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Is there a formula for nth prime pn?

p1 = 2, p2 = 3, . . .

Yes, but such a formula is complicated.
For example, is there a polynomial f ∈ Z[x] for which f(n) = pn?

f(x) = anx
n + · · · + a1x+ a0

f(a0) = ana0
n + · · ·+ a1a0 + a0

so a0 | f .
Suppose q is prime and f(n) = q. Then q | f(n + kq) for each k ∈ Z+. So, in particular, we see
that if f(m) is prime for each positive integer m, then f is a constant. In particular, f(x) = q for
some prime q.
The polynomial n2 + n + 41 is prime for n = 0, 1, . . . , 39.
Further, (n− 40)2 + (n− 40) + 41 is prime for 0 ≤ n ≤ 79.

These examples are connected with the fact that the ring of algebraic integers of the field Q(
√
−163)

is a Unique Factorization Domain. (Note that 163 is the largest squarefree integer D such that
Q(

√
−D) is a U.F.D.)

By using ideas of Matijȧsevic which were used to prove Hilbert’s 10th problem, one can find a
polynomial f ∈ Z[a, b, . . . , z] such that the set of positive values assumed by f as the variables run
over the non-negative integers is the set of prime numbers.

Is n2 + 1 a prime for infinitely many n?
Almost surely yes. The best result in this direction is that n2 +1 is a P2 for infinitely many integers
n. A P2 is an integer which is the product of at most 2 primes.
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There is no polynomial of degree > 1 which is known to be prime infinitely often.
On the other hand, we can deal with degree 1. Let k and ℓ be coprime positive integers. Then
kn+ ℓ is prime for infinitely many positive integers n. This is Dirichlet’s Theorem.

Theorem 1 (Euclid). There are infinitely many prime numbers.

Proof. Assume that there are finitely many primes p1, . . . , pn say, and consider

m = p1 · · · pn + 1

Then m can be written as a product of primes, and so pk | m for some k with 1 ≤ k ≤ n.
Then pk | m− p1 · · ·pn, so pk | 1, which is a contradiction. �

Definition. For any real number x, let π(x) denote the number of primes ≤ x.

We can estimate π(x) from below using Euclid’s proof. In particular, we’ll show that pk, the kth
prime, satisfies

pk ≤ 22k

for k = 1, . . . , n

We prove this by induction.
The result holds for k = 1, since 2 = p1 ≤ 22 = 4.
Assume the result holds for 1 ≤ j ≤ k.
Then, by Euclid’s argument, pk ≤ p1 · · ·pk−1 + 1 and so by our inductive assumption,

pk ≤ 221 · 222 · · · 22k−1

+ 1 ≤ 22k−1 + 1 ≤ 22k

2. Lecture: Wednesday, September 13, 2000

Thus, given x ≥ 2 let s be the integer satisfying

(1) 22s ≤ x ≤ 22s+1

Then, since pk ≤ 22k
for k = 1, 2, . . . then we have π(x) ≥ s.

By (1), log x
log 2

< 2s+1, hence

log( log x
log 2

)

log(2)
< s+ 1

and so π(x) ≥ ⌊log log x⌋.

Another way of proving such a lower bound for π(x) is the following.
Suppose x ≥ 2. Then

2π(x) ≥
∏

p≤x

(

1 − 1

p

)

=
∏

p≤x

(

1 +
1

p
+

1

p2
+ · · ·

)

≥
∑

n≤x

1

n
≥
∫ ⌊x⌋+1

1

du

u
≥ log x

Hence

π(x) ≥ log log x

log 2
≥ log log x
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Fermat (1601-1655) conjectured that the numbers of the form 22n
+ 1 for n = 0, 1, 2, . . . are prime.

He checked it for n = 0, 1, 2, 3, 4.
These are known as the Fermat numbers and are denoted by Fn, so

Fn = 22n

+ 1

Euler in 1732 proved that 641 | F5. It is known that F6, . . . , F21 are composite. Quite likely
F22, . . . are composite.
Almost certainly only finitely many Fermat numbers are prime.

Theorem 2 (Polya). If n and m are positive integers with 1 ≤ n < m then (Fn, Fm) = 1.

Proof. Let m = n + k with k ≥ 1. We first show that Fn | Fm − 2.

We have Fm − 2 = (22n+k
+ 1) − 2 = 22n+k − 1.

Put x = 22n
. Then

Fm − 2

Fn
=
x2k − 1

x+ 1
= x2k−1 − x2k−2 + · · · − 1 ∈ Z

Thus we have Fn | Fm − 2.
Suppose that d | Fn and d | Fm. Then d | 2 but 2 6 | Fn and so d = ±1. The result follows. �

Thus we obtain another proof of Euclid’s Theorem and we see that

pn < 22n

Theorem 3. For x ≥ 2,

π(x) ≥ log ⌊x⌋
2 log(2)

and for n ≥ 1,

pn < 4n

Proof. Let x ≥ 1 with x ∈ Z. Let 2 = p1, . . . , pj be the primes ≤ x.

For each integer n with n ≤ x we can write n = n1
2m where n is a positive integer and m is

squarefree, so not divisible by the square of a prime. Therefore,

m = p1
ǫ1 · · ·pjǫj

where ǫi is in {0, 1} for each i = 1, . . . , j.
Thus, there are at most 2j possible values for m.

There are at most
√
x possible values for n2.

Therefore,

2j
√
x ≥ x

and so

(2) 2j ≥
√
x

Since j = π(x) we see that

π(x) log 2 ≥ log x

2
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amd the first part follows.

Now take x = pn so that π(pn) = n.
By (1), 2n ≥ √

pn and so 4n ≥ pn. �

In 1896 Hadamard and de la Vallée Poussin proved independently the Prime Number Theorem.
That is, they proved that

lim
x→∞

π(x)
x

log x

= 1

The result had been conjectured by Gauss.

Remark. Let n be a positive integer and let p be a prime. Then the exact power of p dividing n!
is

∞∑

k=1

⌊
n

pk

⌋

=

⌊ log n
log p ⌋∑

k=1

⌊
n

pk

⌋

3. Lecture: Friday, September 15, 2000

Theorem 4. For x ≥ 2, (
3 log 2

8

)
x

log x
< π(x) < (6 log 2)

x

log x

Proof. (Argument due to Erdős). Let us first prove the lower bound for π(x).

Note that
(
2n
n

)
is an integer and that

(1)

(
2n

n

)

=
(2n)!

(n!)2
|
∏

p<2n

prp

where rp satisfies the inequality prp ≤ 2n < prp+1.
To see this note the exact power of p dividing (2n)! is

rp∑

k=1

⌊
2n

pk

⌋

and the exact power dividing n! is
rp∑

k=1

⌊
n

pk

⌋

So the exact power of p dividing
(
2n
n

)
is

rp∑

k=1

(⌊
2n

pk

⌋

− 2

⌊
n

pk

⌋)

≤ rp

In particular, by (1),
(

2n

n

)

≤
∏

p≤2n

prp ≤ (2n)π(2n)
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Note that
(
2n
n

)
and so 2n ≤ (2n)π(2n) hence

π(2n) ≥
(

log 2

2

)
2n

log(2n)

Note that x
log x

is increasing for x ≥ e and so for x ≥ 6, let n be such that 2n ≤ x ≤ 2n+ 2, then

π(x) ≥ π(2n) ≥
(

log 2

2

)
2n

log(2n)
≥
(

log 2

2

) 3
4
x

log(3
4
x)

>
3 log 2

8

x

log x

We can then check that the result holds for 6 ≤ x ≤ 2n.

Now the upper bound. Note that
∏

n≤p≤2n

p |
(

2n

n

)

Thus ∏

n≤p≤2n

p < (1 + 1)2n = 22n

On the other hand,
∏

n≤p≤2n

p ≥ nπ(2n)−π(n)

Therefore,

π(2n) log(n) − π(n) log(n/2) < log(2)2n+ log(2)π(n) < (3 log 2)n

Take n = 2k. Then
π(2k+1) log(2k) − π(2k) log(2k−1) < (3 log 2)2k

π(2k) log(2k−1) − π(2k−1) log(2k−2) < (3 log 2)2k−1

...

π(8) log(4) − π(4) log(2) < (3 log 2)4

Therefore,

π(2k+1) log(2k) < (3 log 2)(2k + 2k−1 + · · ·+ 4) + π(4) log(2) < (3 log 2)2k+1

and so

π(2k+1) < (3 log 2)

(
2k+1

log(2k)

)

Thus, given x ≥ 2 choose k so that 2k ≤ x ≤ 2k+1.

Then π(x) ≤ π(2k+1). Therefore,

π(x) ≤ (3 log 2)
2k+1

log(2k)
≤ (6 log 2)

(
2k

log(2k)

)

≤ (6 log 2)

(
x

log x

)

for x > e. We check for 2 ≤ x ≤ e. �

In 1845 Bertrand showed that there is always a prime p in the interval [n, 2n] for n ∈ Z+ provided
that n < 6 · 106.
He conjectured this always holds. Chebyshev proved this in 1850.
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4. Lecture: Monday, September 18, 2000

Theorem 5. For all n ∈ Z+,
∏

p≤n
p < 4n

Proof. We’ll prove the result by induction. The claim is certainly true for n = 1 or n = 2.

Suppose the result is true for 1 ≤ k ≤ n− 1. We first remark that we can restrict our attention to
the case where n is odd, since if n is even, and n > 2, then

∏

p≤n
p =

∏

p≤n−1

p

and the result follows by induction.

We write n = 2m+ 1, and we consider
(
2m+1
m

)
. In particular,

∏

m+1<p≤2m+1

p |
(

2m+ 1

m

)

Note that
(
2m+1
m

)
and

(
2m+1
m+1

)
occur in the binomial expansion of (1 + 1)2m+1, and

(
2m+1
m

)
=
(
2m+1
m+1

)
.

Thus,

(1)

(
2m+ 1

m

)

≤ 1

2
(22m+1) = 4m

Now,
∏

p≤2m+1

p =

(
∏

p≤m+1

p

)(
∏

m+1<p≤2m+1

p

)

≤ 4m+14m = 42m+1

by our inductive assumption and (1). The result now follows by induction. �

Theorem 6. If n ≥ 3 and p is a prime with 2
3
n < p ≤ n then p 6 |

(
2n
n

)
.

Proof. Since n ≥ 3 we see that if p is in the range 2
3
n < p ≤ n then p > 2. Then p and 2p are the

only multiples of p with p ≤ 2n and so
p2 || (2n)!

(Here p2 || b means p3 6 | b and p2 | b.)
Further, p || n!, hence p2 || (n!)2 since 2

3
n < p ≤ n.

Since
(
2n
n

)
= (2n)!

(n!)2
we see that p 6 |

(
2n
n

)
. �

Theorem 7. For each positive integer n, there is a prime p with n < p ≤ 2n.
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Proof. (This proof due to Erdős).

Note that the result holds for n = 1, 2, 3. Assume the result is false for some integer n with n ≥ 4.
Then, by Theorem 6, every prime p which divides

(
2n
n

)
is ≤ 2

3
n.

Let p be such a prime and suppose that pα ||
(
2n
n

)
. Then, as in the proof of Theorem 4, α ≤ rp, so

pα ≤ prp ≤ 2n.
If α ≥ 2 then p2 ≤ pα ≤ 2n, so p ≤

√
2n. Thus

(
2n

n

)

≤
(
∏

p≤n
p

)

(2n)π(
√

2n) ≤




∏

p≤ 2
3
n

p



 (2n)
√

2n

since π(x) ≤ x.

Further, by Theorem 5,

(2)

(
2n

n

)

≤ 42n/3(2n)
√

2n

Note that
(
2n
n

)
is the largest of the 2n+ 1 terms in the binomial expansion of (1 + 1)2n hence

(3)

(
2n

n

)

≥ 22n

2n+ 1

By (1) and (2),
4n

2n+ 1
≤ 42n/3(2n)

√
2n

4n/3 ≤ (2n)
√

2n(2n+ 1) < (2n)
√

2n+2

Taking logarithms, we find that
n

3
log 4 < (

√
2n + 2) log(2n)

Notice that if n = 512 the inquality is false.

By calculus, the claim holds for n ≥ 512.
Finally, 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 557 are all primes and so the result is general. �

5. Lecture: Wednesday, September 20, 2000

What can we say about differences between consecutive primes?

Let (2 = p1, p2, . . .) be the sequence of primes. By Theorem 7, pn+1 ≤ 2pn or pn+1 − pn ≤ pn.
By probabalistic reasoning, Cramer was in 1936 led to conjecture that

lim sup
n→∞

(
pn+1 − pn
(log pn)2

)

≤ 1

The best upper bound for pn+1−pn is due to Baker and Harman. They proved that, for n sufficiently
large, pn+1 − pn < pn

0.535.
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What about small gaps between consecutive primes? We conjecture that pn+1−pn = 2 for infinitely
many integers n. If we assume the primes are randomly distributed and an integer x is prime with
probability 1

logx
then we could expect x and x+ 2 to be prime with probability 1

(log x)2
.

Thus we expect about x
(log x)2

primes p with p+2 prime and p ≤ x. A more careful heuristic suggests

that there are about C x
(log x)2

such primes p with C > 0 and C 6= 1. In the 60’s, Chen proved that

there are more than 0.6 x
(log x)2

primes p with p ≤ x such that p + 2 is a P2, provided that x is

sufficiently large.

Surprisingly, it is not known that

lim inf
n→∞

pn+1 − pn
log pn

= 0

The best result in this direction is due to Maier who proved in 1988 that

lim inf
n→∞

pn+1 − pn
log pn

<
1

4

In 1955 Ricci proved that the set of accumulation points of {pn+1−pn

log pn
: n ∈ Z+} has positive measure.

The only point of accumulation that is actually known is ∞.
In the 1930’s Erdős proved that for infinitely many integers n,

pn+1 − pn > c1 log pn
log log pn

(log log log pn)2

for a positive constant c1.

In 1938 Rankin added a factor of log log log log pn.

Conclusion: We have much work to do. We don’t even know many primes. In fact,
∑

p is a known prime

1

p
< 4

Primes of the form 2p − 1 where p is a prime are known as Mersenne primes and they are easy to
test for primality. The largest prime known is the Mersenne prime

26,972,593 − 1 (Hajratwala 1999)

6. Lecture: Friday, September 22, 2000

Let a1, . . . , an be distinct positive integers. For m ∈ Z+ we define ν(m) to be the number of distinct
residue classes modulo m occupied by the integers a1, . . . , ak.

Thus
ν(m) = the cardinality of {ai +mZ : i = 1, . . . , k}

In 1923, Hardy and Littlewood conjectured that if ν(p) < p) for all primes p then there exist
infinitely many integers n such that the integers n + a1, n + a2, . . . , n + ak are all primes. (e.g.
a1 = 0, a2 gives the twin prime conjecture). The conjecture is known as the k-tuple conjecture.

Hardy and Littlewood also conjectured

π(x+ y) − π(y) ≤ π(x) for all x > 1, y > 1



PMATH 440/640 ANALYTIC NUMBER THEORY 9

Hensley and Richards proved, about 30 years ago that these conjectures are incompatible. At least
one is false.

Definition. We introduce the symbols O, o,∼.
Let f and g be functions from Z+ or R+ to R, and suppose g maps to R+.

(i) f = O(g) means that there exist positive numbers c1 and c2 such that for x > c1, |f(x)| ≤
c2g(x).

(ii) f = o(g) means that limn→∞
f(n)
g(n)

= 0.

(iii) f ∼ g means that limn→∞
f(n)
g(n)

= 1. (read: f is asymptotic to g.)

Observe 20x = O(x), sin(x) = O(1), x = O(x2), x = o(x2), sin(x) = o(log x), x+1 ∼ x, x+
√
x ∼ x.

By the Prime Number Theorem,

π(x) ∼ x

log x
or equivalently,

π(x) =
x

log x
+ o( x

log x
)

Let ǫ > 0. Then the number of primes in [x, (1 + ǫ)x] is

π((1 + ǫ)x) − π(x) =
(1 + ǫ)x

log((1 + ǫ)x)
− x

log x
+ o( x

logx
)

Note
(1 + ǫ)x

log((1 + ǫ)x)
=

(1 + ǫ)x

log x+ log(1 + ǫ)
=

(1 + ǫ)x

(log x)(1 + log(1+ǫ)
log x

)
=

(1 + ǫ)x

log x
+ o(( x

logx
))

Therefore,

π((1 + ǫ)x) − π(x) =
(1 + ǫ)x

log x
− x

log x
+ o( x

logx
) =

ǫx

log x
+ o( x

log x
)

Note that we can take ǫ = 1. Then π(2x) − π(x) = x
log x

+ o( x
log x

).

But π(x) = x
log x

+ o( x
log x

). (Should this be worrying?)

Definition. For any integer n we define Λ(n) by the rule

Λ(n) =

{
log p if n = pk for some k ∈ Z+

0 otherwise

Also define, for x ∈ R,

θ(x) =
∑

p≤x
log p = log

(
∏

p≤x
p

)

and
ψ(x) =

∑

pk≤x

log p =
∑

n≤x
Λ(n)
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Notice that

ψ(x) =
∑

p≤x

⌊
log x

log p

⌋

log p

Also observe that since p2 ≤ x is equivalent to p ≤ √
x, p3 ≤ x is equivalent to p ≤ 3

√
x, then we

have
ψ(x) = θ(x) + θ(

√
x) + θ(x1/3) + · · ·

Note that θ(x
1
m ) = 0 provided m > log x

log 2
.

Thus

ψ(x) =

⌊ log x
log 2⌋∑

k=1

θ(x
1
k )

Observe that θ(x) = O(x logx), hence
∑

k≥2

θ(x
1
k ) = O(x

1
2 (log x)2)

Therefore,

(1) ψ(x) = θ(x) +O(x
1
2 (log x)2)
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7. Lecture: Monday, September 25, 2000

By Theorem 4, θ(x) < c1x and so by (1), ψ(x) < c2x. Further, by the proof of Theorem 4,

log(2n) ≤ log

(
2n

n

)

≤
∑

p≤2n

⌊
log 2n

log p

⌋

log p ≤ ψ(2n)

so that for x ≥ 2, we have ψ(x) > c3x, hence θ(x) > c4x. Here c1, c2, c3, c4 are positive constants.

What is the link between θ(x), ψ(x), and π(x)?
Note that θ(x) ≤ π(x) log x, thus

(1) π(x) ≥ θ(x)

log x
> c4

x

log x

Theorem 8.

π(x) ∼ θ(x)

log x
∼ ψ(x)

log x

Proof. Since ψ(x) = θ(x) +O(x1/2(log x)2) and θ(x) > c4x, we see that θ(x) ∼ ψ(x). In particular,
θ(x)
log x

∼ ψ(x)
log x

and so it suffices to show that π(x) ∼ θ(x)
log x

.

By (1), π(x) ≥ θ(x)
log x

, so

lim inf
x→∞

π(x) log x

θ(x)
≥ 1

We need an upper bound for π(x) in terms of θ(x).
Note that for any δ > 0, we have

θ(x) =
∑

p≤x
log p ≥



log(x(1−δ))
∑

x1−δ≤p≤x

1



 ≥ (1 − δ)(log x)(π(x) − π(x(1−δ)))

Thus,

θ(x) + (1 − δ)x(1−δ) log x ≥ (1 − δ)(log x)π(x)

so
θ(x)

(1 − δ) log x
+ x(1−δ) ≥ π(x)

Therefore,
1

1 − δ
+
x(1−δ) log x

θ(x)
≥ π(x) log x

θ(x)

Given ǫ > 0, we can choose δ > 0 so that 1
1−δ < 1 + ǫ

2
and then choose x0 so that if x > x0,

x(1−δ) log x

θ(x)
<
ǫ

2
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since θ(x) > c1x for x ≥ 2.

Then, for x > x0,

1 ≤ π(x) log x

θ(x)
< 1 + ǫ

and so our result follows. �

Lemma 1 (Abel’s summation formula). Let {an}∞n=1 be a sequence of complex numbers. Let f be

a function from {x ∈ R : x ≥ 1} to C. For x ∈ R we introduce

A(x) =
∑

n≤x
an

If f ’ is continuous for x ≥ 1,
∑

n≤x
anf(n) = A(x)f(x) −

∫ x

1

A(u)f ′(u)du

Proof. Put N = ⌊x⌋. Then
∑

n≤N
anf(n) = A(1)f(1) + (A(2) −A(1))f(2) + · · · + (A(N) − A(N − 1))f(N)

= A(1)(f(1) − f(2)) + A(2)(f(2) − f(3)) + · · · + A(N − 1)(f(N − 1) − f(N)) + A(N)f(N)

Next observe that if i is a positive integer and t is a real number with i ≤ t < i+1 then A(t) = A(i).
Thus

A(i)(f(i) − f(i+ 1)) = −
∫ i+1

i

A(u)f ′(u)du

Accordingly,
∑

n≤N
anf(n) = −

∫ N

1

A(u)f ′(u)du+ A(N)f(N)

This gives us the result when x is an integer.
Finally note that A(t) = A(N) for x ≥ t ≥ N . Hence

∫ x

N

A(u)f ′(u)du = A(x)(f(x) − f(N)) = A(x)f(x) − (A(N)f(N))

and so our result follows. �

8. Lecture: Wednesday, September 27, 2000

Definition. We define Euler’s constant γ by

γ = 1 −
∫ ∞

1

t− ⌊t⌋
t2

dt

Note γ = 0.57721....

It is not known but it is conjectured that γ is irrational and indeed that γ is transcendental.



PMATH 440/640 ANALYTIC NUMBER THEORY 13

Theorem 9.
∑

n≤x

1

n
= log x+ γ +O( 1

x
)

Proof. Take an = 1 and f(t) = 1
t
.

Then A(x) =
∑

n≤x an =
∑

n≤x 1 = ⌊x⌋.

By Abel’s summation formula,
∑

n≤x

1

n
=

⌊x⌋
x

+

∫ x

1

⌊u⌋
u2

du

=
x− (x− ⌊x⌋)

x
+

∫ x

1

u− (u− ⌊u⌋)
u2

du

= 1 +O( 1
x
) +

∫ x

1

du

u
−
∫ x

1

u− ⌊u⌋
u2

du

= 1 +O( 1
x
) + log x−

(∫ ∞

1

u− ⌊u⌋
u2

du−
∫ ∞

x

u− ⌊u⌋
u2

du

)

= log x+ γ +O( 1
x
) +

∫ ∞

x

u− ⌊u⌋
u2

du

= log x+ γ +O( 1
x
) +O(

∫∞
x

1
u2du)

= log x+ γ +O( 1
x
)

�

Theorem 10.
∑

n≤x

Λ(n)

n
= log x+O(1)

Proof. Apply Abel’s summation formula with an = 1 and f(n) = log n. Then
∑

n≤x
logn = ⌊x⌋ log x−

∫ x

1

⌊u⌋
u
du

= (x− (x− ⌊x⌋)) log x−
∫ ∞

1

u− (u− ⌊u⌋)
u

du

= x log x+O(logx) − (x− 1) +

∫ x

1

u− ⌊u⌋
u

du

(1) = x log x− x+O(log x)

Also we have
∑

n≤x
logn = log(⌊x⌋!) =

∑

p≤x

( ∞∑

k=1

⌊
x

pk

⌋)

log p

=
∑

pm≤x

⌊
x

pm

⌋

log p =
∑

n≤x

⌊x

n

⌋

Λ(n)
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=
∑

n≤x

x

n
Λ(n) −

∑

n≤x

(x

n
−
⌊x

n

⌋)

Λ(n)

= x
∑

n≤x

Λ(n)

n
− O(

∑

n≤x Λ(n))

But
∑

n≤x
Λ(n) = ψ(x) = O(x) and so

∑

n≤x
log n = x

∑

n≤x

Λ(n)

n
− O(x)

By (1),

x log x− x+O(log x) = x
∑

n≤x

Λ(n)

n
− O(x)

hence

x
∑

n≤x

Λ(n)

n
= x log x+O(x)

Thus
∑

n≤x

Λ(n)

n
= log x+O(1)

�

Theorem 11.
∑

p≤x

log p

p
= log x+O(1)

Proof. Note that
∑

p≤x

log p

p
=
∑

n≤x

Λ(n)

n
−
∑

m≥2

∑

pm≤x

log p

pm

= log x+O(1) −
∑

m≥2

∑

pm≤x

log p

pm

But,

∑

m≥2

∑

pm≤x

log p

pm
≤
∑

p

(
1

p2
+

1

p3
+ · · ·

)

log p ≤
∑

p

log p

p(p− 1)
≤

∞∑

n=2

logn

n(n− 1)
= O(1)

The result follows. �

Theorem 12. There exists a real number β1 such that
∑

p≤x

1

p
= log log x+ β1 +O( 1

logx
)
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Proof. We apply Lemma 1 with

an =

{ log p
p

if p is a prime and n = p

0 otherwise

and with f(n) = 1
logn

.

Then on putting A(x) =
∑

n≤x an, we have

∑

p≤x

1

p
=
A(x)

log x
+

∫ x

1

A(u)

u(log u)2
du

By Theorem 11, we have

A(x) =
∑

p≤x

log p

p
= log x+O(1)

Therefore,
∑

p≤x

1

p
= 1 +O( 1

logx
) +

∫ x

2

log u+ τ(u)

u(log u)2
du

where τ(u) = O(1).

Thus,
∑

p≤x

1

p
= 1 +O( 1

logx
) + log log x− log log 2 +

∫ x

2

τ(u)

u(log u)2
du

= log log x+ 1 − log log 2 +

∫ ∞

2

τ(u)

u(log u)2
du−

∫ ∞

x

τ(u)

u(log u)2
du+O( 1

logx
)

= log log x+ β1 +O( 1
logx

)

In fact, β1 = γ + (
∑

p log(1 − 1
p
) + 1

p
) = 0.261497.... �

9. Lecture: Wednesday, September 29, 2000

To prove the Prime Number Theorem we introduce the Riemann zeta function, ζ(s).

Definition. For s ∈ C with Re(s) > 1, we define ζ(s) by

ζ(s) =
∞∑

n=1

1

ns

We write s = σ + it with σ, t ∈ R.

The series
∑∞

n=1
1
ns converges absolutely for Re(s) > 1 and we have the Euler product representation

for Re(s) > 1 given by

(1)
∏

p

(

1 − 1

ps

)−1

=

∞∑

n=1

1

ns
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To see this, note that
∏

p

(

1 − 1

ps

)−1

=
∏

p

(

1 +
1

ps
+

1

p2s
+ · · ·

)

and a typical term is
1

p1
α1s · · · pkαks

=
1

(p1
α1 · · · pkαk)s

and by the Fundamental Theorem of Arithmetic (1) holds.

Notice that (1) allows us to give another proof that there are infinitely many primes.
If there were only finitely many, then

∏

p(1− 1
ps )

−1 is bounded as we let s tend to 1 from above on

the real line, whereas
∑∞

n=1
1
n

diverges. This argument goes back to Euler.

Theorem 13. ζ(s) can be analytically continued to Re(s) > 0 with s 6= 1. It is analytic except at

the point s = 1 where it has a simple pole with residue 1.

Proof. For Re(s) > 1 we have ζ(s) =
∑∞

n=1
1
ns .

By Lemma 1, with an = 1 and f(x) = 1
xs , we find that

∑

n≤x

1

ns
=

⌊x⌋
xs

+ s

∫ x

1

⌊u⌋
us+1

du

Letting x→ ∞ we find that

ζ(s) = 0 + s

∫ ∞

1

⌊u⌋
us+1

du

= s

∫ ∞

1

u− (u− ⌊u⌋)
us+1

du

= s

∫ ∞

1

u
du

us+1
− s

∫ ∞

1

u− ⌊u⌋
us+1

du

= s

(
u1−s

1 − s

∣
∣
∣
∣

∞

1

)

− s

∫ ∞

1

u− ⌊u⌋
us+1

du

=
s

s− 1
− s

∫ ∞

1

u− ⌊u⌋
us+1

du

for Re(s) > 1. Note that
∫ ∞

1

u− ⌊u⌋
us+1

du

converges for Re(s) > 0 and represents an analytic function.

Therefore, s
s−1

− s
∫∞
1

u−⌊u⌋
us+1 du represents an analytic function for Re(s) > 0, s 6= 1 and so gives an

analytic continuation of ζ(s) to the region.
Note that s

s−1
has a simple pole of residue 1 at s = 1.

�
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Theorem 14. ζ(s) has no zeroes in the region Re(s) ≥ 1.

Proof. If Re(s) > 1, then since
∏

p(1 − 1
ps )

−1 converges, then ζ(s) 6= 0.

Recall s = σ + it with σ, t ∈ R.
Let σ > 1. For all t ∈ R,

log∗(ζ(σ + it)) =
∑

p

log

((

1 − 1

ps

)−1
)

= −
∑

p

∞∑

n=1

1

n

(
1

ps

)

where log denotes the principal branch of the logarithm and log∗ denotes some branch of the

logarithm. We now consider the real part of both sides of the above equality to get

log |ζ(σ + it)| = −
∑

p

∞∑

n=1

p−σn cos(nt log p)

n

since

p−int = e−int log(p) = cos(−nt log p) + i sin(−nt log p) = cos(nt log p) + i sin(nt log p)

So Re(p−int) = cos(nt log p).

We appeal to the inequality

0 ≤ 2(1 + cos θ)2 = 2(1 + 2 cos θ + cos2 θ)

= 2 + 4 cos θ + 2 cos2 θ

= 3 + 4 cos θ + (2 cos2 θ − 1)

= 3 + 4 cos θ + cos(2θ)

We then deduce
∑

p

∞∑

n=1

p−σn

n
(3 + 4 cos(nt log p) + cos(2nt log p)) ≥ 0

hence that

log |ζ(σ)|3 + log |ζ(σ + it)|4 + log |ζ(σ + 2it)| ≥ 0

In particular,

(2) |ζ(σ)|3 · |ζ(σ + it)| · |ζ(σ + 2it)| ≥ 1

for σ > 1 and t ∈ R.

Suppose that 1 + it0 is a zero of ζ(s).
Then t0 6= 0 since ζ(s) has a pole at s = 1.

Note that as σ → 1 from the right, then

|ζ(s)| = O((σ − 1)−1)

since 1 is a simple pole of ζ(s). Also since 1 + it0 is a zero of ζ(s), then |ζ(σ + it0)| = O(σ − 1) as

σ → 1 from the right.
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Finally, |ζ(σ + 2it0)| = O(1) as σ → 1 from the right, since 1 + i2t0 is not a pole of ζ(s).

Therefore,

|ζ(σ)|3 · |ζ(σ + it)| · |ζ(σ + 2it)| = O((σ − 1)−3)O((σ − 1)4)O(1) = O(σ − 1)

Thus |ζ(σ)|3 · |ζ(σ + it)| · |ζ(σ + 2it)| tends to 0 as σ → 1 which contradicts (1).

Therefore,ζ(s) has no zero on Re(s) = 1 and the result follows. �
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10. Lecture: Monday, October 2, 2000

11. Lecture: Wednesday, October 4, 2000

Theorem 15 (Donald J. Newman). Suppose an ∈ C with |an| ≤ 1 for n = 1, 2, . . .. Form the series
∑∞

n=1
an

ns .

The series converges to the analytic function F (s) for Re(s) > 1.

If F (s) can be analytically continued to Re(s) ≥ 1 then
∑∞

n=1
an

ns converges to F (s) for Re(s) ≥ 1.

Proof. Let w ∈ C with Re(w) ≥ 1.
Thus F (z + w) is analytic for Re(z) ≥ 0.

Choose R ≥ 1 and determine δ = δ(R) > 0 so that F (z + w) is analytic on the region {z : −δ ≤
Re(z) and |z| ≤ R}.

Let M denote the maximum of |F (z + w)| on the region.

Let Γ denote the contour obtained by following the outside of the region in a counterclockwise path.
Let A be the part of Γ in Re(z) ≥ 0 and B be the remainder of Γ.

By Cauchy’s residue theorem, for any N ∈ Z+,

(1) 2πiF (w) =

∫

Γ

F (z + w)N z

(
1

z
+

z

R2

)

dz

Now on A, F (z + w) is equal to its series and we may split the series as SN(z + w) =
∑N

n=1
aN

nz+w

and RN(z + w) = F (z + w) − SN(z + w).

Again by Cauchy’s residue theorem,

(2) 2πiSN (w) =

∫

C

SN(z + w)N z

(
1

z
+

z

R2

)

dz

where C is the contour given by the path |z| = R taken in counterclockwise direction. (Note that

SN(z + w) is analytic for z ∈ C.)

Note that C = A ∪ (−A) ∪ {iR,−iR}.

Thus

2πiSN(w) =

∫

A

SN(z + w)N z

(
1

x
+

z

R2

)

dz +

∫

−A
SN(z + w)N z

(
1

z
+

z

R2

)

dz

In the second integral change, change variables z → −z. We see that
∫

−A
SN(z + w)N z

(
1

z
+

z

R2

)

dz

∫

A

SN (w − z)N−z
(

1

z
+

z

R2

)

dz
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Therefore,

(3) 2πiSN(w) =

∫

A

(SN(z + w)N z + SN(w − z)N−z)

(
1

z
+

z

R2

)

dz

From (1) and (3),

(4)

2πi(F (w)−SN(w)) =

∫

A

(RN (z+w)N z−SN (w−z)N−z)

(
1

z
+

z

R2

)

dz+

∫

B

F (z+w)N z

(
1

z
+

z

R2

)

dz

We want to show that SN(w) → F (w) as N → ∞.
So let’s get down to it.

Observe that if we write z = x+ iy with x, y,∈ R then for z ∈ A,

(5)
1

z
+

z

R2
=

2x

R2

(6) |RN(z + w)| ≤
∞∑

n=N+1

1

nx+1
≤
∫ ∞

N

1

ux+1
du =

1

xNx

|SN (w − z)| ≤
N∑

n=1

nx−1 ≤ Nx−1 +

∫ N

)

ux−1du ≤ Nx−1 +
Nx

x

So

(7) |SN(w − z)| ≤ Nx(
1

N
+

1

x
)

Therefore from (5), (6), (7),
∣
∣
∣
∣

∫

A

(RN(z + w)N z − SN(w − z)N−z)

(
1

z
+

z

R2

)

dz

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

A

(
1

x

Nx

Nx
+Nx

(
1

N
+

1

x

)

N−x
)

2x

R2
dz

∣
∣
∣
∣

≤
∫

A

(
2

x
+

1

N

)
dx

R2
dz =

∫

A

(
4

R2
+

2x

NR2

)

dz ≤
∫

A

(
4

R2
+

2

NR

)

dz

= πR

(
4

R2
+

2

NR

)

=
4π

R
+

2π

N
We now estimate the integral over B. Observe that

∣
∣
∣
∣

1

z
+

z

R2

∣
∣
∣
∣
=

∣
∣
∣
∣

1

z

∣
∣
∣
∣

∣
∣
∣
∣

z

z
+
zz

R

∣
∣
∣
∣
≤ 1

δ

(

1 +
|z|2
R2

)

≤ 2

δ

for Re(z) = −δ, |z| ≤ R.
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Therefore since |F (z + w)| is at most M we see that
∣
∣
∣
∣

∫

B

F (z + w)N z

(
1

z
+

z

R2

)

dz

∣
∣
∣
∣
≤
∫ R

−R
M

2

δ
N−δdz + 2

∣
∣
∣
∣

∫ 0

−δ
MNx 2x

R2
2dx

∣
∣
∣
∣

≤ 4MR

δN δ
+

8M

R2

∣
∣
∣
∣

∫ 0

−δ
xNxdx

∣
∣
∣
∣

≤ 4MR

δN δ
+

8Mδ

R2

(
1

logN
− 1

N δ logN

)

≤ 4RM

δN δ
+

8Mδ

R2 logN
Thus

|2πi(F (w) − SN (w))| ≤ 4π

R
+

2π

N
+

4RM

δN δ
+

8Mδ

R2 logN

|F (w) − SN (w)| ≤ 2

R
+

1

N
+
RM

δN δ
+

2Mδ

R2 logN

Given ǫ > 0, choose R = 3
ǫ
. Then for N sufficiently large, |F (w) − SN(w)| < ǫ.

Thue SN(w) → F (w) as N → ∞.

The result follows. �

12. Lecture: Friday, October 6, 2000

Definition. We now introduce the Möbius function µ : Z+ → {−1, 0, 1} under the rule that
µ(1) = 1 and µ(n) = (−1)r if n is the product of r distinct primes and µ(n) = 0 otherwise.

E.g. µ(12) = 0, µ(15) = 1, µ(30) = −1.

Notice that for Re(s) > 1,

1

ζ(s)
=
∏

p

(

1 − 1

ps

)

=

∞∑

n=1

µ(n)

ns

Theorem 16. (i) Let n ∈ Z+,

∑

k | n
µ(k) =

{
1 if n = 1
0 otherwise

(ii) Let f : R+ → C and define F : R+ → C by F (x) =
∑

n≤x f( x
n
). Then f(x) =

∑

n≤x µ(n)F ( x
n
).

(iii) Let f : Z+ → C and define F : Z+ → C by F (n) =
∑

d | n f(d). Then f(n) =
∑

d | n µ(d)F (n
d
).
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Proof. (i) If n = 1 the result is obvious.

If n > 1 we can write n = p1
ℓ1 · · · prℓr with p1, . . . , pr distinct primes and ℓ1, . . . , ℓr positive

integers.

Then
∑

k | n µ(k) =
∑

k | m µ(k) where m = p1 · · · pr.
But notice that

∑

k | m
µ(k) = 1 −

(
r

1

)

+

(
r

2

)

+ · · ·+ (−1)r
(
r

r

)

= (1 − 1)r = 0

(ii) By (i),

f(x) =
∑

n≤x




∑

k | n
µ(k)



 f
(x

n

)

=
∑

kℓ≤x
µ(k)f

( x

kℓ

)

=
∑

k≤x
µ(k)




∑

ℓ≤x
k

f
( x

ℓk

)



 =
∑

k≤x
µ(k)F

(x

k

)

(iii) Again by (i),

f(n) =
∑

c | n




∑

d | n
c

µ(d)



 f(c) =
∑

cd | n
µ(d)F (c)

=
∑

d | n
µ(d)

∑

c | n
d

f(c) =
∑

d | n
µ(d)F

(n

d

)

�

Theorem 17. ∞∑

n=1

µ(n)

n
= 0

Proof. For Re(s) > 1 we have 1
ζ(s)

=
∑∞

n=1
µ(s)
ns .

It follows from Theorems 13 and 14 that (s − 1)ζ(s) is analytic and non-zero in Re(s) ≥ 1, hence
1
ζ(s)

is analytic in Re(s) ≥ 1.

By Theorem 15,
∑∞

n=1
µ(n)
ns converges to 1

ζ(s)
for Re(s) ≥ 1. In particular, it converges at s = 1. But

ζ(s) has a pole at s = 1 so 1
ζ(1)

= 0.

�

Theorem 18. ∑

n≤x
µ(n) = o(x)
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Proof. Apply Lemma 1 with an = µ(n)
n

and f(x) = x. Then

∑

n≤x
µ(n) = A(x)x−

∫ x

1

A(u)du

where

(1) A(t) =
∑

n≤t

µ(n)

n

By Theorem 17, A(t) = o(1), so

(2) A(x)x = o(x)

and

(3)

∫ x

1

A(u)du = o(x)

The result follows from (1),(2),(3). �
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13. Lecture: Wednesday, October 11, 2000

For any positive integer n, let d(n) denote the number of positive integers which divide n.

Theorem 19.
n∑

m=1

d(m) =
n∑

m=1

⌊ n

m

⌋

= n log n+ (2γ − 1)n +O(n1/2)

where γ is Euler’s constant.

Proof. Let Dn be the region in the upper right hand quadrant not containing the x or y axes and

under and including the hyperbola xy = n.
That is, Dn = {(x, y) ∈ R2 : x > 0, y > 0, xy ≤ n}.

Every lattice point in Dn, in other words every point with integer coordinates in Dn, is contained
in a hyperbola xy = s for some s with 1 ≤ s ≤ n.

Thus
∑n

s=1 d(s) is the number of lattice points in Dn. Notice that this is equivalent to
∑n

m=1

⌊
n
m

⌋

since we may count the number of lattice points with x coordinates 1, 2, . . . , n.

Observe that to estimate the number of lattice points in Dn we first remark that the number above

the line x = y is the same as the number below.

n∑

m=1

⌊ n

m

⌋

= 2

⌊√n⌋
∑

x=1

(⌊n

x

⌋

− ⌊x⌋
)

+
⌊√

n
⌋

= 2

⌊√n⌋
∑

x=1

(n

x
− x+O(1)

)

+
⌊√

n
⌋

=




2n

⌊√n⌋
∑

x=1

1

x




− 2

(⌊√n⌋ (⌊√n⌋ + 1)

2

)

+O(
√
n)

By Theorem 9,

(1)
n∑

m=1

⌊ n

m

⌋

= 2n(log
⌊√

n
⌋

+ γ +O( 1√
n
)) − (n+O(

√
n)) +O(

√
n)

Since ⌊√n⌋ =
√
n− {√n} where {x} denotes the fractional part of x for any x ∈ R, we have

log(
⌊√

n
⌋
) = log(

√
n− {

√
n}) = log

(√
n

(

1 − {√n}√
n

))

= log(
√
n) + log

(

1 − {√n}√
n

)

= log(
√
n) +O( 1√

n
)
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Thus, from (1), we have
n∑

m=1

⌊ n

m

⌋

= n logn+ (2γ − 1)n+O(
√
n)

as required. �

14. Lecture: Friday, October 13, 2000

Theorem 20 (Prime Number Theorem).

π(x) ∼ x

log x

Proof. By Theorem 8 it suffices to prove that ψ(x) ∼ x. Put

F (x) =
∑

n≤x

(

ψ
(x

n

)

−
⌊x

n

⌋

+ 2γ
)

By Möbius inversion, Theorem 16 (ii), we have

ψ(x) − ⌊x⌋ + 2γ =
∑

n≤x
µ(n)F

(x

n

)

It remains to show that
∑

n≤x µ(n)F
(
x
n

)
= o(x).

To do this we first estimate F (x). We have

F (x) =
∑

n≤x
ψ
(x

n

)

−
∑

n≤x

⌊x

n

⌋

+ 2γ ⌊x⌋

also
∑

n≤x
ψ
(x

n

)

=
∑

n≤x

∑

m≤ x
n

Λ(m) =
∑

n≤x
Λ(n)




∑

m≤ x
n

1





=
∑

n≤x
Λ(n)

⌊ x

m

⌋

=
∑

pk≤x

log p

⌊
x

pk

⌋

=
∑

p≤x

(⌊
x

p

⌋

+

⌊
x

p2

⌋

+ · · ·
)

log p = log(⌊x⌋!) =
∑

n≤x
logn

and as in the proof of Theorem 10,
∑

n≤x
log n = x log x− x+O(log x)

hence ∑

n≤x
ψ
(x

n

)

= x log x− x+O(log x)
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Further, by Theorem 19,

⌊x⌋
∑

n=1

⌊⌊x⌋
n

⌋

= ⌊x⌋ log ⌊x⌋ + (2γ − 1) ⌊x⌋ +O(x1/2)

Note that
⌊x⌋
∑

n=1

⌊⌊x⌋
n

⌋

≤
⌊x⌋
∑

n=1

⌊x

n

⌋

≤
⌊x⌋+1
∑

n=1

⌊⌊x⌋ + 1

n

⌋

Thus
⌊x⌋
∑

n=1

⌊x

n

⌋

= x log x+ (2γ − 1)x+O(x1/2)

Therefore,

F (x) = (x log x− x+O(log x)) − (x log x+ (2γ − 1)x+O(x1/2)) + (2γx+O(1)) = O(x1/2)

Thus there is a positive constant c such that

|F (x)| < cx1/2 for x ≥ 1

Let t be an integer larger than 1. Then
∣
∣
∣
∣
∣
∣

∑

n≤x
t

µ(n)F
(x

n

)

∣
∣
∣
∣
∣
∣

≤
∑

n≤x
t

∣
∣
∣F
(x

n

)∣
∣
∣ ≤

∑

n≤x
t

c
x

n

1/2

≤ cx1/2

(

1 +

∫ x
2

1

du

u1/2

)

≤ cx1/2
(

1 + 2u1/2
∣
∣

x
t

1

)

(1) ≤ cx1/2

(

1 + 2
(x

t

)1/2

− 2

)

≤ 2
cx

t1/2

Observe that F is a step function.
In particular, if a is an integer and a ≤ x < a + 1 then F (x) = F (a). Therefore,

∑

x
t
<n≤x

µ(n)F
(x

n

)

= F (1)
∑

x
2
<n≤x

µ(n) + F (2)
∑

x
3
<n≤x

2

µ(n) + · · ·+ F (t− 1)
∑

x
t
<n≤ x

t−1

µ(n)

Thus ∣
∣
∣
∣
∣
∣

∑

x
t
<n≤x

µ(n)F
(x

n

)

∣
∣
∣
∣
∣
∣

≤ |F (1)|

∣
∣
∣
∣
∣
∣

∑

x
2
<n≤x

µ(n)

∣
∣
∣
∣
∣
∣

+ · · · + |F (t− 1)|

∣
∣
∣
∣
∣
∣

∑

x
t
<n≤ x

t−1

µ(n)

∣
∣
∣
∣
∣
∣

so ∣
∣
∣
∣
∣
∣

∑

x
t
<n≤x

µ(n)F
(x

n

)

∣
∣
∣
∣
∣
∣

≤ (|F (1)| + · · ·+ |F (t− 1)|) max
2≤i≤t

∣
∣
∣
∣
∣
∣

∑

x
t
<n≤ x

t−1

µ(n)

∣
∣
∣
∣
∣
∣

But ∑

x
i
<n≤ x

i−1

µ(n) =
∑

n≤ x
i−1

µ(n) −
∑

x
i
<n

µ(n) = o(x)
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Therefore, ∣
∣
∣
∣
∣
∣

∑

x
t
<n≤x

µ(n)F
(x

n

)

∣
∣
∣
∣
∣
∣

= o(x)

Thus given ǫ > 0 choose t so that 2c
t1/2 <

ǫ
2
. Then for x sufficiently large,

∣
∣
∣
∣
∣
∣

∑

x
t
<n≤x

µ(n)F
(x

n

)

∣
∣
∣
∣
∣
∣

<
ǫ

2
x

And so by (1), ∣
∣
∣
∣
∣

∑

n≤x
µ(n)F

(x

n

)
∣
∣
∣
∣
∣
<
ǫ

2
x+

ǫ

2
x = ǫx

In particular,
∣
∣
∑

n≤x µ(n)F ( x
n
)
∣
∣ = o(x) and so ψ(x) ∼ x. �
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15. Lecture: Monday, October 16, 2000

Definition. For any positive integer n let Ω(n) denote the number of prime factors of n counted
with multiplicity and let ω(n) denote the number of distinct prime factors of n.

Thus if n = 23 · 35 · 13, then Ω(n) = 2 + 5 + 1 = 8 and ω(n) = 3.

Definition. Let k ∈ Z+ and for each real number x let τk(x) be the number of positive integers
n with n ≤ x and Ω(n) = k.
Further, let πk(x) be the number of positive integers n with n ≤ x and ω(n) = Ω(n) = k.

In other words, πk counts the n’s up to x which are squarefree and have k prime factors.

Note that π(x) = π1(x) = τ1(x).

Theorem 21 (Landau,1900). Let k be a positive integer. Then

πk(x) ∼ τk(x) ∼
1

(k − 1)!

x

log x
(log log x)k−1

Proof. We introduce the following functions

Lk(x) =
∗∑

p1···pk≤x

1

p1 · · · pk

Πk(x) =
∗∑

p1···pk≤x
1

Θk(x) =
∗∑

p1···pk≤x
log(p1 · · · pk)

where * signifies that the sum is taken over all k-tuples of primes (p1, . . . , pk) with p1 · · · pk ≤ x.

Note that different k-tuples may correspond to the same product p1 · · · pk.

For each positive integer n, let cn = (cn
(k)) denote the number of k-tuples (p1, . . . , pk) for which

p1 · · · pk = n.
Note cn = 0 if n is not the product of k primes and is equal to k! if n is squarefree and ω(n) = k.

Thus we have

(1) k!πk(x) ≤ Πk(x) ≤ k!τk(x)

Note also that Πk(x) =
∑

n≤x cn and Θk(x) =
∑

n≤x cn log n.

For k ≥ 2 note that the number of positive integers up to x with k primes factors and divisible by

the square of a prime is τk(x) = πk(x).
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Thus

(2) τk(x) − πk(x) ≤
∗∑

p1···pk≤x
pi=pj for some i6=j

1 ≤
(
k

2

)
∑

p1···pk≤x
1 =

(
k

2

)

Πk−1(x)

We shall prove that

Πk(x) ∼ k
x(log log x)k−1

log x
and then our result follows from (1) and (2).

From Lemma 1 with an = 1 and f(x) = log x, we have

Θk(x) =
∑

n≤x
cn logn = Πk(x) log x+

∫ x

1

Πk(u)

u
du

Observe that

Πk(x) ≤ k!τk(x) ≤ k!x

Thus Πk(u) = O(u) and so
Θk(x) = Πk(x) log x+O(x)

Therefore, it suffices to prove that

Θk(x) ∼ kx(log log x)k−1 for k ∈ Z+

We’ll prove this by induction on k.

Note that Θ1(x) = θ(x) ∼ x by the Prime Number Theorem.

Assume now that Θk(x) ∼ kx(log log x)k−1 for k with k ≥ 1. We’ll prove it for k + 1.

First note that for k ≥ 1, Lk(x) ∼ (log log x)k, since





∑

p≤x
1
k

1

p






k

≤ Lk(x) ≤
(
∑

p≤x

1

p

)k

and by Theorem 12,





∑

p≤x
1
k

1

p






k

∼
(

log log(x
1
k )
)k

and (
∑

p≤x

1

p

)k

∼ (log log x)k
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Further,
(

log log(x
1
k )
)k

=

(

log

(
log x

k

))k

= (log log x− log k)k ∼ (log log x)k

It suffices to show that Θk(x) ∼ k(log log x)k−1.

The result holds for k = 1 by the Prime Number Theorem. We now make the inductive hypothesis
that

Θk(x) ∼ k(log log x)k−1 for k ≥ 1

and we’ll deduce it for Θk+1(x).
Recall also that Lk(x) ∼ (log log x)k.

Therefore

Θk+1(x) − (k + 1)(log log x)k = Θk+1(x) − (k + 1)Lk(x) + o(x(log log x)k)

kΘk+1(x) =
∗∑

p1···pk+1≤x
(log(p2 · · · pk+1) + log(p1p3 · · · pk+1) + · · ·+ log(p1 · · · pk))

= (k + 1)

∗∑

p2···pk+1≤x
log p2 · · · pk+1

= (k + 1)
∑

p1≤x
Θk

(
x

p1

)

Next, we put L0(x) = 1 and note

Lk(x) =

∗∑

p1···pk≤x

1

p1 · · · pk
=
∑

p1≤x

1

p1
Lk−1

(
x

p1

)

Thus,

Θk+1(x) − (k + 1)Lk(x) = (k + 1)
∑

p1≤x

(
1

k
Θk

(
x

p1

)

− x

p1
Lk−1

(
x

p1

))

By inductive hypothesis,

Θk(y) − kyLk−1(y) = o(y(log log y)k−1)

Thus given ǫ > 0, there exists x0 = x0(ǫ, k) such that for y > x0,
∣
∣
∣
∣
Θk(y) −

ky

p1
Lk−1(y)

∣
∣
∣
∣
≤ ǫy(log log y)k−1

Further, there exists a positive number c = c(ǫ, k) such that for y ≤ x,
∣
∣
∣
∣
Θk(y) −

ky

p1
Lk−1(y)

∣
∣
∣
∣
≤ c
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Therefore, for x sufficiently large,

|Θk+1(x) − (k + 1)Lk(x)| ≤ 2




∑

x
x0
<p1≤x

c+
∑

p1≤ x
x0

ǫ
x

p1

(

log log
x

p1

)k−1




≤ 2cx+ 2ǫx(log log x)k−1
∑

p1≤ x
x0

1

p1

≤ 2cx+ 4ǫx(log log x)k

< 5ǫx(log log x)k for x suffiently large

Thus,
Θk+1(x) − (k + 1)Lk(x) = o(x(log log x)k)

and this completes the induction. The result follows. �

16. Lecture: Wednesday, October 18, 2000

Theorem 22. ∑

n≤x
ω(n) = x log log x+ β1x+ o(x)

and ∑

n≤x
Ω(n) = x log log x+ β2x+ o(x)

where β1 is the constant in Theorem 12 and β2 = β1 +
∑

p
1

p(p−1)
.

Proof. Put S1 = S(x) =
∑

n≤x ω(n). Then

S1 =
∑

n≤x

∑

p | n
1 =

∑

p≤x

⌊
x

p

⌋

Thus by Theorem 12,

S1 = x
∑

p≤x

1

p
+O(π(x)) = x(log log x+ β1 + o(1)) +O(π(x))

By the Prime Number Theorem, or Theorem 6,

S1 = x log log x+ xβ1 + o(x)

Put S2 = S2(x) =
∑

n≤x Ω(n). Then

S2 − S1 =
∑

pm≤x,m≥2

⌊
x

pm

⌋

=
∑

pm≤x,m≥2

x

pm
+O(x

1
2 log x)

(The x
1
2 arises since m ≥ 2 so p is at most

√
x. The log x arises since m goes up to log x.)
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Continuing,

S2 − S1 = x

(
∑

p

(
1

p2
+

1

p3
+ · · ·

)

−
∑

pm≥x

1

pm

)

+O(x1/2 log x)

Thus,

S2 − S1 = x

(
∑

p

1

p(p− 1)
+ o(1)

)

+O(x1/2 log x) = x
∑

p

1

p(p− 1)
+ o(x)

and the result follows. �

17. Lecture: Friday, October 20, 2000

Definition. Let A be a subset of Z+. For any n ∈ Z+ put A(n) = {1, 2, . . . , n} ∩ A.
Define the upper density d(A) of A by

d(A) = lim sup
n→∞

|A(n)|
n

d(A) is also known as the asymptotic upper density of A.

Similarly, we define d(A) the lower asymptotic density of A by

d(A) = lim inf
n→∞

|A(n)|
n

We say A has an asymptotic density d(A) if d(A) = d(A) in which case we put d(A) = d(A).

Examples:

(1) A set of primes, d(A) = d(A) = 0.
(2) A = {n ∈ Z+ : n ≡ 0 (mod 5)} then d(A) = d(A) = d(A) = 1

5
.

(3) A = {n ∈ Z+ : n not of the form k2 + 1 for k ∈ Z }, d(A) = d(A) = d(A) = 1.
(4) Take A = {a ∈ Z : (2k)! < a < (2k + 1)! for k ∈ Z}. Then d(A) = 0 and d(A) = 1.

Definition. Let f(n) and F (n) be functions from Z+ → R.
We say that f(n) has normal order F (n) if for each ǫ > 0 the set

A(ǫ) = {n ∈ Z+ : (1 − ǫ)F (n) < f(n) < (1 + ǫ)F (n)}
has the property that d(A(ǫ)) = 1.
(Equivalently, if B(ǫ) = Z+\A(ǫ) then d(B(ǫ)) = 0.)

We say that f has average order F if
n∑

j=1

f(j) ∼
n∑

j=1

F (j)

Examples:
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(1) Take

f(n) =

{
1 if n 6= k! for k ∈ Z+

n if n = k!

Then f has normal order 1 but not average order 1.

(2) Put

f(n) =

{
2 for n ≡ 1 (mod 2)
0 for n ≡ 0 (mod 2)

Then f has average order 1 but does not have normal order 1.

(3) Put

f(n) =

{
logn + (logn)

1
2 for n ≡ 1 (mod 2)

log n− (logn)
1
2 for n ≡ 0 (mod 2)

Then f has both normal and average order 1.

We have already proven that ω(n) and Ω(n) have average order log logn. We’ll now prove that they
have normal order log logn.
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18. Lecture: Monday, October 23, 2000

Theorem 23. Let δ > 0. The number of positive integers n ≤ x with |f(n) − log logn| <
(log logn)

1
2
+δ is o(x) where f(n) = ω(n) or f(n) = Ω(n).

Proof. The first remark we make is that it is enough to prove that the number of positive integers

n with n ≤ x and
|f(n) − log log x| < (log log x)

1
2
+δ

is o(x) since for x
1
e ≤ n ≤ x,

log log x ≥ log log n ≥ log

(
log x

e

)

= log log x− 1

Secondly, we may restrict our attention to f(n) = ω(n), since by Theorem 22,
∑

n≤x
(Ω(n) − ω(n)) = O(x)

Thus the number of n ≤ x for which Ω(n) − ω(n) > (log logn)1/2 is o(x).

For each n ≤ x, we consider the ordered pairs (p, q) where p and q are distinct prime factors of n.
There are ω(n) choices for p and then ω(n) − 1 choices for q so

ω(n)(ω(n) − 1) =
∑

pq | n,p 6=q
1 =

∑

pq | n
1 −

∑

p2 | n
1

Thus

∑

n≤x
ω(n)2 −

∑

n≤x
ω(n) =

∑

n≤x
ω(n)(ω(n) − 1) =

∑

n≤x




∑

pq | n
1 −

∑

p2 | n
1



 =
∑

pq≤x

⌊
x

pq

⌋

−
∑

p2≤x

⌊
x

p2

⌋

Observe that
∑

p2≤x

⌊
x

p2

⌋

≤ x
∑

p2≤x

1

p2
= O(x)

and
∑

pq≤x

⌊
x

pq

⌋

≤
∑

p2≤x

x

pq
+O(x)

Thus

(1)
∑

n≤x
ω(n)2 −

∑

n≤x
ω(n) =

∑

n≤x
ω(n)(ω(n) − 1) =

∑

pq≤x

x

pq
+O(x)

Next note that 




∑

p≤x
1
2

1

p






2

−
(
∑

p≤x

1

p2

)

≤
∑

pq≤x

1

pq
≤
(
∑

p≤x

1

p

)2
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Further,
(
∑

p≤x

1

p

)2

= (log log x)2 +O(log log x)

and





∑

p≤x
1
2

1

p






2

= (log log x
1
2 +O(1))2 = (log log x− log 2 +O(1))2 = (log log x)2 +O(log log x)

Thus

(2)
∑

pq≤x

1

pq
= (log log x)2 +O(log log x)

By Theorem 22,

(3)
∑

n≤x
ω(n) = O(x log log x)

Thus by (1), (2), and (3),
∑

n≤x
ω(n)2 = x(log log x)2 +O(x log log x)

Therefore,
∑

n≤x
(ω(n)2 − log log x)2 =

∑

n≤x
ω(n)2 − 2

∑

n≤x
ω(n) log log x+

∑

n≤x
(log log x)2

= ((x log log x)2 +O(x log log x)) − 2 log log x(
∑

n≤x
ω(n)) + ⌊x⌋ (log log x)2

= x(log log x)2 +O(x log log x) − 2x(log log x)2 +O(log log x) + x(log log x)2 +O(log log x)2

(4) = O(x log log x)

Let ǫ > 0. If there are more than ǫx integers n with 1 ≤ n ≤ x for which

|ω(n) − log log x| > (log log x)
1
2
+δ

then ∑

n≤x
(ω(n)2 − log log x)2 > ǫx(log log x)1+2δ

This cannot hold for x sufficiently large, by (4), and so the result follows. �

Recall, for n ∈ Z+, d(n) denotes the number positive divisors of n. If

n = p1
a1 · · · prar

where a1, . . . , ar are positive integers and p1, . . . , pr are distinct primes, then

ω(n) = r, Ω(n) = a1 + · · ·+ ar, and d(n) = (a1 + 1) · · · (ar + 1)
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Theorem 24. Let ǫ > 0. We have

2(1−ǫ) log logn < d(n) < 2(1+ǫ) log logn

for a set of positive integers n with asymptotic density 1.

Proof. Since for any a ∈ Z,

2 ≤ (1 + a) ≤ 2a

The result now follows from Theorem 23. �

Recall that the average order of d(n) is log(n).
By Theorem 24, “normally” d(n) satisfies

(logn)log 2−ǫ < d(n) < (logn)log 2+ǫ

for any ǫ > 0.

Definition. For any n ∈ Z+, let ϕ(n) be the number of integers m with gcd(m,n) = 1. ϕ(n) is
known as Euler’s ϕ-function.

Theorem (Euler’s Theorem). Let a and b be positive integers with gcd(a, n) = 1. Then

aϕ(n) ≡ 1 (mod n)

Proof. Let c1, . . . , cϕ(n) be a reduced residue system modulo n.
Then ac1, . . . , acϕ(n) is also a reduced residue system modulo n.

Thus

c1 · · · cϕ(n) ≡ (ac1 · · ·acϕ(n)) (mod n)

hence

c1 · · · cϕ(n) ≡ aϕ(n)c1 · · · cϕ(n) (mod n)

and so
aϕ(n) ≡ 1 (mod n)

�

( Fermat’s Theorem follows from setting n = p.)

Theorem (Wilson’s Theorem). If p is a prime then (p− 1)! ≡ −1 (mod p).

Proof. Consider xp−1 − 1 in ZpZ[x].
It factors by Fermat’s Theorem as

xp−1 − 1 = (x− 1)(x− 2) · · · (x− (p− 1)) in ZpZ[x]

since 1, 2, . . . , p− 1 are roots.
Considering the constant coefficient we find that

−1 ≡ (−1)(−2) · · · (−(p− 1)) (mod p)

so −1 ≡ (−1)p−1(p− 1)! (mod p).

If p = 2 the result holds since −1 = 1; otherwise p is odd, so −1 ≡ (p−1)! (mod p) as required. �
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19. Lecture: Wednesday, October 25, 2000

Wilson’s Theorem was conjectured by Wilson (1741-1793). He communicated the conjecture to
Waring (1734-1798) who published it in 1770. Shortly after, Lagrange gave the first proof. In fact,
Leibniz had conjectured the result in 1682.

Here is another proof due to Stern from 1860. We have, for |x| < 1,

− log(1 − x) = log

(
1

1 − x

)

= x+
x2

2
+
x3

3
+ · · ·

and so

exp

(

x+
x2

2
+
x3

3
+ · · ·

)

=
1

1 − x
= 1 + x+ x2 + · · ·

But

exp

(

x+
x2

2
+
x3

3
+ · · ·

)

= exp(x) exp(x
2

2
) exp(x

3

3
) · · ·

=

(

1 + x+
x2

2!
+
x3

3!
+ · · ·

)(

1 +
x2

2
+

(x
2

2
)2

2!
+ · · ·

)(

1 +
x3

3
+

(x
3

3
)2

2!
+ · · ·

)

· · ·

= 1 + x+

(
1

2
+

1

2!

)

x2 +

(
1

3!
+

1

2
+

1

3

)

x3 + · · ·+
(

1

p!
+ · · ·+ 1

p

)

xp + · · ·

In particular, the coefficient of xp is of the form 1
p!

+ r
s
+ 1

p
where r and s are positive integers with

gcd(r, s) = 1 and gcd(s, p) = 1.

But comparing coefficients in the power series, we see that

1 =
1

p!
+
r

s
+

1

p

Therefore 1− r
s

= 1
p!

+ 1
p

hence s−r
s

= 1
p!

+ 1
p
. Thus s− r = s

p!
+ s

p
, so (s− r)(p− 1)! = s

p
+ s(p−1)!

p
=

s((p−1)!+1)
p

.

Since (s− r)(p− 1)! is an integer, we see that p | s((p− 1)! + 1). But gcd(p, s) = 1.

Therefore, p | (p− 1)! + 1, as required.

Definition. Let p be a prime, and let a be an integer coprime with p. We define the Legendre

symbol
(
a
p

)

by the rule:
(
a

p

)

=

{
1 if x2 ≡ a (mod p) has a solution
−1 if it has no solution

If
(
a
p

)

= 1 we say that a is a quadratic residue mod p and otherwise a is a quadratic nonresidue

mod p.
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Theorem 25 (Euler’s Criterion). Let p be an odd prime and let a be and integer coprime with p.

Then

a
p−1
2 ≡

(
a

p

)

(mod p)

Proof. The congruence x2 ≡ a (mod p) has at most 2 solutions modulo p. Suppose that it has a

solution (so that
(
a
p

)

= 1 and that b2 ≡ a (mod p).

From b2 ≡ a (mod p), we get

a
p−1
2 ≡ (b2)

p−1
2 ≡ bp−1 ≡ 1 (mod p)

Thus a
p−1
2 ≡

(
a
p

)

as required.

And suppose that x2 ≡ a (mod p) has no solution. Split the integers into p−1
2

pairs (r, s) with
rs ≡ a (mod p). Thus

(p− 1)! ≡ a
p−1
2 (mod p)

Note (p− 1)! ≡ −1 (mod p) by Wilson’s Theorem, so a
p−1
2 ≡

(
a
p

)

(mod p). �
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20. Lecture: Monday, October 30, 2000

Extend the definition of the Legendre symbol to
(
a
p

)

where p is a prime and p | a by putting
(
a
p

)

= 0 in this case.

Theorem 26. Let p be an odd prime and let a and b be integers. Then
(
a

p

)(
b

p

)

=

(
ab

p

)

Also
(

−1
p

)

= (−1)
p(p−1)

2 .

Proof. The first part plainly holds if p | ab. So we may assume that p 6 | a and p 6 | b.
By Euler’s Criterion,

(
ab

p

)

≡ (ab)
p−1
2 ≡ (a

p−1
2 )(b

p−1
2 ) ≡

(
a

p

)(
b

p

)

(mod p)

Since
(
ab
p

)

and
(
a
p

)(
b
p

)

are in {−1, 1} and p is and odd prime, we see that
(
a

p

)(
b

p

)

=

(
ab

p

)

Similarly, by Euler’s Criterion,

(−1)
p(p−1)

2 ≡
(−1

p

)

(mod p)

and since p is an odd prime
(

−1
p

)

= (−1)
p(p−1)

2 . �

21. Lecture: Wednesday, November 1, 2000

Theorem 27 (Gauss’ Lemma). Let p be an odd prime and let a be an integer coprime with p. Let

µ be the number of integers from {a, 2a, . . . , (p−1
2

)a} whose residues modulo p of least absolute value

are negative. Then (
a

p

)

= (−1)µ

E.g. take p = 5 and a = 2. The set {2, 4}. The residues mod 5 of least absolute value are 2,-1.
Thus µ = 1 hence

(
2
5

)
= (−1)1 = −1.

Proof. Replace the integers a, . . . , (p−1
2

)a by their residues of least absolute value.

Denote the positive ones by r1, . . . , r p−1
2

−µ and the negative ones by −s1, . . . ,−sµ.

Plainly no two ri’s are equal and no two sj ’s are equal.
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Observe that if m1a ≡ ri (mod p) and m2a ≡ −sj (mod p) with ri = sj then (m1 + m2)a ≡ 0

(mod p), hence p | m1 +m+ 2, which is not possible if 1 ≤ mt ≤ p−1
2

for t = 1, 2.
Therefore, no ri is equal to an sj . In particular, r1, . . . , r p1

2
−µ, s1, . . . , sµ is a rearrangement of

1, . . . , p−1
2

. Thus

a(2a) · · ·
(
p− 1

2

)

≡ 1 · 2 · · ·
(
p− 1

2

)

(−1)µ (mod p)

and so a
p−1
2 ≡ (−1)µ (mod p). The result now follows from Euler’s Criterion. �

Corollary . If p is an odd prime, then
(

2

p

)

= (−1)
p2−1

8

Proof. We apply Gauss’ Lemma. We consider the number of integers from {1, 2, 4, . . . , 2(p−1
2

)}
whose residues of least absolute value are negative.

µ =

(
p− 1

2

)

−
⌊p

4

⌋

�

If p = 8k + 1 then µ = 4k −
⌊

8k+1
4

⌋
= 4k − 2k ≡ 0 (mod 2).

If p = 8k + 3 then µ = 4k + 1 − 2k = 2k + 1 ≡ 1 (mod 2).
If p = 8k + 5 then µ = 4k + 2 − (2k + 1) = 2k + 1 ≡ 1 (mod 2).
If p = 8k + 7 then µ = 4k + 3 − (2k + 1) = 2k + 2 ≡ 0 (mod 2).

Therefore, 2 is a square modulo p if p ≡ ±1 (mod 8) and 2 is a quadratic nonresidue if p ≡ ±3
(mod 8).

22. Lecture: Friday, November 3, 2000

Theorem 28 (Law of Quadratic Reciprocity). If p and q are distinct odd primes, then
(
p

q

)(
q

p

)

≡ (−1)(p−1
2

)( q−1
2

)

Euler had stated the law. Legendre attempted to prove it. Gauss gave 8 proofs.

Proof. By Gauss’ Lemma,
(
q
p

)

= (−1)µ and
(
q
p

)

= (−1)ν , where µ is the number of integers from

{q, 2q, . . . , (p−1
2

)q} whose residue mod p of least absolute value is negative, and ν is the number of

integers from {p, 2p, . . . , ( q−1
2

)p} whose residue mod q of least absolute value is negative.

It suffices to show that µ+ ν = (p−1
2

)( q−1
2

) (mod 2).

Given x with 1 ≤ x ≤ p−1
2

we determine y such that −p
2
< qx− py < p

2
.

Note that −1
2
− q

p
x < −y < 1

2
− q

p
x so y is uniquely determined and that qx− py is the residue mod

p of least absolute value of qx.
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Note that y is nonnegative. If y = 0 there is no contribution to µ since qx ≥ 0.

Further, if x = p−1
2

, then

q

p
x− 1

2
=
q(p−1

2
)

p
− 1

2
=
q

2

(
p− 1

p

)

− 1

2
<
q − 1

2

hence y ≤ q−1
2

(since y is an integer).

Thus the number µ corresponds to the number of combinations of x and y from the sequences

(A) : 1, 2, . . . ,
p− 1

2

(B) : 1, 2, . . . ,
q − 1

2
respectively, such that −p

2
< qx− py < 0, or equivalently that 0 < py − qx < p

2
.

Similarly, ν is the number of combinations of x and y from the sequences (A) and (B) respectively,
for which − q

2
> py − qx < 0.

For any other pair (x, y) with x from (A) and y from (B), either py − qx < − q
2

or py − qx > p
2
.

Let ρ be the number of pairs (x, y) for which the first possibility holds, and λ the number of pairs

for which the second possibility holds. Then
(
p− 1

2

)(
q − 1

2

)

= µ+ ν + ρ+ λ

As x and y run through (A) and (B) respectively, x′ = p+1
2

− x and y′ = q+1
2

− y run through (A)

and (B) respectively, but in reverse order.

And note py − qx > p
2

if and only if py′ − qx′ = p( q+1
2

− y) − q(p+1
2

− x) = p−q
2

− (py − qx) < − q
2
.

Further, py − qx < −y
2

if and only if py′ − qx′ = p−q
2

− (py − qx) > p
2
.

Then λ = ρ. So (
p− 1

2

)(
q − 1

2

)

= µ+ ν + 2λ ≡ µ+ ν (mod 2)

�

Examples:

(1) What is
(

13
17

)
?

By the Law of Quadratic Reciprocity,
(

13
17

) (
17
13

)
= (−1)( 17−1

2
)( 13−1

2
) = 1.

But
(

17
13

)
=
(

4
13

)
= 1 so

(
13
17

)
= 1.

(2) What is
(

713
1009

)
?

1009 is prime and 713 = 23 · 31. So
(

713
1009

)
=
(

23
1009

) (
31

1009

)
.

By the Law of Quadratic Reciprocity,
(

23
1009

)
=
(

1009
23

)
=
(

20
23

)
and

(
31

1009

)
=
(

1009
31

)
=
(

17
31

)
.

Now,
(

20
23

)
=
(

4
23

) (
5
23

)
=
(

5
23

)
and

(
5
23

)
=
(

23
5

)
=
(

3
5

)
= −1.

Further
(

17
31

)
=
(

31
17

)
=
(

14
17

)
=
(

2
17

) (
7
17

)
.
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Applying the result on the quadratic character of 2 from our corollary to Gauss’ Lemma,
we have

(
2
17

)
= 1, so

(
17
31

)
= 1 ·

(
7
17

)
=
(

3
7

)
= −1.

Thus
(

713
1009

)
= 1.

(3) 5 is a quadratic residue for all primes p of the form 10k ± 1 and is a quadratic nonresidue

for all primes of the form 10k ± 3 since by the Law of Quadratic Reciprocity,
(

5
p

)

=
(
p
5

)
,

and 1 and -1 are quadratic residues mod 5 while 3 and -3 are not.

(4) The equation
x4 − 17y4 = 2w2

has no solution in the integers x, y, w.
Assume we have a solution. We may suppose that x and y are coprime, hence that x and w
are coprime.

If p is an odd prime which divides w then
(

17
p

)

= 1 since x4 ≡ 17y4 (mod p).

By the Law of Quadratic Reciprocity,
(
p
17

)
(−1)( 17−1

2
)(p−1

2
) = 1 so p is a quadratic residue of

17. Further,
(

2
17

)
= (−1)

172−1
8 = 1.

Thus, w ≡ t2 (mod 17) for some t. Therefore, x4 ≡ 2t4 (mod 17) so there exists an integer
r with r4 ≡ 2 (mod 17), which is a contradiction, since no such r exists.

(5) Is the congruence 3x2 − 7x− 42 ≡ 0 (mod 391) solvable?
Note 391 = 17 · 23.
Multiply by 12: 36x2 + 84x− 516 ≡ 0 (mod 391) thus we have (6x+ 7)2 ≡ 565 (mod 391).
This is equivalent to solving x2 ≡ 174 (mod 391).
Note x2 ≡ 174 (mod 17) is x2 ≡ 4 (mod 17), which has a solution.
Also, x2 ≡ 174 (mod 23) if and only if x2 ≡ 13 (mod 23).
And

(
13
23

)
=
(

23
13

)
=
(

10
13

)
=
(

2
13

) (
5
13

)
= −

(
5
13

)
= −

(
13
5

)
= −

(
3
5

)
= 1. Hence by the Chinese

Remainder Theorem, the original congruence has a solution.

23. Lecture: Monday, November 6, 2000

Review of congruences

Recall: a, b ∈ Z implies there exist x, y ∈ Z such that ax+ by = gcd(a, b). x, y are found using the
Euclidean Algorithm.

Theorem 29 (Chinese Remainder Theorem). Let m1, . . . , mt ∈ Z+ with gcd(mi, mj) for i 6= j. Set

m = m1 · · ·mt.

Let b1, . . . , bt ∈ Z+. Then the simultaneous congruences

x ≡ b1 (mod m1)
x ≡ b2 (mod m2)

...

x ≡ bt (mod mt)



PMATH 440/640 ANALYTIC NUMBER THEORY 43

have a unique solution modulo m.

Proof. Let ni = M
mi

for i = 1, . . . , t.

Then gcd(mi, ni) = 1 so there exist ri, si ∈ Z such that rini + simi = 1 for i = 1, . . . , t.

Let ei = rini so that ei ≡ 1 (mod mi).
Then take x0 =

∑t
i=1 biei.

Notice that x0 ≡ bi (mod mi) for i = 1, . . . , t.
Suppose also x1 ≡ bi (mod Mi) for i = 1, . . . , t.

Then mi | x1 − x0 for i = 1, . . . , t and since gcd(mi, mj) for i 6= j then m =
∏t

i=1midvx1 − x0.
Thus there is a unique solution modulo m.

For any positive integer n, (Z/nZ)∗ is the set of invertible elements in Z/nZ. In particular, it is the
set of congruence classes r+ nZ for which there exists s+ nZ with (r+ nZ)(s+ nZ) = 1 + nZ. �

Theorem 30. Let m1, . . . , mt be positive integers with gcd(mi, mj) = 1 for i 6= j and put m =

m1 · · ·mt.

Then the ring Z/mZ is isomorphic to the ring Z/m1Z × · · · × Z/mkZ and the group (Z/mZ)∗ is

isomorphic to the group (Z/m1Z)∗ × · · · × (Z/mkZ)∗.

Proof. Let ψ : Z → Z/m1Z × · · · × Z/mkZ be defined by ψ(n) = (n+m1Z, . . . , n+mtZ).

We check that ψ is a ring morphism.

ψ is surjective by the Chinese Remainder Theorem. Also by the Chinese Remainder Theorem,

kerψ = mZ. Thus by the First Isomorphism Theorem for Rings,

Z/mZ ∼= Z/m1Z × · · · × Z/mkZ

Let λ : (Z/mZ)∗ → (Z/m1Z)∗×· · ·×(Z/mkZ)∗ be defined by λ(n+mZ) = (n+m1Z, . . . , n+mtZ).

We see that λ is a group morphism. It is bijective by the Chinese Remainder Theorem. �

Corollary 1. Let m1, . . . , mt be positive integers which are pairwise coprime. Put m = m1 · · ·mt.
Then

ϕ(m) = ϕ(m1) · · ·ϕ(mt)

Proof. ϕ(m) = |(Z/mZ)∗| and

ϕ(m1) · · ·ϕ(mt) = |(Z/m1Z)∗| · · · |(Z/m1Z)∗| = |(Z/m1Z)∗ × · · · × (Z/m1Z)∗|
and so the result follows from Theorem 30. �

Corollary 2. Let m = p1
a1 · · ·ptat where p1, · · ·pt are distinct primes, a1, . . . , at positive integers.

Then

ϕ(m) = m
t∏

i=1

(

1 − 1

pi

)

Proof. Take mi = pi
ai for i = 1, . . . , t in Corollary 1.

Since ϕ(pi
ai) = pi

ai − pi
ai−1 = pi(1 − 1

pi
), then

ϕ(m) = ϕ(p1
a1) · · ·ϕ(pt

at) = p1
ai · · · ptat(1 − 1

p1
) · · · (1 − 1

pt
) = m

∏t
i=1

(

1 − 1
pi

)

�
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Proposition 1. Let p be a prime. If d | p− 1 then xd ≡ 1 (mod p) has exactly d solutions modulo

p.

Proof. Suppose p− 1 = dk with k ∈ Z+. Then

xp−1 − 1

xd − 1
=

(xd)k − 1

xd − 1
= (xd)k−1 + · · ·+ 1 = g(x) ∈ Z/pZ[x]

By Fermat’s Theorem, xp−1 − 1 has p− 1 distinct roots in Z/pZ so (xd − 1)g(x) factors into linear

factors in Z/pZ[x] and our result follows. �

Theorem 31. (Z/pZ)∗ is a cyclic group.

Proof. For each divisor d of p− 1 we let λ(d) denote the number of elements of (Z/pZ)∗ of order d.
By Proposition 1, there are exactly d elements of (Z/pZ)∗ whose order divides d hence

d =
∑

c | d
λ(c)

Now by Möbius inversion, we then have

λ(d) =
∑

c | d
µ(c)

d

c
= d

∑

c | d

µ(c)

c
= d

∏

p | d

(

1 − 1

p

)

= ϕ(d)

Thus there are ϕ(p− 1) elements of (Z/pZ)∗ of order p− 1. In particular, (Z/pZ)∗ is cyclic. �

Definition. Let n be a positive integer and let a be an integer. a is said to be a primitive root

modulo n if a+ nZ generates (Z/nZ)∗.

24. Lecture: Wednesday, November 8, 2000

Note: For any prime p (Z/pZ)∗ is cyclic and so there exists a primitive root modulo p. In fact,
there are ϕ(p− 1) primitive roots modulo p.

Artin conjectured that if a is a positive integer and a is not a perfect square, then a is a primitive
root modulo p for infinitely many primes p. This is still open. It can be deduced from the general-
ized Riemann Hypothesis.

(Why do we require a not a perfect square? p− 1 is even. We want a to have order p− 1. Well, if
a = k2 then no power of a is congruent to k, for if ai ≡ k then a2i ≡ a so a2i−1 ≡ 1 so p−1 | 2i−1,
but even cannot divide odd!)

Notice 2 is a primitive root mod 5 (2 ≡ 2, 22 ≡ 4, 23 ≡ 5, 24 ≡ 1) but 2 is not a primitive root
modulo 7 since 23 ≡ 1.
In general, (Z/nZ)∗ is not cyclic so primitive roots do not exist modulo n.
(E.g. (Z/8Z)∗ = {[1], [3], [5], [7]} and 12 ≡ 1, 32 ≡ 1, 52 ≡ 1, 72 ≡ 1. Therefore this group is not
cyclic!)

Proposition 2. Let p be a prime. If ℓ ≥ 1 and a ≡ b (mod pℓ), then ap ≡ bp (mod pℓ+1).
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Proof. We may write a = b+ cpℓ for some c ∈ Z. Then

ap = (b+ cpℓ)p = bp +

(
p

1

)

bp−1cpℓ +

(
p

2

)

bp−2(cpℓ)2 + · · ·

So ap ≡ bp (mod pℓ+1) since 2ℓ ≥ ℓ+ 1. �

Proposition 3. If ℓ ≥ 2 and p is an odd prime, then for any integer a,

(1 + ap)p
ℓ−2 ≡ 1 + apℓ−1 (mod pℓ)

Proof. We prove the result by induction on ℓ.
The result is immediate for ℓ = 2. Assume the result holds for some integer ℓ with ℓ ≥ 2 and we

shall prove it for ℓ+ 1.

By Proposition 2, and our inductive hypothesis,

(1 + ap)p
ℓ−1 ≡ (1 + apℓ−1)p (mod pℓ+1)

≡ 1 +

(
p

1

)

apℓ−1 +

(
p

2

)

(apℓ−1)2 + · · · (mod pℓ+1)

Note that p2(ℓ−1)+1 divides (apℓ−1)k for k = 3, . . . , p since ℓ ≥ 2 implies that 2(ℓ−1)+1 ≤ 3(ℓ−1) ≤
k(ℓ− 1).

Further, p2(ℓ−1)+1 divides
(
p
2

)
(apℓ−1)2 also, since

(
p
2

)
(apℓ−1)2 = p(p−1)

2
(apℓ−1)2 = p−1

2
(apℓ)2. Note p−1

2

is an integer since p is odd.

So p2(ℓ−1)+1 divides the sum
(
p

2

)

(apℓ−1)2 +

(
p

3

)

(apℓ−1)3 + · · ·+
(
p

p

)

(apℓ−1)p (mod pℓ+1)

Thus since ℓ ≥ 2 implies 2(ℓ− 1) + 1 ≥ ℓ+ 1 since p is odd, then

1 +

(
p

1

)

apℓ−1 +

(
p

2

)

(apℓ−1)2 + · · · (mod pℓ+1) ≡ 1 +

(
p

1

)

apℓ−1 ≡ 1 + apℓ (mod pℓ+1)

The result follows by induction. �

Proposition 4. If p is an odd prime, ℓ a positive integer and a an integer coprime with p then

1 + ap has order pℓ−1 in (Z/pℓZ)∗.

Proof. By Proposition 3,

(1 + ap)p
ℓ−2 ≡ 1 + apℓ−1 (mod pℓ)

Hence, since a is coprime with p,

(1 + ap)p
ℓ−2 6≡ 1 (mod pℓ)

But again by Proposition 3,

(1 + ap)p
ℓ−1 ≡ 1 + apℓ (mod pℓ+1)

hence
(1 + ap)p

ℓ−1 ≡ 1 (mod pℓ)
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Thus 1 + ap has order pℓ−1 in (Z/pℓZ)∗. �

25. Lecture: Friday, November 10, 2000

Theorem 32. Let p be an odd prime and let ℓ be a positive integer. Then (Z/pℓZ)∗ is a cyclic

group.

Proof. By Theorem 31, there is a primitive root g modulo p.

If gp−1 ≡ 1 (mod p2), then

(g + p)p−1 = gp−1 +

(
p− 1

1

)

gp−2p+

(
p− 1

2

)

gp−3p2 + · · ·
so

(g + p)p−1 ≡ 1 +

(
p− 1

1

)

gp−2p (mod p2)

hence (g + p)p−1 6≡ 1 (mod p2).

Therefore at least one of gp−1 and (g + p)p−1 is not congruent to 1 modulo p2. Without loss of

generality, we may suppose that gp−1 6≡ 1 (mod p2).
We claim that in this case, g is a primitive root modulo pℓ.

Suppose that g has orderm. By Euler’s Theorem, gϕ(pℓ) ≡ 1 (mod p2) som | pℓ−pℓ−1 = (p−1)pℓ−1.

Write m = dps where d | p− 1 and 0 ≤ s ≤ ℓ− 1.
By Fermat’s Theorem, gp ≡ g (mod p). Hence gp

s ≡ g (mod p) provided s 6= 0.

But gm ≡ 1 (mod pℓ) so gm ≡ 1 (mod p), so gd ≡ 1 (mod p).

Since g is a primitive root, p− 1 | d. Thus d = p− 1, so m = (p− 1)pℓ.

Since gp−1 6≡ 1 (mod p2) and gp−1 ≡ 1 (mod p) there exists an integer a coprime with p such that

g−1 ≡ 1 + ap (mod p2).

And by proposition 4, 1+ap has order pℓ−1 in (Z/pℓZ)∗ and so g has order (p−1)pℓ hence (Z/pℓZ)∗

is cyclic. �

Theorem 33. Let ℓ be a positive integer.

(Z/2ℓZ)∗ is cyclic for ℓ = 1, 2.

For ℓ ≥ 3,

(Z/2ℓZ)∗ ∼= Z/2Z × Z/2Z × · · ·
In particular,

(Z/2ℓZ)∗ = {(−1)a5b + 2ℓZ : a ∈ {0, 1}, b ∈ {0. . . . , 2ℓ−2 − 1}}

Proof. (Z/2Z)∗ and (Z/4Z)∗ are plainly cyclic. Suppose ℓ ≥ 3. We claim that

(1) 52ℓ−3 ≡ 1 + 2ℓ−1 (mod 2ℓ)

We’ll prove it by induction. For ℓ = 3 we have 5 = 1 + 22 (mod 23) as required.
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Suppose (1) holds for some ℓ for ℓ ≥ 3.

Note that (1 + 2ℓ−1)2 = 1 + 2ℓ + 22(ℓ−1) and 2(ℓ− 1) ≥ ℓ+ 1 for ℓ ≥ 3.

Now, 52ℓ−3
= 1 + 2ℓ−1 + k2ℓ for some k ∈ Z. Hence

52ℓ−2

= (1 + 2ℓ−1 + k2ℓ)2 = 1 + 2ℓ−1 + k2ℓ + 2ℓ−1 + 22ℓ−1 + k22ℓ−1 + k2ℓ + k22ℓ−1

= 1 + 2ℓ + k2ℓ+1 + 22ℓ−2 + k22ℓ + k222ℓ

so 52ℓ−2 ≡ 1 + 2ℓ (mod 2ℓ+1) since 2ℓ− 2 ≥ ℓ+ 1 for ℓ ≥ 3.

The result follows by induction.

Thus by 52ℓ−3 6≡ 1 (mod 2ℓ) and 52ℓ−2 ≡ 1 (mod 2ℓ), hence 5 has order 2ℓ−2 in Z/2ℓZ
∗
.

We now show that the numbers

(−1)a5b with a ∈ {0, 1}, b ∈ {0, . . . , 2ℓ−2 − 1}
are distinct modulo 2, for ℓ ≥ 3.

Suppose that
(−1)a15b1 ≡ (−1)a25b2 (mod 2ℓ)

with 0 ≤ ai ≤ 1 and 0 ≤ bi < 2ℓ−2 for i = 1, 2, . . ..

Then
(−1)a15b1 ≡ (−1)a25b2 (mod 4)

So (−1)a1 ≡ (−1)a2 (mod 4) hence a1 = a2.

Therefore 5b1 ≡ 5b2 (mod 2ℓ) and since 5 has order 2ℓ−2, we see that b1 = b2.

Our result follows. �

Theorem 34. The only positive integers having primitive roots are 1, 2, 4, pa and 2pa with a a

positive integer and p an odd prime.

Proof. Let n = 2ℓ0p1
ℓ1 · · · prℓr with ℓ0, ℓ1. . . . , ℓr, non-negative integers and p1, . . . , pr distinct odd

primes. Then by Theorem 30, (Z/nZ)∗ is isomorphic to (Z/2ℓ0Z)∗ × (Z/p1
ℓ1Z)∗ × · · · × (Z/pr

ℓrZ)∗.

By Theorem 32, (Z/pi
ℓiZ)∗ is cyclic for i = 1, . . . , r.

By Theorem 33, (Z/2ℓ0Z)∗ is cyclic for 0 ≤ ℓ0 ≤ 2 and is isomorphic to Z/2Z×Z/2ℓ0−2Z for ℓ ≥ 3.

Therefore, the order of any element of Z/nZ is a divisor of

λ(n) = lcm(b, ϕ(p1
ℓ1), . . . , ϕ(pr

ℓr))

where

b =

{

ϕ(2ℓ0) for 0 ≤ ℓ0 ≤ 2
ϕ(2ℓ0 )

2
ℓ0 ≥ 3

Plainly, λ(n) < ϕ(2ℓ0)ϕ(p1
ℓ1) · · ·ϕ(pr

ℓr) except in the cases 1, 2, 4, pa and 2pa. �

Definition. λ(n) is known as the universal exponent of n.
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Theorem 35. Let n be a positive integer and define λ(n) as before. Then for any integer a coprime

with n,
aλ(n) ≡ 1 (mod n)

Proof. The proof follows from the proof of Theorem 34. �

Theorem 35 gives a strengthening of Euler’s Theorem.

26. Lecture: Monday, November 13, 2000

Given a prime p one can ask for an upper bound for the smallest positive integer a which is a
primitive root modulo p.

Hua proved
a < 2ω(p−1)+1√p

Theorem 36. If p is a prime of the form 4q + 1 with q an odd prime then 2 is a primitive root

modulo p.

Proof. Let t be the order of 2 modulo p. By Fermat’s Theorem, t | p− 1 so t | 4q. Thus t is one
of 1, 2, 4, q, 2q and 4q.

Note that p = 13 or p > 20 so t is not 1,2,4.

Further, by Euler’s Criterion,

2
p−1
2 ≡ 22q ≡

(
2

p

)

(mod p)

But
(

2
p

)

= (−1)
p2−1

8 = (−1)
(4q)2+8q

8 = (−1)q = −1.

Thus t is not q or 2q hence t = 4q = p− 1 as required.

�

Let k and ℓ be positive integers with k and ℓ coprime. Dirichlet’s Theorem asserts that kn+ ℓ is
prime for infinitely many integers n. For many primes (k, ℓ), we can prove Dirichlet’s Theorem by
elementary means.

Consider (4,3). Suppose that there are only finitely many primes, p1, . . . , pk say, of the form 4n+3.
Consider 4p1 · · · pk + 3.
This must be divisible by a prime of the form 4m + 3 (since a product of primes congruent to 1
modulo 4 can only yield numbers congruent to 1 modulo 4), and this prime 4n + 3 cannot be any
of the p1, . . . , pk.

Theorem 37. Let n be a positive integer. There are infinitely many primes congruent to 1 modulo

n.

Proof. (Due to Birkhoff and Vandiver, 1904)
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Let a be a positive integer with a > 2, and consider Φn(a), the nth cyclotomic polynomial evaluated

at a.
Φn(a) =

∏

j=1,
(j,n)=1

(a− ζn
j)

where ζn = e
2πi
n , Φn(x) ∈ Z[x], and xn − 1 =

∏

d | n Φn(x).

We claim that if p is a prime dividing Φn(a), then p | n or p ≡ 1 (mod n).

To see this, note that p | an − 1n hence p 6 | a. If p 6 | ad − 1 for d a proper divisor of n, then the
order of a (mod p) is n. By Fermat’s Theorem, n | p− 1, hence p ≡ 1 (mod n).

Suppose next that p | ad − 1 for some proper divisor d of n. Then since p | Φn(a), then p | an−1
ad−1

.

We have

an = (1 + (ad − 1))
n
d = 1 +

n

d
(ad − 1) +

(
n

2

)

(ad − 1)2 +

(
n

3

)

(ad − 1)3 + · · ·

hence
an − 1

ad − 1
=
n

d
+

(
n/d

2

)

(ad − 1) +

(
n/d

3

)

(ad − 1)2 + · · ·

Since p | an−1
ad−1

and p | ad − 1, we conclude that p | n
d

hence p | n as required.

Assume that there only finitely many primes p1, . . . , pk which are congruent to 1 modulo n.

Φn(x) = xϕ(n) + · · · ± 1

so Φ(np1 · · · pkm) is not divisible by pi for i = 1, . . . , k and is coprime with n.

Letting m→ ∞ we see that for m sufficiently large, Φ(np1 · · · pkm) ≥ 2 and so has a prime divisor

congruent to 1 modulo n which is not one of {p1, . . . , pk}.
This is a contradiction. �

27. Lecture: Wednesday, November 15, 2000

Definition. Let G be a finite abelian group. A character of G is a homomorphism χ : G→ C∗.

The set of characters of a group form a group under (χ1 · χ2)(g) = χ1(g)χ2(g).

This group is called the dual group of G and is denoted Ĝ.

The identity of Ĝ is the character χ0 where χ0(g) = 1 for all g ∈ G. χ0 is known as the principal

character.

Note that if |G| = n then gn = e for all g ∈ G, hence (χ(g))n = 1 so χ(g) is an nth root of unity.

Theorem 38. Let G be a finite abelian group. Then

(i)
∣
∣
∣Ĝ
∣
∣
∣ = |G|
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(ii) Ĝ ∼= G

(iii) We have
∑

χ∈Ĝ

χ(g) =

{
|G| if g = e
0 otherwise

and
∑

g∈G
χ(g) =

{
|G| if χ = χ0

0 otherwise

Proof. Recall that any finite abelian group is the direct product of cyclic groups.

Hence there exist g1, . . . , gr ∈ G and h1, . . . , hr ∈ N with h1 · · ·hr = n such that every element

g ∈ G has a unique representation in the form g = g1
a1 · · · grar with 0 ≤ ai ≤ hi for i = 1, . . . , r and

gi
hi = e for i = 1, . . . , r.

Now any character is determined by its action on g1, . . . , gr. But (χ(gi))
hi = 1.

Therefore χ(gi) is an hith root of unity. Hence there are at most h1 · · ·hr characters.

But there are at least h1 · · ·hr characters, since if wi is a hith root of unity, we may define χ(gi) = wi
for each i and extending multiplicatively to G.

(i) Hence |G| =
∣
∣
∣Ĝ
∣
∣
∣.

(ii) Let χi be the character which maps gi to e
2πi
hi and maps gj to 1, for j 6= i.

Define φ : G→ Ĝ by
φ(g1

a1 · · · grar) = χ1
a1 · · ·χrar

Note φ is a homomorphism.

Clearly φ is injective since

χ1
a1 · · ·χrar(gj) = e

2πjaj
hj

Therefore, φ is surjective since G is finite and |G| =
∣
∣
∣Ĝ
∣
∣
∣.

Therefore, G ∼= Ĝ.

(iii) Let S(g) =
∑

χ∈G χ(g).

If g = e then χ(e) = 1 for all χ ∈ Ĝ so S(e) =
∣
∣
∣Ĝ
∣
∣
∣ = |G|.

So assume g 6= e. Then there exists a character χ1 ∈ Ĝ such that χ1(g) 6= 1. Now

S(g) =
∑

χ∈Ĝ

χ(g) =
∑

χ∈Ĝ

(χ1χ)(g)

= χ1(g)
∑

χ∈Ĝ

χ(g) = χ1(g)S(g)
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Therefore S(g) = 0 since χ1(g) 6= 1, as required.

Let T (χ) =
∑

g∈G χ(g).

If χ = χ0 then χ0(g) = 1 for all g ∈ G; therefore T (χ) = |G|.
If χ 6= χ0 then there exists g1 ∈ G such that χ(g1) 6= 1. So

T (χ) =
∑

g∈G
χ(g1g) = χ(g1)T (χ)

Therefore T (χ) = 0 since χ(g1) 6= 1.

�

28. Lecture: Friday, November 17, 2000

Let k be a positive integer and denote (Z/kZ)∗ by G(k). Let χ be a character on G(k).
We associate to it a map from Z to C∗. which we also denote by χ, by putting

χ(a) = χ([a])

where [a] denote the congruence class of a for a coprime with k, and χ(a) = 0 otherwise.
χ is known as a character mod k.

Theorem 39. Let χ be a character mod k.

(a) If (n, k) = 1 then χ(n) is a kth root of unity.

(b) The function χ is completely multiplicative, i.e. χ(mn) = χ(m)χ(n) for all m,n ∈ Z.

(c) χ is periodic modulo k, i.e. χ(n + k) = χ(n) for all n ∈ Z.

(d) We have
k∑

n=1

χ(n) =

{
ϕ(k) if χ is the principal character

0 otherwise

and
∑

χa character mod k

χ(n) =

{
ϕ(k) if n ≡ 1 (mod k)
0 otherwise

(e) Let χ denote the conjugate character to χ.

In particular, χ(n) = χ(n) for all n ∈ Z.

Let χ′ be a character mod k. Then

k∑

n=1

χ(n)χ′(n) =

{
ϕ(k) if χ′ = χ
0 otherwise

and
∑

χa character mod k

χ(n)χ(m) =

{
ϕ(k) if n ≡ m (mod k) and (n, k) = 1
0 otherwise
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We’ll now describe the group of characters mod k.
It is enough, by multiplicity, to discuss the characters mod pa for p prime.
Assume first that p is an odd prime. Let g be a primitive root mod pa.
If n is coprime with p there is a unique integer ν with 1 ≤ ν ≤ ϕ(pa) such that n ≡ gν (mod pa).

To each integer b with 1 ≤ b ≤ ϕ(pa) we define the character χb(n) by

χb(n) = exp

(
2πibν

ϕ(pa)

)

We get in this way ϕ(pa) different characters mod pa, and so this is the complete list.

Next suppose that k = 2a. If a = 1 we just have the principal character. If a = 2 then we have the
principal character and the character χ4 where

χ4(n) =







1 if n ≡ 1 (mod 4)
−1 if n ≡ −1 (mod 4)
0 otherwise

If a ≥ 3 then (Z/2aZ)∗ is not cyclic but for each odd integer there is a unique pair of integers (x, y)
with 0 ≤ x ≤ 1, 0 ≤ y ≤ 2a−2 such that

n ≡ (−1)x5y (mod 2a)

For each b with 1 ≤ b ≤ ϕ(2a) we put

χb(n) =

{

exp(πibx+ πiby
2a−3 for n ≡ 1 (mod 2)

0 otherwise

We have ϕ(2a) different characters mod 2a, and so we have them all.

Let k be a positive integer, and let χ be a character mod k. We define, for Re(s) > 1,

L(s, χ) =

∞∑

n=1

χ(n)

ns

Theorem 40. The function L(s, χ) can be analytically continued to Re(s) > 0 except when χ is the

principal character.

If χ0 is the principal character mod k then L(s, χ0) can be analytically continued to Re(s) > 0 except

for the point s = 1 where L(s, χ0) has a simple pole of residue
ϕ(k)
k

.

Proof. Let C(x) =
∑

n≤x χ(n) and

E(χ) =

{
1 if χ = χ0

0 otherwise

From Theorem 39 (d),

C(x) = E(χ)
ϕ(k)x

k
+R(x)

where |R(x)| ≤ 2ϕ(k).
(This follows since for χ = χ0,

C(x) =
⌊x

k

⌋

ϕ(k) + T (x)
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and for χ 6= χ0,

C(x) =
⌊x

k

⌋

0 + T (x)

where in both cases 0 ≤ T (x) ≤ ϕ(k).)

By Abel’s summation formula, with A(x) =
∑

n≤x χ(n) and f(n) = 1
ns , we have

∑

n≤x

χ(n)

ns
=
C(x)

xs
+ s

∫ x

1

C(u)

us+1
du

= E(χ)
ϕ(k)

k

1

xs−1
+ sE(χ)

ϕ(k)

k

(−u−s+1

s− 1

∣
∣
∣
∣

x

1

+
R(x)

xs
+ s

∫ x

1

R(u)

us+1
du

= E(χ)
ϕ(k)

k

(

x1−s +
s

1 − s
(x1−s − 1)

)

+
R(x)

xs
+ s

∫ x

1

R(u)

us+1
du

For Re(s) > E(χ) we see on letting x→ ∞ that the term on the right hand side tends to

E(χ)
ϕ(k)

k

s

s− 1
+ s

∫ ∞

1

R(u)

us+1
du

�
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29. Lecture: Monday, November 20, 2000

Definition. Let {λn}∞n=1 be a strictly increasing sequence of positive real numbers. A Dirichlet

series attached to {λn}∞n=1 is a series of the form
∞∑

n=1

ane
−λnz

where {an}∞n=1 is a sequence of complex numbers, and z ∈ C.

Theorem 41. If the Dirichlet series
∑∞

n=1 ane
−λnz converges for z = z0, then it converges uniformly

for Re(z − z0) ≥ 0 and |arg(z − z0)| < α with α < π
2
.

Proof. Without loss of generality, we may assume z0 = 0. Then
∑∞

n=1 an converges.

Therefore, given ǫ > 0, there exists N = N(ǫ) such that if ℓ,m > N , then
∣
∣
∣
∣
∣

m∑

n=ℓ

an

∣
∣
∣
∣
∣
< ǫ

Denote
∑m

n=ℓ an by Aℓ,m. Then
m∑

n=ℓ

ane
−λnz =

m∑

n=ℓ

(Aℓ,n −Aℓ,n−1)e
λnz

=
m−1∑

n=ℓ

Aℓ,n(e
−λnz − e−λn+1z) + Aℓ,me

−λmz

Thus, for Re(z) > 0,
∣
∣
∣
∣
∣

m∑

n=ℓ

ane
−λnz

∣
∣
∣
∣
∣
≤ ǫ

(
m−1∑

n=ℓ

∣
∣e−λnz − e−λn+1z

∣
∣+ 1

)

But

e−λnz − e−λn+1z = z

∫ λn+1

λn

e−tzdt

hence
∣
∣e−λnz − e−λn+1z

∣
∣ ≤ |z|

∫ λn+1

λn

e−txdt

where z = x+ iy. x, y ∈ R. So

∣
∣e−λnz − e−λn+1z

∣
∣ ≤ |z|

(

−e
−tx

x

∣
∣
∣
∣

λn+1

λn

)

=
|z|
x

(e−λnx − e−λn+1x)

Therefore, ∣
∣
∣
∣
∣

m∑

n=ℓ

ane
−λnz

∣
∣
∣
∣
∣
≤ ǫ

( |z|
x

(e−λℓx − e−λmx) + 1

)
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Hence for |arg(z)| < α, we have |z|
x
< k, for some k = k(α). Further,

∣
∣e−λℓx − e−λmx

∣
∣ ≤ 2.

Thus
∣
∣
∑m

n=ℓ ane
−λnz

∣
∣ < (2k+1)ǫ and so the Dirichlet series converges for Re(z) ≥ 0 and |arg(z)| ≤ α.

�

Therefore, if the series converges for z = z0, it determines an analytic function for Re(z − z0) ≥ 0.

We’ll show next that if the an’s are positive real numbers, then the domain of convergence for the
analytic function determined by the series is limited only by a singularity on the real axis.

30. Lecture: Wednesday, November 22, 2000

Theorem 42. Let f(z) =
∑∞

n=1 ane
−λnz be a Dirichlet series with an ∈ R and an ≥ 0, for n =

1, 2, . . .. Suppose that the series converges for Re(z) > σ0 with σ0 ∈ R and suppose that f can be

analytically continued in a neighbourhood of σ0.

Then there exists an ǫ > 0 such that
∑∞

n=1 ane
−λnz converges for Re(z) > σ0 − ǫ.

Proof. Assume, without loss of generality, that σ0 = 0. Since f is holomorphic (analytic) in a

neighbourhood of 0 and is holomorphic for Re(z) > 0 by Theorem 41 (using uniform convergence),
there is a positive real number ǫ such that f is analytic in |z − 1| ≤ 1 + ǫ.

We now consider the Taylor series expansion in |z − 1| ≤ 1 + ǫ.

Note that for Re(z) > 0,

f (m)(z) =

∞∑

n=1

an(−λn)me−λnz

hence

f (m)(1) =

∞∑

n=1

an(−λn)me−λn

The Taylor series expansion around 1 in |z − 1| ≤ 1 + ǫ is
∞∑

m=0

fm(1)

m!
(z − 1)m

We now consider f at the point z = −ǫ. We have

f(−ǫ) =
∞∑

m=0

( ∞∑

n=1

an(−λn)me−λn)

)

(−1 − ǫ)m

m!

=

∞∑

m=0

( ∞∑

n=1

an(λn)
me−λn)

)

(1 + ǫ)m

m!

and since an ≥ 0 we may switch the orders of summation and so

f(−ǫ) =

∞∑

n=1

ane
−λn

( ∞∑

m=1

(λn)
m(1 + ǫ)m

m!

)
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=
∞∑

n=1

ane
−λn+λn(1+ǫ) =

∞∑

n=1

ane
λnǫ =

∞∑

n=1

ane
(−λn)(−ǫ)

Thus the series converges to f for z = −ǫ and so by Theorem 41 it converges to f for Re(z) > −ǫ. �

31. Lecture: Friday, November 24, 2000

Theorem 43. if χ is a character mod k then L(s, χ) is nonzero for Re(s) > 1. Further, if χ is not

principal then L(1, χ) is nonzero.

Proof. The first claim follows on noting that L(s, χ) converges absolutely for Re(s) > 1. Further, χ

is completely multiplicative and so L(s, χ) has a Euler product representation for Re(s) > 1 given
by

L(s, χ) =
∏

p

(

1 − χ(p)

ps

)−1

Since the Euler product representation converges for Re(s) > 1, then L(s, χ) is nonzero for Re(s) >
1.

The second assertion splits into two cases, depending on whether χ is a real or a complex character.
For Re(s) > 1 we have, from the Euler product representation,

log∗(L(s, χ)) =
∑

p

− log

(

1 − χ(p)

ps

)

=
∑

p

∞∑

a=1

χ(pa)

apas

where log indicates the principal branch and log∗ indicates a branch of the logarithm.

Let k ≥ 2, and let ℓ be an integer coprime with k. Then

∑

χ∈G(k)

χ(ℓ) log∗ L(s, χ) =
∑

p

∞∑

a=1

1

apas

∑

χ∈G(k)

χ(ℓ)χ(pa)

So by Theorem 39e,

(1)
∑

χinG(k)

χ(ℓ) log∗ L(s, χ) = ϕ(k)

∞∑

a=1

∑

pa≡ℓ (mod k)

1

apas

If we take ℓ = 1 in (1) and then exponentiate both sides of (1),

∏

χ∈G(k)

L(s, χ) = exp



ϕ(k)
∞∑

a=1

∑

pa≡ℓ (mod k)

1

apas





and so for s real with s > 1,

(2)
∏

χ∈G(k)

L(s, χ) ≥ 1
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Suppose first that L(1, χ) = 0 with χ a character which is not a real character. Then χ is a character

mod k with χ 6= χ0.

But notice that L(s, χ) = L(s, χ) for s real with s > 1. Thus

L(1, χ) = L(1, χ) = 0

L(s, χ0) has a simple pole at s = 1 and L(s, χ) does not have a pole at s = 1 unless χ = χ0 by

Theorem 40.
Thus as s→ 1 from above on the real axis,

∏

χ∈G(k)

L(s, χ) = O((s− 1)−1(s− 1)2) = O(s− 1)

But this contradicts (2).

Next, suppose that L(1, χ) = 0 with χ a real character.

Put g(s) = ζ(s)L(s,χ)
ζ(2s)

for Re(s) > 1.

Consider the Euler product representation for Re(s) > 1,

g(s) =
∏

p

(1 − p−2s)

(1 − p−s)(1 − χ(p)
ps )

=
∏

p

(1 + p−s)

(1 − χ(p)
ps )

=
∏

p

(

1 +
1

ps

) ∞∑

a=0

χ(pa)

pas
=
∏

p

(

1 +

∞∑

a=1

χ(pa−1) + χ(pa)

pas

)

=
∏

p

(

1 +

∞∑

a=1

b(pa)

pas

)

Note that χ is a real character and so takes on values from {−1, 0, 1}.
Further, χ is multiplicative and so

b(pa) = χ(pa−1) + χ(p)χ(pa−1) ≥ 0 for a = 1, 2, . . .

Thus g(s) =
∑∞

n=1
an

ns where a1 = 1 and ai ∈ R with ai ≥ 0 for i = 2, 3, . . ..

We have g(s) = ζ(s)L(s,χ)
ζ(2s)

for Re(s) > 1.

Since the zero of L(1, χ) eliminates the pole of ζ(s) at s = 1, and since ζ(2s) is nonzero and analytic
for Re(s) > 1

2
, then g(s) has an analytic continuation to Re(s) > 1

2
.

We now apply Theorem 42 to conclude that the series defining g converges to g for Re(s) > 1
2
.

Letting s→ 1
2

from above on the real axis, we see, since ζ(2s) has a pole at s = 1
2
,

g(s) = O(s− 1
2
) = o(1)

But g(s) ≥ 1 for Re(s) > 1
2

since

g(s) = 1 +

∞∑

n=2

an
ns

with an ≥ 0 for n = 2, 3, . . ., which is a contradiction. Therefore L(1, χ) 6= 0. �
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32. Lecture: Monday, November 27, 2000

Theorem 44. If ℓ and k are coprime integers with k ≥ 2 then the series
∑

p≡ℓ (mod k)

1

p
diverges.

Proof. We appeal to (1) from Theorem 43:

1

ϕ(k)

∑

χ∈G(k)

χ(ℓ) logL(s, χ) =

∞∑

a=1

∑

pa≡ℓ (mod k)

1

apas

Now as s tends to 1 from the right on the nonzero real axis, (s − 1)E(χ)L(s, χ) tends to a finite
non-zero limit by Theorem 43.

Here E(χ) = 1 if χ = χ0, E(χ) = 0 if χ 6= χ0.

Thus E(χ) log(s− 1) + logL(s, χ) tends to a limit, hence logL(s, χ) = −E(χ) log(s− 1) +O(1) as
s→ 1 from the right on the real axis, hence

1

ϕ(k)

∑

χ∈G(k)

χ(ℓ) logL(s, χ) = − 1

ϕ(k)
log(s− 1) +O(1)

therefore ∞∑

a=1

∑

pa≡ℓ (mod k)

1

apas
= − 1

ϕ(k)
log(s− 1) +O(1)

∑

p≡ℓ (mod k)

1

ps
+

∞∑

a=2

∑

pa≡ℓ (mod k)

1

apas
= − 1

ϕ(k)
log(s− 1) +O(1)

But for Re(s) ≥ 1 and s ∈ R,
∞∑

a=2

∑

pa≡ℓ (mod k)

1

apas
≤ 1

2

∞∑

a=2

∑

pa≡ℓ (mod k)

1

pas

≤
∞∑

a=2

(
1

n2s
+

1

n3s
+ · · ·

)

≤ 1

2

∞∑

n=2

1

n2s

(
1

1 − 1
ns

)

≤
∞∑

n=2

1

n2
=
π2

6

Therefore
∑

p≡ℓ (mod k)

1

ps
= − 1

ϕ(k)
log(s− 1) +O(1)

as s → 1 from the right on the real axis, and the quantity − 1
ϕ(k)

log(s − 1) blows up as s → 1, so

the result follows.

�
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Let k and ℓ be coprime integers with k ≥ 2.
Denote, for each x ∈ R, the number of primes p with p ≤ x and p ≡ ℓ (mod k) by π(x, k, ℓ).
Then it is possible to prove that

π(x, k, ℓ) ∼ 1

ϕ(k)

x

log x
∼ Li(x)

ϕ(k)

Let t be a real number and k a positive integer, and put τ(k, t) = max{|t| , k + 2}.
Let c ∈ R with 0 < c < 1, and define Rc(k) by

Rc(k) = {σ + it : 1 − c

log τ(k, t)
< σ}

There exists a positive constant c0 such that one can prove that if χ is a non-real character mod k,
k ≥ 2, then L(s, χ) is nonzero in Rc0(k).

For χ a real non-principal character we can’t prove this, but we can show that such a c0 exists if we
change the requirement from “L(s, χ) is nonzero in Rc0(k)” to “L(s, χ) is nonzero in Rc0(k) except
perhaps for one point β on the real axis in Rc0(k)”.

Definition. If L(s, χ) vanishes at β then β is a simple zero of L(s, χ), and is known as a Siegel zero.

By the Extended Riemann Hypothesis, L(s, χ) is nonzero for Re(s) > 1
2

and so under this hypothesis,
no Siegel zero exists.

Let k and ℓ be coprime integers with k ≥ 2. Put b = β(k) if there is a real nonprincipal character
χ with β a zero of L(s, χ) in Rco(k), and b = 1 otherwise. Then there exists a > 0 such that

π(x, k, ℓ) =
Li(c)

ϕ(k)
− λ(b)

b

xb

ϕ(k)
+O(x exp(−a

√
log x))

where λ(b) = 0 if b = 1, and λ(b) = χ(ℓ) if b 6= 1.

(We would like to know the term λ(b)
b

xb

ϕ(k)
doesn’t exist (no Siegel zero exists) but we haven’t been

able to prove this.)

33. Lecture: Wednesday, November 29, 2000

The best “effective” estimate for the size of a Siegel zero β(k) associated to L(s, χ) where χ is a
real character mod k is due to Pintz. He proved

β(k) < 1 − c√
k

where c is an effectively computable positive number.

Siegel proved that for each ǫ > 0, there exists a positive number c(ǫ) such that

β(k) < 1 − c(ǫ)

kǫ

Unfortunately, given ǫ, there is no general algorithm known for computing c(ǫ).
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Using Siegel’s estimate, one can prove that for each positive real number H if k ≤ (log x)H . Then

π(x, k, ℓ) =
Li(x)

ϕ(k)
+O( x

exp a
√

log x
)

for some a > 0. The big-O term is not effective.

One can also prove for each H > 0,

π(x, k, ℓ) =
Li(x)

ϕ(k)
+O( x

(log x)H )

(The big-O term is not effective.)

In 1770 Waring stated without proof that every positive integer can be expressed as the sum of 4
squares, of 9 cubes, of 19 biquadrates, and so on. For each positive integer k, let g(k) denote the
smallest positive integer such that every positive integer can be expressed as the sum of g(k) kth
powers.

It was not until 1909 that Hilbert proved that g(k) exists for each positive integer k, Previously it
had been shown that g(k) exists for k = 2, 3, 4, 5, 6, 7, 8 and 10.

From work by Vinogradov it is known that

g(k) = 2k +

⌊(
3

2

)k
⌋

− 2

provided that k ≥ 5 and

3k − 2k

⌊(
3

2

)k
⌋

≤ 2k −
⌊(

3

2

)k
⌋

− 2

If the condition isn’t satisfied, there is another explicit formula for g(k).

We know that g(2) = 4, g(3) = 9, g(4) = 19. We’ll now prove that g(2) = 4.

Observe that x2 (mod 8) assumes only the congruences 0, 1, 4 (mod 8) as x runs over Z. Thus
x1

2 + x2
2 + x3

2 6≡ 7 (mod 8). Therefore g(2) ≥ 4.

In 1770 Lagrange proved that g(2) = 4.

Theorem 45. If p is an odd prime then there are integers x and y such that

1 + x2 + y2 = mp with 1 ≤ m < p

Proof. Consider the set S1 = {x2 + pZ : 0 ≤ x ≤ 1
2
(p − 1)} and the set S2 = {−1 − y2 + pZ : 0 ≤

y ≤ 1
2
(p− 1)}.

Note that |S1| = |S2| = 1
2
(p+ 1). Therefore there is a congruence class in S1 ∩S2. In particular, for

some x with 0 ≤ x ≤ 1
2
(p− 1) and some y with 0 ≤ y ≤ 1

2
(p− 1),

1 + x2 + y2 ≡ 0 (mod p)
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Therefore, 1 + x2 + y2 = mp and

0 < m ≤ 1 + (1
2
(p− 1))2 + (1

2
(p− 1))2

p
< p

�

For his proof, Lagrange appealed to the following identity:

(x1
2 + x2

2 + x3
2 + x4

2)(y1
2 + y2

2 + y3
2 + y4

2)

= (x1y1 + x2y2 + x3y3 + x4y4)
2 + (x1y2 − x2y1 + x3y4 − x4y3)

2

+(x1y3 − x3y1 + x4y2 − x2y4)
2 + (x1y4 − x4y1 + x2y3 − x3y2)

2

Therefore the product of two numbers which are representable as the sum of 4 squares is also
representable as the sum of 4 squares.

Since 2 = 12 + 12 + 02 + 02 it only remains to show that every odd prime is representable as the
sum of 4 squares.

Theorem 46 (Lagrange’s Theorem). Every positive integer can be expressed as the sum of 4 squares.

Proof. Let p be an odd prime. It remains to show that p can be expressed as the sum of 4 squares.

It follows from Theorem 45 that there is a multiple of p, mp, such that

x1
2 + x2

2 + x3
2 + x4

2 = mp

with 1 ≤ m ≤ p.

Let m0 be the smallest positive multiple of p which can be written as the sum of 4 squares. It

remains to show that m0 = 1.

If m0 is even, then since x1
2 + x2

2 + x3
2 + x4

2 = m0p, we have that x1 + x2 + x3 + x4 is even.
We can have x1, x2, x3, x4 all even or all odd. Otherwise, 2 are even (say x1, x2), and 2 are odd

(x3, x4). Therefore, in all cases,

x1 + x2, x1 − x2, x3 + x4, x3 − x4

are all even, and therefore

1

2
m0p = (x1 + x2)

2 + (x1 − x2)
2 + (x3 + x4)

2 + (x3 − x4)
2

which contradicts the minimality of m0.

Thus m0 is odd. Assume that m0 > 1.

Note that not all of x1, x2, x3, x4 are divisible by m0, for otherwise m0
2 | m0p and 1 < m0 < p.

Thus we can find integers b1, b2, b3, b4 so that yi = xi − bim0 satisfies |yi| < m0

2
for i = 1, 2, 3, 4 and

not all of the yi’s are 0.

Then

0 < y1
2 + y2

2 + y3
2 + y4

2 < 4(
1

2
m0)

2 = m0
2

and y1
2 + y2

2 + y3
2 + y4

2 ≡ 0 (mod m0).
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Thus there exists a positive integer m1 with m1 < m0 such that

y1
2 + y2

2 + y3
2 + y4

2 = m0m1

Applying this, together with the fact that x1
2 + x2

2 + x3
2 + x4

2 = m0p, to Lagrange’s identity, we
have

m0
2m1p = z1

2 + z2
2 + z3

2 + z4
2

where z1 = x1y1 + x2y2 + x3y3 + x4y4, etc.

But z1 =
∑4

i=1 x1(x1 − bim0), hence z1 ≡ 0 (mod m0). Similarly z2, z3, z4 are divisible by m0.

Let ti = zi

m0
for i = 1, 2, 3, 4.

Then m1p = t1
2 + t2

2 + t3
2 + t4

2 and 1 ≤ m1 ≤ m0, a contradiction.

Thus m0 = 1 for all primes p and the result follows. �

34. Lecture: Friday, December 1, 2000

Theorem 47.
g(4) ≤ 53

Proof. We appeal to the identity

6(a2 + b2 + c2 + d2)2 = (a+ b)4 + (a− b)4 + (c+ d)4 + (c− d)4

+(a+ c)4 + (a− c)4 + (b+ d)4 + (b− d)4

+(a+ d)4 + (a− d)4 + (b+ c)4 + (b− c)4

By Theorem 46, every integer of the form 6x2 can be expressed as the sum of 12 fourth powers (by

the identity above).

Every positive integer can be written in the form 6k+r with k a nonnegative integer and 0 ≤ r ≤ 5.

Thus by Theorem 46 there is a representation for k as a sum of 4 squares, hence 6k can be represented
as a sum of 48 fourth powers.

Finally, r =

r times
︷ ︸︸ ︷

14 + · · · + 14, and the result follows.

�


