Also notice:

∇2w = ∇2(φ+ iψ) (106)
= ∇2φ+ i∇2ψ (107)
= 0 (108)

⇒ ∇2w = 0 (109)
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Now, we can derive a complex velocity, given that the complex potential is only a function of z,
and not its conjugate:

dw

dz
= u− iv (110)

3.1 Special 2D Flows

3.1.1 Uniform Stream

Suppose we have a uniform flow of speed U , inclined at an angle α to the x-axis. Thus, the velocity
vector is:

u = (U cosα,U sinα) = (u, v) (111)

Now, the complex velocity is given by:

dw

dz
= u− iv (112)

= U cosα− iU sinα (113)
= Ue−iα (114)

⇒ dw

dz
= Ue−iα (115)

⇒ dw = Ue−iαdz (116)

Thus, integrating, we have the complex potential for a uniform flow, of strength U , inclined by an
angle α to the x-axis:

w(z) = Uze−iα (117)

3.1.2 Source

We look at a source of strength m, at the origin.
At any radius, mass flux must be the same:

2πrU = m (118)

The velocity field is also purely radial. Hence, we have:

dw

dz
= u− iv (119)

= U cos θ − Ui sin θ (120)
= Ue−iθ (121)

=
U

eiθ
(122)

=
m

2πreiθ
(123)

=
m

2πz
(124)

⇒ dw =
m

2πz
dz (125)
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Hence, integrating, we have an expression for the complex potential of a source at the origin:

w(z) =
m

2π
log z (126)

Which may be easily generalised to a source of strength m, at z = z0:

w(z) =
m

2π
log(z − z0) (127)

If m < 0, then we have a sink.

3.1.3 Vortex

Here, the velocity field is purely tangential. Again, we have that the mass flux through any radius
is constant 2πrV = k. So:

u = V θ̂ (128)
= (−V sin θ, V cos θ) (129)

⇒ dw

dz
= −iV (cos θ − i sin θ) (130)

= −iV e−iθ (131)

Thus, along a very similar argument for the source: for a vortex, at z = z0, we have the complex
potential:

w(z) = − ik

2π
log(z − z0) (132)

Convention: if k > 0, then vortex is anti-clockwise; k < 0 for clockwise.

3.1.4 Dipole Flow

Suppose we put a source and a sink very close together, with the source at z = δeiα:

w(z) =
m

2π
log(z − δeiα)− m

2π
log z (133)

=
m

2π
log

(
1− δeiα

z

)
(134)

Now, bring the two very close together: δ → 0, and mδ ≡ µ be constant. Using the following Taylor
expansion:

log(1− x) = −x− x2

2
− x3

3
− . . . (135)

We have:

w(z) =
m

2π

(
−δe

iα

z
− δ2e2iα

2z2
− . . .

)
(136)

= − µ

2π

(
eiα

z
+
δe2iα

2z2
+ . . .

)
(137)
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Which, as δ → 0, tends to the complex potential for a dipole at z = z0, inclined at an angle α to
the x-axis:

w(z) = − µeiα

2π(z − z0)
(138)

3.1.5 Flow in a Corner

For a corner of angle m, we purely have:

w(z) = Azm = Areimθ (139)

3.2 Circle Theorem

If w = f(z) is a given flow, and if a circle is placed in the flow at the origin, with a radius |z| = a,
then, under the assumption that f(z) is analytic inside and on the circle, the new potential is:

w(z) = f(z) + f

(
a2

z

)
(140)

For example:
Uniform flow past a circle, with α = 0:

f(z) = Uz (141)
⇒ f(z) = Uz (142)

f

(
a2

z

)
=

Ua2

z
(143)

Thus:

w(z) = f(z) + f

(
a2

z

)
(144)

= Uz +
Ua2

z
(145)

= U

(
reiθ +

a2

r
e−iθ

)
(146)

Thus, the streamlines are on:

={w(z)} = ψ = U

(
r sin θ − a2

r
sin θ

)
(147)

= U sin θ

(
r − a2

r

)
(148)

= const (149)

Notice, that for ψ = 0, we have r = a. So that flow on the surface of the circle is a streamline.
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