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We consider velocities u = (u,v,w). The Lagrangian description tracks particular particles;

whereas the Eulerian description looks at a window in space.

1 Proofs

1.1 Prove {V(¢a) = ¢(V -a) + (a- V)¢}

Starting with:

V(ga) = ¢(V-a)+(a- V)¢
Now, in suffix notation, using the chain rule for differentiation:

0 Oa; 0o

%(d’ai) = ¢8xi + %

Which, putting back into vector notation, gives:

V(¢a) = ¢(V-a)+(a-V)o

1.2 Use the Divergence Theorem to Prove That {[, V¢ dV = [;¢n dS}

Now, the divergence theorem is:

/V-adV:/a‘ndS
1% S

Now, let a = ¢c, where c is an arbitrary constant vector. Thus:

Vioa=V-(de) = 6(V-c)+(c V)o
= (c-V)9

Thus, (4) becomes:
/V(C-V)¢dV = /S¢c-ndS
=>c-/VV¢dV = c-/SqﬁndS
é/VVqﬁdV = /SqﬁndS

Thus proven.

1.3 Prove {V x (¢a) = ¢(V x a) + (V¢) x a}

Now, looking at the LHS of:

V x(¢a) = ¢(V xa)+ (Vo) xa



We have that the i-component is:

0
i= 5

Which can be expanded by the chain rule:

V x (Ga)ls = ~-(d0s) — o-(ax)

V x (¢a)|z = (biy +a3— — = —as—

0 oy 0z 0z
g (0m w90 9
— (l)(ay 82’>+<a38y agaz

= ¢(Vxa)li+ (Vo) x al;
All other components will be similar. Thus, we have proven:

V x(¢a) = ¢(V x a)+ (Vo) xa

1.4 Prove {uxVxu=V(zu-u)—(u-V)u}

Now, looking at the i-component of u x V x u, we have:

ow Ov ow Ou
u><V><u|i = /U<_>+’LU<—)

0z 0z oz 0z
_ (3“+ o ‘3’“))_( ou  Ou
= "oz " r T Yox oz '
_ 91, 1, 1 2)
Oz <2 tou oW (- Vyu

Thus, all other components will work similarly to prove:

uxqu:V(%u-u)—(u~V)u

2 Derivations

2.1 Streamlines

)

Consider the section of a streamline. We have one coordinate at x, another at x + dx; with velocites
at each given by u and u + du. Thus, as dx — 0, dx and u become more and more parallel. Thus,

a streamline will have u as a tangent vector:

0X o« u
=dx = ku
= (dz,dy,dz) = k(u,v,w)
Thus, we have the equation for a streamline:
de _dy _ dz

u v w

—
[NV
—_

~—

(23)

When u = v = w = 0 we have stagnation points; and are the only places where streamlines cross.



2.2 Particle Path

The Lagrangian description yields:

dx
= — 24
u I (24)
= (25)
dx dy dz

If the velocity flow is not a function of time (i.e. is a steady flow), then the streamlines are the
same as the particle paths.

2.2.1 Proof of Streamline and Particle Path Coincidence for Steady Flows

Now:
dx
- 2
u g7 (27)
x t
[ at (28)
g U to
Which can only be done is u is not a function of time.
Now:
t
dt =t —t (29)
to
It follows that:
zd vd zd
—xz/—y:/—zzt—to (30)
zo U yo U 2z W
Now, differentiating w.r.t x, say:
d [*d 1 d [Yd
L / 4y (31)
dx Jzy u U dzx Jy, v
dy d [Yd
_ e may (32)
dr dy Jy, v
1dy
= —— 33
vdz (33)
1dz
= —— 34
wdz (34)
That is:
1 1dy 1dz
B Al 35
v vdr wdr (35)
Which is back to the streamline equation:
d d d
dv _dy _ dz (36)
U v w



2.3 The Material Derivative D%

Now, if we have the density as
p=plz.y,zt)
Then, for small changes we have:

_Op dp
= Eét + o,

And, dividing by §t, and taking the limit 6t — 0:

op

51'1'

. dp\ _ Op . ox;
Ay <5t> = T, <5t

And, we have that:

im (— | =
5t—0 \ ot ot
= Uz’
And, we define the LHS of (39) as the material derivative:
Dp _ .. ( 5/))
— = lim | =
Dt 5t—0 \ Ot
Hence, putting all this together, (39) can be written as:

Do _p . 9p
Dt ot " Ox;

Which is equivalent to:
Dp_

Dt ~ar TV
So, the material derivative itself is:
D

Notice that it is an operator.

2.4 Integral Form of the Continuity Equation

/ pdV
1%
Hence, the rate of change of mass in V is:

d ap
Ll pav=[2Lav
dt /Vp v /V ot

6

The mass in a volume V is:

(46)

(47)



The rate of mass flow out of V', through a bounding closed surface S is;

/Spu -ndS (48)

Hence, if mass is conserved,(47) and (48) must balance:

/(%dV:—/pu-ndS (49)
v Ot s

Which is the integral form of the continuity equation

2.5 Derivative Form of the Continuity Equation

Starting with the divergence theorem, and the integral form of the continuity equation:

/(v-a)dv _ /a~ndS (50)
\%4 S
/8pdV = — [ pu-ndS (51)
v Ot s
Now, the RHS of (51), using (50) becomes:
/pu-ndS:/V-(pu)dV (52)
S 1%
Now, expanding out the divergence in the RHS of (52), by vector calculus:
V- (pu) =p(V-u)+(u-V)p (53)
Hence, (52) becomes:
/pu-ndS:/ {p(V-u)+ (u-V)p}dV (54)
S \%

Now, putting (54) into (51); bringing everything over to the other side & putting under a single
integral:

0
P p(V-u)+ (u-V)pdV =0 (55)
v Ot
Now, the volume V can be shrunk down to a point, hence the integrand is zero:
dp
a%—p(v-u)—i—(u-V)p:O (56)
We notice elements of the material derivative:
ap _Dp
g—l—(u-V)p: Di (57)
Hence, we have:
Dp

Which is the pointwise (derivative) form of the continuity equation.



2.6 Hydrostatic Equilibrium

Now, suppose there is a body force F(x,t) per unit mass. Thus, the total body force is:

/ oF dV
1%

—/pndS
s

If the system is in equilibrium, (59) and (60) must balance. Hence:

/deV:/pndS
\%4 S

Now, if we use the divergence theorem in the form:

/VngdV:/SgbndS

The internal pressure force is:

the RHS of (61) becomes:

/pndS:/ VpdV
S \%

Hence, (61) becomes:

/pF—vpdvzo
1%

(59)

(64)

Again, we can shrink the volume down to a point, giving the equation for hydrostatic equlibrium:

pF = Vp
2.7 Euler’s Equation
Now, if we start from Newtons 2" law:
L _d
Tt a

The fluid analogue is:

d(/ updV):—/pu(u-n)dS—i—/pF—VpdV
dt \Jv S v

That is, the rate of change of momentum is mass flux in, plus the resultant force.
Now, if we look at the middle integral in (67):

/Spu(u-n) ds = (/Spu(u-n) dS,/S,ov(u-n) dS,/Spw(u-n) dS)

8

(65)

(66)



Using the divergence theorem (50) on one of the components of (68):
/ pu(u-n)dS = / V- (puu) dV
S \%
Which, upon expansion of the RHS of (69) gives:

/ V- (puu) dV = / {uV - (pu) + p(u- V)u} dV

And, doing this for all components of (68), the middle integral in (67) becomes:

/puu n) ds — /{u )) + p(u-V)u)} dV

Hence, (67) becomes:

0 0
/ < 81:+u8§—I—u(V-pu)+p(u-V)u—pF+Vp) dvV =0
Now, notice that some components can be simplified:

Du

pat i

dp
<8t+v pu) =0

+p(u-Viju =

(72)

(73)

(74)

(74) by the continuity equation (58). After doing these simplifications, and shrinking the volume

V down to a point, we have that (72) becomes:

D
p—ltl—pF+Vp:0

D
Or, rearanging:

Du 1
—=F—--V
Dt p P
Which is known as Euler’s equation.
2.8 Bernoulli’s Equation
Starting with Euler’s equation:
Du 1
—=F—--V
Dt p P
Now, under the assumption that p is barotropic = p = p(p), we have:
1 10
“Vp = = p
p p Ox;
_ ° ( / dp> Op
~ dp p ) Ox;
_ 0 [dp
B Ox; P

-+ (/9
- - </

9

(75)

(76)



Under the assumption that F is a conservative force, we can write an associated scalar potential:
F=-VQ (83)

Under the assumption that u is a steady flow (= %—;‘ = 0), the material derivative compresses to:

D
—Dltl =(u-V)u (84)
Now, there is a vector identity:
1
(u-V)u:V(§u-u)—uxqu (85)

We shall define the vorticity w =V x u.
Hence, putting (85) on the LHS of (77); and using (82) and (83) on the RHS of (77), we have:

1 d
V(u-u+/p+Q>—uxw (86)
2 p
Now, if the flow is irrotational, i.e. w = 0, then the object in the grad is a constant. Hence:
1 d
5u-u+/—p+§2:const (87)
p

Which is known as Bernoulli’s equation.

3 Complex Potential

We define vorticity as w = V x u. Now, if a flow is irrotational, then:
w=Vxu=0 (88)
Hence, we can introduce some scalar potential:
u=Ve = VxV¢p=0 (89)
If a flow is incompressible, then:
V-u=0 = V-Vo=V2p=0 (90)

That is, in a 2D incompressible flow, with u = (u, v):

ou  Ov
V-u—fax—i-fay—o (91)
Now, if we let:
_ W
v = 5 (92)
_ 9
VT T (93)
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Then:
ou Ov

Vou = 2 + o (94)
e
- 0 (96)

Hence, with this condition for the stream function v, the condition for incompressibility is satisfied.

The same is true for the divergence expressed in plane- or spherical-polars.

Now, for a 2D irrotational flow, we have u = (u,v) = (%, —g—f)'

w = Vxu (97)
B 0% 0%
= 0 (99)
oy 0,
> 5 o T V2 =0 (100)

Thus, Laplace’s equation is satisfied for both the stream function 1, and scalar potential ¢, in an
incompressible, irrotational 2D flow.

Notice:
v = “;(b:g‘y” (101)
v = gj:gf (102)
That is:
gi _ 215 (103)
gj _ _?i (104)

Which are the Cauchy-Riemann equations.
That is, there exists an analytic complex function w(z) = ¢ + i1p. This is known as the complex
potential.

w(z) = ¢+ i (105)

Lines on which {w(z)} =1 = const are streamlines.
Also notice:

Viw = V(¢ +ir) (106)
= V% +iV¥ (107)

=0 (108)
=Viw = 0 (109)

11



Now, we can derive a complex velocity, given that the complex potential is only a function of z,
and not its conjugate:

d
d—f = u — v (110)
3.1 Special 2D Flows

3.1.1 Uniform Stream

Suppose we have a uniform flow of speed U, inclined at an angle « to the z-axis. Thus, the velocity
vector is:

u= (Ucosa,Usina) = (u,v) (111)
Now, the complex velocity is given by:

Z—:U = u—1iv (112)
= Ucosa—iUsina (113)
= Ue ™ (114)

dw ;
= — = U - 115
& = U (115)
=dw = Ue "“dz (116)

Thus, integrating, we have the complex potential for a uniform flow, of strength U, inclined by an
angle a to the z-axis:

w(z) = Uze @ (117)

3.1.2 Source

We look at a source of strength m, at the origin.
At any radius, mass flux must be the same:

2rrU =m (118)

The velocity field is also purely radial. Hence, we have:
dw

= Ucosf —Uisinf (120)
= Ue ™™ (121)

U

m
_ A 123
2mretd (123)

m
= — 124
2mz ( )

m
dw = —d 12
= dw 5> 2z (125)



Hence, integrating, we have an expression for the complex potential of a source at the origin:

w(z) = n log z (126)
27
Which may be easily generalised to a source of strength m, at z = zq:
w(z) = % log(z — 20) (127)

If m < 0, then we have a sink.

3.1.3 Vortex

Here, the velocity field is purely tangential. Again, we have that the mass flux through any radius
is constant 27rV = k. So:

u = Vi (128)

= (=Vsin6,V cosf) (129)

= chw = —iV(cos@ —isinf) (130)
z

= —iVe ™ (131)

Thus, along a very similar argument for the source: for a vortex, at z = zy, we have the complex
potential:
() = 2 log(z — 20) (132)
w(z) = ——log(z — z
o g 0

Convention: if k£ > 0, then vortex is anti-clockwise; k < 0 for clockwise.

3.1.4 Dipole Flow

Suppose we put a source and a sink very close together, with the source at z = Je'®:

w(z) = glog(z—éeia)—glogz (133)
T T
m sel
= —1 1-— 134
o 0g< Z ) (134)

Now, bring the two very close together: § — 0, and md = p be constant. Using the following Taylor
expansion:

2 3
log(l—m):—x—%—%—... (135)
We have:
m 5€ia 52621'04
w(z) = o (— T T ) (136)
_ _ﬁ f 5621‘&
- %( —+ 55 +> (137)



Which, as 6 — 0, tends to the complex potential for a dipole at z = zg, inclined at an angle « to
the z-axis:

= — 138
3.1.5 Flow in a Corner
For a corner of angle m, we purely have:
w(z) = Az™ = Are™? (139)

3.2 Circle Theorem

If w = f(z) is a given flow, and if a circle is placed in the flow at the origin, with a radius |z| = a,
then, under the assumption that f(z) is analytic inside and on the circle, the new potential is:

w =1+ 7 (%) (140)

For example:
Uniform flow past a circle, with o = O:

fz) = Uz (141)
= f(z) = Uz (142)
Thus:
2

w(z) = f(z)+f (Z) (144)
= Uz+ U:z (145)
= U (reie + (fe_i9> (146)

Thus, the streamlines are on:
SH{w(z)}=¢v = U (r sinf — Cfsin 9) (147)
= Usind <7‘ - Cf) (148)
= const (149)

Notice, that for ¢ = 0, we have r = a. So that flow on the surface of the circle is a streamline.
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