Fluid Mechanics

Notes taken by J.Pearson, from a S4 course at the U.Manchester. Lecture delivered by Prof.D.Abrahams

August 8, 2007

Contents

1 Proofs 3
1.1 Prove $\{\nabla(\phi \mathbf{a})=\phi(\nabla \cdot \mathbf{a})+(\mathbf{a} \cdot \nabla) \phi\}$ 3
1.2 Use the Divergence Theorem to Prove That $\left\{\int_{V} \nabla \phi d V=\int_{S} \phi \mathbf{n} d S\right\}$ 3
1.3 Prove $\{\nabla \times(\phi \mathbf{a})=\phi(\nabla \times \mathbf{a})+(\nabla \phi) \times \mathbf{a}\}$ 3
1.4 Prove $\left\{\mathbf{u} \times \nabla \times \mathbf{u}=\nabla\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}\right)-(\mathbf{u} \cdot \nabla) \mathbf{u}\right\}$ 4
2 Derivations 4
2.1 Streamlines 4
2.2 Particle Path 5
2.2.1 Proof of Streamline and Particle Path Coincidence for Steady Flows 5
2.3 The Material Derivative $\frac{D}{D t}$ 6
2.4 Integral Form of the Continuity Equation 6
2.5 Derivative Form of the Continuity Equation 7
2.6 Hydrostatic Equilibrium 8
2.7 Euler's Equation 8
2.8 Bernoulli's Equation 9
3 Complex Potential 10
3.1 Special 2D Flows 12
3.1.1 Uniform Stream 12
3.1.2 Source 12
3.1.3 Vortex 13
3.1.4 Dipole Flow 13
3.1.5 Flow in a Corner 14
3.2 Circle Theorem 14

We consider velocities $\mathbf{u}=(u, v, w)$. The Lagrangian description tracks particular particles; whereas the Eulerian description looks at a window in space.

1 Proofs

1.1 Prove $\{\nabla(\phi \mathbf{a})=\phi(\nabla \cdot \mathbf{a})+(\mathbf{a} \cdot \nabla) \phi\}$

Starting with:

$$
\begin{equation*}
\nabla(\phi \mathbf{a})=\phi(\nabla \cdot \mathbf{a})+(\mathbf{a} \cdot \nabla) \phi \tag{1}
\end{equation*}
$$

Now, in suffix notation, using the chain rule for differentiation:

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}\left(\phi a_{i}\right)=\phi \frac{\partial a_{i}}{\partial x_{i}}+a_{i} \frac{\partial \phi}{\partial x_{i}} \tag{2}
\end{equation*}
$$

Which, putting back into vector notation, gives:

$$
\begin{equation*}
\nabla(\phi \mathbf{a})=\phi(\nabla \cdot \mathbf{a})+(\mathbf{a} \cdot \nabla) \phi \tag{3}
\end{equation*}
$$

1.2 Use the Divergence Theorem to Prove That $\left\{\int_{V} \nabla \phi d V=\int_{S} \phi \mathbf{n} d S\right\}$

Now, the divergence theorem is:

$$
\begin{equation*}
\int_{V} \nabla \cdot \mathbf{a} d V=\int_{S} \mathbf{a} \cdot \mathbf{n} d S \tag{4}
\end{equation*}
$$

Now, let $\mathbf{a}=\phi \mathbf{c}$, where \mathbf{c} is an arbitrary constant vector. Thus:

$$
\begin{align*}
\nabla \cdot \mathbf{a}=\nabla \cdot(\phi \mathbf{c}) & =\phi(\nabla \cdot \mathbf{c})+(\mathbf{c} \cdot \nabla) \phi \tag{5}\\
& =(\mathbf{c} \cdot \nabla) \phi \tag{6}
\end{align*}
$$

Thus, (4) becomes:

$$
\begin{align*}
\int_{V}(\mathbf{c} \cdot \nabla) \phi d V & =\int_{S} \phi \mathbf{c} \cdot \mathbf{n} d S \tag{7}\\
\Rightarrow \mathbf{c} \cdot \int_{V} \nabla \phi d V & =\mathbf{c} \cdot \int_{S} \phi \mathbf{n} d S \tag{8}\\
\Rightarrow \int_{V} \nabla \phi d V & =\int_{S} \phi \mathbf{n} d S \tag{9}
\end{align*}
$$

Thus proven.
1.3 Prove $\{\nabla \times(\phi \mathbf{a})=\phi(\nabla \times \mathbf{a})+(\nabla \phi) \times \mathbf{a}\}$

Now, looking at the LHS of:

$$
\begin{equation*}
\nabla \times(\phi \mathbf{a})=\phi(\nabla \times \mathbf{a})+(\nabla \phi) \times \mathbf{a} \tag{10}
\end{equation*}
$$

We have that the i-component is:

$$
\begin{equation*}
\nabla \times\left.(\phi \mathbf{a})\right|_{i}=\frac{\partial}{\partial y}\left(\phi a_{3}\right)-\frac{\partial}{\partial z}\left(\phi a_{2}\right) \tag{11}
\end{equation*}
$$

Which can be expanded by the chain rule:

$$
\begin{align*}
\nabla \times\left.(\phi \mathbf{a})\right|_{i} & =\phi \frac{\partial a_{3}}{\partial y}+a_{3} \frac{\partial \phi}{\partial y}-\phi \frac{\partial a_{2}}{\partial z}-a_{2} \frac{\partial \phi}{\partial z} \tag{12}\\
& =\phi\left(\frac{\partial a_{3}}{\partial y}-\frac{\partial a_{2}}{\partial z}\right)+\left(a_{3} \frac{\partial \phi}{\partial y}-a_{2} \frac{\partial \phi}{\partial z}\right) \tag{13}\\
& =\left.\phi(\nabla \times \mathbf{a})\right|_{i}+(\nabla \phi) \times\left.\mathbf{a}\right|_{i} \tag{14}
\end{align*}
$$

All other components will be similar. Thus, we have proven:

$$
\begin{equation*}
\nabla \times(\phi \mathbf{a})=\phi(\nabla \times \mathbf{a})+(\nabla \phi) \times \mathbf{a} \tag{15}
\end{equation*}
$$

1.4 Prove $\left\{\mathbf{u} \times \nabla \times \mathbf{u}=\nabla\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}\right)-(\mathbf{u} \cdot \nabla) \mathbf{u}\right\}$

Now, looking at the i-component of $\mathbf{u} \times \nabla \times \mathbf{u}$, we have:

$$
\begin{align*}
\mathbf{u} \times \nabla \times\left.\mathbf{u}\right|_{i} & =v\left(\frac{\partial w}{\partial z}-\frac{\partial v}{\partial z}\right)+w\left(\frac{\partial w}{\partial x}-\frac{\partial u}{\partial z}\right) \tag{16}\\
& =\left(u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial x}+w \frac{\partial w}{\partial x}\right)-\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right) \tag{17}\\
& =\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}+\frac{1}{2} v^{2}+\frac{1}{2} w^{2}\right)-(\mathbf{u} \cdot \nabla) u \tag{18}
\end{align*}
$$

Thus, all other components will work similarly to prove:

$$
\begin{equation*}
\mathbf{u} \times \nabla \times \mathbf{u}=\nabla\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}\right)-(\mathbf{u} \cdot \nabla) \mathbf{u} \tag{19}
\end{equation*}
$$

2 Derivations

2.1 Streamlines

Consider the section of a streamline. We have one coordinate at \mathbf{x}, another at $\mathbf{x}+\delta \mathbf{x}$; with velocites at each given by \mathbf{u} and $\mathbf{u}+\delta \mathbf{u}$. Thus, as $\delta \mathbf{x} \rightarrow 0, \delta \mathbf{x}$ and \mathbf{u} become more and more parallel. Thus, a streamline will have \mathbf{u} as a tangent vector:

$$
\begin{align*}
\delta \mathbf{x} & \propto \mathbf{u} \tag{20}\\
\Rightarrow d \mathbf{x} & =k \mathbf{u} \tag{21}\\
\Rightarrow(d x, d y, d z) & =k(u, v, w) \tag{22}
\end{align*}
$$

Thus, we have the equation for a streamline:

$$
\begin{equation*}
\frac{d x}{u}=\frac{d y}{v}=\frac{d z}{w} \tag{23}
\end{equation*}
$$

When $u=v=w=0$ we have stagnation points; and are the only places where streamlines cross.

2.2 Particle Path

The Lagrangian description yields:

$$
\begin{align*}
\mathbf{u} & =\frac{d \mathbf{x}}{d t} \tag{24}\\
& \Rightarrow \tag{25}\\
\frac{d x}{d t}=u \quad \frac{d y}{d t} & =v \quad \frac{d z}{d t}=w \tag{26}
\end{align*}
$$

If the velocity flow is not a function of time (i.e. is a steady flow), then the streamlines are the same as the particle paths.

2.2.1 Proof of Streamline and Particle Path Coincidence for Steady Flows

Now:

$$
\begin{align*}
& u=\frac{d x}{d t} \tag{27}\\
& \Rightarrow \int_{x_{0}}^{x} \frac{d x}{u}=\int_{t_{0}}^{t} d t \tag{28}
\end{align*}
$$

Which can only be done is u is not a function of time.
Now:

$$
\begin{equation*}
\int_{t_{0}}^{t} d t=t-t_{0} \tag{29}
\end{equation*}
$$

It follows that:

$$
\begin{equation*}
\int_{x_{0}}^{x} \frac{d x}{u}=\int_{y_{0}}^{y} \frac{d y}{v}=\int_{z_{0}}^{z} \frac{d z}{w}=t-t_{0} \tag{30}
\end{equation*}
$$

Now, differentiating w.r.t x, say:

$$
\begin{align*}
\frac{d}{d x} \int_{x_{0}}^{x} \frac{d x}{u}=\frac{1}{u} & =\frac{d}{d x} \int_{y_{0}}^{y} \frac{d y}{v} \tag{31}\\
& =\frac{d y}{d x} \frac{d}{d y} \int_{y_{0}}^{y} \frac{d y}{v} \tag{32}\\
& =\frac{1}{v} \frac{d y}{d x} \tag{33}\\
& =\frac{1}{w} \frac{d z}{d x} \tag{34}
\end{align*}
$$

That is:

$$
\begin{equation*}
\frac{1}{u}=\frac{1}{v} \frac{d y}{d x}=\frac{1}{w} \frac{d z}{d x} \tag{35}
\end{equation*}
$$

Which is back to the streamline equation:

$$
\begin{equation*}
\frac{d x}{u}=\frac{d y}{v}=\frac{d z}{w} \tag{36}
\end{equation*}
$$

2.3 The Material Derivative $\frac{D}{D t}$

Now, if we have the density as

$$
\begin{equation*}
\rho=\rho(x, y, x, t) \tag{37}
\end{equation*}
$$

Then, for small changes we have:

$$
\begin{equation*}
\delta \rho=\frac{\partial \rho}{\partial t} \delta t+\frac{\partial \rho}{\partial x_{i}} \delta x_{i} \tag{38}
\end{equation*}
$$

And, dividing by δt, and taking the limit $\delta t \rightarrow 0$:

$$
\begin{equation*}
\lim _{\delta t \rightarrow 0}\left(\frac{\delta \rho}{\delta t}\right)=\frac{\partial \rho}{\partial t}+\lim _{\delta t \rightarrow 0}\left(\frac{\delta x_{i}}{\delta t}\right) \tag{39}
\end{equation*}
$$

And, we have that:

$$
\begin{align*}
\lim _{\delta t \rightarrow 0}\left(\frac{\delta x_{i}}{\delta t}\right) & =\frac{\partial x_{i}}{\partial t} \tag{40}\\
& =u_{i} \tag{41}
\end{align*}
$$

And, we define the LHS of (39) as the material derivative:

$$
\begin{equation*}
\frac{D \rho}{D t} \equiv \lim _{\delta t \rightarrow 0}\left(\frac{\delta \rho}{\delta t}\right) \tag{42}
\end{equation*}
$$

Hence, putting all this together, (39) can be written as:

$$
\begin{equation*}
\frac{D \rho}{D t}=\frac{\partial \rho}{\partial t}+u_{i} \frac{\partial \rho}{\partial x_{i}} \tag{43}
\end{equation*}
$$

Which is equivalent to:

$$
\begin{equation*}
\frac{D \rho}{D t}=\frac{\partial \rho}{\partial t}+(\mathbf{u} \cdot \nabla) \rho \tag{44}
\end{equation*}
$$

So, the material derivative itself is:

$$
\begin{equation*}
\frac{D}{D t}=\frac{\partial}{\partial t}+(\mathbf{u} \cdot \nabla) \tag{45}
\end{equation*}
$$

Notice that it is an operator.

2.4 Integral Form of the Continuity Equation

The mass in a volume V is:

$$
\begin{equation*}
\int_{V} \rho d V \tag{46}
\end{equation*}
$$

Hence, the rate of change of mass in V is:

$$
\begin{equation*}
\frac{d}{d t} \int_{V} \rho d V=\int_{V} \frac{\partial \rho}{\partial t} d V \tag{47}
\end{equation*}
$$

The rate of mass flow out of V, through a bounding closed surface S is;

$$
\begin{equation*}
\int_{S} \rho \mathbf{u} \cdot \mathbf{n} d S \tag{48}
\end{equation*}
$$

Hence, if mass is conserved,(47) and (48) must balance:

$$
\begin{equation*}
\int_{V} \frac{\partial \rho}{\partial t} d V=-\int_{S} \rho \mathbf{u} \cdot \mathbf{n} d S \tag{49}
\end{equation*}
$$

Which is the integral form of the continuity equation

2.5 Derivative Form of the Continuity Equation

Starting with the divergence theorem, and the integral form of the continuity equation:

$$
\begin{align*}
\int_{V}(\nabla \cdot \mathbf{a}) d V & =\int_{S} \mathbf{a} \cdot \mathbf{n} d S \tag{50}\\
\int_{V} \frac{\partial \rho}{\partial t} d V & =-\int_{S} \rho \mathbf{u} \cdot \mathbf{n} d S \tag{51}
\end{align*}
$$

Now, the RHS of (51), using (50) becomes:

$$
\begin{equation*}
\int_{S} \rho \mathbf{u} \cdot \mathbf{n} d S=\int_{V} \nabla \cdot(\rho \mathbf{u}) d V \tag{52}
\end{equation*}
$$

Now, expanding out the divergence in the RHS of (52), by vector calculus:

$$
\begin{equation*}
\nabla \cdot(\rho \mathbf{u})=\rho(\nabla \cdot \mathbf{u})+(\mathbf{u} \cdot \nabla) \rho \tag{53}
\end{equation*}
$$

Hence, (52) becomes:

$$
\begin{equation*}
\int_{S} \rho \mathbf{u} \cdot \mathbf{n} d S=\int_{V}\{\rho(\nabla \cdot \mathbf{u})+(\mathbf{u} \cdot \nabla) \rho\} d V \tag{54}
\end{equation*}
$$

Now, putting (54) into (51); bringing everything over to the other side \& putting under a single integral:

$$
\begin{equation*}
\int_{V} \frac{\partial \rho}{\partial t}+\rho(\nabla \cdot \mathbf{u})+(\mathbf{u} \cdot \nabla) \rho d V=0 \tag{55}
\end{equation*}
$$

Now, the volume V can be shrunk down to a point, hence the integrand is zero:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\rho(\nabla \cdot \mathbf{u})+(\mathbf{u} \cdot \nabla) \rho=0 \tag{56}
\end{equation*}
$$

We notice elements of the material derivative:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+(\mathbf{u} \cdot \nabla) \rho \equiv \frac{D \rho}{D t} \tag{57}
\end{equation*}
$$

Hence, we have:

$$
\begin{equation*}
\frac{D \rho}{D t}+\rho(\nabla \cdot \mathbf{u})=0 \tag{58}
\end{equation*}
$$

Which is the pointwise (derivative) form of the continuity equation.

2.6 Hydrostatic Equilibrium

Now, suppose there is a body force $\mathbf{F}(\mathbf{x}, t)$ per unit mass. Thus, the total body force is:

$$
\begin{equation*}
\int_{V} \rho \mathbf{F} d V \tag{59}
\end{equation*}
$$

The internal pressure force is:

$$
\begin{equation*}
-\int_{S} p \mathbf{n} d S \tag{60}
\end{equation*}
$$

If the system is in equilibrium, (59) and (60) must balance. Hence:

$$
\begin{equation*}
\int_{V} \rho \mathbf{F} d V=\int_{S} p \mathbf{n} d S \tag{61}
\end{equation*}
$$

Now, if we use the divergence theorem in the form:

$$
\begin{equation*}
\int_{V} \nabla \phi d V=\int_{S} \phi \mathbf{n} d S \tag{62}
\end{equation*}
$$

the RHS of (61) becomes:

$$
\begin{equation*}
\int_{S} p \mathbf{n} d S=\int_{V} \nabla p d V \tag{63}
\end{equation*}
$$

Hence, (61) becomes:

$$
\begin{equation*}
\int_{V} \rho \mathbf{F}-\nabla p d V=0 \tag{64}
\end{equation*}
$$

Again, we can shrink the volume down to a point, giving the equation for hydrostatic equlibrium:

$$
\begin{equation*}
\rho \mathbf{F}=\nabla p \tag{65}
\end{equation*}
$$

2.7 Euler's Equation

Now, if we start from Newtons $2^{\text {nd }}$ law:

$$
\begin{equation*}
\mathbf{F}=\frac{d \mathbf{p}}{d t}=\frac{d}{d t}(m \mathbf{u}) \tag{66}
\end{equation*}
$$

The fluid analogue is:

$$
\begin{equation*}
\frac{d}{d t}\left(\int_{V} \mathbf{u} \rho d V\right)=-\int_{S} \rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d S+\int_{V} \rho \mathbf{F}-\nabla p d V \tag{67}
\end{equation*}
$$

That is, the rate of change of momentum is mass flux in, plus the resultant force. Now, if we look at the middle integral in (67):

$$
\begin{equation*}
\int_{S} \rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d S=\left(\int_{S} \rho u(\mathbf{u} \cdot \mathbf{n}) d S, \int_{S} \rho v(\mathbf{u} \cdot \mathbf{n}) d S, \int_{S} \rho w(\mathbf{u} \cdot \mathbf{n}) d S\right) \tag{68}
\end{equation*}
$$

Using the divergence theorem (50) on one of the components of (68):

$$
\begin{equation*}
\int_{S} \rho u(\mathbf{u} \cdot \mathbf{n}) d S=\int_{V} \nabla \cdot(\rho u \mathbf{u}) d V \tag{69}
\end{equation*}
$$

Which, upon expansion of the RHS of (69) gives:

$$
\begin{equation*}
\int_{V} \nabla \cdot(\rho u \mathbf{u}) d V=\int_{V}\{u \nabla \cdot(\rho \mathbf{u})+\rho(\mathbf{u} \cdot \nabla) u\} d V \tag{70}
\end{equation*}
$$

And, doing this for all components of (68), the middle integral in (67) becomes:

$$
\begin{equation*}
\left.\int_{S} \rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d S=\int_{V}\{\mathbf{u}(\nabla \cdot(\rho \mathbf{u}))+\rho(\mathbf{u} \cdot \nabla) \mathbf{u})\right\} d V \tag{71}
\end{equation*}
$$

Hence, (67) becomes:

$$
\begin{equation*}
\int_{V}\left(\rho \frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \frac{\partial \rho}{\partial t}+\mathbf{u}(\nabla \cdot \rho \mathbf{u})+\rho(\mathbf{u} \cdot \nabla) \mathbf{u}-\rho \mathbf{F}+\nabla p\right) d V=0 \tag{72}
\end{equation*}
$$

Now, notice that some components can be simplified:

$$
\begin{align*}
\rho \frac{\partial \mathbf{u}}{\partial t}+\rho(\mathbf{u} \cdot \nabla) \mathbf{u} & =\rho \frac{D \mathbf{u}}{D t} \tag{73}\\
\mathbf{u}\left(\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \mathbf{u}\right) & =0 \tag{74}
\end{align*}
$$

(74) by the continuity equation (58). After doing these simplifications, and shrinking the volume V down to a point, we have that (72) becomes:

$$
\begin{equation*}
\rho \frac{D \mathbf{u}}{D t}-\rho \mathbf{F}+\nabla p=0 \tag{75}
\end{equation*}
$$

Or, rearanging:

$$
\begin{equation*}
\frac{D \mathbf{u}}{D t}=\mathbf{F}-\frac{1}{\rho} \nabla p \tag{76}
\end{equation*}
$$

Which is known as Euler's equation.

2.8 Bernoulli's Equation

Starting with Euler's equation:

$$
\begin{equation*}
\frac{D \mathbf{u}}{D t}=\mathbf{F}-\frac{1}{\rho} \nabla p \tag{77}
\end{equation*}
$$

Now, under the assumption that ρ is barotropic $\Rightarrow \rho=\rho(p)$, we have:

$$
\begin{align*}
\frac{1}{\rho} \nabla p & =\frac{1}{\rho} \frac{\partial p}{\partial x_{i}} \tag{78}\\
& =\frac{d}{d p}\left(\int \frac{d p}{\rho}\right) \frac{\partial p}{\partial x_{i}} \tag{79}\\
& =\frac{\partial}{\partial x_{i}} \int \frac{d p}{\rho} \tag{80}\\
& =\nabla\left(\int \frac{d p}{\rho}\right) \tag{81}\\
\Rightarrow \frac{1}{\rho} \nabla p & =\nabla\left(\int \frac{d p}{\rho}\right) \tag{82}
\end{align*}
$$

Under the assumption that \mathbf{F} is a conservative force, we can write an associated scalar potential:

$$
\begin{equation*}
\mathbf{F}=-\nabla \Omega \tag{83}
\end{equation*}
$$

Under the assumption that \mathbf{u} is a steady flow $\left(\Rightarrow \frac{\partial \mathbf{u}}{\partial t}=0\right)$, the material derivative compresses to:

$$
\begin{equation*}
\frac{D \mathbf{u}}{D t}=(\mathbf{u} \cdot \nabla) \mathbf{u} \tag{84}
\end{equation*}
$$

Now, there is a vector identity:

$$
\begin{equation*}
(\mathbf{u} \cdot \nabla) \mathbf{u}=\nabla\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}\right)-\mathbf{u} \times \nabla \times \mathbf{u} \tag{85}
\end{equation*}
$$

We shall define the vorticity $\omega \equiv \nabla \times \mathbf{u}$.
Hence, putting (85) on the LHS of (77); and using (82) and (83) on the RHS of (77), we have:

$$
\begin{equation*}
\nabla\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}+\int \frac{d p}{\rho}+\Omega\right)=\mathbf{u} \times \omega \tag{86}
\end{equation*}
$$

Now, if the flow is irrotational, i.e. $\omega=0$, then the object in the grad is a constant. Hence:

$$
\begin{equation*}
\frac{1}{2} \mathbf{u} \cdot \mathbf{u}+\int \frac{d p}{\rho}+\Omega=\text { const } \tag{87}
\end{equation*}
$$

Which is known as Bernoulli's equation.

3 Complex Potential

We define vorticity as $\omega \equiv \nabla \times \mathbf{u}$. Now, if a flow is irrotational, then:

$$
\begin{equation*}
\omega=\nabla \times \mathbf{u}=0 \tag{88}
\end{equation*}
$$

Hence, we can introduce some scalar potential:

$$
\begin{equation*}
\mathbf{u}=\nabla \phi \quad \Rightarrow \quad \nabla \times \nabla \phi=0 \tag{89}
\end{equation*}
$$

If a flow is incompressible, then:

$$
\begin{equation*}
\nabla \cdot \mathbf{u}=0 \quad \Rightarrow \quad \nabla \cdot \nabla \phi=\nabla^{2} \phi=0 \tag{90}
\end{equation*}
$$

That is, in a 2D incompressible flow, with $\mathbf{u}=(u, v)$:

$$
\begin{equation*}
\nabla \cdot \mathbf{u}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{91}
\end{equation*}
$$

Now, if we let:

$$
\begin{align*}
u & =\frac{\partial \psi}{\partial y} \tag{92}\\
v & =-\frac{\partial \psi}{\partial x} \tag{93}
\end{align*}
$$

Then:

$$
\begin{align*}
\nabla \cdot \mathbf{u} & =\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \tag{94}\\
& =\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial y}\right)+\frac{\partial}{\partial y}\left(-\frac{\partial \psi}{\partial x}\right) \tag{95}\\
& =0 \tag{96}
\end{align*}
$$

Hence, with this condition for the stream function ψ, the condition for incompressibility is satisfied. The same is true for the divergence expressed in plane- or spherical-polars.
Now, for a 2D irrotational flow, we have $\mathbf{u}=(u, v)=\left(\frac{\partial \psi}{\partial y},-\frac{\partial \psi}{\partial x}\right)$:

$$
\begin{align*}
\omega & =\nabla \times \mathbf{u} \tag{97}\\
& =-\mathbf{k}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}\right) \tag{98}\\
& =0 \tag{99}\\
\Rightarrow \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}} & =\nabla^{2} \psi=0 \tag{100}
\end{align*}
$$

Thus, Laplace's equation is satisfied for both the stream function ψ, and scalar potential ϕ, in an incompressible, irrotational 2D flow.
Notice:

$$
\begin{align*}
& u=\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} \tag{101}\\
& v=\frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x} \tag{102}
\end{align*}
$$

That is:

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} \tag{103}\\
& \frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x} \tag{104}
\end{align*}
$$

Which are the Cauchy-Riemann equations.
That is, there exists an analytic complex function $w(z)=\phi+i \psi$. This is known as the complex potential.

$$
\begin{equation*}
w(z)=\phi+i \psi \tag{105}
\end{equation*}
$$

Lines on which $\Im\{w(z)\}=\psi=$ const are streamlines.
Also notice:

$$
\begin{align*}
\nabla^{2} w & =\nabla^{2}(\phi+i \psi) \tag{106}\\
& =\nabla^{2} \phi+i \nabla^{2} \psi \tag{107}\\
& =0 \tag{108}\\
\Rightarrow \nabla^{2} w & =0 \tag{109}
\end{align*}
$$

Now, we can derive a complex velocity, given that the complex potential is only a function of z, and not its conjugate:

$$
\begin{equation*}
\frac{d w}{d z}=u-i v \tag{110}
\end{equation*}
$$

3.1 Special 2D Flows

3.1.1 Uniform Stream

Suppose we have a uniform flow of speed U, inclined at an angle α to the x-axis. Thus, the velocity vector is:

$$
\begin{equation*}
\mathbf{u}=(U \cos \alpha, U \sin \alpha)=(u, v) \tag{111}
\end{equation*}
$$

Now, the complex velocity is given by:

$$
\begin{align*}
\frac{d w}{d z} & =u-i v \tag{112}\\
& =U \cos \alpha-i U \sin \alpha \tag{113}\\
& =U e^{-i \alpha} \tag{114}\\
\Rightarrow \frac{d w}{d z} & =U e^{-i \alpha} \tag{115}\\
\Rightarrow d w & =U e^{-i \alpha} d z \tag{116}
\end{align*}
$$

Thus, integrating, we have the complex potential for a uniform flow, of strength U, inclined by an angle α to the x-axis:

$$
\begin{equation*}
w(z)=U z e^{-i \alpha} \tag{117}
\end{equation*}
$$

3.1.2 Source

We look at a source of strength m, at the origin.
At any radius, mass flux must be the same:

$$
\begin{equation*}
2 \pi r U=m \tag{118}
\end{equation*}
$$

The velocity field is also purely radial. Hence, we have:

$$
\begin{align*}
\frac{d w}{d z} & =u-i v \tag{119}\\
& =U \cos \theta-U i \sin \theta \tag{120}\\
& =U e^{-i \theta} \tag{121}\\
& =\frac{U}{e^{i \theta}} \tag{122}\\
& =\frac{m}{2 \pi r e^{i \theta}} \tag{123}\\
& =\frac{m}{2 \pi z} \tag{124}\\
\Rightarrow d w & =\frac{m}{2 \pi z} d z \tag{125}
\end{align*}
$$

Hence, integrating, we have an expression for the complex potential of a source at the origin:

$$
\begin{equation*}
w(z)=\frac{m}{2 \pi} \log z \tag{126}
\end{equation*}
$$

Which may be easily generalised to a source of strength m, at $z=z_{0}$:

$$
\begin{equation*}
w(z)=\frac{m}{2 \pi} \log \left(z-z_{0}\right) \tag{127}
\end{equation*}
$$

If $m<0$, then we have a sink.

3.1.3 Vortex

Here, the velocity field is purely tangential. Again, we have that the mass flux through any radius is constant $2 \pi r V=k$. So:

$$
\begin{align*}
\mathbf{u} & =V \hat{\theta} \tag{128}\\
& =(-V \sin \theta, V \cos \theta) \tag{129}\\
\Rightarrow \frac{d w}{d z} & =-i V(\cos \theta-i \sin \theta) \tag{130}\\
& =-i V e^{-i \theta} \tag{131}
\end{align*}
$$

Thus, along a very similar argument for the source: for a vortex, at $z=z_{0}$, we have the complex potential:

$$
\begin{equation*}
w(z)=-\frac{i k}{2 \pi} \log \left(z-z_{0}\right) \tag{132}
\end{equation*}
$$

Convention: if $k>0$, then vortex is anti-clockwise; $k<0$ for clockwise.

3.1.4 Dipole Flow

Suppose we put a source and a sink very close together, with the source at $z=\delta e^{i \alpha}$:

$$
\begin{align*}
w(z) & =\frac{m}{2 \pi} \log \left(z-\delta e^{i \alpha}\right)-\frac{m}{2 \pi} \log z \tag{133}\\
& =\frac{m}{2 \pi} \log \left(1-\frac{\delta e^{i \alpha}}{z}\right) \tag{134}
\end{align*}
$$

Now, bring the two very close together: $\delta \rightarrow 0$, and $m \delta \equiv \mu$ be constant. Using the following Taylor expansion:

$$
\begin{equation*}
\log (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\ldots \tag{135}
\end{equation*}
$$

We have:

$$
\begin{align*}
w(z) & =\frac{m}{2 \pi}\left(-\frac{\delta e^{i \alpha}}{z}-\frac{\delta^{2} e^{2 i \alpha}}{2 z^{2}}-\ldots\right) \tag{136}\\
& =-\frac{\mu}{2 \pi}\left(\frac{e^{i \alpha}}{z}+\frac{\delta e^{2 i \alpha}}{2 z^{2}}+\ldots\right) \tag{137}
\end{align*}
$$

Which, as $\delta \rightarrow 0$, tends to the complex potential for a dipole at $z=z_{0}$, inclined at an angle α to the x-axis:

$$
\begin{equation*}
w(z)=-\frac{\mu e^{i \alpha}}{2 \pi\left(z-z_{0}\right)} \tag{138}
\end{equation*}
$$

3.1.5 Flow in a Corner

For a corner of angle m, we purely have:

$$
\begin{equation*}
w(z)=A z^{m}=A r e^{i m \theta} \tag{139}
\end{equation*}
$$

3.2 Circle Theorem

If $w=f(z)$ is a given flow, and if a circle is placed in the flow at the origin, with a radius $|z|=a$, then, under the assumption that $f(z)$ is analytic inside and on the circle, the new potential is:

$$
\begin{equation*}
w(z)=f(z)+\bar{f}\left(\frac{a^{2}}{z}\right) \tag{140}
\end{equation*}
$$

For example:
Uniform flow past a circle, with $\alpha=0$:

$$
\begin{align*}
f(z) & =U z \tag{141}\\
\Rightarrow \bar{f}(z) & =U z \tag{142}\\
\bar{f}\left(\frac{a^{2}}{z}\right) & =\frac{U a^{2}}{z} \tag{143}
\end{align*}
$$

Thus:

$$
\begin{align*}
w(z) & =f(z)+\bar{f}\left(\frac{a^{2}}{z}\right) \tag{144}\\
& =U z+\frac{U a^{2}}{z} \tag{145}\\
& =U\left(r e^{i \theta}+\frac{a^{2}}{r} e^{-i \theta}\right) \tag{146}
\end{align*}
$$

Thus, the streamlines are on:

$$
\begin{align*}
\Im\{w(z)\}=\psi & =U\left(r \sin \theta-\frac{a^{2}}{r} \sin \theta\right) \tag{147}\\
& =U \sin \theta\left(r-\frac{a^{2}}{r}\right) \tag{148}\\
& =\text { const } \tag{149}
\end{align*}
$$

Notice, that for $\psi=0$, we have $r=a$. So that flow on the surface of the circle is a streamline.

