
Chapter 8
Fluid Mechanics

8.1 Introduction

In continuum mechanics it is natural to define a fluid on the basis of what seems to
be the most characteristic macromechanical aspects of liquids and gases as opposed
to solid materials. Therefore we chose the following definition in Sect. 1.3:

A fluid is a material that deforms continuously when subjected to anisotropic
states of stress.

An anisotropic state of stress in a particle implies surfaces through the particle
subjected to shear stress. A fluid will therefore deform continuously when subjected
to shear stresses. The fluid may be at rest without further deformation only when the
state of stress is isotropic. This implies that the constitutive equations of any fluid at
rest relative to any reference must reduce to:

T =−p 1, p = p(ρ ,θ ) (8.1.1)

p is the thermodynamic pressure, which is a function of the density ρ and the tem-
perature θ . The relationship for p in (8.1.1) is called an equation of state.

An ideal gas is defined by the equation of state:

p = Rρ θ (8.1.2)

R is the gas constant for the gas, and θ is the absolute temperature, given in degrees
Kelvin. The model ideal gas may be used with good results for many real gases, for
example air.

Due to the large displacements and the chaotic motions of the fluid particles it is
in general impossible to follow the motion of the individual particles. Therefore the
physical properties of the particles or quantities related to particles are observed or
described at fixed positions in space. In other words we employ spatial description
and Euler coordinates. The primary kinematic quantity in Fluid Mechanics is the
velocity vector v(r,t).
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304 8 Fluid Mechanics

The concept of streamlines is introduced to illustrate fluid flow. The streamlines
are vector lines to the velocity field, i.e. lines that have the velocity vector as a
tangent in every point in the space of the fluid. The stream line pattern of a non-
steady flow: v = v(r,t), will in general change with time, see Problem 8.1. In a
steady flow: v = v(r), the streamlines coincide with the particle trajectories, called
the pathlines. For a given velocity field v(r,t) the streamlines are determined from
the differential equations:

dr×v(r, t) = 0 ⇔ dx1

v1
=

dx2

v2
=

dx3

v3
at constant time t (8.1.3)

The pathlines are determined by the differential equation:

ṙ = v(r,t) (8.1.4)

The streamlines through a closed curve in space form a streamtube.
The vector lines of the vorticity field:

c = rotv≡ curlv≡ ∇×v (8.1.5)

are called vortex lines. The vortex lines through a closed curve in space form a vortex
tube. If the velocity field is irrotational, which is the same as vorticity free, i.e. c = 0,
the velocity field may be developed from a velocity potential, see Theorem C.10:

v = ∇φ , φ = φ(r,t) (8.1.6)

This kind of flow is called potential flow and will be discussed in Sect. 8.5. The
scalar field φ is called the velocity potential.

The fundamental field equations of fluid mechanics are the Cauchy equations in
the form:

∂tv +(v · ∇)v =
1
ρ

div T+ b, ∂t vi + vk vi,k =
1
ρ

Tik,k+bi (8.1.7)

the continuity equation, to be presented in Sect. 8.2.3, constitutive equations that
relate the stress tensor to the velocity field, and finally an energy equation. The
energy equation of a linearly viscous fluid is discussed in Sect. 8.4.4. The model
perfect fluid, also called the Eulerian fluid, and which does not transfer shear stresses
even when the fluid is deforming, is treated in Sect. 8.3. The most important fluid
model: the linearly viscous fluid, also called the Newtonian fluid, is presented in
Sect. 8.4. Non-Newtonian fluids are presented in Sect. 8.6.

The governing equations of Fluid Mechanics do not provide unique solutions, in
contrast to the equations of the classical theory of elasticity. It is often necessary
to check whether an obtained solution is stable. For instance, in pipe flow steady
state conditions give steady state flow provided the velocities are small enough.
Increasing the level of velocities the flow may change into a chaotic non-steady
flow. Osborne Reynolds [1842–1912] performed in 1883 an experiment illustrating
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Fig. 8.1.1 The Reynolds experiment. Laminar and turbulent pipe flow

this phenomenon, see Fig. 8.1.1. A fluid of density ρ and viscosity μ flows through
a pipe under steady state conditions. The quality of the flow is shown by injecting
a thin colored fluid into the main flow. At low velocities the colored fluid is seen
as a nearly straight line parallel to the axis of the pipe. This type of flow is called
laminar flow: the fluid flows in cylindrical layers which move relative to each other.
If the velocities are increased the colored fluid line becomes unstable and eventually
disintegrates into a complex flow which gives the fluid in the pipe a general colored
look. This type of flow is characterized as turbulent flow. The particle velocity at a
specific place will vary strongly with time, but the time averaged velocity, or time
mean velocity ṽ, at the place over a certain time interval is constant. When a flow
has become turbulent, it is customary to express the flow through the time mean
velocity ṽ. The equipments that record velocities may measure automatically the
time average velocity at a place. Figure 8.1.1 shows the velocity distributions in the
pipe for the two types of flow. Reynolds found in the experiment that the transition
from laminar flow to turbulent flow is primarily dependent upon four factors: the
volumetric flow Q, i.e. the fluid volume that per unit time flows through a cross-
section of the pipe, the diameter of the pipe d, and the viscosity μ and the density
ρ of the fluid. The result of the Reynolds’ experiment may then be expressed thus:
The Reynolds number Re defined by:

Re = ρ
v ·d
μ

, v≡ vm =
4Q
πd2 (8.1.8)

must be less than approx. 2000 for the flow to be laminar. In the expression for
the Reynolds number v is the mean velocity over the cross-section of the pipe, v =
vm = Q/A, where A is the cross-sectional area. For Re > 2000 the flow becomes
turbulent. A Reynolds number may be defined for most flows, and we shall return
to more general definition of the Reynolds number in Sect. 8.4 on linearly viscous
fluids.

Figure 8.1.2 shows a rigid body in a uniform flow. Far away upstream from the
body the velocity field is constant, independent of place and time. This situation
occurs when a body moves with a constant velocity through a fluid at rest and when
the reference for the motion is chosen fixed in the body. Apart from a thin region
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Fig. 8.1.2 Rigid Body in uniform flow. Free irrotational flow and boundary layer

near the surface of the body, we may neglect the viscosity of the fluid and assume
irrotational flow. In the thin region near the surface of the body the viscosity has to
be taken into account. This region is called the boundary layer.

Downstream of a rigid body in a flowing fluid a wake is created in which the
flow is very chaotic and therefore is characterized as turbulent. The wake is due
to the flow in the boundary layer. The fluid in the wake is rotational with a high
content of vorticity. Bodies that create a narrow wake are often called streamlined
bodies because the streamlines in a steady flow form a stable pattern surrounding the
body, see Fig. 8.1.3. A rigid body creating a broad wake are called blunt body, see
Fig. 8.1.3.

8.2 Control Volume. Reynolds’ Transport Theorem

The fundamental laws of thermomechanics are: the principle of conservation of
mass, the first and second axiom of Euler, the equation of mechanical energy bal-
ance, and the 1. law of thermomechanics. These laws are first expressed through
equations for material bodies in motion, and the equations will be presented be-
low in the form they are used when spacial or Eulerian description is chosen. This
description is the natural one in Fluid Mechanics.

A fluid body of volume V (t) and surface area A(t) contains by definition the
same mass m at any time t. The mass per unit volume at the place r and the present
time t is represented by the mass density, or density for short, ρ(r, t).

Fig. 8.1.3 Streamlined body with a negligible wake and blunt body with a broad wake
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m =
∫

V (t)

ρ(r,t)dV = constant (8.2.1)

Equation (8.2.1) expresses the principle of conservation of mass.
For a body of continuous matter we have in the Sect. 3.2.1, 6.1, and 6.3.2 de-

fined a series of time-dependent extensive quantities, of which the most important
are:

p(t) =
∫

V (t)

vρ dV , linear momentum (8.2.2)

lO(t) =
∫

V (t)

r×vρ dV , angular momentum about a point O (8.2.3)

K(t) =
∫

V (t)

1
2

v2ρ dV , kinetic energy (8.2.4)

E(t) =
∫

V (t)

ε ρ dV , internal energy (8.2.5)

All these extensive quantities are expressed in the general form:

B(t) =
∫

V(t)

β ρ dV , extensive quantity (8.2.6)

β = β (r,t) is a specific intensive quantity, representing the quantity per unit mass.
The fundamental laws of thermomechanics contain material time derivatives of both
intensive and extensive quantities. In Sect. 3.1.3 the following expression for the ma-
terial derivative of an extensive quantity was developed. For the extensive quantity
B(t) we have:

Ḃ(t) =
d
dt

∫

V (t)

β ρ dV =
∫

V (t)

β̇ ρ dV (8.2.7)

In Fluid Mechanics it is often more convenient to transform the equations of
the fundamental laws to apply to a region fixed in space, or a region moving in
a prescribed fashion. Such a region is called a control volume and is assumed to
coincide with a fluid body with the volume V (t) and the surface area A(t) at the
present time t, see Fig. 8.2.1. We shall first assume that the control volume V is fixed
relative to the reference Rf chosen to describe the motion of the fluid. The surface
A of the control volume V is called a control surface. To obtain the transformations
of the equations of the laws of thermomechanics, which basically is meant to apply
to a material body, such that they apply for a control volume, we shall derive an
alternative expression for the material derivative of an extensive quantity B, which
is related to the body.
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Fig. 8.2.1 Control volume V and control surface A

First let:
B(t) =

∫

V(t)

bdV , b = b(r,t) = β (r,t) ρ(r,t) (8.2.8)

b = βρ is called the density of the quantity and expresses the quantity per unit vol-
ume. We may write:

Ḃ = lim
Δt→∞

B(t +Δt)−B(t)
Δt

(8.2.9)

in which, see Fig. 8.2.1:

B(t +Δt) =
∫

V (t+Δt)

b(r,t +Δt)dV =
∫

V (t)

b(r,t +Δt)dV +
∫

ΔV(t,Δt)

b(r, t +Δt)d(ΔV )

ΔV (t,Δt) = V (t +Δt)−V(t), d(ΔV ) = dA · [(v · n)Δt] (8.2.10)

The unit vector n is a normal to the control surface A directed out from the surface of
the control volume. The third volume integral in (8.2.10) is transformed to a surface
integral:

∫

ΔV (t,Δt)

b(r,t +Δt)d(ΔV ) =
∫

A(t)

b(r,t +Δt) · [(v · n)Δt]dA (8.2.11)

The contribution to the surface integral in (8.2.11) is positive whenever v · n > 0
and mass is flowing out of the control volume V through the control surface A, and
the contribution is negative whenever v ·n < 0 and mass is flowing into the control
volume through the control surface A. We may now write:

B(t +Δt)−B(t)
Δt

=
∫

V (t)

b(r,t +Δt)−b(r,t)
Δt

dV +
∫

A(t)

b(r,t +Δt) (v · n)dA

(8.2.12)
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Substitution of the result (8.2.12) into (8.2.9) yields:

Ḃ =
∫

V

∂b
∂ t

dV +
∫

A

b(v · n)dA (8.2.13)

This result expresses the Reynolds’ transport theorem. The terms on the right side
are:

term 1: The time rate of change of the quantity B inside the fixed control vol-
ume V .
term 2: The net flow out of the fixed control surface A.

Because the control volume V is fixed in space, the transport theorem may alterna-
tively be expressed by:

Ḃ =
d
dt

∫

V

bdV +
∫

A

b(v · n)dA (8.2.14)

In some application we choose a control volume V that moves and deforms.
Let the velocity of points on the moving control surface be denoted v̄(r,t). Equa-
tion (8.2.13) expressing the transport theorem is still valid, but (8.2.14) has to be
replaced by:

Ḃ =
d
dt

∫

V (t)

bdV +
∫

A

b [(v− v̄) · n]dA (8.2.15)

8.2.1 Alternative Derivation of the Reynolds’ Transport Theorem

The result (8.2.13) may be derived directly using mathematics. The Theorem C.8 is
first used to transform the integral in (8.2.8):

B(t) =
∫

V(t)

bdV =
∫

Vo

bJ dVo (8.2.16)

Vo is the volume of the body in the reference configuration Ko, and J is the Jacobian
to the deformation gradient:

J = detF = det Fi j ≡ det

(
∂xi

∂Xj

)
(8.2.17)

The transformation from the integral in (8.2.8) to the integral in (8.2.16) may also
be obtained directly by the use of the results (5.5.64) and (5.5.65), from which:

dV =
ρo

ρ
dVo = J dVo (8.2.18)
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Because the volume Vo is independent of the time t, the material derivative of the in-
tegral in (8.2.8) may be obtained by performing the differentiation under the integral
sign. Using formula (5.5.33):

J̇ = J divv (8.2.19)

the following two formulas and Gauss’ integral theorem C.3:

ḃ =
∂b
∂ t

+ v · ∇b, v · ∇b + b divv = div (bv) ,
∫

V (t)

div (bv) dV =
∫

A

b (v · n) dA

we obtain:

Ḃ =
∫

Vo

(
ḃJ + bJ̇

)
dVo = =

∫

Vo

(
ḃ + b divv

)
J dVo =

∫

V (t)

(
∂b
∂ t

+ v · ∇b + b divv
)

dV

=
∫

V(t)

(
∂b
∂ t

+ div (bv)
)

dV =
∫

V(t)

∂b
∂ t

dV +
∫

A

b(v · n) dA ⇒ (8.2.13)

8.2.2 Control Volume Equations

The Reynolds’ transport theorem, (8.2.13), will now be used to transform the fun-
damental laws of thermomechanics for a body to a fixed control volume V with a
control surface A.

The principle of conservation of mass, (8.2.1), implies:

ṁ =
d
dt

∫

V (t)

ρ dV = 0 ⇒
∫

V

∂ρ
∂ t

dV +
∫

A

ρ (v · n) dA = 0 (8.2.20)

The result (8.2.20) is called the continuity equation for a control volume.
The law of balance of linear momentum, Euler’s 1. axiom (3.2.6):

f = ṗ =
d
dt

∫

V (t)

vρ dV ⇒

∫

V

∂ (vρ)
∂ t

dV +
∫

A

vρ (v · n) dA =
∫

A

tdA+
∫

V

bρ dV (8.2.21)

The law of balance of angular momentum, Euler’s 2. axiom (3.2.7):

mO = l̇O ≡ d
dt

∫

V (t)

r×vρ dV ⇒

∫

V

∂ (r×vρ)
∂ t

dV +
∫

A

r×vρ (v · n) dA =
∫

A

r× tdA+
∫

V

r×bρ dV (8.2.22)
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The mechanical energy balance equation (6.1.12):

K̇ =
d
dt

∫

V (t)

v2

2
ρ dV = P−Pd ⇒

∫

V

∂
∂ t

(
v2

2
ρ
)

dV +
∫

A

v2

2
ρ (v · n) dA =

∫

A

t · vdA+
∫

V

b · vρ dV −
∫

V

T : DdV

(8.2.23)

The first law of thermomechanics, (6.3.11):

Ė =
d
dt

∫

V (t)

ε ρ dV =
∫

A

qdA+ Pd ⇒

∫

V

∂
∂ t

(ε ρ) dV +
∫

A

ε ρ (v · n) dA =
∫

A

qdA+
∫

V

T : DdV (8.2.24)

Example 8.1. Forces on a Turbine Vane
Figure 8.2.2a shows a vane hit by a water jet of cross-section A. The velocity

of the water hitting the vane is vin = v. The jet leaves the vane with the velocity
vout = v and in a direction that makes an angle θ with respect to the direction of the
incoming yet. Referring to Fig. 8.2.2b, we want to determine the forces Kx and Ky

and the couple moment M at the point O where the vane is attached to a foundation,
and which are due to the action of the water jet.

A control volume V is selected as shown by the dashed line in Fig. 8.2.2b. The
law of balance of linear momentum (8.2.21) applied to this control volume gives:

∫

A

vρ (v · n) dA =
∫

A

tdA ⇒

vout cosθ ·ρ · (vout)A + vin ·ρ · (−vin)A =−Kx, vout sinθ ·ρ · (vout)A = Ky

The law of balance of angular momentum (8.2.22) with O as moment point and
applied to the control volume V , reads:
∫

A

r×vρ (v · n) dA =
∫

A

r× tdA ⇒

−h · (vout cosθ ) ·ρ · (vout)A + c · (vout sinθ) ·ρ · (vout)A−h · vin ·ρ · (−vin)A = M

From these three equations we get the result:

Kx = ρAv2 (1− cosθ ) , Ky = ρAv2 sinθ , M = ρAv2 [csinθ + h(1− cosθ )]
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Fig. 8.2.2 Vane in a water jet

8.2.3 Continuity Equation

The continuity equation at a place, commonly just called the continuity equation
in Fluid Mechanics, shall now be derived from the continuity (8.2.20) for a control
volume. Using the Gauss’ theorem C.3, (8.2.20) is rewritten to:

∫

V

∂ρ
∂ t

dV +
∫

A

ρ (v · n) dA =
∫

V

[
∂ρ
∂ t

+ div(ρ v)
]

dV = 0

Because the equation must apply to an arbitrary control volume V , the integrand
must be zero. Hence:

∂ρ
∂ t

+ div(ρ v) = 0 ⇔ ∂ρ
∂ t

+(ρ vi),i = 0 (8.2.25)

Alternatively the result may be written as:

ρ̇+ρ divv = 0 ⇔ ρ̇+ρ vi,i = 0 (8.2.26)

Equations (8.2.25, 8.2.26) are alternative expressions for the equation of continuity
at a place. For an incompressible fluid ε̇v = div v = 0, and (8.2.26) implies that
ρ̇ = 0, i.e. the density in a fluid particle is constant. Note that ∂tρ not necessarily
has to be zero. The equality ∂tρ = 0 does apply only in the case the fluid is homoge-
neous, which means that ρ(r,t) = constant. For incompressible fluids the equation
of continuity, (8.2.25) or (8.2.26) may be replaced by the condition of incompress-
ibility:

divv = 0 ⇔ vi,i = 0 (8.2.27)

The equation of continuity (8.2.25) or (8.2.26) can alternatively be derived as
follows. Let the element of volume dV represent a small body of mass ρdV , where
ρ is the mean value of the density in dV. The time rate of change of the volume dV
may be expressed by the volumetric strain:
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ε̇v = divv ⇒ dV̇ = (divv)dV (8.2.28)

Since the mass of a body is constant, we obtain:

d
dt

(ρ dV )= ρ̇ dV +ρ dV̇ = (ρ̇ +ρ divv)dV = 0 ⇒ ρ̇ +ρ divv = 0⇒ (8.2.26)

In a third alternative derivation of the equation of continuity at a place (8.2.26),
we start with the continuity equation in a particle (5.5.65):

ρ J = ρo (8.2.29)

Using (8.2.19), we obtain by material differentiation of (8.2.29):

d
dt

(ρ J) = ρ̇ J +ρ J̇ = (ρ̇ +ρ divv)J = 0 ⇒ ρ̇ +ρ divv = 0 ⇒ (8.2.26)

8.3 Perfect Fluid ≡ Eulerian Fluid

In many practical applications we may neglect shear stresses in fluid flows. For
instance, when analyzing the flow of a liquid or a gas surrounding rigid bodies, it
may often be sufficient to take into consideration the viscosity of the fluid only in
a relatively thin layer, the boundary layer, near the solid surfaces. Outside of the
boundary layer the shear stresses may be neglected, and the liquid or gas may be
modelled as an inviscid fluid, i.e. a fluid without viscosity. The fluid model is called
a perfect fluid or a Eulerian fluid. The constitutive equation of a perfect fluid is:

T =−p1 ⇔ Ti j =−pδi j (8.3.1)

p = p(ρ ,θ ) (8.3.2)

ρ(r,t) is the density of the fluid and θ (r,t) is the temperature in the fluid. The
perfect fluid gives the simplest example of a thermoelastic material. The elas-
ticity is expressed by the fact that the pressure p(ρ ,θ ) is a function of the den-
sity, which again is a function of the volumetric strain, as implied by (5.5.64) and
(5.2.23).

The compressibility of a fluid may often be disregarded. Liquids are only rarely
considered to be compressible. Gases, which are relatively easily compressible, may
also in many practical cases be modelled as incompressible media. In elementary
aerodynamics the compressibility of air may be neglected when the velocity of the
flying body is less than approx. 1/3 of the speed of sound in air. For incompressible
perfect fluids it is customary to replace formula (8.3.2) by:

p = p(r,θ ) (8.3.3)

because the pressure p no longer can be considered to be a state variable.
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The motion of a perfect fluid is governed by the following four equations:

∂v
∂ t

+(v · ∇)v =− 1
ρ
∇p + b the Euler equations (8.3.4)

∂ρ
∂ t

+∇ · (ρ v) = 0 the continuity equation (8.3.5)

The Euler equations follow from the Cauchy equations (8.1.7) and the constitutive
equations (8.3.1). The 4 equations (8.3.4) and (8.3.5) contain 5 unknown functions
vi,ρ , and p. In general the set of equations is supplemented by an energy equation
and by an equation of state, for example (8.3.2), which then introduces the temper-
ature θ as an additional 6. unknown field function.

It is often reasonable to assume as a boundary condition for the velocity field of
a real fluid that the velocity relative to a rigid surface is zero, i.e. the fluid sticks to
the rigid surface. For a perfect fluid only the relative velocity component normal to
the boundary surface may be assumed to be zero.

An ideal gas is a perfect fluid having the equation of state:

p = Rρ θ (8.3.6)

R is the gas constant of the gas, and θ is the absolute temperature in degrees Kelvin
[oK]. This fluid model may be applied with success for many real gases, for instance

air for which R = 287Nm/kgoK = 287m2/s
2oK.

We call a deformation process polytropic if the equation of state for the pressure
may be presented as:

p = po

(
ρ
ρo

)α
(8.3.7)

α is a constant, and po and ρo are reference values for pressure and density. The
following known processes are represented by (8.3.7):

a) Isobaric process ⇔ constant pressure field: α = 0

b) Isothermal process ⇔ constant temperature field: α = 1

c) Isentropic process ⇔ constant entropy field: α = κ = cp/cv (8.3.8)

In the case c), where the specific entropy is constant, cp and cv are the specific
heats at constant pressure and constant volume respectively.

The motion of a perfect fluid is called barotropic if a one-to one relation exists
between pressure and density:

p = p(ρ) ⇔ ρ = ρ(p) (8.3.9)

If we can assume that a barotropic relation exists in a particular problem, we
may consider (8.3.9) as a property of the fluid. A fluid with (8.3.1) and (8.3.9)
as constitutive equations is called an elastic fluid. The literature also applies the
names barotropic fluid, autobarotropic fluid, and piezotropic fluid in this case. An
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incompressible fluid is also called a barotropic fluid, but this fluid can obviously not
be considered to be elastic.

An elastic fluid, defined by the constitutive equations (8.3.1) and (8.3.9), is hy-
perelastic, as defined in the Sect. 7.6.1 and 7.10.2. To see this, we start by forming
the stress power supplied to a fluid body per unit volume, and then using the conti-
nuity equation (8.2.26):

ω = T : D =−pδi jDi j =−pDii =−pdivv = p
ρ̇
ρ
⇒

ω = T : D = p
ρ̇
ρ

(8.3.10)

We introduce the potential:

ψ =
p∫

po

d p̄
ρ
− p
ρ

=

ρ∫

ρo

p
ρ̄2 dρ̄+ constant (8.3.11)

The task to show that the two expressions (8.3.11) for the potentialψ are equivalent,
is left as an exercise in Problem 8.6. We now find that:

ω = ρ ψ̇ (8.3.12)

The stress power supplied to a body of volume V is:

Pd =
∫

V

ω dV =
∫

V

ψ̇ ρ dV =
d
dt

∫

V

ψρ dV = Ψ̇ (8.3.13)

where:
Ψ=

∫

V

ψ ρ dV (8.3.14)

The result (8.3.13) shows that the stress power Pd may be derived from a potential
Ψ, and this proves that the elastic fluid is hyperelastic. The field ψ = ψ(r,t) is the
elastic energy per unit mass, i.e. the specific elastic energy, and Ψ is the elastic
energy of the body.

8.3.1 Bernoulli’s Equation

From the definition (8.3.11) we find:

∇ψ =
dψ
dρ

∇ρ =
p
ρ2 ∇ρ
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Then the first term on the right-hand side of the Euler equation (8.3.4) may be trans-
formed:

− 1
ρ
∇p =−∇

(
p
ρ

)
− p
ρ2 ∇ρ =−∇

(
p
ρ

+ψ
)

(8.3.15)

For barotropic fluids moving in a conservative body force field b(r), such that:

b(r) =−∇β (8.3.16)

where β = β (r) is the force potential, the Euler equations (8.3.4) may be pre-
sented as:

v̇≡ ∂v
∂ t

+(v · ∇)v =−∇
(

p
ρ

+ψ+β
)

(8.3.17)

β = β (r) may also interpreted as the potential energy due to the conservative body
force b(r). The result (8.3.17) shows that the acceleration of a barotropic fluid in a
conservative force field may be found from a scalar potential. From this result we
may derive a series of important theorems.
Bernoulli’s theorem for steady flow of a barotropic fluid: There exist surfaces, called
Bernoulli surfaces, covered by stream lines and vortex lines, and defined by:

1
2

v2 +π+β = constant (8.3.18)

The theorem is named after Daniel Bernoulli [1700–1782].

Proof. Using the identity c) in Problem 2.9 we can rewrite (8.3.17) to:

∂tv + c×v =−∇
(

1
2

v2 +
p
ρ

+ψ+β
)

(8.3.19)

c is the vorticity. In steady flows ∂tv = 0, and since the vector c× v at a place is
normal to the stream line and the vortex line through the place, the left-hand side of
(8.3.19) is zero. This fact proves the theorem.

From (8.3.18) follows the Bernoulli equation:

1
2

v2 +
p
ρ

+ψ+β = constant along a stream line (8.3.20)

For incompressible fluids the specific elastic energyψ is constant and will for conve-
nience be set equal to zero. It is now necessary to require a steady pressure because
the pressure in an incompressible medium may be changed uniformly without in-
fluencing the motion. The reason for this is that velocity of pressure propagation,
i.e. the velocity of sound, is infinite for incompressible media.

The Bernoulli equation may be interpreted as a statement of conservation of me-
chanical energy. In order to see that we apply (8.2.23) for mechanical energy balance
on a control volume V of a stream tube between to surfaces A1 and A2 normal to the
stream line, as shown in Fig. 8.3.1. The control surface A consists of the surfaces
A1, A2, and A3.
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Fig. 8.3.1 Control volume V
of a streamtube between the
surfaces A1 and A2 normal to
the stream lines. The control
surface A consists of the
surfaces A1, A2, and A3

First we perform some initial manipulations. For steady flow the continuity
(8.2.25) yields: ∇ · (vρ) = 0. Equation (8.3.12) and formula (3.1.16) for the ma-
terial derivative of the steady field ψ(r) imply that:

T : D≡ ω = ρ ψ̇ = ρ viψ,i = ∇ · (ψρ v)

Furthermore, with t =−pn as the stress vector on any material surface and b as the
body force defined by (8.3.16), we get:

t · v = (−p n) · v =− p
ρ

(ρ v · n), b · vρ =−∇β · vρ =−∇ · (β vρ)

Using Gauss integration theorem C.3, we then obtain:
∫

V

[b · vρ−T : D] dV =
∫

V

[−∇ · (β vρ+ψρ v)] dV =−
∫

A

[β +ψ ] ρ v · n dA

The energy equation (8.2.23) applied to the control volume V now becomes:

∫

A

[
1
2

v2 +
p
ρ

+ψ+β
]
ρ v · ndA = 0 (8.3.21)

On the surface A3 of the stream tube in Fig. 8.3.1 v ·n = 0. The mean value theorem
C.6 then gives:
[

1
2

v2 +
p
ρ

+ψ+β
]

2

∫

A2

ρ v · ndA +
[

1
2

v2 +
p
ρ

+ψ+β
]

1

∫

A1

ρ v · ndA = 0

The terms [ ]1 and [ ]2 are calculated at places on A1 and A2, respectively. According
to the continuity equation (8.2.20) the two integrals must, be equal but of opposite
signs. If we let A1 approach zero about P1 and let A2 approach zero about P2, where
P1 and P2 are two places on the same streamline, we obtain the result (8.3.20). All
terms in (8.3.20) represent specific energies, i.e. energies per unit mass: v2/2 is
kinetic energy, (p/ρ+β ) is potential energy, and ψ is elastic energy.

A Bernoulli equation for non-steady flow is obtained by integration of (8.3.19)
along a streamline between two points P1 and P2. The result is:
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P2∫

P1

∂v
∂ t
·dr +

[
1
2

v2 +
p
ρ

+ψ+β
]

P2

=
[

1
2

v2 +
p
ρ

+ψ+β
]

P1

(8.3.22)

An important family of flows, presented in Sect. 8.5, are called potential flows or
irrotational flows. These flows are characterized by zero vorticity: c = ∇× v = 0,
which implies that the velocity may be expressed by a velocity potential φ , such that
v = ∇φ . From (8.3.19) we then get:

∇
[
∂φ
∂ t

+
1
2

v2 +
p
ρ

+ψ+β
]

= 0

This result implies:
Bernoulli’s theorem for irrotational flow of a barotropic fluid:

∂φ
∂ t

+
1
2

v2 +
p
ρ

+ψ+β = f (t) in the fluid (8.3.23)

where f (t) is a function of time.
The result is also called the Euler pressure equation. For steady state flows

(8.3.23) is reduced to:

1
2

v2 +
p
ρ

+ψ+β = constant in the fluid (8.3.24)

For incompressible fluids the specific elastic energy ψ is set equal to zero.

Example 8.2. The Torricelli Law
We want to determine the exit velocity v through the orifice in an open vessel

containing a fluid. The vessel is assumed to have a large free surface as compared
to the area of the orifice. The fluid is subjected to the constant specific gravitational
body force g for which the specific potential energy is:

β = gz

We consider the streamline indicated in Fig. 8.3.2, from point A at the free surface
to point B at the orifice. The fluid velocity at A may be neglected. The Bernoulli
equation (8.3.24) then gives:

po

ρ
+ g(h1 + h) =

v2

2
+

po

ρ
+ gh1 ⇒ v =

√
2gh

The result is called Torricelli’s law, named after Evangelista Torricelli [1608–1647].
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Fig. 8.3.2 Efflux from an
orifice in an open vessel

8.3.2 Circulation and Vorticity

We shall discuss some properties of the vorticity field c(r,t) of barotropic fluids in
conservative force fields. From (8.3.19) it follows that:

∇× ∂tv +∇× (c×v) = 0 (8.3.25)

The two terms will now in turn be transformed. The definition of the vorticity c
yields:

∇× ∂tv = ∂tc (8.3.26)

The following identity is to be derived as Problem 8.7:

∇× (c×v) = c divv +(v · ∇) c− (c · ∇) v (8.3.27)

The formulas (8.3.26–8.3.27) are substituted into (8.3.25), and the result is:

ċ≡ ∂tc +(v · ∇) c = (c · ∇) v− c divv (8.3.28)

Using the continuity (8.2.26), we can rewrite (8.3.28) to obtain Nanson’s formula
[E. Nanson 1874]:

d
dt

(
c
ρ

)
= L · c

ρ
(8.3.29)

L = grad v is the velocity gradient tensor, and the time derivative is the material
derivative. The solution of this differential equation is:

c
ρ

=
F · co

ρo
(8.3.30)

F is the deformation gradient tensor, and co and ρo are respectively the vorticity
and the density in the reference configuration Ko. Application of (5.5.28)1 in the
material derivative of (8.3.30) will show that (8.3.30) is the solution to (8.3.29).

From (8.3.30) we may draw two important conclusions:

a) The vortex lines are material lines: Let dro be tangent at the particle X to a
material line that also is a vortex line in the reference configuration Ko, i.e
dro is parallel to the vorticity co. Then we may set dro = codτ , where dτ is a
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constant. In the present configuration K the material line has a tangent at the
particle X that is parallel to dr = F ·dro. Thus from (8.3.30):

dr = F · dro = F · co dτ =
ρo

ρ
cdτ (8.3.31)

The result shows that the tangent vector dr is parallel to the vorticity c. This
means that the material line is identical to the vortex line at all times. Using
(8.3.31) and the relations dro = codτ and dso = |dro|, we get this formula for
the line differential ds = |dr|:

ds =
ρo

ρ
c
co

dso (8.3.32)

b) The Lagrange-Cauchy theorem: If a barotropic fluid subjected to a conserva-
tive body force field has irrotational motion, c = 0, at a certain time, the motion
will be irrotational at all times. This theorem may be used to identify poten-
tial flows.

Let C be a closed material line in a flowing fluid. The circulation around C is
defined by the integral:

Γ(t) =
∮

C

v · dr (8.3.33)

The Kelvin circulation theorem, named after William Thomson, Lord Kelvin
[1824–1907] states that: For a barotropic fluid in a conservative force field the cir-
culation around a closed material line C is time independent:

Γ(t) =
∮

C

v · dr = constant (8.3.34)

Proof. Let the closed curve C be represented by r = r(so, t), where so is the arc
length parameter in the reference configuration Ko, and 0≤ so ≤ Lo, where Lo is the
length of the curve in Ko. Then the circulation around the curve C at time t is:

Γ(t) =
Lo∫

0

v · ∂r
∂ so

dso

Because:

v · ∂
∂ t

(
∂r
∂ so

)
= v · ∂v

∂ so
=

∂
∂ so

(v · v
2

)
=

∂
∂ so

(
v2

2

)

and the curve C is closed, we obtain:

Γ̇(t) =
Lo∫

0

v̇ · ∂r
∂ so

dso =
∮

C

v̇ · dr (8.3.35)
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For a barotropic fluid in a conservative force field (8.3.17) applies. Thus we get:

Γ̇(t) =
∮

C

v̇ · dr =−
∮

C

∇
(

p
ρ

+ψ+β
)
· dr =−

∮

C

d

(
p
ρ

+ψ+β
)

= 0 (8.3.36)

This result proves the theorem.
The circulation around a closed curve C may also be computed from the vorticity

c. Let A be any surface bounded by the curve C. Then, using Stokes’s theorem C.5,
we get the result:

Γ(t) =
∮

C

v · dr =
∫

A

c · ndA (8.3.37)

n is the unit normal to the surface A. This result together with Kelvin’s theorem
gives an alternative proof of the Lagrange-Cauchy theorem.

Kelvin’s theorem implies the three vortex theorems of Helmholtz, named after
Herman Ludwig Ferdinand von Helmholtz [1821–1894]. Kelvin presented his the-
orem in 1869 to prove the three vortex theorems.

Theorem 1. The circulation is the same about any closed curve surrounding a vor-
tex tube.

Theorem 2. The vortex lines are material lines.
Theorem 3. The strength of a vortex tube, defined by the surface integral in

(8.3.37), is constant.

Proof. Figure 8.3.3 shows two curves C1 and C2 surrounding a vortex tube. Using
Stokes’ theorem C.5, we get:

∮

C1

v · dr−
∮

C2

v · dr =
∮

C

v · dr =
∫

A

c · n dA

A is a surface bounded by the curve C, marked in Fig. 8.3.3 by a broken line, and n
is the unit normal to A. Since the vectors n and c are orthogonal, c ·n = 0, and we
may conclude that: ∮

C1

v · dr =
∮

C2

v · dr (8.3.38)

Fig. 8.3.3 Vortex tube



322 8 Fluid Mechanics

This result proves Theorem 1. Theorem 2 is already proved by (8.3.31). The strength
of the vortex tube may through Theorem 1 be expressed by the circulation around
any curve surrounding the vortex tube. Kelvin’s theorem then completes the proof
of Theorem 3.

8.3.3 Sound Waves

Sound propagates as elastic waves. In fluids the elastic waves represent small vari-
ations in the pressure. The loudest sound the human ear can receive without pain
corresponds to an amplitude of the pressure variation of 28 Pa. The sound pres-
sure pt = 28Pa is therefore called the threshold of pain. The weakest sound the
human ear can hear is called the threshold of hearing and corresponds to a sound
pressure of about 2 · 10−5 Pa. For comparison the normal atmospheric pressure is
po = 101.32kPa.

Propagation of sound is an isentropic process governed by the Euler equa-
tions (8.3.4), the equation of continuity (8.3.5), and a constitutive equation on
the form:

p = p(ρ) (8.3.39)

A reference pressure po and the corresponding reference density ρo represent an
equilibrium state governed by the equilibrium equation:

0 =− 1
ρo
∇po + b (8.3.40)

Sound waves are small variations p̃ in the pressure and ρ̃ in the density, such that:

ρ = ρo + ρ̃, p = po + p̃ = po +
d p
dρ

∣∣∣∣
ρ=ρo

ρ̃ ⇒ p̃
ρ̃

=
d p
dρ

∣∣∣∣
ρ=ρo

(8.3.41)

A linearization of the Euler equations and the continuity equation yields, after the
equilibrium (8.3.40) has been applied, the set of equations:

∂v
∂ t

=− 1
ρo
∇p̃,

∂ ρ̃
∂ t

+ρo∇ · v = 0 (8.3.42)

We introduce the constant parameter:

c =

√
p̃
ρ̃

=

√
d p
dρ

∣∣∣∣
ρ=ρo

(8.3.43)

which will be shown to be the velocity of sound. Formula (8.3.43) and the linearized
basic equations (8.3.42) now yield:
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∇ · ∂v
∂ t

=− 1
ρo
∇2 p̃,

∂ 2 p̃
∂ t2 +ρo∇ · ∂v

∂ t
= 0 ⇒

∂ 2 p̃
∂ t2 = c2∇2 p̃ (8.3.44)

This is a linear wave equation, as presented in Sect. 7.7, e.g. (7.7.5), and c may be
identified as the velocity of sound in the fluid.

For gasses we may use the constitutive (8.3.7), and for air we choose:

po = 101.32 kPa , ρo = 1.225 kg/m3, α = 1.4 at 15oC

The velocity of sound in air is then:

c =

√
d p
dρ

∣∣∣∣
ρ=ρo

=

√
poα

1
ρo

= 340 m/s at 15oC

For liquids we may use the constitutive equation:

p = C1

(
ρ
ρo

)γ
−C2 (8.3.45)

C1, C2, and γ are constant parameters. For water we may set:

ρo = 1000 kg/m3, C1 = 304.06 MPa , C2 = 303.96 MPa , γ = 7

The velocity of sound in water then becomes:

c =

√
d p
dρ

∣∣∣∣
ρ=ρo

=

√
C1 γ

1
ρo

= 1460 m/s

8.4 Linearly Viscous Fluid = Newtonian Fluid

8.4.1 Constitutive Equations

The presence of shear stresses in a flowing fluid is realized when we observe the
velocity field near rigid boundary surfaces, see Fig. 8.4.1. The fluid particles are
slowed down in the neighborhood of the rigid surface, and very close to the surface
the relative velocity is practically zero. Shear stresses are present everywhere in the
flow, but their influence on the velocity field is normally very slight, except in the
boundary layer near the rigid boundary surface. In the analysis of fluid flow around
rigid bodies it is customary to first model the fluid as perfect fluid, and then use the
solution as an asymptotic external flow to a viscous boundary layer solution near the
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Fig. 8.4.1 Uniform flow and viscous boundary layer near a rigid surface

rigid surface. In the analysis of flows in pipes and through other narrow passages
the viscous boundary layer fills the entire flow regime.

As a starting point for the development of a constitutive equation for a linearly
viscous fluid we again look at the experiment with the viscometer in Fig. 1.3.2 in
Sect. 1.3. The flow between the two cylindrical surfaces is considered to be a steady
flow between two parallel planes, and called simple shear flow, see Fig. 8.4.2.

The velocity field of simple shear flow is:

v1 =
v
h

x2, v2 = v3 = 0 (8.4.1)

The rate of deformation matrix becomes:

D =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ γ̇

2
, γ̇ = 2D12 =

dv1

dx2
=

v
h

(8.4.2)

We assume that the result of the viscometer test is a shear stress proportional to the
shear strain rate γ̇:

τ = μγ̇ (8.4.3)

Fig. 8.4.2 Simple shear flow between two parallel planes
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The dynamic viscosity μ is a temperature dependent material parameter. A first gen-
eralization of the constitutive (8.4.3) to apply to a general flow is called Newton’s
law of fluid friction and may be presented as:

Ti j = 2μDi j = μ (vi, j + v j,i) for i �= j (8.4.4)

A further generalization of (8.4.4) leads to the constitutive equation of a linearly
viscous fluid, or what is called a Newtonian fluid, and is presented below.

George Gabriel Stokes [1819–1903] presented the following four criteria for the
relationships between the stresses and the velocity field in a viscous fluid:

1. The stress tensor T is a continuous function of the rate of deformation tensor D.
2. The stress tensor T is explicitly independent of the particle coordinates, which

implies that the fluid is homogeneous.
3. When the fluid is not deforming, i.e. D = 0, the stress tensor is: T =−p(ρ ,θ )1.
4. Viscosity is an isotropic property.

The first three criteria imply the following general form of the constitutive equation
of a viscous fluid:

T = T [D,ρ ,θ ] , T [0,ρ ,θ ] =−p(ρ ,θ )1 (8.4.5)

The pressure p(ρ ,θ ) is the thermodynamic pressure. The requirement of isotropy
is really superfluous because the (8.4.5) implies viscous isotropy. This fact will be
demonstrated in Sect. 11.9.2 on Stokesian fluids. Equation (8.4.5) represents the
constitutive equation of a Stokesian fluid.

We now restrict (8.4.5) to be linear with respect to D. Using arguments along the
lines used for isotropic, linearly elastic materials in Sect. 7.2, we may conclude that
viscous isotropy implies that the tensors T and D are coaxial and furthermore that
the linear version of (8.4.5) has the form:

T =−p(ρ ,θ )1 + 2μD+
(
κ− 2μ

3

)
(trD)1 ⇔

Ti j =−p(ρ ,θ )δi j + 2μDi j +
(
κ− 2μ

3

)
Dkk δi j (8.4.6)

The viscosities μ and κ are functions of the temperature and in some cases also of
the pressure. The dynamic viscosity μ is relatively easy to determine experimentally,
for instance using a viscometer of the type described in Sect. 1.3. The viscosity μ of
water is 1.8 ·10−3 Ns/m2 at 0 ◦C and 1.0 ·10−3 Ns/m2 at 20 ◦C. For air the viscosity
μ is 1.7 · 10−5 Ns/m2 at 0 ◦C and 1.8 · 10−5 Ns/m2 at 20 ◦C. The parameter κ is
called the bulk viscosity, and is far more difficult to measure. Its physical implication
will be discussed below. In the literature the (8.4.6) is often presented with λ in stead
of (κ−2μ/3), but the parameter λ has no direct physical interpretation, contrary to
what is true for both μ and κ . With reference to (4.2.42) in Sect. 4.2.1 on isotropic
tensors of 4. order, the parameters λ and μ may be identified as the Lamé-constants
for viscous fluids.
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In modern literature (8.4.6) is sometimes called the Cauchy-Poisson law. A ma-
terial model defined by the constitutive (8.4.6) is called a Newtonian fluid. For an
incompressible fluid, for which trD = 0, (8.4.6) has to be replaced by:

T =−p(r,t)1 + 2μD ⇔ Ti j =−p(r, t)δi j + 2μDi j (8.4.7)

The pressure p(r,t) is a function of position r and time t, and can only be determined
from the equations of motion and the boundary conditions. An equation of state,
p = p(ρ ,θ ), loses its meaning when incompressibility is assumed.

If the symmetric tensors T and D are decomposed into isotrops and deviators, the
constitutive equations (8.4.6) takes the alternative form:

To =−p(ρ ,θ )1 + 3κDo ⇔ T o
i j =−p(ρ ,θ )δi j + 3κ Do

i j (8.4.8)

T′ = 2μD′ ⇔ T ′i j = 2μD′i j (8.4.9)

For isotropic states of stress, we may replace (8.4.8) by:

T =− p̃1, p̃ = p(ρ ,θ )−κ ε̇v, ε̇v = trD = divv =− ρ̇
ρ

(8.4.10)

Note that the total pressure p̃ is not the same as the thermodynamic pressure p(ρ ,θ ).
The bulk viscosity κ expresses the resistance of the fluid toward rapid volume

changes. Due to the fact that it is difficult to measure κ , values are hard to find in
the literature. Kinetic theory of gasses shows that κ = 0 for monatomic gasses. But
as shown by Truesdell [49] this result is implied in the stress assumption that is
the basis for the kinetic theory. Experiments show that for monatomic gasses it is
reasonable to set κ = 0, while for other gasses and for all liquids the bulk viscosity
κ , and values of λ = κ −2μ/3, are larger than, and often much larger than μ . The
assumption κ = 0, which is sometimes taken for granted in older literature on Fluid
Mechanics, is called the Stokes relation, since it was introduced by him. However,
Stokes did not really believe the relation to be relevant. Usually the deviator D′
dominates over Do such that the effects of the bulk viscosity are small. The bulk
viscosity κ has dominating importance for the dissipation and absorption of sound
energy.

A Newtonian fluid provides an example of a visco-thermoelastic material. If the
thermodynamic pressure p is a function only of the density, the Newtonian fluid
represents a viscoelastic fluid.

Example 8.3. Flow Between Parallel Planes
In this example we shall use the Saint-Venant’s semi-inverse method. By this

method the unknown functions in a problem are partly assumed known. The govern-
ing equations and the boundary conditions in the problem are then used to determine
these functions completely.

The flow of an incompressible Newtonian fluid between two rigid plates, as
shown in Fig. 8.4.3, is driven by a constant pressure gradient c = −∂ p/∂x in
the direction of the flow and by constant velocity v of one of the plates. Gravity
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Fig. 8.4.3 Flow between parallel planes. Velocity profiles vx(y) for different combinations of the
parameters c and v

represents a body force -g in the y-direction. We assume steady state motion and the
velocity field:

vx = vx(y), vy = vz = 0 (8.4.11)

which satisfies the incompressibility condition, div v = 0. From the constitutive
(8.4.7) we obtain the following expression for the stresses in the fluid:

σx = σy = σz =−p(x,y,z), τxy = μ
dvx

dy
, τyz = τzx = 0

When these stresses are substituted into the Cauchy equations (8.1.7), we find:

0 =−∂ p
∂x

+ μ
d2vx

dy2 , 0 =−∂ p
∂y
−ρ g, 0 =−∂ p

∂ z
(8.4.12)

It follows from these equations that the pressure is independent of z and that the
pressure gradient in the x-direction, ∂ p/∂x = −c, is constant as assumed. Integra-
tions of the equations yield:

p(x,y) =−ρ gy− cx + A, vx =− c
2μ

y2 + By +C (8.4.13)

A, B, and C are constants of integration. We assume that the fluid sticks to the rigid
surfaces of the plates. The boundary conditions for the velocity and their implica-
tions are therefore:

vx(0) = 0, vx(h) = v ⇒ C = 0, B =
v
h

+
ch
2μ

The velocity field has then been determined.

vx(y) =
ch2

2μ

[
y
h
−
( y

h

)2
]

+ v
y
h

Figure 8.4.3 illustrates the velocity profile vx(y) for different combinations of the
constant parameters c and v.
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A boundary condition for the pressure may be p(0,0) = po, which implies that
A = po and:

p(x,y) = po−ρgy− cx

Example 8.4. Flow Around a Rotating Cylinder
Figure 8.4.4 shows a cylindrical container with inner radius b and a rigid cylinder

with radius a. The container and the cylinder have a common vertical axis, and their
length is L. The annular space between the two concentric cylindrical surfaces of
the container and the cylinder contains a Newtonian fluid. The rigid cylinder rotates
with a constant angular velocity ω due to a constant external couple moment M,
which is counteracted by the shear stress from the fluid. The motion of the cylinder
results in a steady flow of the fluid, and we assume the flow to be two-dimensional
with the velocity field:

vθ = vθ (R), vR = vz = 0 (8.4.14)

Using (5.4.19) for deformation rates in cylindrical coordinates, we find only one
deformation rate different from zero:

γ̇ ≡ γ̇θR =
dvθ
dR
− vθ

R
= R

d
dR

(vθ
R

)

The state of stress in the fluid is thus given by a pressure p and a shear stress:

τ ≡ τθR = μ γ̇θR = μR
d

dR

(vθ
R

)
(8.4.15)

The law of balance of angular momentum, (8.2.22), for a cylindrical body of ra-
dius R containing the rigid cylinder and fluid, provides the following equilibrium
equation:

0 = R · τ · (2πRL)+ M ⇒ τ =− M
2πL

1
R2 (8.4.16)

A combination of (8.4.15) and (8.4.16) results in a differential equation for the un-
known velocity field vθ :

Fig. 8.4.4 Steady flow in a
cylindrical container around a
rotating cylinder
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d
dR

(vθ
R

)
=− M

2πμL
1

R3 (8.4.17)

We assume that the fluid sticks to the rigid cylindrical surfaces and obtain the bound-
ary conditions:

vθ (a) = ω a, vθ (b) = 0

The solution of the differential (8.4.17) is then:

vθ (R) =
ω a[

1− (a/b)2
]
[

a
R
− aR

b2

]
, M =

4π μ Lω a2[
1− (a/b)2

]

An interesting special case, which will be referred to in Sect. 8.5, is obtained if
we let b→ ∞. The result is the potential flow:

vθ (R) =
ω a2

R
= ∇φ , φ = ω a2θ (8.4.18)

This flow is also discussed in Example 5.2 in Sect. 5.4, and called the potential
vortex.

If the fluid is incompressible with constant density ρ , the pressure p(R,θ ,z) in
the fluid in a potential vortex may be determined as follows. In cylindrical coordi-
nates the state of stress is expressed by:

σR = σθ = σz =−p(R,θ ,z), τθR ≡ τ =− M
2πLR2 , τθz = τzR = 0

The body force is given by the gravitational force −gez. The particle accelera-
tion is:

a = v̇ =−v2
θ

R
eR =−ω

2a4

R3 eR

The Cauchy equations (3.2.39–41) yield:

−∂ p
∂R

=−ρω
2a4

R3 , − ∂ p
∂θ

= 0, −∂ p
∂ z
−ρg = 0

The result of integrations of these equations is:

p(R,z) =−ρω
2a4

2R2 −ρ gz+C

The constant of integration C may be determined from a pressure boundary condi-
tion. For comparison we may note that the pressure in a fluid in rigid-body rotation,
see Problem 3.4, is:

p(R,z) =
ρω2R2

2
−ρ gz+C
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8.4.2 The Navier-Stokes Equations

The general equations of motion of a linearly viscous fluid are called the Navier-
Stokes equations. These equations are obtained by the substitution of the constitutive
equations (8.4.6) into the Cauchy equations of motion (8.1.7). If it is assumed that
the viscosities μ and κ may be considered to be constant parameters, the resulting
equations are:

∂tv +(v · ∇)v =− 1
ρ
∇p +

μ
ρ
∇2v +

1
ρ

(
κ+

μ
3

)
∇(∇ · v)+ b (8.4.19)

In a Cartesian coordinate system the Navier-Stokes equations are:

∂t vi + vk vi,k =− 1
ρ

pi +
μ
ρ

vi,kk +
1
ρ

(
κ+

μ
3

)
vk,ki + bi (8.4.20)

For incompressible fluids ∇ ·v = 0, and (8.4.19) is reduced to:

∂tv +(v · ∇)v =− 1
ρ
∇p +

μ
ρ
∇2v + b (8.4.21)

The Navier-Stokes equations (8.4.19, 8.4.20, 8.4.21) are the most important equa-
tions in the study of viscous fluids. The complexity of the equations indicates that
analytical solutions in most cases require major simplifications and approximations.
Modern computer codes make it possible to use the Navier-Stokes equations in nu-
merical solutions of very complex fluid flow problems.

For incompressible fluids it is often convenient to combine the pressure gradient
∇p and the body force term ρb in the Navier-Stokes equations (8.4.21) by introduc-
ing the modified pressure P. First we compute the static pressure ps that would exist
in the fluid at rest only subjected to the body force b. The static pressure ps is thus
determined from the equilibrium equation:

0 =− 1
ρ
∇ps + b (8.4.22)

If the body force is conservative such that b = −∇β , as presented in (8.3.16), we
write for (8.4.22):

0 =−∇
(

ps

ρ
+β
)
⇒ ps = po−ρβ

po is constant reference pressure.
For example, let b be the constant gravitational force g and z the vertical height

above a chosen reference level at which the pressure is po. Then we find β = gz and:

ps(z) = po−ρgz
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The modified pressure P is defined by:

P = p− ps or P = p +ρβ − po (8.4.23)

Then the Navier-Stokes equations for an incompressible fluid may be reduced to:

∂tv +(v · ∇)v =− 1
ρ
∇P+

μ
ρ
∇2v (8.4.24)

In Example 8.4 we may set ps = C−ρgz and the modified pressure becomes:

P(R) =−ρω
2a4

2R2

Example 8.5. Film Flow
Figure 8.4.5 illustrates the transportation of an incompressible fluid on a wide

conveyer belt as a film with constant thickness h. The belt has the width w and
is inclined an angle α with respect to the horizontal plane. The belt moves with
a constant velocity vo. The free fluid surface is only subjected to the atmospheric
pressure pa. The fluid sticks to the belt. The body force is given by the gravitational
force g and is expressed by:

b =−gsinα ex−gcosα ey

We assume steady two-dimensional flow with the velocity field and the pres-
sure field:

vx = vx(y), vy = 0, p = p(x,y)

The special situation at the edges of the belt needs not be considered if the width
of the belt is sufficiently large. The rate of deformation field D will naturally be
functions of the y-coordinate only. The stress field T will be dependent on both x
and y. The boundary conditions for the flow are:

Fig. 8.4.5 Film flow on a conveyer belt
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vx(0) = vo, σy(h,z) =−p(h,x) =−pa, τxy(h,z) = 0

The Navier-Stokes equations (8.4.21) are reduced to:

0 =− 1
ρ
∇p+

μ
ρ
∇2vxex+b⇒ 0 =− 1

ρ
∂ p
∂x

+
μ
ρ

d2vx

dy2 −gcosα, 0 =− 1
ρ
∂ p
∂y
−gsinα

The solution to the two partial differential equations that also satisfies the boundary
conditions is:

vx(y) = vo− ρgsinα h2

2μ

[
1−
(

1− y
h

)2
]

σx = σy = σz =−p =−pa−ρgcosα (h− y)
τzy =−ρgsinα (h− y) , τxy = τzx = 0

The volumetric flow Q of fluid volume transported by the conveyer belt per unit
time is calculated from:

Q = w

h∫

0

vx(y)dy = w

h∫

0

{
vo− ρgsinα h2

2μ

[
1−
(

1− y
h

)2
]}

dy ⇒

Q = vowh− ρgsinα wh3

3μ

Example 8.6. Laminar Flow in Pipes
An incompressible Newtonian fluid flows through a circular cylindrical pipe of

internal diameter d, see Fig. 8.4.6. The flow is driven by a constant modified pressure
gradient in the axial direction z. The flow is assumed to be laminar and steady, with
streamlines parallel to the axis of the pipe and with the velocity field:

vz = v(R), vR = vθ = 0 (8.4.25)

In order to find the velocity function v(R) we shall use the Navier-Stokes equa-
tions (8.4.24) in cylindrical coordinates, as given in Appendix B. First we note the

Fig. 8.4.6 Laminar pipe flow
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particle acceleration is zero. Then the Navier-Stokes equations expressed in cylin-
drical coordinates are reduced to:

0 =− 1
ρ
∂P
∂R

, 0 =− 1
ρR

∂P
∂θ

, 0 =− 1
ρ
∂P
∂ z

+
μ
ρR

∂
∂R

(
R
∂v
∂R

)

When these equations are integrated we end up with two integration constants.
These are found by requiring a finite velocity at the center of the pipe and by assum-
ing that the fluid sticks to the pipe wall:

v(0) �= ∞, v(d/2) = 0

The solution of the partial differential equations is then:

P = P(z) = po− cz, v =
d2

16μ
c

[
1−
(

2R
d

)2
]

The parameter c is the constant negative modified pressure gradient in the direction
of the flow. The velocity function may alternatively be expressed in terms of the
maximum vo:

vz(R)≡ v(R) = vo

[
1−
(

2R
d

)2
]

, vo =
d2

16μ
c (8.4.26)

The velocity profile is shown in Fig. 8.4.6.
According to the general expressions (5.4.19) for the rates of strain and rates of

shear in cylindrical coordinates the assumed velocity field (8.4.25) provides only
one non-zero value:

γ̇zR =
dv
dz

The constitutive equations (8.4.7) then give the stresses:

σR = σθ = σz =−p, τzR = μ
dvz

dR
=− c

2
R, τRθ = τθz = 0 (8.4.27)

8.4.3 Dissipation

The viscosity results in dissipation of mechanical energy in a flowing fluid, i.e. me-
chanical energy is converted to heat and internal energy. We now compute the stress
power per unit volume for a Newtonian fluid. Using the constitutive (8.4.6), we get:

ω = T : D =−pdivv + 2μD : D+
(
κ− 2μ

3

)
(trD)2 (8.4.28)
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A decomposition of the stress tensor T and the rate of deformation tensor D into
isotrops and deviators, using the expressions (8.4.8) and (8.4.9) yields:

ω = T : D =−pdivv + 2μD′ : D′+κ (divv)2 (8.4.29)

For a fluid with barotropic pressure: p = p(ρ), we introduce the specific elastic
energyψ defined by (8.3.11). Using the continuity (8.2.26), we obtain from (8.3.11):

ρ ψ̇ = p
ρ̇
ρ

=−pdivv (8.4.30)

The expression (8.4.28) may then be rewritten to:

ω = T : D = ρψ̇+ 2μD : D+
(
κ− 2

3
μ
)

(trD)2 (8.4.31)

The first term on the right-hand side of this expression for the stress power per
unit volume represents the recoverable part of the mechanical energy, while the two
last terms, which are seen always to be positive, represent a loss or dissipation of
mechanical energy.

The viscous-dissipation function is a positive semidefinite scalar-valued function
and for any fluid defined by:

δ = ω− (−pdivv) = ω− p
ρ̇
ρ

(8.4.32)

For a fluid with barotropic pressure we get:

δ = ω− (−pdivv) = ω− p
ρ̇
ρ

= ω−ρ ψ̇ (8.4.33)

For a Newtonian fluid the dissipation function becomes:

δ = 2μD : D+
(
κ− 2μ

3

)
(trD)2 = 2μD′ : D′ +κ (divv)2 (8.4.34)

For a fluid with barotropic pressure the mechanical energy balance (6.1.12) for a
fluid body with volume V may be presented as:

P = K̇ + Ψ̇+Δ (8.4.35)

Ψ is the elastic energy of the body, confer (8.3.14), and Δ is the dissipation in the
fluid body and given by:

Δ=
∫

V

δ dV (8.4.36)
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8.4.4 The Energy Equation

The general balance of thermal energy for a place or a particle is given (6.3.14):

ρε̇ =−divh+ T : D (8.4.37)

The equation will now be developed further for a Newtonian fluid. The specific
internal energy may be replaced by the specific enthalpy h through thee relationship:

h = ε+
p
ρ

(8.4.38)

p is the thermodynamic pressure. The heat flux vector h is expressed by the Fourier
heat conduction equation, named after Jean Baptiste Joseph Fourier [1768–1830]:

h =−k∇θ (8.4.39)

The parameter k is a temperature dependent heat conduction coefficient. In many
cases k is taken to be a constant parameter. From the definition (8.4.38) we obtain:

ε̇ = ḣ− ṗ
ρ

+ p
ρ̇
ρ2 (8.4.40)

For the last term in the energy (8.4.37) we use the definition (8.4.32) to write:

T : D = ω = δ + p
ρ̇
ρ

(8.4.41)

The results (8.4.39, 8.4.40, 8.4.41) are now substituted into the energy (8.4.37), and
we obtain the alternative form of the thermal energy equation:

ρ ḣ = ṗ+∇ · (k∇θ )+ δ (8.4.42)

For an incompressible fluid we introduce the specific heat at constant pressure:

cp =
∂h
∂θ

∣∣∣∣
p=constant

(8.4.43)

It may be shown that for a gas the term ṗ in (8.4.42) may be neglected if incom-
pressibility is assumed. The energy equation for an incompressible gas then takes
the form:

ρ cp θ̇ = ∇ · (k∇θ)+ δ (8.4.44)

For a Newtonian fluid the dissipation function δ is given by (8.4.34).
If we had started with the energy equation in the form (8.4.37) and then as-

sumed that the fluid was incompressible, we would have obtained the alternative
energy (8.4.44) with cp replaced by the specific heat at constant volume, or constant
density:
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cv =
∂ε
∂θ

∣∣∣∣
ρ=constant

(8.4.45)

For a liquid, which is nearly an incompressible material, cv = cp. It is customary for
an incompressible liquid to replace both cp and cv by a common specific heat c.

A commentary to the definition of the specific heat may be of interest at this
point. The specific heat c represents the heat that must be supplied per unit mass
and per unit of temperature. From the thermal energy (8.4.37) we obtain:

c =
divh

ρθ̇
=
ε̇
θ̇
− T : D

ρθ̇
(8.4.46)

For a perfect fluid we find, using (8.3.10) and (8.4.40), that:

c =
ε̇
θ̇
− pρ̇
ρ2 θ̇

=
ḣ

θ̇
− ṗ

ρ θ̇
(8.4.47)

At constant volume, or constant density, i.e. ρ̇ = 0:

c = cv =
ε̇
θ̇

∣∣∣∣
ρ=constant

=
∂ε
∂θ

∣∣∣∣
ρ=constant

(8.4.48)

At constant pressure:

c = cp =
ḣ

θ̇

∣∣∣∣
p=constant

=
∂h
∂θ

∣∣∣∣
p=constant

(8.4.49)

8.4.5 The Bernoulli Equation for Pipe Flow

An incompressible Newtonian fluid flows through a pipe. It is assumed that the flow
is laminar and steady, and that the fluid sticks to the pipe wall. As shown in Fig. 8.4.7
the pipe is cylindrical at the two positions where the cross-sections are A1 and A2.
It then follows from Example 8.6 that we may assume at these positions that the
stream lines are parallel to the axis of the pipe. We shall derive a Bernoulli equation
from the equation of balance of mechanical energy (8.2.23) for a control volume V

Fig. 8.4.7 Pipe flow
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defined by the fluid body in the pipe and between the cross-sections A1 and A2. The
control surface A consists then of the pipe wall Aw and the cross-sectionsA1 and A2.

For the body force we set b =−∇β , and due to the condition of incompressibil-
ity: ∇ · v = 0, we can write: b · vρ = −∇ · (βvρ). By the divergence theorem C.4
we get: ∫

V

∇ · (β vρ)dV =
∫

A

β ρ v · ndA (8.4.50)

At the pipe wall Aw the fluid velocity v is zero, which implies that t · v = 0 on Aw.
Based on the result (8.4.27) in Example 8.6 we assume that on the cross-sections A1

and A2: t ·v =−pv ·n. Equation (8.4.32) yields: T : D≡ ω = δ . It now follows that
the energy (8.2.23) for the control volume V with the control surface A = Aw +A1 +
A2 can be presented as:

⎡
⎣∫

A

(
v2

2
+

p
ρ

+β
)
ρ v · ndA

⎤
⎦

A1

A2

= Δ≡
∫

V

δ dV =
∫

V

T : DdV =
∫

V

2μD : DdV

(8.4.51)
Confer (8.3.21). The Navier-Stokes equation (8.4.20) may be presented as:

v̇ =− 1
ρ
∇p +

μ
ρ
∇2v−∇β =−∇

(
p
ρ

+β
)

+
μ
ρ
∇2v

At the cross-sections A1 and A2 we assume zero particle acceleration and zero ve-
locity gradient. The Navier-Stokes equation then implies:

∇
(

p
ρ

+β
)

= 0 ⇒ p
ρ

+β = constant over the cross-sections A1 and A2

(8.4.52)
Hence:

∫

A

(
p
ρ

+β
)
ρ v · ndA =

(
p
ρ

+β
)
ρQ, Q =

∫

A

v · ndA on A = A1 or A2

Q is the volumetric flow. We introduce the dimensionless parameter α such that:

∫

A

v2

2
ρ v · ndA =

(
α

v2
m

2

)
ρQ, vm =

Q
A

= mean velocity over cross-section A

Equation (8.4.51) may now be transformed into the Bernoulli equation:

[
α

v2
m

2
+

p
ρ

+β
]

A1

−
[
α

v2
m

2
+

p
ρ

+β
]

A2

=
Δ
ρQ

(8.4.53)

The right-hand side of this equation is called the loss term.
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We shall compute the parameter α for a cylindrical pipe with circular cross
section of diameter d. The velocity distribution over the cross section is given by
(8.4.26). Thus:

∫

A

v2

2
ρ v · ndA =

d/2∫

0

ρ v3(R)
2

2πRdR =
(

2
v2

m

2

)
ρQ, vm =

vo

2

Thus α = 2 for circular pipes with laminar flow. For the same case we shall compute
the loss term along a pipe of length L and with constant diameter d. The deforma-
tion rate matrix D in cylindrical coordinates is given by formulas (5.4.18–19). The
velocity field (8.4.26) provides this rate of deformation matrix:

D =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ 1

2
dv
dR

,
dv
dR

=−16 vm

d2 R

Then from the definition of Δ in (8.4.51) we get:

Δ=
∫

V

2μD : DdV = L

d/2∫

0

2μ

[(
−1

2
16vm

d2 R

)2

2

]
(2πRdR) = 32

μ vm L
d2 Q

The loss term becomes:
Δ
ρQ

= 32
μ vm L

d2 (8.4.54)

For steady turbulent flow in a pipe it is experimentally found that the time-
averaged velocity is practically constant over the cross section, which means that
α ≈ 1. The loss term for turbulent flow in a pipe of length L and with constant
diameter d, is presented as:

Δ
ρQ

= λ
L
d

v2
m

2
(8.4.55)

The parameter λ has to be determined experimentally. It is found that the parameter
λ depends on the Reynolds number Re = vmd/(μ/ρ) and the roughness of the inside
surface of the pipe. The last effect dominates, and it is customary to consider λ
independent of Re in the case of turbulent flow.

For the special case of laminar flow discussed above, the loss term may also be
computed from the Bernoulli (8.4.53). From (8.4.26) in Example 8.6 we obtained for
the modified pressure gradient in the flow direction: c = 16μvo/d2. Using (8.4.23)
we obtain:

cL =
16μ vo L

d2 = 32
μ vm L

d2 = PA1−PA2 = [p +ρβ ]A1
− [p +ρβ ]A2

⇒

[p +ρβ ]A1
− [p +ρβ ]A2

= 32
μ vm L

d2 (8.4.56)
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Since the mean velocity over the cross-sections A1 and A2 are the same, the result
(8.4.54) follows from (8.4.56) and the Bernoulli equation (8.4.53).

8.5 Potential Flow

It was shown in Sect. 8.3 that under the assumptions: 1) barotropic fluid and 2) con-
servative body forces, a fluid will remain in irrotational flow if the fluid has at any
time been in irrotational flow. These conditions exist when for instance fluid flows
from a reservoir as shown in Fig. 8.3.2. The same conditions are approximately sat-
isfied in a flow created by a rigid body moving in fluid originally at rest. A similar
case occurs in a fluid flow around a rigid body at rest if the fluid before it meets
the body and far away from the body, has parallel stream lines and constant veloc-
ity, i.e. the fluid is in uniform flow. As illustrated in Fig. 8.5.1, the two last types
of flows are essentially the same: The flow in the second case is obtained from the
first if the motion is referred to the rigid body. Obviously the vorticity is zero in
the uniform flow. The flow in the vicinity of rigid surfaces must be corrected by a
boundary layer analysis, and the wake must be excluded from the irrotational flow
analysis.

Irrotational flow is also called potential flow because the velocity field in the flow
may be derived from a scalar valued function of position φ(r,t), called the velocity
potential, such that:

v = ∇φ (8.5.1)

For potential flow the continuity (8.2.26) may be rewritten to:

ρ̇+ρ∇2φ = 0 (8.5.2)

In this section we shall assume that the fluid is incompressible. The continuity
(8.5.2) is then reduced to the Laplace equation:

∇2φ = 0 (8.5.3)

Fig. 8.5.1 Potential flow. Flow created by a rigid body moving in a fluid originally at rest is equiv-
alent to the fluid flow around a rigid body at rest approached by a uniform flow
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Solutions of this equation provide possible potential flows of incompressible fluids.
The boundary conditions for φ are determined from the fact that the velocity com-
ponent normal to rigid surfaces must be zero. Let n be the unit normal to a rigid
surface. Then:

n · ∇φ =
dφ
dn

= 0 on rigid surfaces (8.5.4)

The differential equation (8.5.3) and the boundary condition (8.5.4) are linear, which
means that we may superimpose known solutions to obtain new solutions. This is
demonstrated in Example 8.10 below. The theory of potential flows is highly de-
veloped and mathematically extensive. In two-dimensional flows conform mapping
may be applied by which the real flow is transformed mathematically to a flow
around a rigid cylinder. The reader is referred to the Fluid Mechanics literature for
further presentation of this application.

Example 8.7. Uniform Flow
In a uniform flow: v1 =constant and v2 = v3 = 0, referred to a Cartesian coordi-

nate system Ox, the velocity potential is: φ = v1x1.

Example 8.8. The Potential Vortex
In Example 8.4 we found that the fluid flow created by a vertical cylinder of

radius a rotating with a constant angular velocity ω in a cylindrical container of
inner radius b, becomes a potential flow if the radius of the container is very large,
i.e. b→ ∞, see (8.4.18). Now we introduce a constant parameter Γ such that the
velocity potential and the corresponding velocity field are:

φ =
Γθ
2π

, vθ =
Γ

2πR
, vR = vz = 0

The parameter Γ represents the circulation along any closed curve around the z-axis.
To see this we compute the circulation along a circle C with center on the z-axis and
of radius R: ∮

C

v · dr =
2π∫

0

Γ
2πR

Rdθ = Γ= constant (8.5.5)

This result seams to be in contradiction with what is implied by (8.3.37): Since
the vorticity is zero in a potential flow, c = ∇× v = 0, (8.3.37) implies that the
circulation Γ is zero. However, the result (8.3.37) is based on the application of
Stokes’ theorem C.5, which requires that the velocity v is regular on the integration
surface A. This condition is not satisfied for the present flow because any surface
bounded by C will intersect the z-axis, at which v = ∞.

By proper choice of the integration path the result (8.5.5) may easily be general-
ized to apply to any closed curve around the z-axis.

Example 8.9. Rigid Cylinder in Uniform Flow
Potential flow around a rigid cylinder of radius a, as shown in Fig. 8.5.2, is rep-

resented by the velocity potential:
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Fig. 8.5.2 Rigid cylinder in uniform flow

φ = v

[
x + a2 cosθ

R

]
≡ v

[
R +

a2

R

]
cosθ

v is the velocity of a uniform flow far away upstream from the cylinder.
The velocity field is found by applying (8.5.1) and (2.4.18) for the del-operator

in cylindrical coordinates:

vR =
∂φ
∂R

= v

[
1−
(a

R

)2
]

cosθ , vθ =
1
R
∂φ
∂θ

=−v

[
1 +
(a

R

)2
]

sinθ

The Euler pressure equation (8.3.24) provides the pressure against the cylinder wall.
First we introduce the modified pressure P from (8.4.23):

P = p− ps = p +ρβ − po

ps is the static pressure and po is a reference pressure. When the modified pres-
sure is substituted into (8.3.24), we obtain an alternative form of the Euler pressure
equation:

v2

2
+

P
ρ

= constant in the fluid (8.5.6)

In this general equation v is the fluid velocity at the chosen place in the fluid. In
the present case the pressure p far away from the rigid cylinder is equal to the
static pressure ps and the modified pressure P is zero. Hence, when the pressure
equation (8.5.6) is applied to the present flow example, we get for the modified
pressure P on the rigid cylinder:

v2

2
+

0
ρ

=
v2

R + v2
θ

2
+

P
ρ
⇒ P = p− ps =

ρ v2

2

(
1–4sin2 θ

)

Figure 8.5.2 shows how this theoretical pressure deviates from the pressure obtained
experimentally. The theoretical velocity field and the corresponding pressure are
only realistic near the front of the cylinder. The reason for this is the creation of the
wake downstream, which is highly rotational. Confer Fig. 8.1.3.
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Example 8.10. Rotating Cylinder in Uniform Flow
A long cylinder is lying on a horizontal table, as illustrated in Fig. 8.5.3. Around

the cylinder is wound a tape. We pull the tape with a force T and thereby give the
cylinder a horizontal velocity v and an angular velocity ω . Referred to the cylin-
der the air approaches the cylinder from a uniform flow with constant velocity v.
The rotation of the cylinder creates a potential vortex as described in Example 5.2,
Example 8.4, and Example 8.8. We will experience that the cylinder is subjected
to a lifting force counteracting the gravitational force. In fact the cylinder may lift
itself and rise higher then the level of the table it has left. The lift is obviously due
to the rotation of the cylinder and thereby the circulation created by this rotation.
The lifting effect is called the Magnus effect, named after Gustav Heinrich Magnus
[1802–1870].

The Magnus effect is also present when balls in sports, like tennis, golf, and
soccer, are thrown, kicked, or batted with a rotation. The ball may be given a higher
or flatter vertical path, or a path curving to the left or to the right. The present
example will give a theoretical explanation to the Magnus effect.

We shall compute the lifting force on a rigid cylinder in a flow described by the
velocity potential:

φ = v

[
R +

a2

R

]
cosθ − Γθ

2π
, Γ= 2πω a2

This potential is obtained by superposition of the velocity potentials in Example 8.9
and Example 8.8. Note however that the sense of ω is opposite in Example 8.8 and
in the present example. The velocity field is obtained directly by addition of the
velocities in the two examples:

vR = v

[
1−
(a

R

)2
]

cosθ , vθ =−v

[
1 +
( a

R

)2
]

sinθ − Γ
2πR

The modified pressure P on the rigid cylinder is obtained from the Euler pressure
equation (8.5.6):

Fig. 8.5.3 The Magnus effect. Lifting force L due to the combined rotation and translation of the
cylinder
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v2

2
+

0
ρ

=
v2

R + v2
θ

2
+

P
ρ
⇒ P = p− ps =

ρ v2

2

[
1−
(

2sinθ +
Γ

2π av

)2
]

This pressure gives the resulting vertical lift force:

L =−
2π∫

0

Psinθ adθ = Γρ v

8.5.1 The D’alembert Paradox

It may be shown theoretically that any body moving with constant velocity through
a barotropic fluid, originally at rest, will not be subjected to a resulting force from
the fluid. This phenomenon is called the d’Alembert paradox after Jean Le Rond
d’Alembert [1717–1783]. Two-dimensional potential theory gives another result, as
we just have seen in Example 8.10 above. In general we shall find that a rigid body
in an originally uniform flow is subjected to a lift force L in the direction normal to
the uniform flow which is given by the expression:

L = Γρ vo (8.5.7)

vo is the velocity of the uniform flow and Γ is the circulation around any closed
curve surrounding the two-dimensional body. This fascinating result is called the
Kutta-Joukowsky theorem after Wilhelm Kutta [1867–1944] and Nikolai Egorovich
Joukowsky [1847–1921].

8.6 Non-Newtonian Fluids

8.6.1 Introduction

Viscous fluids that do not follow Newton’s law of fluid friction, (8.4.4) are called
non-Newtonian fluids. These fluids are usually highly viscous fluids and their elastic
properties are also of importance. The viscoelastic fluids discussed in Chap. 9 are
also characterized as non-Newtonian. Typical real non-Newtonian fluids are poly-
mer solutions, thermo plastics, drilling fluids, paints, fresh concrete and biological
fluids. The theory of non-Newtonian fluids is called rheology.

The term rheology was invented in 1920 by Professor Eugene C. Bingham at
Lafayette College in Indiana, USA. Bingham who was a professor of Chemistry,
studied new materials with strange flow behavior, in particular paints. The syllable
Rheo is from the Greek word “rhein”, meaning flow, so the name rheology was
taken to mean the theory of deformation and flow of matter. Rheology has also
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come to include the constitutive theory of highly viscous fluids and solids exhibiting
viscoelastic and viscoplastic properties.

Materials in the solid state can behave fluid-like under special conditions. Plastic
deformation of solids at yield and creep may be considered to be fluid-like behavior.
At high temperatures (> 400 ◦C) common structural steel shows creep and stress
relaxation. In many simulations of forming processes with metals and polymers
the material is modelled as a fluid although the temperature is below the melting
temperature of the material.

Fluid models may be classified into three main groups:

A. Time independent fluids for which the fluid properties are explicitly indepen-
dent of time.

A1. Viscoplastic fluids. Two examples are presented in Sect. 8.6.2, and more
examples are presented in Sect. 10.11.

A2. Purely viscous fluids. Some examples are presented below, and some
advanced models are discussed in the Sect. 11.9.

B. Time dependent fluids. The constitutive modeling of these fluids is very com-
plex in will not be treated in this book.

B1. Thixotropic fluids. For constant deformation rates the stresses in a
thixotropic fluid decrease monotonically.

B2. Rheopectic fluids or antithixotropic fluids. For constant deformation
rates the stresses in a rheopectic fluid increase monotonically.

C. Viscoelastic fluids. Linear and non-linear models are discussed in Chap. 9.

8.6.2 Generalized Newtonian Fluids

The most commonly used models for incompressible non-Newtonian fluids are
called generalized Newtonian fluids. The constitutive equation defining this fluid
model is:

T =−p1 + 2ηD (8.6.1)

p is the pressure p (r,t) and η , called the viscosity function, is a function of the
magnitude of shear rate or the shear rate measure γ̇:

η = η(γ̇), γ̇ =
√

2D : D≡ 2
√−IID (8.6.2)

IID is the 2. principal invariant of the rate of deformation tensor D. This model is
called a purely viscous fluid because the stress tensor depends solely on the rate
of deformation tensor. The viscosity function, which is temperature dependent, is
determined in experiments with simple shear flow, for instance as described in
Sect. 1.3. In a simple shear flow the shear measure reduces to the absolute value
of the rate of shear strain:
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vx = c(t)y, vy = vz = 0 ⇒ γ̇ =
∣∣∣∣dvx

dy

∣∣∣∣= |c(t)| (8.6.3)

Figure 8.6.1 shows a characteristic experimental curve of the viscosity function of
real fluids. If η is constant and independent of the shear measure, (8.6.1) represents
an incompressible Newtonian fluid, with η ≡ μ the shear viscosity.

Different analytical functions for the viscosity functions represent different fluid
models, all of which are generalized Newtonian fluids. Some of the most common
of these are presented in the following.

a) POWER-LAW FLUID (W. Ostwald 1925, A. de Waele 1923):

η = Kγ̇n−1 (8.6.4)

K and n are temperature dependent material parameters. K is called the consis-
tency parameter and n is the power-law index. Table 8.6.1 gives examples of
values of K and n for some real fluids. It is often practical to set:

K = Ko exp [−A(θ −θo)] , n = constant (8.6.5)

θ is the temperature and Ko, A, and the temperature θo are reference val-
ues. The power-law fluid has the weakness that it cannot fit the experimen-
tal curve of the viscosity function for very small and very large values of the
shear measure. However, the model is relatively easy to work with in analyt-
ical solutions. For most real non-Newtonian fluids n < 1, see Fig. 8.6.1. The
viscosity of the fluid decreases with increasing shear measure and the fluid is
therefore called shear-thinning. For n > 1 the viscosity increases with increas-
ing shear measure γ̇ , and the fluid is called shear-thickening or dilatant. The
latter name is due to the fact that such a fluid normally also expands when
deformed.

Fig. 8.6.1 The viscosity function
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Table 8.6.1 Consistency K and power-law index n for some fluids

Fluid Region of γ̇ [s−1] K[Nsn/m2] n

54.3% cement rock in water, 300◦K 10–200 2.51 0.153
23.3% Illinois clay in water, 300◦K 1800–6000 5.55 0.229
Polystyrene, 422◦K 0.03–3 1.6 ·105 0.4
Tomato Concentrate, 90◦F 30% solids 18.7 0.4
Applesauce, 80◦F 11.6% solids 12.7 0.28
Banana puree, 68◦F 6.89 0.46

b) CARREAU FLUID (P.J. Carreau 1968):

η = η∞+(ηo−η∞)
[
1 +(λ γ̇)2

](n−1)/2
(8.6.6)

η∞ = η(∞), called the infinite-shear-rate viscosity, ηo = η(0), called the zero-
shear-rate- viscosity, and λ is a time constant. This model adjusts to the exper-
imental curve in Fig. 8.6.1 very well for all γ̇-values.

c) ZENER-HOLLOMON FLUID (Zener, C. and Hollomon, J.H. 1944):

η(γ̇ ,θ ) =
1√

3α γ̇
arcsinh

[(
Z
A

)1/n
]

, Z = γ̇ exp

[
Q

Rθ

]
(8.6.7)

α, A, and n are material parameters, and θ is the absolute temperature. The
material parameter Q is called the activation energy, and R is the universal gas
constant. The parameter Z, called the Zener-Hollomon parameter, is a temper-
ature compensated shear measure. The model has been applied in simulations
of forming processes, for instance in extrusion of light metals.

The next two models are not really purely viscous fluids but rather viscoplas-
tic fluids. Section 10.11 presents a further discussion of viscoplastic fluids.

d) BINGHAM FLUID (E.C. Bingham 1922):

η = ∞ when |τmax|< τy, η = μ+
τy

γ̇
when |τmax| ≥ τy (8.6.8)

τmax is the maximum shear stress in the fluid particle. τy is called the yield
shear stress. μ is a constant viscosity parameter. This fluid model will be dis-
cussed further in Sect. 10.11.2.

e) CASSON FLUID (N. Casson 1959):

η = ∞ when |τmax|< τy, η = μ+
τy

γ̇
+2

√
μτy

γ̇
when |τmax| ≥ τy (8.6.9)

This model was originally introduced to describe flow of mixtures of pigments
and oil. The model is now often used to describe flow of blood for low values
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of the shear measure. For high values of γ̇ blood behaves as a Newtonian
fluid.

8.6.3 Viscometric Flows. Kinematics

Steady flow between to parallel plates and without modified pressure gradient,
Fig. 8.6.2, is called steady simple shear flow. As this type of flow has some charac-
teristic features common for many more complex flows important in applications,
we shall take a closer look at the characteristic aspects of steady simple shear flow.
The velocity field is:

v1 = γ̇x2, v2 = v3 = 0, γ̇ =
v
h

= constant > 0 (8.6.10)

resulting in the deformation rate matrix and the magnitude of shear rate:

D =
1
2
γ̇

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ ,
√

2D : D =
√

2trD2 = j (8.6.11)

The flow has the following characteristic features:

a) The flow is isochoric: ∇ ·v = trD = 0.
b) Material planes parallel to the x1x3-plane moves in the x1-direction without

in-plane strains. We say that these planes represent a one-parameter family of
isometric surfaces. The coordinate x2 is the parameter defining each plane in
the family. The word “isometric” is used to indicate that the distances between
particles in each surface, measured in the surface, do not change during the
flow. The isometric surfaces are called shearing surfaces.

c) The deformation rate matrix D is given by (8.6.11).
d) The magnitude of shear rate γ̇ in (8.6.11) is constant.

The traces of two shearing surfaces are shown in Fig. 8.6.2. The particles in the
upper surface have the velocity v1,2 · dx2 relative to the lower surface. The stream-

Fig. 8.6.2 Steady simple shear flow between a fixed plane and a moving parallel plate
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Fig. 8.6.3 Shear surfaces and
line of shear

lines related to the velocity field v1,2 ·dx2, when dx2→ 0, are called lines of shear.
In the simple shear flow the shearing surfaces are planes and the lines of shear are
straight lines parallel to the x1-axis. Because the fluid particles are fixed to the same
line of shear at all times, the lines of shear are material lines.

The general shear flow has features parallel to those of the simple steady shear
flow. A flow is a shear flow if the following conditions are fulfilled:

a) The flow is isochoric: ∇ ·v = trD = 0.
b) A one-parameter family of material surfaces exists that move isometrically,

i.e. is without in-surface strains. These surfaces are called shearing surfaces,
Fig. 8.6.3.

The streamlines related to the velocity field vrel of one shearing surface rel-
ative to a neighbor shearing surface are called lines of shear. The particles on
one line of shear at the time t will not in general stay on the same line of shear
at a later time. In other words, the lines of shear are not necessarily material
lines. The condition a) implies zero strain rate normal to the shearing surfaces.

A shear flow that in addition to the conditions a) and b) of a general shear
flow, also satisfies the condition:

c) The lines of shear are material lines, is called a unidirectional shear flow. The
material lines coinciding with the lines of shear at a particular time, will con-
tinue to be lines of shear as time passes. We may imaged that the lines of shear
are “drawn” on the shearing surfaces and these material lines would than rep-
resent the lines of shear at later times. Unidirectional shear flow is the most
common shear flow in applications and in particular in experiments designed
to investigate the properties of non-Newtonian fluids.

Fig. 8.6.4 Shear axes
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Fig. 8.6.5 Deformation of a
fluid element

The analysis of the deformation kinematics of shear flows in the neighbor-
hood of a particle P is simplified by introducing a local Cartesian coordinate
system Px at the particle, as shown in Fig. 8.6.4. The coordinate axes are cho-
sen such that the base vector e1 and e3 are tangents to the shearing surface, with
e1 in the direction of the relative velocity vrel of the shearing surface relative
to the neighbor shearing surface. The base vector e1 is thus tangent to the line
of shear through the particle. The base vector e2 is normal to the shear surface.
The three vectors ei are called the shear axes, and the vector e1 is the shear
direction.

A fluid element dV = dx1dx2dx3 is during a short time interval dt deformed
as indicated in Fig. 8.6.5. The deformation is govern by the shear strain rate
γ̇12 = v1,2. The deformation rate matrix D in the Px-system is therefore equal to
the deformation rate matrix (8.6.11) of a simple shear flow, and the magnitude
of shear rate is γ̇ = |γ̇12|.

A unidirectional flow that also satisfies the condition:
d) For every particle the magnitude of shear rate γ̇ is independent of time, is called

a viscometric flow. Another name of this kind of flow is rheological steady
flow. The flow is not necessarily a steady flow as defined in fluid mechanics.
Rheological steady means that the magnitude of shear rate of the fluid is not
changing with time. Viscometric flows play an important role in investigating
the properties of non-Newtonian fluids. We shall now present a series of impor-
tant viscometric flows and identify shearing surfaces, lines of shear, and shear
axes for each flow.

Example 8.11. Steady Axial Annular Flow. Steady Pipe Flow

Fig. 8.6.6 Axial annular flow.
Steady pipe flow
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The fluid flows in the annular space between two solid, concentric cylindrical
surfaces, or, as shown in Fig. 8.6.6, the fluid flows in a cylindrical pipe. The flow is
steady and the velocity is parallel to the axis of the cylindrical surfaces:

vz = vz(R), vR = vθ = 0 (8.6.12)

The shearing surfaces are concentric cylindrical surfaces. The lines of shear are
straight lines parallel to the axis of the cylindrical surfaces, and they coincide with
the streamlines of the flow and with the pathlines of the fluid particles. The shear
axes are:

e1 = ez, e2 = eR, e3 = eθ (8.6.13)

The magnitude of shear rate is:

γ̇ = |γ̇zR|=
∣∣∣∣dvz

dR

∣∣∣∣ (8.6.14)

Example 8.12. Steady Tangential Annular Flow
The fluid flows in the annular space between two concentric solid cylindri-

cal surfaces. One of the solid surfaces rotates with a constant angular velocity ω.
Figure 8.6.7 shows the case where the inner cylindrical surface rotates. The velocity
field is:

vθ = vθ (R), vz = vR = 0 (8.6.15)

The shearing surfaces are concentric cylindrical surfaces. The lines of shear are
circles with constant R and z, and they coincide with streamlines of the flow and the
pathlines of the particles. The shear axes are:

e1 = eθ , e2 = eR, e3 =−ez (8.6.16)

The magnitude of shear rate is found from the formulas (5.4.19):

γ̇ = |γ̇Rθ |=
∣∣∣∣R d

dR

(vθ
R

)∣∣∣∣ (8.6.17)

It is found that for a Newtonian fluid the velocity field presented by (8.6.15) is
unstable when the angular velocity ω is increased above a certain limit. The insta-
bility introduces a secondary flow with velocities both in the z- and the R-directions
and is described as Taylor vortexes. Instability and Taylor vortexes occur when:

Ta ≡
(
ρ
μ
ω
)2

ri (ro− ri)
3 > 1700 (8.6.18)

ρ is the density, μ is the viscosity, and ri and ro are the radii of the inner and outer
solid boundary surfaces. Ta is called the Taylor number. At Ta > 160 · 103 the flow
becomes turbulent. Similar instabilities can occur for non-Newtonian fluids.

Example 8.13. Steady Torsion Flow
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The fluid is set in motion between two plane concentric circular disks. One disk
is at rest while the other disk rotates about its axis at a constant angular velocity ω .
Figure 8.6.8 illustrates the situation. The dashed curved line indicates a free surface.
In the case of a thick fluid this is really a free surface, while in the case of a thin
fluid, the disks are submerged in a fluid bath. The rotating disk is touching the free
surface of the bath and the dashed line marks an artificial free surface. Only the fluid
between the disks is considered in the analysis.

The velocity field is assumed to be:

vθ =
ω
h

Rz, vz = vR = 0 (8.6.19)

Based on the assumption that the fluid sticks to the solid disks, the velocity vθ(R,z)
satisfies the boundary conditions:

vθ (R,h) = ω R , vθ (R,0) = 0 (8.6.20)

The shearing surfaces are planes normal to the axis of rotation. The lines of shear
are concentric circles, see Fig. 8.6.8b, and they coincide with the streamlines of
the flow and the pathlines of the particles. Figure 8.6.8c shows an unfolded part of
the cylinder surface R ·dz between two shearing surfaces a distance dz apart. From
the deformation of the fluid element shown in the figure we conclude that the shear
axes are:

e1 = eθ , e2 = ez, e3 = eR (8.6.21)

and that the magnitude of shear rate becomes, as seen from Fig. 8.6.8c:

γ̇ = |γ̇θz|=
∣∣∣∣∂vθ
∂ z

∣∣∣∣= ω
h

R (8.6.22)

Fig. 8.6.7 Tangential annular
flow
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Fig. 8.6.8 Torsion flow

This result can is also be obtain from the formulas (5.4.19).

Example 8.14. Steady Helix Flow
The flow of the fluid in the annular space between to solid cylindrical surfaces is

driven by the rotation and the axial translation of the inner cylindrical surface, see
Fig. 8.6.9. The angular velocity ω and the axial velocity v are constants.

The velocity field is assumed as:

vθ = vθ (R), vz = vz(R), vR = 0 (8.6.23)

This kind of flow may also be obtained by a combination of a rotation of the inner
cylinder and a constant modified pressure gradient ∂P/dz. The shearing surfaces
are concentric cylindrical surfaces, which rotate and move in the axial direction. A
fluid particle moves in a helix. Thus pathlines and streamlines are helices. A fluid
particle on a shearing surface moves relative to a neighbor shearing surface also
in a helix. Hence the lines of shear are helices, but they do not coincide with the

Fig. 8.6.9 Helix flow
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streamlines or the pathlines. This is shown in Fig. 8.6.9. The rate of deformation
matrix in cylindrical coordinates obtained from (5.4.18) and (5.4.19), contains only
two independent elements for the flow (8.6.23):

γ̇Rθ = R
d

dR

(vθ
R

)
, γ̇zR =

dvz

dR
(8.6.24)

The magnitude of shear rate becomes, see Problem 8.9:

γ̇ =
√

2D : D =

√√√√2

[(
1
2
γ̇Rθ

)2

2 +
(

1
2
γ̇zR

)2

2

]
⇒

γ̇ =
√

(γ̇Rθ )
2 +(γ̇zR)2 (8.6.25)

The shear axis normal to the shearing surface is e2 = eR. The shear direction and
the third shear axis are found to be, Problem 8.9:

e1 =
γ̇Rθ
γ̇

eθ +
γ̇zR

γ̇
ez, e3 =

γ̇zR

γ̇
eθ − γ̇Rθ

γ̇
ez (8.6.26)

8.6.4 Material Functions for Viscometric Flows

Relations between stress components and deformation components, like strains and
strain rates, in characteristic and simple flows are expressed by material functions.
The viscosity function η(γ̇) presented in Sect. 8.6.2 is an example of a material func-
tion for unidirectional shear flows. The characteristic flows for which the material
functions are defined occur in standard experiments designed to investigate the prop-
erties of non-Newtonian fluids. In general the material functions may be functions
of stresses, stress rates, strains, strain rates, temperature, time, and other parameters.
The material functions are determined experimentally and are represented by data
or mathematical functions representing these data.

In analyses of general flows fluid models are introduced. These models are de-
fined by constitutive equations. A constitutive equation is a relationship between
stresses and different measures of deformations, as strains, strain rates, and vortic-
ities. A general constitutive equation is intended to represent a fluid in any flow,
although it is experienced that most constitutive equations have limited application
to only a few types of flows. The material functions may enter the constitutive equa-
tions or are used to determine material parameters in the constitutive equations. It
might be a goal when constructing a fluid model that the constitutive equations of
the model contain the material functions that is relevant for the special test flows
that most resemblance the actual flow the fluid model is intended for.

We shall consider an isotropic, incompressible, and purely viscous fluid in a gen-
eral viscometric flow, as described in Sect. 8.6.3. Figure 8.6.10a shows a particle

Tim
Hervorheben
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Fig. 8.6.10 Stresses in the viscometric flow

P and the shearing surface and the line of shear going through the particle. A local
Cartesian coordinate system Px is introduced such that the base vectors ei are the
shear axes, see Fig. 8.6.10b. The rate of deformation matrix is given by (8.6.11),
where γ̇ is the magnitude of strain rate. The stress tensor T is decomposed into an
isotropic part containing the pressure p, and a deviatoric extra stress T′ due to the
shear flow and assumed to be only a function of the magnitude of shear rate γ̇ and
the temperature θ . The temperature dependence will not be reflected implicitly in
the following. Thus we set:

T =−p1 + T′, T ′ik ≡ τik(γ̇) (8.6.27)

Thecondition ofmaterial isotropy implies that thestateof stressmusthave thesame
symmetry as the state of deformation rate. With reference to Fig. 8.6.10 the x1x2-plane
is a symmetry plane. This implies that the shear stresses τ13 = τ31 and τ23 = τ32 must
be zero because these stresses act antisymmetrically with respect to the symmetry
plane. The state of stress in the fluid is therefore given by the stress matrix:

T = (−pδik + τik) =

⎛
⎝−p + τ11 τ12 0

τ12 −p + τ22 0
0 0 −p + τ33

⎞
⎠ (8.6.28)

Incompressibility implies that the pressure p cannot be given by a constitutive equa-
tion but has to be determined from the equations of motion and the boundary con-
ditions for the flow. For an incompressible fluid the pressure level cannot influence
the flow. Only pressure gradients are of importance.

In measuring directly or indirectly the normal stresses, it is not possible to dis-
tinguish between the pressure p and the contribution from the extra stresses due
to the deformation of the fluid. The implication of this is that only normal stress
differences may be expressed by material functions. In a viscometric flow we seek
material functions for the following three stresses:
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The shear stress: τ12

The primary normal stress difference: N1 = T11−T22 = τ11− τ22

The secondary normal stress difference: N2 = T22−T33 = τ22− τ33 (8.6.29)

The third normal stress difference, T11−T33, is determined by the two others:

T11−T33 = (T11−T22)+ (T22−T33) = N1 + N2 (8.6.30)

Three material functions, called viscometric functions, are introduced in a visco-
metric flow:

η(γ̇) =
|τ12(γ̇)|
γ̇

the viscosity function

ψ1(γ̇) =
N1(γ̇)
(γ̇)2 the primary normal stress coefficient

ψ2(γ̇) =
N2(γ̇)
(γ̇)2 the secondary normal stress coefficient (8.6.31)

γ̇ is the magnitude of shear rate. The viscosity function is also called the apparent
viscosity.

Figure 8.6.11 shows characteristic behavior of the viscometric functions for
shear-thinning fluids. For low values of the magnitude of shear rate γ̇ the viscosity
function η(γ̇) is nearly constant and equal to ηo = η(0), called the zero-shear-rate-
viscosity. For high values of the magnitude of shear rate γ̇ the viscosity function
η(γ̇) may approach asymptotically a infinite-shear-rate viscosity η∞.

For some fluids, for example highly concentrated polymer solutions and polymer
melts, it may be impossible to measure η∞. For the fluids mentioned the reason is
that the polymer chains may be destroyed at very high shear rates.

The primary normal stress coefficient ψ1(γ̇) is positive, and is almost constant
and equal to ψ1,o =ψ1(0) for low magnitude of shear rate, and then decreases more
rapidly with increasing magnitude of shear rate than the viscosity function η(γ̇). A
lower bound for ψ1 when γ̇ → ∞, is not registered.

The secondary normal stress coefficient ψ2(γ̇) is usually negative and is found
for polymeric fluids to be approximately 10% of ψ1(γ̇) for the same fluid.

Fig. 8.6.11 Characteristic behavior of viscometric functions
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8.6.5 Extensional Flows

As mentioned in Sect. 5.4, in any flow there exist through each particle at any time
t three orthogonal material line elements that do not show shear strain rates: The
lines remain orthogonal after a short time increment dt. Confer the elements 2 in
the Examples 5.1 and 5.2. The three material line elements represent the principal
directions of strain rates at the time t. We assume that the fluid is incompressible
and introduce a local Cartesian coordinate system Px in the particle P, and with
base vectors ei coinciding with the principal directions PD of strain rates at the
time t. Then the rate of deformation matrix takes the form:

D =

⎛
⎝ε̇1 0 0

0 ε̇2 0
0 0 ε̇3

⎞
⎠ , ε̇1 + ε̇2 + ε̇3 = 0 (8.6.32)

A flow is called an extensional flow if the same material line elements ML through
each particle represent the principal directions PD of strain rates at all times. This
also implies the principal directions of strain rates are identical to the principal di-
rection of strains. The literature also uses the names elongational flow and shear
free flow for this type of flow. See Example 5.4.

A simple extensional flow is given by the velocity field:

vx = ε̇x(t) x, vy = ε̇y(t)y, vz = ε̇z(t) z (8.6.33)

The deformation of a volume element in this flow is illustrated in Fig. 8.6.12. Ma-
terial lines parallel to the coordinate axes represent the principal directions PD of
rates of strain at all times. The principal directions are fixed in space for this simple
extensional flow.

It follows from Fig. 5.4.3 that in a simple shear flow the material line elements
representing the principal directions of rates of strain at a time t do not represent
the principal directions at a later time t + dt. The principal directions are fixed in
space but the material lines coinciding with the principal directions at one time are
not fixed in space. This difference between shear flows and extensional flows is very
important in modelling of non-Newtonian fluids.

Fig. 8.6.12 Extensional flow. PD = principal directions of strain rates
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Extensional flows are important in experimental investigations of the properties
of non-Newtonian fluids. These flows are also relevant in connection with forming
processes for plastics, as for example in vacuum forming, blow molding, foam-
ing operations, and spinning. In metal forming extensional flows are important in
milling and extrusion.

We continue to discuss incompressible and isotropic fluids for which the devia-
toric stresses τik only depend on the rate of deformation matrix (8.6.32). Isotropy im-
plies that the principal axes of stress coincide with the principal directions of strain
and strain rates. Based on the structure of the rate of deformation matrix (8.6.32)
the stress matrix is presented as:

T = (−pδik + τik) =

⎛
⎝−p + τ11 0 0

0 −p + τ22 0
0 0 −p + τ33

⎞
⎠ (8.6.34)

Because the pressure is constitutively indeterminate, only normal stress differences
may be modelled:

T11−T22 = τ11− τ33, T22−T33 = τ22− τ33 (8.6.35)

Three special cases of steady extensional flow will now be presented.
UNIAXIAL EXTENSIONAL FLOW. See also Example 5.5. The rate of deforma-
tion matrix for this flow is given by (8.6.32) with:

ε̇1 = ε̇ = constant, ε̇2 = ε̇3 =− ε̇
2

(8.6.36)

This type of flow is relevant when the fluid is stretched axisymmetrically in one di-
rection. Material isotropy and the strain rates (8.6.36) imply that the normal stresses
τ22 and τ33 are equal. Thus only one normal stress difference need be modelled, and
the relevant material function is:

ηE(|ε̇ |) =
τ11− τ22

ε̇
(8.6.37)

called the extensional viscosity or the Trouton viscosity, F. T. Trouton(1906). For
some fluids the extensional viscosity is decreasing with increasing strain rate. This
is called tension-thinning. If the extensional viscosity is increasing with increasing
strain rate the fluid is said to exhibit tension-thickening.

For Newtonian fluids with shear viscosity μ :

τ11 = 2μ ε̇ , τ22 = τ33 =−μ ε̇ ⇒ ηE =
τ11− τ22

ε̇
= 3μ (8.6.38)

The relationship between the extensional viscosity and the shear viscosity is in clas-
sical Newtonian fluid mechanics associated with the name Trouton.

The behavior of the extensional viscosity is often qualitatively different from
that of the shear viscosity. It is found that highly elastic polymer solutions that show
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shear-thinning often exhibit a dramatic tension-thickening. Experiments and further
analysis in continuum mechanics show that in the limit, as the strain rate approaches
zero the extensional viscosity approaches a value three times the zero-shear rate
viscosity:

ηE (|ε̇ |)|ε̇→0 = 3 η (γ̇)|γ̇→0 ⇒ ηE (0) = 3η (0) ⇔ ηEo = 3ηo (8.6.39)

BIAXIAL EXTENSIONAL FLOW. When a fluid is stretched or compressed equally
in two orthogonal directions the flow is called a biaxial extension. The rate of
deformation matrix for this flow is given by (8.6.32) with:

ε̇1 = ε̇2 = ε̇ = constant, ε̇3 =−2ε̇ (8.6.40)

The material function relevant for this type of flow is called biaxial extensional
viscosity:

ηEB (|ε̇|) =
τ11− τ33

ε̇
(8.6.41)

A comparison of the biaxial extensional flow and uniaxial extensional flow shows
that constitutive modelling of a fluid in either flow should be the same. In fact it
follows that:

ηEB (|ε̇|) = 2ηE (2 |ε̇|) (8.6.42)

PLANAR EXTENSIONAL FLOW. See also Example 5.6. The rate of deformation
matrix for this flow is given by (8.6.32) with:

ε̇1 =−ε̇2 = ε̇ = constant, ε̇3 = 0 (8.6.43)

The material function relevant for this type of flow is called planar extensional
viscosity:

ηEP (|ε̇ |) =
τ11

ε̇
(8.6.44)

Problems

Problem 8.1. A closed vessel filled with a fluid is given a translatoric motion de-
fined by the velocity field:

v1 =−vo sinωt, v2 = vo cosωt

vo and ω are constants. The fluid moves with the vessel as a rigid body. Show the
streamlines at time t are straight lines, and that the path lines are circles.

Problem 8.2. Show that the streamlines and the path lines coincide for the following
type of non-steady two-dimensional flow:

v1 = f (t)g(x,y), v2 = f (t)h(x,y), v3 = 0
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f (t), g(x,y), and h(x,y) are arbitrary functions of the variables: time t and Cartesian
coordinates x and y.

Problem 8.3. Let α(r) = 0 represent a fixed rigid boundary surface A in a flow of a
perfect fluid. Show that the velocity field v(r, t) must satisfy the condition:

v · ∇α = 0 on A

Problem 8.4. Let α(r, t) = 0 represent a moving rigid boundary surface A in a flow
of a perfect fluid. Show that the velocity field v(r, t) must satisfy the condition:

∂tα+ v · ∇α = 0 on A

Fig. Problem 8.5

Problem 8.5. A mouth piece is attached to a pipe by flanges and bolts. The cross-
sections of the piece and the pipe are the same with the area A. Water of constant
velocity v flows through the pipe and out through the mouth piece. The pressure
in the fluid is equal to the atmospheric pressure po. Determine the shear force, the
axial force and the bending moment at the flanges.

Problem 8.6. Show that the two expressions for the elastic energy per unit mass
in (8.3.11) are equivalent.

Problem 8.7. Use the identity (2.1.17) to prove the identity (8.3.27).

Problem 8.8. Use a differentiation test and (5.5.28) that (8.3.30) is the solution of
the differential equation (8.3.29).

Problem 8.9. Derive the results presented as (8.6.25) and (8.6.26).
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