PMATH 440/640 ANALYTIC NUMBER THEORY

1. Lecture: Monday, September 11, 2000

NO TEXT

References:

- Introduction to Analytic Number Theory. Tom Apostol, Springer-Verlag, 1976
- An Introduction to the Theory of Numbers. G. H. Hardy and E. M. Wright, Oxford University Press (5th ed, 1979)

Marks:

- Final Exam 65\%
- Midterm 25\%
- Assignments 10%

Is there a formula for nth prime p_{n} ?

$$
p_{1}=2, p_{2}=3, \ldots
$$

Yes, but such a formula is complicated.
For example, is there a polynomial $f \in \mathbb{Z}[x]$ for which $f(n)=p_{n}$?

$$
\begin{gathered}
f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \\
f\left(a_{0}\right)=a_{n} a_{0}{ }^{n}+\cdots+a_{1} a_{0}+a_{0}
\end{gathered}
$$

so $a_{0} \mid f$.
Suppose q is prime and $f(n)=q$. Then $q \mid f(n+k q)$ for each $k \in \mathbb{Z}^{+}$. So, in particular, we see that if $f(m)$ is prime for each positive integer m, then f is a constant. In particular, $f(x)=q$ for some prime q.
The polynomial $n^{2}+n+41$ is prime for $n=0,1, \ldots, 39$.
Further, $(n-40)^{2}+(n-40)+41$ is prime for $0 \leq n \leq 79$.
These examples are connected with the fact that the ring of algebraic integers of the field $\mathbb{Q}(\sqrt{-163})$ is a Unique Factorization Domain. (Note that 163 is the largest squarefree integer D such that $\mathbb{Q}(\sqrt{-D})$ is a U.F.D.)

By using ideas of Matijasevic which were used to prove Hilbert's 10th problem, one can find a polynomial $f \in \mathbb{Z}[a, b, \ldots, z]$ such that the set of positive values assumed by f as the variables run over the non-negative integers is the set of prime numbers.

Is $n^{2}+1$ a prime for infinitely many n ?
Almost surely yes. The best result in this direction is that $n^{2}+1$ is a P_{2} for infinitely many integers n. A P_{2} is an integer which is the product of at most 2 primes.

There is no polynomial of degree >1 which is known to be prime infinitely often.
On the other hand, we can deal with degree 1 . Let k and ℓ be coprime positive integers. Then $k n+\ell$ is prime for infinitely many positive integers n. This is Dirichlet's Theorem.

Theorem 1 (Euclid). There are infinitely many prime numbers.
Proof. Assume that there are finitely many primes p_{1}, \ldots, p_{n} say, and consider

$$
m=p_{1} \cdots p_{n}+1
$$

Then m can be written as a product of primes, and so $p_{k} \mid m$ for some k with $1 \leq k \leq n$.
Then $p_{k} \mid m-p_{1} \cdots p_{n}$, so $p_{k} \mid 1$, which is a contradiction.
Definition. For any real number x, let $\pi(x)$ denote the number of primes $\leq x$.
We can estimate $\pi(x)$ from below using Euclid's proof. In particular, we'll show that p_{k}, the k th prime, satisfies

$$
p_{k} \leq 2^{2^{k}} \text { for } k=1, \ldots, n
$$

We prove this by induction.
The result holds for $k=1$, since $2=p_{1} \leq 2^{2}=4$.
Assume the result holds for $1 \leq j \leq k$.
Then, by Euclid's argument, $p_{k} \leq p_{1} \cdots p_{k-1}+1$ and so by our inductive assumption,

$$
p_{k} \leq 2^{2^{1}} \cdot 2^{2^{2}} \cdots 2^{2^{k-1}}+1 \leq 2^{2^{k}-1}+1 \leq 2^{2^{k}}
$$

2. Lecture: Wednesday, September 13, 2000

Thus, given $x \geq 2$ let s be the integer satisfying

$$
\begin{equation*}
2^{2^{s}} \leq x \leq 2^{2^{s+1}} \tag{1}
\end{equation*}
$$

Then, since $p_{k} \leq 2^{2^{k}}$ for $k=1,2, \ldots$ then we have $\pi(x) \geq s$.
By (1), $\frac{\log x}{\log 2}<2^{s+1}$, hence

$$
\frac{\log \left(\frac{\log x}{\log 2}\right)}{\log (2)}<s+1
$$

and so $\pi(x) \geq\lfloor\log \log x\rfloor$.
Another way of proving such a lower bound for $\pi(x)$ is the following.
Suppose $x \geq 2$. Then

$$
2^{\pi(x)} \geq \prod_{p \leq x}\left(1-\frac{1}{p}\right)=\prod_{p \leq x}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right) \geq \sum_{n \leq x} \frac{1}{n} \geq \int_{1}^{\lfloor x\rfloor+1} \frac{d u}{u} \geq \log x
$$

Hence

$$
\pi(x) \geq \frac{\log \log x}{\log 2} \geq \log \log x
$$

Fermat (1601-1655) conjectured that the numbers of the form $2^{2^{n}}+1$ for $n=0,1,2, \ldots$ are prime. He checked it for $n=0,1,2,3,4$.
These are known as the Fermat numbers and are denoted by F_{n}, so

$$
F_{n}=2^{2^{n}}+1
$$

Euler in 1732 proved that $641 \mid F_{5}$. It is known that F_{6}, \ldots, F_{21} are composite. Quite likely F_{22}, \ldots are composite.
Almost certainly only finitely many Fermat numbers are prime.
Theorem 2 (Polya). If n and m are positive integers with $1 \leq n<m$ then $\left(F_{n}, F_{m}\right)=1$.
Proof. Let $m=n+k$ with $k \geq 1$. We first show that $F_{n} \mid F_{m}-2$.
We have $F_{m}-2=\left(2^{2^{n+k}}+1\right)-2=2^{2^{n+k}}-1$.
Put $x=2^{2^{n}}$. Then

$$
\frac{F_{m}-2}{F_{n}}=\frac{x^{2^{k}}-1}{x+1}=x^{2^{k}-1}-x^{2^{k}-2}+\cdots-1 \in \mathbb{Z}
$$

Thus we have $F_{n} \mid F_{m}-2$.
Suppose that $d \mid F_{n}$ and $d \mid F_{m}$. Then $d \mid 2$ but $2 \not \backslash F_{n}$ and so $d= \pm 1$. The result follows.
Thus we obtain another proof of Euclid's Theorem and we see that

$$
p_{n}<2^{2^{n}}
$$

Theorem 3. For $x \geq 2$,

$$
\pi(x) \geq \frac{\log \lfloor x\rfloor}{2 \log (2)}
$$

and for $n \geq 1$,

$$
p_{n}<4^{n}
$$

Proof. Let $x \geq 1$ with $x \in \mathbb{Z}$. Let $2=p_{1}, \ldots, p_{j}$ be the primes $\leq x$.
For each integer n with $n \leq x$ we can write $n=n_{1}{ }^{2} m$ where n is a positive integer and m is squarefree, so not divisible by the square of a prime. Therefore,

$$
m=p_{1}{ }^{\epsilon_{1}} \cdots p_{j}{ }^{\epsilon_{j}}
$$

where ϵ_{i} is in $\{0,1\}$ for each $i=1, \ldots, j$.
Thus, there are at most 2^{j} possible values for m.
There are at most \sqrt{x} possible values for n_{2}.
Therefore,

$$
2^{j} \sqrt{x} \geq x
$$

and so

$$
\begin{equation*}
2^{j} \geq \sqrt{x} \tag{2}
\end{equation*}
$$

Since $j=\pi(x)$ we see that

$$
\pi(x) \log 2 \geq \frac{\log x}{2}
$$

amd the first part follows.
Now take $x=p_{n}$ so that $\pi\left(p_{n}\right)=n$.
By (1), $2^{n} \geq \sqrt{p_{n}}$ and so $4^{n} \geq p_{n}$.
In 1896 Hadamard and de la Vallée Poussin proved independently the Prime Number Theorem. That is, they proved that

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{\frac{x}{\log x}}=1
$$

The result had been conjectured by Gauss.
Remark. Let n be a positive integer and let p be a prime. Then the exact power of p dividing n ! is

$$
\sum_{k=1}^{\infty}\left\lfloor\frac{n}{p^{k}}\right\rfloor=\sum_{k=1}^{\left\lfloor\frac{\log n}{\log p}\right\rfloor}\left\lfloor\frac{n}{p^{k}}\right\rfloor
$$

3. Lecture: Friday, September 15, 2000

Theorem 4. For $x \geq 2$,

$$
\left(\frac{3 \log 2}{8}\right) \frac{x}{\log x}<\pi(x)<(6 \log 2) \frac{x}{\log x}
$$

Proof. (Argument due to Erdős). Let us first prove the lower bound for $\pi(x)$.
Note that $\binom{2 n}{n}$ is an integer and that

$$
\begin{equation*}
\left.\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}} \right\rvert\, \prod_{p<2 n} p^{r_{p}} \tag{1}
\end{equation*}
$$

where r_{p} satisfies the inequality $p^{r_{p}} \leq 2 n<p^{r_{p}+1}$.
To see this note the exact power of p dividing ($2 n$)! is

$$
\sum_{k=1}^{r_{p}}\left\lfloor\frac{2 n}{p^{k}}\right\rfloor
$$

and the exact power dividing n ! is

$$
\sum_{k=1}^{r_{p}}\left\lfloor\frac{n}{p^{k}}\right\rfloor
$$

So the exact power of p dividing $\binom{2 n}{n}$ is

$$
\sum_{k=1}^{r_{p}}\left(\left\lfloor\frac{2 n}{p^{k}}\right\rfloor-2\left\lfloor\frac{n}{p^{k}}\right\rfloor\right) \leq r_{p}
$$

In particular, by (1),

$$
\binom{2 n}{n} \leq \prod_{p \leq 2 n} p^{r_{p}} \leq(2 n)^{\pi(2 n)}
$$

Note that $\binom{2 n}{n}$ and so $2^{n} \leq(2 n)^{\pi(2 n)}$ hence

$$
\pi(2 n) \geq\left(\frac{\log 2}{2}\right) \frac{2 n}{\log (2 n)}
$$

Note that $\frac{x}{\log x}$ is increasing for $x \geq e$ and so for $x \geq 6$, let n be such that $2 n \leq x \leq 2 n+2$, then

$$
\pi(x) \geq \pi(2 n) \geq\left(\frac{\log 2}{2}\right) \frac{2 n}{\log (2 n)} \geq\left(\frac{\log 2}{2}\right) \frac{\frac{3}{4} x}{\log \left(\frac{3}{4} x\right)}>\frac{3 \log 2}{8} \frac{x}{\log x}
$$

We can then check that the result holds for $6 \leq x \leq 2 n$.
Now the upper bound. Note that

$$
\prod_{n \leq p \leq 2 n} p \left\lvert\,\binom{ 2 n}{n}\right.
$$

Thus

$$
\prod_{n \leq p \leq 2 n} p<(1+1)^{2 n}=2^{2 n}
$$

On the other hand,

$$
\prod_{n \leq p \leq 2 n} p \geq n^{\pi(2 n)-\pi(n)}
$$

Therefore,

$$
\pi(2 n) \log (n)-\pi(n) \log (n / 2)<\log (2) 2 n+\log (2) \pi(n)<(3 \log 2) n
$$

Take $n=2^{k}$. Then

$$
\begin{gathered}
\pi\left(2^{k+1}\right) \log \left(2^{k}\right)-\pi\left(2^{k}\right) \log \left(2^{k-1}\right)<(3 \log 2) 2^{k} \\
\pi\left(2^{k}\right) \log \left(2^{k-1}\right)-\pi\left(2^{k-1}\right) \log \left(2^{k-2}\right)<(3 \log 2) 2^{k-1} \\
\vdots \\
\pi(8) \log (4)-\pi(4) \log (2)<(3 \log 2) 4
\end{gathered}
$$

Therefore,

$$
\pi\left(2^{k+1}\right) \log \left(2^{k}\right)<(3 \log 2)\left(2^{k}+2^{k-1}+\cdots+4\right)+\pi(4) \log (2)<(3 \log 2) 2^{k+1}
$$

and so

$$
\pi\left(2^{k+1}\right)<(3 \log 2)\left(\frac{2^{k+1}}{\log \left(2^{k}\right)}\right)
$$

Thus, given $x \geq 2$ choose k so that $2^{k} \leq x \leq 2^{k+1}$.
Then $\pi(x) \leq \pi\left(2^{k+1}\right)$. Therefore,

$$
\pi(x) \leq(3 \log 2) \frac{2^{k+1}}{\log \left(2^{k}\right)} \leq(6 \log 2)\left(\frac{2^{k}}{\log \left(2^{k}\right)}\right) \leq(6 \log 2)\left(\frac{x}{\log x}\right)
$$

for $x>e$. We check for $2 \leq x \leq e$.
In 1845 Bertrand showed that there is always a prime p in the interval $[n, 2 n]$ for $n \in \mathbb{Z}^{+}$provided that $n<6 \cdot 10^{6}$.
He conjectured this always holds. Chebyshev proved this in 1850.

4. Lecture: Monday, September 18, 2000

Theorem 5. For all $n \in \mathbb{Z}^{+}$,

$$
\prod_{n \leq n^{n}}^{p<4^{n}}
$$

Proof. We'll prove the result by induction. The claim is certainly true for $n=1$ or $n=2$.
Suppose the result is true for $1 \leq k \leq n-1$. We first remark that we can restrict our attention to the case where n is odd, since if n is even, and $n>2$, then

$$
\prod_{p \leq n} p=\prod_{p \leq n-1} p
$$

and the result follows by induction.
We write $n=2 m+1$, and we consider $\binom{2 m+1}{m}$. In particular,

$$
\prod_{m+1<p \leq 2 m+1} p \left\lvert\,\binom{ 2 m+1}{m}\right.
$$

Note that $\binom{2 m+1}{m}$ and $\binom{2 m+1}{m+1}$ occur in the binomial expansion of $(1+1)^{2 m+1}$, and $\binom{2 m+1}{m}=\binom{2 m+1}{m+1}$.
Thus,

$$
\begin{equation*}
\binom{2 m+1}{m} \leq \frac{1}{2}\left(2^{2 m+1}\right)=4^{m} \tag{1}
\end{equation*}
$$

Now,

$$
\prod_{p \leq 2 m+1} p=\left(\prod_{p \leq m+1} p\right)\left(\prod_{m+1<p \leq 2 m+1} p\right) \leq 4^{m+1} 4^{m}=4^{2 m+1}
$$

by our inductive assumption and (1). The result now follows by induction.
Theorem 6. If $n \geq 3$ and p is a prime with $\frac{2}{3} n<p \leq n$ then $p \nmid\binom{2 n}{n}$.
Proof. Since $n \geq 3$ we see that if p is in the range $\frac{2}{3} n<p \leq n$ then $p>2$. Then p and $2 p$ are the only multiples of p with $p \leq 2 n$ and so

$$
p^{2} \|(2 n)!
$$

(Here $p^{2} \| b$ means $p^{3} \not \backslash b$ and $p^{2} \mid b$.)
Further, $p \| n$!, hence $p^{2} \|(n!)^{2}$ since $\frac{2}{3} n<p \leq n$.
Since $\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$ we see that $p \nmid\binom{2 n}{n}$.
Theorem 7. For each positive integer n, there is a prime p with $n<p \leq 2 n$.

Proof. (This proof due to Erdős).
Note that the result holds for $n=1,2,3$. Assume the result is false for some integer n with $n \geq 4$. Then, by Theorem 6 , every prime p which divides $\binom{2 n}{n}$ is $\leq \frac{2}{3} n$.
Let p be such a prime and suppose that $p^{\alpha} \|\binom{ 2 n}{n}$. Then, as in the proof of Theorem $4, \alpha \leq r_{p}$, so $p^{\alpha} \leq p^{r_{p}} \leq 2 n$.
If $\alpha \geq 2$ then $p^{2} \leq p^{\alpha} \leq 2 n$, so $p \leq \sqrt{2 n}$. Thus

$$
\binom{2 n}{n} \leq\left(\prod_{p \leq n} p\right)(2 n)^{\pi(\sqrt{2 n})} \leq\left(\prod_{p \leq \frac{2}{3} n} p\right)(2 n)^{\sqrt{2 n}}
$$

since $\pi(x) \leq x$.
Further, by Theorem 5,

$$
\begin{equation*}
\binom{2 n}{n} \leq 4^{2 n / 3}(2 n)^{\sqrt{2 n}} \tag{2}
\end{equation*}
$$

Note that $\binom{2 n}{n}$ is the largest of the $2 n+1$ terms in the binomial expansion of $(1+1)^{2 n}$ hence

$$
\begin{equation*}
\binom{2 n}{n} \geq \frac{2^{2 n}}{2 n+1} \tag{3}
\end{equation*}
$$

By (1) and (2),

$$
\begin{gathered}
\frac{4^{n}}{2 n+1} \leq 4^{2 n / 3}(2 n)^{\sqrt{2 n}} \\
4^{n / 3} \leq(2 n)^{\sqrt{2 n}}(2 n+1)<(2 n)^{\sqrt{2 n}+2}
\end{gathered}
$$

Taking logarithms, we find that

$$
\frac{n}{3} \log 4<(\sqrt{2 n}+2) \log (2 n)
$$

Notice that if $n=512$ the inquality is false.
By calculus, the claim holds for $n \geq 512$.
Finally, $2,3,5,7,13,23,43,83,163,317,557$ are all primes and so the result is general.

5. Lecture: Wednesday, September 20, 2000

What can we say about differences between consecutive primes?
Let $\left(2=p_{1}, p_{2}, \ldots\right)$ be the sequence of primes. By Theorem $7, p_{n+1} \leq 2 p_{n}$ or $p_{n+1}-p_{n} \leq p_{n}$. By probabalistic reasoning, Cramer was in 1936 led to conjecture that

$$
\limsup _{n \rightarrow \infty}\left(\frac{p_{n+1}-p_{n}}{\left(\log p_{n}\right)^{2}}\right) \leq 1
$$

The best upper bound for $p_{n+1}-p_{n}$ is due to Baker and Harman. They proved that, for n sufficiently large, $p_{n+1}-p_{n}<p_{n}{ }^{0.535}$.

What about small gaps between consecutive primes? We conjecture that $p_{n+1}-p_{n}=2$ for infinitely many integers n. If we assume the primes are randomly distributed and an integer x is prime with probability $\frac{1}{\log x}$ then we could expect x and $x+2$ to be prime with probability $\frac{1}{(\log x)^{2}}$.
Thus we expect about $\frac{x}{(\log x)^{2}}$ primes p with $p+2$ prime and $p \leq x$. A more careful heuristic suggests that there are about $C \frac{x}{(\log x)^{2}}$ such primes p with $C>0$ and $C \neq 1$. In the 60 's, Chen proved that there are more than $0.6 \frac{x}{(\log x)^{2}}$ primes p with $p \leq x$ such that $p+2$ is a P_{2}, provided that x is sufficiently large.

Surprisingly, it is not known that

$$
\liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}=0
$$

The best result in this direction is due to Maier who proved in 1988 that

$$
\liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}<\frac{1}{4}
$$

In 1955 Ricci proved that the set of accumulation points of $\left\{\frac{p_{n+1}-p_{n}}{\log p_{n}}: n \in \mathbb{Z}^{+}\right\}$has positive measure. The only point of accumulation that is actually known is ∞.
In the 1930's Erdős proved that for infinitely many integers n,

$$
p_{n+1}-p_{n}>c_{1} \log p_{n} \frac{\log \log p_{n}}{\left(\log \log \log p_{n}\right)^{2}}
$$

for a positive constant c_{1}.
In 1938 Rankin added a factor of $\log \log \log \log p_{n}$.
Conclusion: We have much work to do. We don't even know many primes. In fact,

$$
\sum_{p \text { is a known prime }} \frac{1}{p}<4
$$

Primes of the form $2^{p}-1$ where p is a prime are known as Mersenne primes and they are easy to test for primality. The largest prime known is the Mersenne prime

$$
2^{6,972,593}-1 \text { (Hajratwala 1999) }
$$

6. Lecture: Friday, September 22, 2000

Let a_{1}, \ldots, a_{n} be distinct positive integers. For $m \in \mathbb{Z}^{+}$we define $\nu(m)$ to be the number of distinct residue classes modulo m occupied by the integers a_{1}, \ldots, a_{k}.

Thus

$$
\nu(m)=\text { the cardinality of }\left\{a_{i}+m \mathbb{Z}: i=1, \ldots, k\right\}
$$

In 1923, Hardy and Littlewood conjectured that if $\nu(p)<p)$ for all primes p then there exist infinitely many integers n such that the integers $n+a_{1}, n+a_{2}, \ldots, n+a_{k}$ are all primes. (e.g. $a_{1}=0, a_{2}$ gives the twin prime conjecture). The conjecture is known as the k-tuple conjecture.
Hardy and Littlewood also conjectured

$$
\pi(x+y)-\pi(y) \leq \pi(x) \text { for all } x>1, y>1
$$

Hensley and Richards proved, about 30 years ago that these conjectures are incompatible. At least one is false.

Definition. We introduce the symbols O, o, \sim.
Let f and g be functions from \mathbb{Z}^{+}or \mathbb{R}^{+}to \mathbb{R}, and suppose g maps to \mathbb{R}^{+}.
(i) $f=O(g)$ means that there exist positive numbers c_{1} and c_{2} such that for $x>c_{1},|f(x)| \leq$ $c_{2} g(x)$.
(ii) $f=o(g)$ means that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
(iii) $f \sim g$ means that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$. (read: f is asymptotic to g.)

Observe $20 x=O(x), \sin (x)=O(1), x=O\left(x^{2}\right), x=o\left(x^{2}\right), \sin (x)=o(\log x), x+1 \sim x, x+\sqrt{x} \sim x$.
By the Prime Number Theorem,

$$
\pi(x) \sim \frac{x}{\log x}
$$

or equivalently,

$$
\pi(x)=\frac{x}{\log x}+o\left(\frac{x}{\log x}\right)
$$

Let $\epsilon>0$. Then the number of primes in $[x,(1+\epsilon) x]$ is

$$
\pi((1+\epsilon) x)-\pi(x)=\frac{(1+\epsilon) x}{\log ((1+\epsilon) x)}-\frac{x}{\log x}+o\left(\frac{x}{\log x}\right)
$$

Note

$$
\frac{(1+\epsilon) x}{\log ((1+\epsilon) x)}=\frac{(1+\epsilon) x}{\log x+\log (1+\epsilon)}=\frac{(1+\epsilon) x}{(\log x)\left(1+\frac{\log (1+\epsilon)}{\log x}\right)}=\frac{(1+\epsilon) x}{\log x}+o\left(\left(\frac{x}{\log x}\right)\right)
$$

Therefore,

$$
\pi((1+\epsilon) x)-\pi(x)=\frac{(1+\epsilon) x}{\log x}-\frac{x}{\log x}+o\left(\frac{x}{\log x}\right)=\frac{\epsilon x}{\log x}+o\left(\frac{x}{\log x}\right)
$$

Note that we can take $\epsilon=1$. Then $\pi(2 x)-\pi(x)=\frac{x}{\log x}+o\left(\frac{x}{\log x}\right)$.
But $\pi(x)=\frac{x}{\log x}+o\left(\frac{x}{\log x}\right)$. (Should this be worrying?)

Definition. For any integer n we define $\Lambda(n)$ by the rule

$$
\Lambda(n)=\left\{\begin{array}{cc}
\log p & \text { if } n=p^{k} \text { for some } k \in \mathbb{Z}^{+} \\
0 & \text { otherwise }
\end{array}\right.
$$

Also define, for $x \in \mathbb{R}$,

$$
\theta(x)=\sum_{p \leq x} \log p=\log \left(\prod_{p \leq x} p\right)
$$

and

$$
\psi(x)=\sum_{p^{k} \leq x} \log p=\sum_{n \leq x} \Lambda(n)
$$

Notice that

$$
\psi(x)=\sum_{p \leq x}\left\lfloor\frac{\log x}{\log p}\right\rfloor \log p
$$

Also observe that since $p^{2} \leq x$ is equivalent to $p \leq \sqrt{x}, p^{3} \leq x$ is equivalent to $p \leq \sqrt[3]{x}$, then we have

$$
\psi(x)=\theta(x)+\theta(\sqrt{x})+\theta\left(x^{1 / 3}\right)+\cdots
$$

Note that $\theta\left(x^{\frac{1}{m}}\right)=0$ provided $m>\frac{\log x}{\log 2}$.
Thus

$$
\psi(x)=\sum_{k=1}^{\left\lfloor\left\lfloor\frac{\log x}{\log 2}\right\rfloor\right.} \theta\left(x^{\frac{1}{k}}\right)
$$

Observe that $\theta(x)=O(x \log x)$, hence

$$
\sum_{k \geq 2} \theta\left(x^{\frac{1}{k}}\right)=O\left(x^{\frac{1}{2}}(\log x)^{2}\right)
$$

Therefore,

$$
\begin{equation*}
\psi(x)=\theta(x)+O\left(x^{\frac{1}{2}}(\log x)^{2}\right) \tag{1}
\end{equation*}
$$

7. Lecture: Monday, September 25, 2000

By Theorem $4, \theta(x)<c_{1} x$ and so by (1), $\psi(x)<c_{2} x$. Further, by the proof of Theorem 4 ,

$$
\log \left(2^{n}\right) \leq \log \binom{2 n}{n} \leq \sum_{p \leq 2 n}\left\lfloor\frac{\log 2 n}{\log p}\right\rfloor \log p \leq \psi(2 n)
$$

so that for $x \geq 2$, we have $\psi(x)>c_{3} x$, hence $\theta(x)>c_{4} x$. Here $c_{1}, c_{2}, c_{3}, c_{4}$ are positive constants.
What is the link between $\theta(x), \psi(x)$, and $\pi(x)$?
Note that $\theta(x) \leq \pi(x) \log x$, thus

$$
\begin{equation*}
\pi(x) \geq \frac{\theta(x)}{\log x}>c_{4} \frac{x}{\log x} \tag{1}
\end{equation*}
$$

Theorem 8.

$$
\pi(x) \sim \frac{\theta(x)}{\log x} \sim \frac{\psi(x)}{\log x}
$$

Proof. Since $\psi(x)=\theta(x)+O\left(x^{1 / 2}(\log x)^{2}\right)$ and $\theta(x)>c_{4} x$, we see that $\theta(x) \sim \psi(x)$. In particular, $\frac{\theta(x)}{\log x} \sim \frac{\psi(x)}{\log x}$ and so it suffices to show that $\pi(x) \sim \frac{\theta(x)}{\log x}$.

By (1), $\pi(x) \geq \frac{\theta(x)}{\log x}$, so

$$
\liminf _{x \rightarrow \infty} \frac{\pi(x) \log x}{\theta(x)} \geq 1
$$

We need an upper bound for $\pi(x)$ in terms of $\theta(x)$.
Note that for any $\delta>0$, we have

$$
\theta(x)=\sum_{p \leq x} \log p \geq\left(\log \left(x^{(1-\delta)}\right) \sum_{x^{1-\delta} \leq p \leq x} 1\right) \geq(1-\delta)(\log x)\left(\pi(x)-\pi\left(x^{(1-\delta)}\right)\right)
$$

Thus,

$$
\theta(x)+(1-\delta) x^{(1-\delta)} \log x \geq(1-\delta)(\log x) \pi(x)
$$

so

$$
\frac{\theta(x)}{(1-\delta) \log x}+x^{(1-\delta)} \geq \pi(x)
$$

Therefore,

$$
\frac{1}{1-\delta}+\frac{x^{(1-\delta)} \log x}{\theta(x)} \geq \frac{\pi(x) \log x}{\theta(x)}
$$

Given $\epsilon>0$, we can choose $\delta>0$ so that $\frac{1}{1-\delta}<1+\frac{\epsilon}{2}$ and then choose x_{0} so that if $x>x_{0}$,

$$
\frac{x^{(1-\delta)} \log x}{\theta(x)}<\frac{\epsilon}{2}
$$

since $\theta(x)>c_{1} x$ for $x \geq 2$.
Then, for $x>x_{0}$,

$$
1 \leq \frac{\pi(x) \log x}{\theta(x)}<1+\epsilon
$$

and so our result follows.
Lemma 1 (Abel's summation formula). Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers. Let f be a function from $\{x \in \mathbb{R}: x \geq 1\}$ to \mathbb{C}. For $x \in \mathbb{R}$ we introduce

$$
A(x)=\sum_{n \leq x} a_{n}
$$

If f^{\prime} is continuous for $x \geq 1$,

$$
\sum_{n \leq x} a_{n} f(n)=A(x) f(x)-\int_{1}^{x} A(u) f^{\prime}(u) d u
$$

Proof. Put $N=\lfloor x\rfloor$. Then

$$
\begin{gathered}
\sum_{n \leq N} a_{n} f(n)=A(1) f(1)+(A(2)-A(1)) f(2)+\cdots+(A(N)-A(N-1)) f(N) \\
=A(1)(f(1)-f(2))+A(2)(f(2)-f(3))+\cdots+A(N-1)(f(N-1)-f(N))+A(N) f(N)
\end{gathered}
$$

Next observe that if i is a positive integer and t is a real number with $i \leq t<i+1$ then $A(t)=A(i)$. Thus

$$
A(i)(f(i)-f(i+1))=-\int_{i}^{i+1} A(u) f^{\prime}(u) d u
$$

Accordingly,

$$
\sum_{n \leq N} a_{n} f(n)=-\int_{1}^{N} A(u) f^{\prime}(u) d u+A(N) f(N)
$$

This gives us the result when x is an integer.
Finally note that $A(t)=A(N)$ for $x \geq t \geq N$. Hence

$$
\int_{N}^{x} A(u) f^{\prime}(u) d u=A(x)(f(x)-f(N))=A(x) f(x)-(A(N) f(N))
$$

and so our result follows.
8. Lecture: Wednesday, September 27, 2000

Definition. We define Euler's constant γ by

$$
\gamma=1-\int_{1}^{\infty} \frac{t-\lfloor t\rfloor}{t^{2}} d t
$$

Note $\gamma=0.57721 \ldots$
It is not known but it is conjectured that γ is irrational and indeed that γ is transcendental.

Theorem 9.

$$
\sum_{n \leq x} \frac{1}{n}=\log x+\gamma+O\left(\frac{1}{x}\right)
$$

Proof. Take $a_{n}=1$ and $f(t)=\frac{1}{t}$.
Then $A(x)=\sum_{n \leq x} a_{n}=\sum_{n \leq x} 1=\lfloor x\rfloor$.
By Abel's summation formula,

$$
\begin{gathered}
\sum_{n \leq x} \frac{1}{n}=\frac{\lfloor x\rfloor}{x}+\int_{1}^{x} \frac{\lfloor u\rfloor}{u^{2}} d u \\
=\frac{x-(x-\lfloor x\rfloor)}{x}+\int_{1}^{x} \frac{u-(u-\lfloor u\rfloor)}{u^{2}} d u \\
=1+O\left(\frac{1}{x}\right)+\int_{1}^{x} \frac{d u}{u}-\int_{1}^{x} \frac{u-\lfloor u\rfloor}{u^{2}} d u \\
=1+O\left(\frac{1}{x}\right)+\log x-\left(\int_{1}^{\infty} \frac{u-\lfloor u\rfloor}{u^{2}} d u-\int_{x}^{\infty} \frac{u-\lfloor u\rfloor}{u^{2}} d u\right) \\
=\log x+\gamma+O\left(\frac{1}{x}\right)+\int_{x}^{\infty} \frac{u-\lfloor u\rfloor}{u^{2}} d u \\
=\log x+\gamma+O\left(\frac{1}{x}\right)+O\left(\int_{x}^{\infty} \frac{1}{u^{2}} d u\right) \\
=\log x+\gamma+O\left(\frac{1}{x}\right)
\end{gathered}
$$

Theorem 10.

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\log x+O(1)
$$

Proof. Apply Abel's summation formula with $a_{n}=1$ and $f(n)=\log n$. Then

$$
\begin{gather*}
\sum_{n \leq x} \log n=\lfloor x\rfloor \log x-\int_{1}^{x} \frac{\lfloor u\rfloor}{u} d u \\
=(x-(x-\lfloor x\rfloor)) \log x-\int_{1}^{\infty} \frac{u-(u-\lfloor u\rfloor)}{u} d u \\
=x \log x+O(\log x)-(x-1)+\int_{1}^{x} \frac{u-\lfloor u\rfloor}{u} d u \\
=x \log x-x+O(\log x) \tag{1}
\end{gather*}
$$

Also we have

$$
\begin{gathered}
\sum_{n \leq x} \log n=\log (\lfloor x\rfloor!)=\sum_{p \leq x}\left(\sum_{k=1}^{\infty}\left\lfloor\frac{x}{p^{k}}\right\rfloor\right) \log p \\
=\sum_{p^{m} \leq x}\left\lfloor\frac{x}{p^{m}}\right\rfloor \log p=\sum_{n \leq x}\left\lfloor\frac{x}{n}\right\rfloor \Lambda(n)
\end{gathered}
$$

$$
\begin{gathered}
=\sum_{n \leq x} \frac{x}{n} \Lambda(n)-\sum_{n \leq x}\left(\frac{x}{n}-\left\lfloor\frac{x}{n}\right\rfloor\right) \Lambda(n) \\
=x \sum_{n \leq x} \frac{\Lambda(n)}{n}-O\left(\sum_{n \leq x} \Lambda(n)\right)
\end{gathered}
$$

But $\sum_{n \leq x} \Lambda(n)=\psi(x)=O(x)$ and so

$$
\sum_{n \leq x} \log n=x \sum_{n \leq x} \frac{\Lambda(n)}{n}-O(x)
$$

By (1),

$$
x \log x-x+O(\log x)=x \sum_{n \leq x} \frac{\Lambda(n)}{n}-O(x)
$$

hence

$$
x \sum_{n \leq x} \frac{\Lambda(n)}{n}=x \log x+O(x)
$$

Thus

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\log x+O(1)
$$

Theorem 11.

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

Proof. Note that

$$
\begin{gathered}
\sum_{p \leq x} \frac{\log p}{p}=\sum_{n \leq x} \frac{\Lambda(n)}{n}-\sum_{m \geq 2} \sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \\
=\log x+O(1)-\sum_{m \geq 2} \sum_{p^{m} \leq x} \frac{\log p}{p^{m}}
\end{gathered}
$$

But,

$$
\sum_{m \geq 2} \sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \leq \sum_{p}\left(\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots\right) \log p \leq \sum_{p} \frac{\log p}{p(p-1)} \leq \sum_{n=2}^{\infty} \frac{\log n}{n(n-1)}=O(1)
$$

The result follows.
Theorem 12. There exists a real number β_{1} such that

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+\beta_{1}+O\left(\frac{1}{\log x}\right)
$$

Proof. We apply Lemma 1 with

$$
a_{n}=\left\{\begin{array}{cc}
\frac{\log p}{p} & \text { if } p \text { is a prime and } n=p \\
0 & \text { otherwise }
\end{array}\right.
$$

and with $f(n)=\frac{1}{\log n}$.
Then on putting $A(x)=\sum_{n \leq x} a_{n}$, we have

$$
\sum_{p \leq x} \frac{1}{p}=\frac{A(x)}{\log x}+\int_{1}^{x} \frac{A(u)}{u(\log u)^{2}} d u
$$

By Theorem 11, we have

$$
A(x)=\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

Therefore,

$$
\sum_{p \leq x} \frac{1}{p}=1+O\left(\frac{1}{\log x}\right)+\int_{2}^{x} \frac{\log u+\tau(u)}{u(\log u)^{2}} d u
$$

where $\tau(u)=O(1)$.
Thus,

$$
\begin{gathered}
\sum_{p \leq x} \frac{1}{p}=1+O\left(\frac{1}{\log x}\right)+\log \log x-\log \log 2+\int_{2}^{x} \frac{\tau(u)}{u(\log u)^{2}} d u \\
=\log \log x+1-\log \log 2+\int_{2}^{\infty} \frac{\tau(u)}{u(\log u)^{2}} d u-\int_{x}^{\infty} \frac{\tau(u)}{u(\log u)^{2}} d u+O\left(\frac{1}{\log x}\right) \\
=\log \log x+\beta_{1}+O\left(\frac{1}{\log x}\right)
\end{gathered}
$$

In fact, $\beta_{1}=\gamma+\left(\sum_{p} \log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right)=0.261497 \ldots$.

9. Lecture: Wednesday, September 29, 2000

To prove the Prime Number Theorem we introduce the Riemann zeta function, $\zeta(s)$.
Definition. For $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$, we define $\zeta(s)$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

We write $s=\sigma+i t$ with $\sigma, t \in \mathbb{R}$.
The series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ converges absolutely for $\operatorname{Re}(s)>1$ and we have the Euler product representation for $\operatorname{Re}(s)>1$ given by

$$
\begin{equation*}
\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

To see this, note that

$$
\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}=\prod_{p}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right)
$$

and a typical term is

$$
\frac{1}{p_{1}^{\alpha_{1} s} \cdots p_{k}^{\alpha_{k} s}}=\frac{1}{\left(p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}\right)^{s}}
$$

and by the Fundamental Theorem of Arithmetic (1) holds.
Notice that (1) allows us to give another proof that there are infinitely many primes.
If there were only finitely many, then $\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}$ is bounded as we let s tend to 1 from above on the real line, whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. This argument goes back to Euler.

Theorem 13. $\zeta(s)$ can be analytically continued to $\operatorname{Re}(s)>0$ with $s \neq 1$. It is analytic except at the point $s=1$ where it has a simple pole with residue 1 .

Proof. For $\operatorname{Re}(s)>1$ we have $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$.
By Lemma 1, with $a_{n}=1$ and $f(x)=\frac{1}{x^{s}}$, we find that

$$
\sum_{n \leq x} \frac{1}{n^{s}}=\frac{\lfloor x\rfloor}{x^{s}}+s \int_{1}^{x} \frac{\lfloor u\rfloor}{u^{s+1}} d u
$$

Letting $x \rightarrow \infty$ we find that

$$
\begin{gathered}
\zeta(s)=0+s \int_{1}^{\infty} \frac{\lfloor u\rfloor}{u^{s+1}} d u \\
=s \int_{1}^{\infty} \frac{u-(u-\lfloor u\rfloor)}{u^{s+1}} d u \\
=s \int_{1}^{\infty} u \frac{d u}{u^{s+1}}-s \int_{1}^{\infty} \frac{u-\lfloor u\rfloor}{u^{s+1}} d u \\
=s\left(\left.\frac{u^{1-s}}{1-s}\right|_{1} ^{\infty}\right)-s \int_{1}^{\infty} \frac{u-\lfloor u\rfloor}{u^{s+1}} d u \\
=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{u-\lfloor u\rfloor}{u^{s+1}} d u
\end{gathered}
$$

for $\operatorname{Re}(s)>1$. Note that

$$
\int_{1}^{\infty} \frac{u-\lfloor u\rfloor}{u^{s+1}} d u
$$

converges for $\operatorname{Re}(s)>0$ and represents an analytic function.
Therefore, $\frac{s}{s-1}-s \int_{1}^{\infty} \frac{u-\lfloor u\rfloor}{u^{s+1}} d u$ represents an analytic function for $\operatorname{Re}(s)>0, s \neq 1$ and so gives an analytic continuation of $\zeta(s)$ to the region.
Note that $\frac{s}{s-1}$ has a simple pole of residue 1 at $s=1$.

Theorem 14. $\zeta(s)$ has no zeroes in the region $\operatorname{Re}(s) \geq 1$.
Proof. If $\operatorname{Re}(s)>1$, then since $\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}$ converges, then $\zeta(s) \neq 0$.
Recall $s=\sigma+i t$ with $\sigma, t \in \mathbb{R}$.
Let $\sigma>1$. For all $t \in \mathbb{R}$,

$$
\log ^{*}(\zeta(\sigma+i t))=\sum_{p} \log \left(\left(1-\frac{1}{p^{s}}\right)^{-1}\right)=-\sum_{p} \sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{1}{p^{s}}\right)
$$

where \log denotes the principal branch of the logarithm and $\log ^{*}$ denotes some branch of the logarithm. We now consider the real part of both sides of the above equality to get

$$
\log |\zeta(\sigma+i t)|=-\sum_{p} \sum_{n=1}^{\infty} \frac{p^{-\sigma n} \cos (n t \log p)}{n}
$$

since

$$
p^{-i n t}=e^{-i n t \log (p)}=\cos (-n t \log p)+i \sin (-n t \log p)=\cos (n t \log p)+i \sin (n t \log p)
$$

So $\operatorname{Re}\left(p^{-i n t}\right)=\cos (n t \log p)$.
We appeal to the inequality

$$
\begin{gathered}
0 \leq 2(1+\cos \theta)^{2}=2\left(1+2 \cos \theta+\cos ^{2} \theta\right) \\
=2+4 \cos \theta+2 \cos ^{2} \theta \\
=3+4 \cos \theta+\left(2 \cos ^{2} \theta-1\right) \\
=3+4 \cos \theta+\cos (2 \theta)
\end{gathered}
$$

We then deduce

$$
\sum_{p} \sum_{n=1}^{\infty} \frac{p^{-\sigma n}}{n}(3+4 \cos (n t \log p)+\cos (2 n t \log p)) \geq 0
$$

hence that

$$
\log |\zeta(\sigma)|^{3}+\log |\zeta(\sigma+i t)|^{4}+\log |\zeta(\sigma+2 i t)| \geq 0
$$

In particular,

$$
\begin{equation*}
|\zeta(\sigma)|^{3} \cdot|\zeta(\sigma+i t)| \cdot|\zeta(\sigma+2 i t)| \geq 1 \tag{2}
\end{equation*}
$$

for $\sigma>1$ and $t \in \mathbb{R}$.
Suppose that $1+i t_{0}$ is a zero of $\zeta(s)$.
Then $t_{0} \neq 0$ since $\zeta(s)$ has a pole at $s=1$.
Note that as $\sigma \rightarrow 1$ from the right, then

$$
|\zeta(s)|=O\left((\sigma-1)^{-1}\right)
$$

since 1 is a simple pole of $\zeta(s)$. Also since $1+i t_{0}$ is a zero of $\zeta(s)$, then $\left|\zeta\left(\sigma+i t_{0}\right)\right|=O(\sigma-1)$ as $\sigma \rightarrow 1$ from the right.

Finally, $\left|\zeta\left(\sigma+2 i t_{0}\right)\right|=O(1)$ as $\sigma \rightarrow 1$ from the right, since $1+i 2 t_{0}$ is not a pole of $\zeta(s)$.
Therefore,

$$
|\zeta(\sigma)|^{3} \cdot|\zeta(\sigma+i t)| \cdot|\zeta(\sigma+2 i t)|=O\left((\sigma-1)^{-3}\right) O\left((\sigma-1)^{4}\right) O(1)=O(\sigma-1)
$$

Thus $|\zeta(\sigma)|^{3} \cdot|\zeta(\sigma+i t)| \cdot|\zeta(\sigma+2 i t)|$ tends to 0 as $\sigma \rightarrow 1$ which contradicts (1). Therefore, $\zeta(s)$ has no zero on $\operatorname{Re}(s)=1$ and the result follows.

10. Lecture: Monday, October 2, 2000

11. Lecture: Wednesday, October 4, 2000

Theorem 15 (Donald J. Newman). Suppose $a_{n} \in \mathbb{C}$ with $\left|a_{n}\right| \leq 1$ for $n=1,2, \ldots$. Form the series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$.
The series converges to the analytic function $F(s)$ for $\operatorname{Re}(s)>1$.
If $F(s)$ can be analytically continued to $\operatorname{Re}(s) \geq 1$ then $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ converges to $F(s)$ for $\operatorname{Re}(s) \geq 1$.
Proof. Let $w \in \mathbb{C}$ with $\operatorname{Re}(w) \geq 1$.
Thus $F(z+w)$ is analytic for $\operatorname{Re}(z) \geq 0$.
Choose $R \geq 1$ and determine $\delta=\delta(R)>0$ so that $F(z+w)$ is analytic on the region $\{z:-\delta \leq$ $\operatorname{Re}(z)$ and $|z| \leq R\}$.

Let M denote the maximum of $|F(z+w)|$ on the region.
Let Γ denote the contour obtained by following the outside of the region in a counterclockwise path. Let A be the part of Γ in $\operatorname{Re}(z) \geq 0$ and B be the remainder of Γ.

By Cauchy's residue theorem, for any $N \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
2 \pi i F(w)=\int_{\Gamma} F(z+w) N^{z}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z \tag{1}
\end{equation*}
$$

Now on $A, F(z+w)$ is equal to its series and we may split the series as $S_{N}(z+w)=\sum_{n=1}^{N} \frac{a_{N}}{n^{z+w}}$ and $R_{N}(z+w)=F(z+w)-S_{N}(z+w)$.

Again by Cauchy's residue theorem,

$$
\begin{equation*}
2 \pi i S_{N}(w)=\int_{C} S_{N}(z+w) N^{z}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z \tag{2}
\end{equation*}
$$

where C is the contour given by the path $|z|=R$ taken in counterclockwise direction. (Note that $S_{N}(z+w)$ is analytic for $z \in \mathbb{C}$.)

Note that $C=A \cup(-A) \cup\{i R,-i R\}$.
Thus

$$
2 \pi i S_{N}(w)=\int_{A} S_{N}(z+w) N^{z}\left(\frac{1}{x}+\frac{z}{R^{2}}\right) d z+\int_{-A} S_{N}(z+w) N^{z}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z
$$

In the second integral change, change variables $z \rightarrow-z$. We see that

$$
\int_{-A} S_{N}(z+w) N^{z}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z \int_{A} S_{N}(w-z) N^{-z}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z
$$

Therefore,

$$
\begin{equation*}
2 \pi i S_{N}(w)=\int_{A}\left(S_{N}(z+w) N^{z}+S_{N}(w-z) N^{-z}\right)\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z \tag{3}
\end{equation*}
$$

From (1) and (3),

$$
\begin{equation*}
2 \pi i\left(F(w)-S_{N}(w)\right)=\int_{A}\left(R_{N}(z+w) N^{z}-S_{N}(w-z) N^{-z}\right)\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z+\int_{B} F(z+w) N^{z}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z \tag{4}
\end{equation*}
$$

We want to show that $S_{N}(w) \rightarrow F(w)$ as $N \rightarrow \infty$.
So let's get down to it.
Observe that if we write $z=x+i y$ with $x, y, \in \mathbb{R}$ then for $z \in A$,

$$
\begin{gather*}
\frac{1}{z}+\frac{z}{R^{2}}=\frac{2 x}{R^{2}} \tag{5}\\
\left|R_{N}(z+w)\right| \leq \sum_{n=N+1}^{\infty} \frac{1}{n^{x+1}} \leq \int_{N}^{\infty} \frac{1}{u^{x+1}} d u=\frac{1}{x N^{x}} \tag{6}\\
\left|S_{N}(w-z)\right| \leq \sum_{n=1}^{N} n^{x-1} \leq N^{x-1}+\int_{)}^{N} u^{x-1} d u \leq N^{x-1}+\frac{N^{x}}{x}
\end{gather*}
$$

So

$$
\begin{equation*}
\left|S_{N}(w-z)\right| \leq N^{x}\left(\frac{1}{N}+\frac{1}{x}\right) \tag{7}
\end{equation*}
$$

Therefore from (5), (6), (7),

$$
\begin{gathered}
\left|\int_{A}\left(R_{N}(z+w) N^{z}-S_{N}(w-z) N^{-z}\right)\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z\right| \\
\leq\left|\int_{A}\left(\frac{1}{x} \frac{N^{x}}{N^{x}}+N^{x}\left(\frac{1}{N}+\frac{1}{x}\right) N^{-x}\right) \frac{2 x}{R^{2}} d z\right| \\
\leq \int_{A}\left(\frac{2}{x}+\frac{1}{N}\right) \frac{d x}{R^{2}} d z=\int_{A}\left(\frac{4}{R^{2}}+\frac{2 x}{N R^{2}}\right) d z \leq \int_{A}\left(\frac{4}{R^{2}}+\frac{2}{N R}\right) d z \\
=\pi R\left(\frac{4}{R^{2}}+\frac{2}{N R}\right)=\frac{4 \pi}{R}+\frac{2 \pi}{N}
\end{gathered}
$$

We now estimate the integral over B. Observe that

$$
\left|\frac{1}{z}+\frac{z}{R^{2}}\right|=\left|\frac{1}{z}\right|\left|\frac{\bar{z}}{z}+\frac{z \bar{z}}{R}\right| \leq \frac{1}{\delta}\left(1+\frac{|z|^{2}}{R^{2}}\right) \leq \frac{2}{\delta}
$$

for $\operatorname{Re}(z)=-\delta,|z| \leq R$.

Therefore since $|F(z+w)|$ is at most M we see that

$$
\begin{gathered}
\left|\int_{B} F(z+w) N^{z}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z\right| \leq \int_{-R}^{R} M \frac{2}{\delta} N^{-\delta} d z+2\left|\int_{-\delta}^{0} M N^{x} \frac{2 x}{R^{2}} 2 d x\right| \\
\leq \frac{4 M R}{\delta N^{\delta}}+\frac{8 M}{R^{2}}\left|\int_{-\delta}^{0} x N^{x} d x\right| \\
\leq \frac{4 M R}{\delta N^{\delta}}+\frac{8 M \delta}{R^{2}}\left(\frac{1}{\log N}-\frac{1}{N^{\delta} \log N}\right) \\
\leq \frac{4 R M}{\delta N^{\delta}}+\frac{8 M \delta}{R^{2} \log N}
\end{gathered}
$$

Thus

$$
\begin{gathered}
\left|2 \pi i\left(F(w)-S_{N}(w)\right)\right| \leq \frac{4 \pi}{R}+\frac{2 \pi}{N}+\frac{4 R M}{\delta N^{\delta}}+\frac{8 M \delta}{R^{2} \log N} \\
\left|F(w)-S_{N}(w)\right| \leq \frac{2}{R}+\frac{1}{N}+\frac{R M}{\delta N^{\delta}}+\frac{2 M \delta}{R^{2} \log N}
\end{gathered}
$$

Given $\epsilon>0$, choose $R=\frac{3}{\epsilon}$. Then for N sufficiently large, $\left|F(w)-S_{N}(w)\right|<\epsilon$.
Thue $S_{N}(w) \rightarrow F(w)$ as $N \rightarrow \infty$.
The result follows.

12. Lecture: Friday, October 6, 2000

Definition. We now introduce the Möbius function $\mu: \mathbb{Z}^{+} \rightarrow\{-1,0,1\}$ under the rule that $\mu(1)=1$ and $\mu(n)=(-1)^{r}$ if n is the product of r distinct primes and $\mu(n)=0$ otherwise.
E.g. $\mu(12)=0, \mu(15)=1, \mu(30)=-1$.

Notice that for $\operatorname{Re}(s)>1$,

$$
\frac{1}{\zeta(s)}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

Theorem 16. (i) Let $n \in \mathbb{Z}^{+}$,

$$
\sum_{k \mid n} \mu(k)=\left\{\begin{array}{cc}
1 & \text { if } n=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(ii) Let $f: \mathbb{R}^{+} \rightarrow \mathbb{C}$ and define $F: \mathbb{R}^{+} \rightarrow \mathbb{C}$ by $F(x)=\sum_{n \leq x} f\left(\frac{x}{n}\right)$. Then $f(x)=\sum_{n \leq x} \mu(n) F\left(\frac{x}{n}\right)$.
(iii) Let $f: \mathbb{Z}^{+} \rightarrow \mathbb{C}$ and define $F: \mathbb{Z}^{+} \rightarrow \mathbb{C}$ by $F(n)=\sum_{d \mid n} f(d)$. Then $f(n)=\sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right)$.

Proof. (i) If $n=1$ the result is obvious.
If $n>1$ we can write $n=p_{1}{ }^{\ell_{1}} \cdots p_{r}{ }^{\ell_{r}}$ with p_{1}, \ldots, p_{r} distinct primes and $\ell_{1}, \ldots, \ell_{r}$ positive integers.
Then $\sum_{k \mid n} \mu(k)=\sum_{k \mid m} \mu(k)$ where $m=p_{1} \cdots p_{r}$.
But notice that

$$
\sum_{k \mid m} \mu(k)=1-\binom{r}{1}+\binom{r}{2}+\cdots+(-1)^{r}\binom{r}{r}=(1-1)^{r}=0
$$

(ii) $\mathrm{By}(\mathrm{i})$,

$$
\begin{gathered}
f(x)=\sum_{n \leq x}\left(\sum_{k \mid n} \mu(k)\right) f\left(\frac{x}{n}\right)=\sum_{k \ell \leq x} \mu(k) f\left(\frac{x}{k \ell}\right) \\
=\sum_{k \leq x} \mu(k)\left(\sum_{\ell \leq \frac{x}{k}} f\left(\frac{x}{\ell k}\right)\right)=\sum_{k \leq x} \mu(k) F\left(\frac{x}{k}\right)
\end{gathered}
$$

(iii) Again by (i),

$$
\begin{aligned}
f(n) & =\sum_{c \mid n}\left(\sum_{d \left\lvert\, \frac{n}{c}\right.} \mu(d)\right) f(c)=\sum_{c d \mid n} \mu(d) F(c) \\
& =\sum_{d \mid n} \mu(d) \sum_{c \left\lvert\, \frac{n}{d}\right.} f(c)=\sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right)
\end{aligned}
$$

Theorem 17.

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n}=0
$$

Proof. For $\operatorname{Re}(s)>1$ we have $\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\mu(s)}{n^{s}}$.
It follows from Theorems 13 and 14 that $(s-1) \zeta(s)$ is analytic and non-zero in $\operatorname{Re}(s) \geq 1$, hence $\frac{1}{\zeta(s)}$ is analytic in $\operatorname{Re}(s) \geq 1$.

By Theorem 15, $\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}$ converges to $\frac{1}{\zeta(s)}$ for $\operatorname{Re}(s) \geq 1$. In particular, it converges at $s=1$. But $\zeta(s)$ has a pole at $s=1$ so $\frac{1}{\zeta(1)}=0$.

Theorem 18.

$$
\sum_{n \leq x} \mu(n)=o(x)
$$

Proof. Apply Lemma 1 with $a_{n}=\frac{\mu(n)}{n}$ and $f(x)=x$. Then

$$
\sum_{n \leq x} \mu(n)=A(x) x-\int_{1}^{x} A(u) d u
$$

where

$$
\begin{equation*}
A(t)=\sum_{n \leq t} \frac{\mu(n)}{n} \tag{1}
\end{equation*}
$$

By Theorem 17, $A(t)=o(1)$, so

$$
\begin{equation*}
A(x) x=o(x) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1}^{x} A(u) d u=o(x) \tag{3}
\end{equation*}
$$

The result follows from (1),(2),(3).

13. Lecture: Wednesday, October 11, 2000

For any positive integer n, let $d(n)$ denote the number of positive integers which divide n.
Theorem 19.

$$
\sum_{m=1}^{n} d(m)=\sum_{m=1}^{n}\left\lfloor\frac{n}{m}\right\rfloor=n \log n+(2 \gamma-1) n+O\left(n^{1 / 2}\right)
$$

where γ is Euler's constant.
Proof. Let D_{n} be the region in the upper right hand quadrant not containing the x or y axes and under and including the hyperbola $x y=n$.
That is, $D_{n}=\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0, x y \leq n\right\}$.
Every lattice point in D_{n}, in other words every point with integer coordinates in D_{n}, is contained in a hyperbola $x y=s$ for some s with $1 \leq s \leq n$.

Thus $\sum_{s=1}^{n} d(s)$ is the number of lattice points in D_{n}. Notice that this is equivalent to $\sum_{m=1}^{n}\left\lfloor\frac{n}{m}\right\rfloor$ since we may count the number of lattice points with x coordinates $1,2, \ldots, n$.

Observe that to estimate the number of lattice points in D_{n} we first remark that the number above the line $x=y$ is the same as the number below.

$$
\begin{gathered}
\sum_{m=1}^{n}\left\lfloor\frac{n}{m}\right\rfloor=2 \sum_{x=1}^{\lfloor\sqrt{n}\rfloor}\left(\left\lfloor\frac{n}{x}\right\rfloor-\lfloor x\rfloor\right)+\lfloor\sqrt{n}\rfloor \\
=2 \sum_{x=1}^{\lfloor\sqrt{n}\rfloor}\left(\frac{n}{x}-x+O(1)\right)+\lfloor\sqrt{n}\rfloor \\
=\left(2 n \sum_{x=1}^{\lfloor\sqrt{n}\rfloor} \frac{1}{x}\right)-2\left(\frac{\lfloor\sqrt{n}\rfloor(\lfloor\sqrt{n}\rfloor+1)}{2}\right)+O(\sqrt{n})
\end{gathered}
$$

By Theorem 9,

$$
\begin{equation*}
\sum_{m=1}^{n}\left\lfloor\frac{n}{m}\right\rfloor=2 n\left(\log \lfloor\sqrt{n}\rfloor+\gamma+O\left(\frac{1}{\sqrt{n}}\right)\right)-(n+O(\sqrt{n}))+O(\sqrt{n}) \tag{1}
\end{equation*}
$$

Since $\lfloor\sqrt{n}\rfloor=\sqrt{n}-\{\sqrt{n}\}$ where $\{x\}$ denotes the fractional part of x for any $x \in \mathbb{R}$, we have

$$
\begin{aligned}
& \log (\lfloor\sqrt{n}\rfloor)=\log (\sqrt{n}-\{\sqrt{n}\})=\log \left(\sqrt{n}\left(1-\frac{\{\sqrt{n}\}}{\sqrt{n}}\right)\right) \\
& \quad=\log (\sqrt{n})+\log \left(1-\frac{\{\sqrt{n}\}}{\sqrt{n}}\right)=\log (\sqrt{n})+O\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

Thus, from (1), we have

$$
\sum_{m=1}^{n}\left\lfloor\frac{n}{m}\right\rfloor=n \log n+(2 \gamma-1) n+O(\sqrt{n})
$$

as required.
14. Lecture: Friday, October 13, 2000

Theorem 20 (Prime Number Theorem).

$$
\pi(x) \sim \frac{x}{\log x}
$$

Proof. By Theorem 8 it suffices to prove that $\psi(x) \sim x$. Put

$$
F(x)=\sum_{n \leq x}\left(\psi\left(\frac{x}{n}\right)-\left\lfloor\frac{x}{n}\right\rfloor+2 \gamma\right)
$$

By Möbius inversion, Theorem 16 (ii), we have

$$
\psi(x)-\lfloor x\rfloor+2 \gamma=\sum_{n \leq x} \mu(n) F\left(\frac{x}{n}\right)
$$

It remains to show that $\sum_{n \leq x} \mu(n) F\left(\frac{x}{n}\right)=o(x)$.
To do this we first estimate $F(x)$. We have

$$
F(x)=\sum_{n \leq x} \psi\left(\frac{x}{n}\right)-\sum_{n \leq x}\left\lfloor\frac{x}{n}\right\rfloor+2 \gamma\lfloor x\rfloor
$$

also

$$
\begin{gathered}
\sum_{n \leq x} \psi\left(\frac{x}{n}\right)=\sum_{n \leq x} \sum_{m \leq \frac{x}{n}} \Lambda(m)=\sum_{n \leq x} \Lambda(n)\left(\sum_{m \leq \frac{x}{n}} 1\right) \\
=\sum_{n \leq x} \Lambda(n)\left\lfloor\frac{x}{m}\right\rfloor=\sum_{p^{k} \leq x} \log p\left\lfloor\frac{x}{p^{k}}\right\rfloor \\
=\sum_{p \leq x}\left(\left\lfloor\frac{x}{p}\right\rfloor+\left\lfloor\frac{x}{p^{2}}\right\rfloor+\cdots\right) \log p=\log (\lfloor x\rfloor!)=\sum_{n \leq x} \log n
\end{gathered}
$$

and as in the proof of Theorem 10,

$$
\sum_{n \leq x} \log n=x \log x-x+O(\log x)
$$

hence

$$
\sum_{n \leq x} \psi\left(\frac{x}{n}\right)=x \log x-x+O(\log x)
$$

Further, by Theorem 19,

$$
\sum_{n=1}^{\lfloor x\rfloor}\left\lfloor\frac{\lfloor x\rfloor}{n}\right\rfloor=\lfloor x\rfloor \log \lfloor x\rfloor+(2 \gamma-1)\lfloor x\rfloor+O\left(x^{1 / 2}\right)
$$

Note that

$$
\sum_{n=1}^{\lfloor x\rfloor}\left\lfloor\frac{\lfloor x\rfloor}{n}\right\rfloor \leq \sum_{n=1}^{\lfloor x\rfloor}\left\lfloor\frac{x}{n}\right\rfloor \leq \sum_{n=1}^{\lfloor x\rfloor+1}\left\lfloor\frac{\lfloor x\rfloor+1}{n}\right\rfloor
$$

Thus

$$
\sum_{n=1}^{\lfloor x\rfloor}\left\lfloor\frac{x}{n}\right\rfloor=x \log x+(2 \gamma-1) x+O\left(x^{1 / 2}\right)
$$

Therefore,

$$
F(x)=(x \log x-x+O(\log x))-\left(x \log x+(2 \gamma-1) x+O\left(x^{1 / 2}\right)\right)+(2 \gamma x+O(1))=O\left(x^{1 / 2}\right)
$$

Thus there is a positive constant c such that

$$
|F(x)|<c x^{1 / 2} \text { for } x \geq 1
$$

Let t be an integer larger than 1 . Then

$$
\left.\begin{array}{c}
\left|\sum_{n \leq \frac{x}{t}} \mu(n) F\left(\frac{x}{n}\right)\right| \leq \sum_{n \leq \frac{x}{t}}\left|F\left(\frac{x}{n}\right)\right| \leq \sum_{n \leq \frac{x}{t}} c \frac{x}{n}^{1 / 2} \\
\leq c x^{1 / 2}\left(1+\int_{1}^{\frac{x}{2}} \frac{d u}{u^{1 / 2}}\right) \leq c x^{1 / 2}\left(1+\left.2 u^{1 / 2}\right|_{1} ^{\frac{x}{t}}\right. \\
1 \tag{1}
\end{array}\right) .
$$

Observe that F is a step function.
In particular, if a is an integer and $a \leq x<a+1$ then $F(x)=F(a)$. Therefore,

$$
\sum_{\frac{x}{t}<n \leq x} \mu(n) F\left(\frac{x}{n}\right)=F(1) \sum_{\frac{x}{2}<n \leq x} \mu(n)+F(2) \sum_{\frac{x}{3}<n \leq \frac{x}{2}} \mu(n)+\cdots+F(t-1) \sum_{\frac{x}{t}<n \leq \frac{x}{t-1}} \mu(n)
$$

Thus

$$
\left|\sum_{\frac{x}{t}<n \leq x} \mu(n) F\left(\frac{x}{n}\right)\right| \leq|F(1)|\left|\sum_{\frac{x}{2}<n \leq x} \mu(n)\right|+\cdots+|F(t-1)|\left|\sum_{\frac{x}{t}<n \leq \frac{x}{t-1}} \mu(n)\right|
$$

so

$$
\left|\sum_{\frac{x}{t}<n \leq x} \mu(n) F\left(\frac{x}{n}\right)\right| \leq(|F(1)|+\cdots+|F(t-1)|) \max _{2 \leq i \leq t}\left|\sum_{\frac{x}{t}<n \leq \frac{x}{t-1}} \mu(n)\right|
$$

But

$$
\sum_{\frac{x}{i}<n \leq \frac{x}{i-1}} \mu(n)=\sum_{n \leq \frac{x}{i-1}} \mu(n)-\sum_{\frac{x}{i}<n} \mu(n)=o(x)
$$

Therefore,

$$
\left|\sum_{\frac{x}{t}<n \leq x} \mu(n) F\left(\frac{x}{n}\right)\right|=o(x)
$$

Thus given $\epsilon>0$ choose t so that $\frac{2 c}{t^{1 / 2}}<\frac{\epsilon}{2}$. Then for x sufficiently large,

$$
\left|\sum_{\frac{x}{t}<n \leq x} \mu(n) F\left(\frac{x}{n}\right)\right|<\frac{\epsilon}{2} x
$$

And so by (1),

$$
\left|\sum_{n \leq x} \mu(n) F\left(\frac{x}{n}\right)\right|<\frac{\epsilon}{2} x+\frac{\epsilon}{2} x=\epsilon x
$$

In particular, $\left|\sum_{n \leq x} \mu(n) F\left(\frac{x}{n}\right)\right|=o(x)$ and so $\psi(x) \sim x$.

15. Lecture: Monday, October 16, 2000

Definition. For any positive integer n let $\Omega(n)$ denote the number of prime factors of n counted with multiplicity and let $\omega(n)$ denote the number of distinct prime factors of n.
Thus if $n=2^{3} \cdot 3^{5} \cdot 13$, then $\Omega(n)=2+5+1=8$ and $\omega(n)=3$.

Definition. Let $k \in \mathbb{Z}^{+}$and for each real number x let $\tau_{k}(x)$ be the number of positive integers n with $n \leq x$ and $\Omega(n)=k$.
Further, let $\pi_{k}(x)$ be the number of positive integers n with $n \leq x$ and $\omega(n)=\Omega(n)=k$.
In other words, π_{k} counts the n 's up to x which are squarefree and have k prime factors.
Note that $\pi(x)=\pi_{1}(x)=\tau_{1}(x)$.

Theorem 21 (Landau,1900). Let k be a positive integer. Then

$$
\pi_{k}(x) \sim \tau_{k}(x) \sim \frac{1}{(k-1)!} \frac{x}{\log x}(\log \log x)^{k-1}
$$

Proof. We introduce the following functions

$$
\begin{gathered}
L_{k}(x)=\sum_{p_{1} \cdots p_{k} \leq x}^{*} \frac{1}{p_{1} \cdots p_{k}} \\
\Pi_{k}(x)=\sum_{p_{1} \cdots p_{k} \leq x}^{*} 1 \\
\Theta_{k}(x)=\sum_{p_{1} \cdots p_{k} \leq x}^{*} \log \left(p_{1} \cdots p_{k}\right)
\end{gathered}
$$

where ${ }^{*}$ signifies that the sum is taken over all k-tuples of primes $\left(p_{1}, \ldots, p_{k}\right)$ with $p_{1} \cdots p_{k} \leq x$. Note that different k-tuples may correspond to the same product $p_{1} \cdots p_{k}$.

For each positive integer n, let $c_{n}=\left(c_{n}{ }^{(k)}\right)$ denote the number of k-tuples $\left(p_{1}, \ldots, p_{k}\right)$ for which $p_{1} \cdots p_{k}=n$.
Note $c_{n}=0$ if n is not the product of k primes and is equal to k ! if n is squarefree and $\omega(n)=k$.
Thus we have

$$
\begin{equation*}
k!\pi_{k}(x) \leq \Pi_{k}(x) \leq k!\tau_{k}(x) \tag{1}
\end{equation*}
$$

Note also that $\Pi_{k}(x)=\sum_{n \leq x} c_{n}$ and $\Theta_{k}(x)=\sum_{n \leq x} c_{n} \log n$.
For $k \geq 2$ note that the number of positive integers up to x with k primes factors and divisible by the square of a prime is $\tau_{k}(x)=\pi_{k}(x)$.

Thus

$$
\begin{equation*}
\tau_{k}(x)-\pi_{k}(x) \leq \sum_{\substack{p_{1} \cdots p_{k} \leq x \\ p_{i}=p_{j} \text { for some } i \neq j}}^{*} 1 \leq\binom{ k}{2} \sum_{\substack{ \\p_{1} \cdots p_{k} \leq x}} 1=\binom{k}{2} \Pi_{k-1}(x) \tag{2}
\end{equation*}
$$

We shall prove that

$$
\Pi_{k}(x) \sim k \frac{x(\log \log x)^{k-1}}{\log x}
$$

and then our result follows from (1) and (2).

From Lemma 1 with $a_{n}=1$ and $f(x)=\log x$, we have

$$
\Theta_{k}(x)=\sum_{n \leq x} c_{n} \log n=\Pi_{k}(x) \log x+\int_{1}^{x} \frac{\Pi_{k}(u)}{u} d u
$$

Observe that

$$
\Pi_{k}(x) \leq k!\tau_{k}(x) \leq k!x
$$

Thus $\Pi_{k}(u)=O(u)$ and so

$$
\Theta_{k}(x)=\Pi_{k}(x) \log x+O(x)
$$

Therefore, it suffices to prove that

$$
\Theta_{k}(x) \sim k x(\log \log x)^{k-1} \text { for } k \in \mathbb{Z}^{+}
$$

We'll prove this by induction on k.

Note that $\Theta_{1}(x)=\theta(x) \sim x$ by the Prime Number Theorem.
Assume now that $\Theta_{k}(x) \sim k x(\log \log x)^{k-1}$ for k with $k \geq 1$. We'll prove it for $k+1$.
First note that for $k \geq 1, L_{k}(x) \sim(\log \log x)^{k}$, since

$$
\left(\sum_{p \leq x^{\frac{1}{k}}} \frac{1}{p}\right)^{k} \leq L_{k}(x) \leq\left(\sum_{p \leq x} \frac{1}{p}\right)^{k}
$$

and by Theorem 12,

$$
\left(\sum_{p \leq x^{\frac{1}{k}}} \frac{1}{p}\right)^{k} \sim\left(\log \log \left(x^{\frac{1}{k}}\right)\right)^{k}
$$

and

$$
\left(\sum_{p \leq x} \frac{1}{p}\right)^{k} \sim(\log \log x)^{k}
$$

Further,

$$
\left(\log \log \left(x^{\frac{1}{k}}\right)\right)^{k}=\left(\log \left(\frac{\log x}{k}\right)\right)^{k}=(\log \log x-\log k)^{k} \sim(\log \log x)^{k}
$$

It suffices to show that $\Theta_{k}(x) \sim k(\log \log x)^{k-1}$.
The result holds for $k=1$ by the Prime Number Theorem. We now make the inductive hypothesis that

$$
\Theta_{k}(x) \sim k(\log \log x)^{k-1} \text { for } k \geq 1
$$

and we'll deduce it for $\Theta_{k+1}(x)$.
Recall also that $L_{k}(x) \sim(\log \log x)^{k}$.
Therefore

$$
\begin{gathered}
\Theta_{k+1}(x)-(k+1)(\log \log x)^{k}=\Theta_{k+1}(x)-(k+1) L_{k}(x)+o\left(x(\log \log x)^{k}\right) \\
k \Theta_{k+1}(x)=\sum_{p_{1} \cdots p_{k+1} \leq x}^{*}\left(\log \left(p_{2} \cdots p_{k+1}\right)+\log \left(p_{1} p_{3} \cdots p_{k+1}\right)+\cdots+\log \left(p_{1} \cdots p_{k}\right)\right) \\
=(k+1) \sum_{p_{2} \cdots p_{k+1} \leq x}^{*} \log p_{2} \cdots p_{k+1} \\
=(k+1) \sum_{p_{1} \leq x} \Theta_{k}\left(\frac{x}{p_{1}}\right)
\end{gathered}
$$

Next, we put $L_{0}(x)=1$ and note

$$
L_{k}(x)=\sum_{p_{1} \cdots p_{k} \leq x}^{*} \frac{1}{p_{1} \cdots p_{k}}=\sum_{p_{1} \leq x} \frac{1}{p_{1}} L_{k-1}\left(\frac{x}{p_{1}}\right)
$$

Thus,

$$
\Theta_{k+1}(x)-(k+1) L_{k}(x)=(k+1) \sum_{p_{1} \leq x}\left(\frac{1}{k} \Theta_{k}\left(\frac{x}{p_{1}}\right)-\frac{x}{p_{1}} L_{k-1}\left(\frac{x}{p_{1}}\right)\right)
$$

By inductive hypothesis,

$$
\Theta_{k}(y)-k y L_{k-1}(y)=o\left(y(\log \log y)^{k-1}\right)
$$

Thus given $\epsilon>0$, there exists $x_{0}=x_{0}(\epsilon, k)$ such that for $y>x_{0}$,

$$
\left|\Theta_{k}(y)-\frac{k y}{p_{1}} L_{k-1}(y)\right| \leq \epsilon y(\log \log y)^{k-1}
$$

Further, there exists a positive number $c=c(\epsilon, k)$ such that for $y \leq x$,

$$
\left|\Theta_{k}(y)-\frac{k y}{p_{1}} L_{k-1}(y)\right| \leq c
$$

Therefore, for x sufficiently large,

$$
\begin{gathered}
\left|\Theta_{k+1}(x)-(k+1) L_{k}(x)\right| \leq 2\left(\sum_{\frac{x}{x_{0}}<p_{1} \leq x} c+\sum_{p_{1} \leq \frac{x}{x_{0}}} \epsilon \frac{x}{p_{1}}\left(\log \log \frac{x}{p_{1}}\right)^{k-1}\right) \\
\leq 2 c x+2 \epsilon x(\log \log x)^{k-1} \sum_{p_{1} \leq \frac{x}{x_{0}}} \frac{1}{p_{1}} \leq 2 c x+4 \epsilon x(\log \log x)^{k} \\
<5 \epsilon x(\log \log x)^{k} \text { for } x \text { suffiently large }
\end{gathered}
$$

Thus,

$$
\Theta_{k+1}(x)-(k+1) L_{k}(x)=o\left(x(\log \log x)^{k}\right)
$$

and this completes the induction. The result follows.
16. Lecture: Wednesday, October 18, 2000

Theorem 22.

$$
\sum_{n \leq x} \omega(n)=x \log \log x+\beta_{1} x+o(x)
$$

and

$$
\sum_{n \leq x} \Omega(n)=x \log \log x+\beta_{2} x+o(x)
$$

where β_{1} is the constant in Theorem 12 and $\beta_{2}=\beta_{1}+\sum_{p} \frac{1}{p(p-1)}$.
Proof. Put $S_{1}=S(x)=\sum_{n \leq x} \omega(n)$. Then

$$
S_{1}=\sum_{n \leq x} \sum_{p \mid n} 1=\sum_{p \leq x}\left\lfloor\frac{x}{p}\right\rfloor
$$

Thus by Theorem 12,

$$
S_{1}=x \sum_{p \leq x} \frac{1}{p}+O(\pi(x))=x\left(\log \log x+\beta_{1}+o(1)\right)+O(\pi(x))
$$

By the Prime Number Theorem, or Theorem 6,

$$
S_{1}=x \log \log x+x \beta_{1}+o(x)
$$

Put $S_{2}=S_{2}(x)=\sum_{n \leq x} \Omega(n)$. Then

$$
S_{2}-S_{1}=\sum_{p^{m} \leq x, m \geq 2}\left\lfloor\frac{x}{p^{m}}\right\rfloor=\sum_{p^{m} \leq x, m \geq 2} \frac{x}{p^{m}}+O\left(x^{\frac{1}{2}} \log x\right)
$$

(The $x^{\frac{1}{2}}$ arises since $m \geq 2$ so p is at most \sqrt{x}. The $\log x$ arises since m goes up to $\log x$.)

Continuing,

$$
S_{2}-S_{1}=x\left(\sum_{p}\left(\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots\right)-\sum_{p^{m} \geq x} \frac{1}{p^{m}}\right)+O\left(x^{1 / 2} \log x\right)
$$

Thus,

$$
S_{2}-S_{1}=x\left(\sum_{p} \frac{1}{p(p-1)}+o(1)\right)+O\left(x^{1 / 2} \log x\right)=x \sum_{p} \frac{1}{p(p-1)}+o(x)
$$

and the result follows.
17. Lecture: Friday, October 20, 2000

Definition. Let A be a subset of \mathbb{Z}^{+}. For any $n \in \mathbb{Z}^{+}$put $A(n)=\{1,2, \ldots, n\} \cap A$.
Define the upper density $\bar{d}(A)$ of A by

$$
\bar{d}(A)=\limsup _{n \rightarrow \infty} \frac{|A(n)|}{n}
$$

$\bar{d}(A)$ is also known as the asymptotic upper density of A.
Similarly, we define $\underline{d}(A)$ the lower asymptotic density of A by

$$
\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{|A(n)|}{n}
$$

We say A has an asymptotic density $d(A)$ if $\underline{d}(A)=\bar{d}(A)$ in which case we put $d(A)=\bar{d}(A)$.

Examples:

(1) A set of primes, $\underline{d}(A)=\bar{d}(A)=0$.
(2) $A=\left\{n \in \mathbb{Z}^{+}: n \equiv 0(\bmod 5)\right\}$ then $\underline{d}(A)=\bar{d}(A)=d(A)=\frac{1}{5}$.
(3) $A=\left\{n \in \mathbb{Z}^{+}: n\right.$ not of the form $k^{2}+1$ for $\left.k \in \mathbb{Z}\right\}, \underline{d}(A)=\bar{d}(A)=d(A)=1$.
(4) Take $A=\{a \in \mathbb{Z}:(2 k)!<a<(2 k+1)$! for $k \in \mathbb{Z}\}$. Then $\underline{d}(A)=0$ and $\bar{d}(A)=1$.

Definition. Let $f(n)$ and $F(n)$ be functions from $\mathbb{Z}^{+} \rightarrow \mathbb{R}$.
We say that $f(n)$ has normal order $F(n)$ if for each $\epsilon>0$ the set

$$
A(\epsilon)=\left\{n \in \mathbb{Z}^{+}:(1-\epsilon) F(n)<f(n)<(1+\epsilon) F(n)\right\}
$$

has the property that $\underline{\mathrm{d}}(A(\epsilon))=1$.
(Equivalently, if $B(\epsilon)=\mathbb{Z}^{+} \backslash A(\epsilon)$ then $\underline{d}(B(\epsilon))=0$.)
We say that f has average order F if

$$
\sum_{j=1}^{n} f(j) \sim \sum_{j=1}^{n} F(j)
$$

Examples:

(1) Take

$$
f(n)=\left\{\begin{array}{cc}
1 & \text { if } n \neq k!\text { for } k \in \mathbb{Z}^{+} \\
n & \text { if } n=k!
\end{array}\right.
$$

Then f has normal order 1 but not average order 1 .
(2) Put

$$
f(n)=\left\{\begin{array}{lll}
2 & \text { for } n \equiv 1 & (\bmod 2) \\
0 & \text { for } n \equiv 0 & (\bmod 2)
\end{array}\right.
$$

Then f has average order 1 but does not have normal order 1 .
(3) Put

$$
f(n)=\left\{\begin{array}{lll}
\log n+(\log n)^{\frac{1}{2}} & \text { for } n \equiv 1 & (\bmod 2) \\
\log n-(\log n)^{\frac{1}{2}} & \text { for } n \equiv 0 & (\bmod 2)
\end{array}\right.
$$

Then f has both normal and average order 1.
We have already proven that $\omega(n)$ and $\Omega(n)$ have average order $\log \log n$. We'll now prove that they have normal order $\log \log n$.
18. Lecture: Monday, October 23, 2000

Theorem 23. Let $\delta>0$. The number of positive integers $n \leq x$ with $|f(n)-\log \log n|<$ $(\log \log n)^{\frac{1}{2}+\delta}$ is o(x) where $f(n)=\omega(n)$ or $f(n)=\Omega(n)$.
Proof. The first remark we make is that it is enough to prove that the number of positive integers n with $n \leq x$ and

$$
|f(n)-\log \log x|<(\log \log x)^{\frac{1}{2}+\delta}
$$

is $o(x)$ since for $x^{\frac{1}{e}} \leq n \leq x$,

$$
\log \log x \geq \log \log n \geq \log \left(\frac{\log x}{e}\right)=\log \log x-1
$$

Secondly, we may restrict our attention to $f(n)=\omega(n)$, since by Theorem 22,

$$
\sum_{n \leq x}(\Omega(n)-\omega(n))=O(x)
$$

Thus the number of $n \leq x$ for which $\Omega(n)-\omega(n)>(\log \log n)^{1 / 2}$ is $o(x)$.
For each $n \leq x$, we consider the ordered pairs (p, q) where p and q are distinct prime factors of n. There are $\omega(n)$ choices for p and then $\omega(n)-1$ choices for q so

$$
\omega(n)(\omega(n)-1)=\sum_{p q \mid n, p \neq q} 1=\sum_{p q \mid n} 1-\sum_{p^{2} \mid n} 1
$$

Thus

$$
\sum_{n \leq x} \omega(n)^{2}-\sum_{n \leq x} \omega(n)=\sum_{n \leq x} \omega(n)(\omega(n)-1)=\sum_{n \leq x}\left(\sum_{p q \mid n} 1-\sum_{p^{2} \mid n} 1\right)=\sum_{p q \leq x}\left\lfloor\frac{x}{p q}\right\rfloor-\sum_{p^{2} \leq x}\left\lfloor\frac{x}{p^{2}}\right\rfloor
$$

Observe that

$$
\sum_{p^{2} \leq x}\left\lfloor\frac{x}{p^{2}}\right\rfloor \leq x \sum_{p^{2} \leq x} \frac{1}{p^{2}}=O(x)
$$

and

$$
\sum_{p q \leq x}\left\lfloor\frac{x}{p q}\right\rfloor \leq \sum_{p^{2} \leq x} \frac{x}{p q}+O(x)
$$

Thus

$$
\begin{equation*}
\sum_{n \leq x} \omega(n)^{2}-\sum_{n \leq x} \omega(n)=\sum_{n \leq x} \omega(n)(\omega(n)-1)=\sum_{p q \leq x} \frac{x}{p q}+O(x) \tag{1}
\end{equation*}
$$

Next note that

$$
\left(\sum_{p \leq x^{\frac{1}{2}}} \frac{1}{p}\right)^{2}-\left(\sum_{p \leq x} \frac{1}{p^{2}}\right) \leq \sum_{p q \leq x} \frac{1}{p q} \leq\left(\sum_{p \leq x} \frac{1}{p}\right)^{2}
$$

Further,

$$
\left(\sum_{p \leq x} \frac{1}{p}\right)^{2}=(\log \log x)^{2}+O(\log \log x)
$$

and

$$
\left(\sum_{p \leq x^{\frac{1}{2}}} \frac{1}{p}\right)^{2}=\left(\log \log x^{\frac{1}{2}}+O(1)\right)^{2}=(\log \log x-\log 2+O(1))^{2}=(\log \log x)^{2}+O(\log \log x)
$$

Thus

$$
\begin{equation*}
\sum_{p q \leq x} \frac{1}{p q}=(\log \log x)^{2}+O(\log \log x) \tag{2}
\end{equation*}
$$

By Theorem 22,

$$
\begin{equation*}
\sum_{n \leq x} \omega(n)=O(x \log \log x) \tag{3}
\end{equation*}
$$

Thus by (1), (2), and (3),

$$
\sum_{n \leq x} \omega(n)^{2}=x(\log \log x)^{2}+O(x \log \log x)
$$

Therefore,

$$
\begin{gather*}
\sum_{n \leq x}\left(\omega(n)^{2}-\log \log x\right)^{2}=\sum_{n \leq x} \omega(n)^{2}-2 \sum_{n \leq x} \omega(n) \log \log x+\sum_{n \leq x}(\log \log x)^{2} \\
=\left((x \log \log x)^{2}+O(x \log \log x)\right)-2 \log \log x\left(\sum_{n \leq x} \omega(n)\right)+\lfloor x\rfloor(\log \log x)^{2} \\
=x(\log \log x)^{2}+O(x \log \log x)-2 x(\log \log x)^{2}+O(\log \log x)+x(\log \log x)^{2}+O(\log \log x)^{2} \\
=O(x \log \log x) \tag{4}
\end{gather*}
$$

Let $\epsilon>0$. If there are more than ϵx integers n with $1 \leq n \leq x$ for which

$$
|\omega(n)-\log \log x|>(\log \log x)^{\frac{1}{2}+\delta}
$$

then

$$
\sum_{n \leq x}\left(\omega(n)^{2}-\log \log x\right)^{2}>\epsilon x(\log \log x)^{1+2 \delta}
$$

This cannot hold for x sufficiently large, by (4), and so the result follows.
Recall, for $n \in \mathbb{Z}^{+}, d(n)$ denotes the number positive divisors of n. If

$$
n=p_{1}{ }^{a_{1}} \cdots p_{r}{ }_{r}^{a_{r}}
$$

where a_{1}, \ldots, a_{r} are positive integers and p_{1}, \ldots, p_{r} are distinct primes, then

$$
\omega(n)=r, \Omega(n)=a_{1}+\cdots+a_{r}, \text { and } d(n)=\left(a_{1}+1\right) \cdots\left(a_{r}+1\right)
$$

Theorem 24. Let $\epsilon>0$. We have

$$
2^{(1-\epsilon) \log \log n}<d(n)<2^{(1+\epsilon) \log \log n}
$$

for a set of positive integers n with asymptotic density 1 .
Proof. Since for any $a \in \mathbb{Z}$,

$$
2 \leq(1+a) \leq 2^{a}
$$

The result now follows from Theorem 23.
Recall that the average order of $d(n)$ is $\log (n)$.
By Theorem 24, "normally" $d(n)$ satisfies

$$
(\log n)^{\log 2-\epsilon}<d(n)<(\log n)^{\log 2+\epsilon}
$$

for any $\epsilon>0$.
Definition. For any $n \in \mathbb{Z}^{+}$, let $\varphi(n)$ be the number of integers m with $\operatorname{gcd}(m, n)=1 . \varphi(n)$ is known as Euler's φ-function.
Theorem (Euler's Theorem). Let a and b be positive integers with $\operatorname{gcd}(a, n)=1$. Then

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

Proof. Let $c_{1}, \ldots, c_{\varphi(n)}$ be a reduced residue system modulo n.
Then $a c_{1}, \ldots, a c_{\varphi(n)}$ is also a reduced residue system modulo n.
Thus

$$
c_{1} \cdots c_{\varphi(n)} \equiv\left(a c_{1} \cdots a c_{\varphi(n)}\right) \quad(\bmod n)
$$

hence

$$
c_{1} \cdots c_{\varphi(n)} \equiv a^{\varphi(n)} c_{1} \cdots c_{\varphi(n)} \quad(\bmod n)
$$

and so

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

(Fermat's Theorem follows from setting $n=p$.)
Theorem (Wilson's Theorem). If p is a prime then $(p-1)!\equiv-1(\bmod p)$.
Proof. Consider $x^{p-1}-1$ in $\mathbb{Z}_{p \mathbb{Z}}[x]$.
It factors by Fermat's Theorem as

$$
x^{p-1}-1=(x-1)(x-2) \cdots(x-(p-1)) \text { in } \mathbb{Z}_{p \mathbb{Z}}[x]
$$

since $1,2, \ldots, p-1$ are roots.
Considering the constant coefficient we find that

$$
-1 \equiv(-1)(-2) \cdots(-(p-1)) \quad(\bmod p)
$$

so $-1 \equiv(-1)^{p-1}(p-1)!(\bmod p)$.
If $p=2$ the result holds since $-1=1$; otherwise p is odd, so $-1 \equiv(p-1)!(\bmod p)$ as required.

19. Lecture: Wednesday, October 25, 2000

Wilson's Theorem was conjectured by Wilson (1741-1793). He communicated the conjecture to Waring (1734-1798) who published it in 1770. Shortly after, Lagrange gave the first proof. In fact, Leibniz had conjectured the result in 1682.
Here is another proof due to Stern from 1860. We have, for $|x|<1$,

$$
-\log (1-x)=\log \left(\frac{1}{1-x}\right)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots
$$

and so

$$
\exp \left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)=\frac{1}{1-x}=1+x+x^{2}+\cdots
$$

But

$$
\begin{gathered}
\exp \left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)=\exp (x) \exp \left(\frac{x^{2}}{2}\right) \exp \left(\frac{x^{3}}{3}\right) \cdots \\
=\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)\left(1+\frac{x^{2}}{2}+\frac{\left(\frac{x^{2}}{2}\right)^{2}}{2!}+\cdots\right)\left(1+\frac{x^{3}}{3}+\frac{\left(\frac{x^{3}}{3}\right)^{2}}{2!}+\cdots\right) \cdots \\
=1+x+\left(\frac{1}{2}+\frac{1}{2!}\right) x^{2}+\left(\frac{1}{3!}+\frac{1}{2}+\frac{1}{3}\right) x^{3}+\cdots+\left(\frac{1}{p!}+\cdots+\frac{1}{p}\right) x^{p}+\cdots
\end{gathered}
$$

In particular, the coefficient of x^{p} is of the form $\frac{1}{p!}+\frac{r}{s}+\frac{1}{p}$ where r and s are positive integers with $\operatorname{gcd}(r, s)=1$ and $\operatorname{gcd}(s, p)=1$.
But comparing coefficients in the power series, we see that

$$
1=\frac{1}{p!}+\frac{r}{s}+\frac{1}{p}
$$

Therefore $1-\frac{r}{s}=\frac{1}{p!}+\frac{1}{p}$ hence $\frac{s-r}{s}=\frac{1}{p!}+\frac{1}{p}$. Thus $s-r=\frac{s}{p!}+\frac{s}{p}$, so $(s-r)(p-1)!=\frac{s}{p}+\frac{s(p-1)!}{p}=$ $\frac{s((p-1)!+1)}{p}$.
Since $(s-r)(p-1)!$ is an integer, we see that $p \mid s((p-1)!+1)$. But $\operatorname{gcd}(p, s)=1$.
Therefore, $p \mid(p-1)!+1$, as required.
Definition. Let p be a prime, and let a be an integer coprime with p. We define the Legendre symbol $\left(\frac{a}{p}\right)$ by the rule:

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{lr}
1 & \text { if } x^{2} \equiv a \quad(\bmod p) \text { has a solution } \\
-1 & \text { if it has no solution }
\end{array}\right.
$$

If $\left(\frac{a}{p}\right)=1$ we say that a is a quadratic residue $\bmod p$ and otherwise a is a quadratic nonresidue $\bmod p$.

Theorem 25 (Euler's Criterion). Let p be an odd prime and let a be and integer coprime with p. Then

$$
a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right) \quad(\bmod p)
$$

Proof. The congruence $x^{2} \equiv a(\bmod p)$ has at most 2 solutions modulo p. Suppose that it has a solution (so that $\left(\frac{a}{p}\right)=1$ and that $b^{2} \equiv a(\bmod p)$.
From $b^{2} \equiv a(\bmod p)$, we get

$$
a^{\frac{p-1}{2}} \equiv\left(b^{2}\right)^{\frac{p-1}{2}} \equiv b^{p-1} \equiv 1 \quad(\bmod p)
$$

Thus $a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)$ as required.
And suppose that $x^{2} \equiv a(\bmod p)$ has no solution. Split the integers into $\frac{p-1}{2}$ pairs (r, s) with $r s \equiv a(\bmod p)$. Thus

$$
(p-1)!\equiv a^{\frac{p-1}{2}} \quad(\bmod p)
$$

Note $(p-1)!\equiv-1(\bmod p)$ by Wilson's Theorem, so $a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)(\bmod p)$.
20. Lecture: Monday, October 30, 2000

Extend the definition of the Legendre symbol to $\left(\frac{a}{p}\right)$ where p is a prime and $p \mid a$ by putting $\left(\frac{a}{p}\right)=0$ in this case.

Theorem 26. Let p be an odd prime and let a and b be integers. Then

$$
\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)
$$

Also $\left(\frac{-1}{p}\right)=(-1)^{\frac{p(p-1)}{2}}$.
Proof. The first part plainly holds if $p \mid a b$. So we may assume that $p \not \backslash a$ and $p \nmid b$. By Euler's Criterion,

$$
\left(\frac{a b}{p}\right) \equiv(a b)^{\frac{p-1}{2}} \equiv\left(a^{\frac{p-1}{2}}\right)\left(b^{\frac{p-1}{2}}\right) \equiv\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \quad(\bmod p)
$$

Since $\left(\frac{a b}{p}\right)$ and $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ are in $\{-1,1\}$ and p is and odd prime, we see that

$$
\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)
$$

Similarly, by Euler's Criterion,

$$
(-1)^{\frac{p(p-1)}{2}} \equiv\left(\frac{-1}{p}\right) \quad(\bmod p)
$$

and since p is an odd prime $\left(\frac{-1}{p}\right)=(-1)^{\frac{p(p-1)}{2}}$.
21. Lecture: Wednesday, November 1, 2000

Theorem 27 (Gauss' Lemma). Let p be an odd prime and let a be an integer coprime with p. Let μ be the number of integers from $\left\{a, 2 a, \ldots,\left(\frac{p-1}{2}\right) a\right\}$ whose residues modulo p of least absolute value are negative. Then

$$
\left(\frac{a}{p}\right)=(-1)^{\mu}
$$

E.g. take $p=5$ and $a=2$. The set $\{2,4\}$. The residues $\bmod 5$ of least absolute value are $2,-1$. Thus $\mu=1$ hence $\left(\frac{2}{5}\right)=(-1)^{1}=-1$.
Proof. Replace the integers $a, \ldots,\left(\frac{p-1}{2}\right) a$ by their residues of least absolute value.
Denote the positive ones by $r_{1}, \ldots, r_{\frac{p-1}{2}-\mu}$ and the negative ones by $-s_{1}, \ldots,-s_{\mu}$.
Plainly no two r_{i} 's are equal and no two s_{j} 's are equal.

Observe that if $m_{1} a \equiv r_{i}(\bmod p)$ and $m_{2} a \equiv-s_{j}(\bmod p)$ with $r_{i}=s_{j}$ then $\left(m_{1}+m_{2}\right) a \equiv 0$ $(\bmod p)$, hence $p \mid m_{1}+m+2$, which is not possible if $1 \leq m_{t} \leq \frac{p-1}{2}$ for $t=1,2$.
Therefore, no r_{i} is equal to an s_{j}. In particular, $r_{1}, \ldots, r_{\frac{p_{1}}{2}-\mu}, s_{1}, \ldots, s_{\mu}$ is a rearrangement of $1, \ldots, \frac{p-1}{2}$. Thus

$$
a(2 a) \cdots\left(\frac{p-1}{2}\right) \equiv 1 \cdot 2 \cdots\left(\frac{p-1}{2}\right)(-1)^{\mu} \quad(\bmod p)
$$

and so $a^{\frac{p-1}{2}} \equiv(-1)^{\mu}(\bmod p)$. The result now follows from Euler's Criterion.
Corollary . If p is an odd prime, then

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}
$$

Proof. We apply Gauss' Lemma. We consider the number of integers from $\left\{1,2,4, \ldots, 2\left(\frac{p-1}{2}\right)\right\}$ whose residues of least absolute value are negative.

$$
\mu=\left(\frac{p-1}{2}\right)-\left\lfloor\frac{p}{4}\right\rfloor
$$

If $p=8 k+1$ then $\mu=4 k-\left\lfloor\frac{8 k+1}{4}\right\rfloor=4 k-2 k \equiv 0(\bmod 2)$.
If $p=8 k+3$ then $\mu=4 k+1-2 k=2 k+1 \equiv 1(\bmod 2)$.
If $p=8 k+5$ then $\mu=4 k+2-(2 k+1)=2 k+1 \equiv 1(\bmod 2)$.
If $p=8 k+7$ then $\mu=4 k+3-(2 k+1)=2 k+2 \equiv 0(\bmod 2)$.
Therefore, 2 is a square modulo p if $p \equiv \pm 1(\bmod 8)$ and 2 is a quadratic nonresidue if $p \equiv \pm 3$ $(\bmod 8)$.
22. Lecture: Friday, November 3, 2000

Theorem 28 (Law of Quadratic Reciprocity). If p and q are distinct odd primes, then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) \equiv(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}
$$

Euler had stated the law. Legendre attempted to prove it. Gauss gave 8 proofs.
Proof. By Gauss' Lemma, $\left(\frac{q}{p}\right)=(-1)^{\mu}$ and $\left(\frac{q}{p}\right)=(-1)^{\nu}$, where μ is the number of integers from $\left\{q, 2 q, \ldots,\left(\frac{p-1}{2}\right) q\right\}$ whose residue $\bmod p$ of least absolute value is negative, and ν is the number of integers from $\left\{p, 2 p, \ldots,\left(\frac{q-1}{2}\right) p\right\}$ whose residue $\bmod q$ of least absolute value is negative.
It suffices to show that $\mu+\nu=\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)(\bmod 2)$.
Given x with $1 \leq x \leq \frac{p-1}{2}$ we determine y such that $-\frac{p}{2}<q x-p y<\frac{p}{2}$.
Note that $-\frac{1}{2}-\frac{q}{p} x<-y<\frac{1}{2}-\frac{q}{p} x$ so y is uniquely determined and that $q x-p y$ is the residue mod p of least absolute value of $q x$.

Note that y is nonnegative. If $y=0$ there is no contribution to μ since $q x \geq 0$.
Further, if $x=\frac{p-1}{2}$, then

$$
\frac{q}{p} x-\frac{1}{2}=\frac{q\left(\frac{p-1}{2}\right)}{p}-\frac{1}{2}=\frac{q}{2}\left(\frac{p-1}{p}\right)-\frac{1}{2}<\frac{q-1}{2}
$$

hence $y \leq \frac{q-1}{2}$ (since y is an integer).
Thus the number μ corresponds to the number of combinations of x and y from the sequences

$$
\begin{aligned}
& (A): 1,2, \ldots, \frac{p-1}{2} \\
& (B): 1,2, \ldots, \frac{q-1}{2}
\end{aligned}
$$

respectively, such that $-\frac{p}{2}<q x-p y<0$, or equivalently that $0<p y-q x<\frac{p}{2}$.
Similarly, ν is the number of combinations of x and y from the sequences (A) and (B) respectively, for which $-\frac{q}{2}>p y-q x<0$.
For any other pair (x, y) with x from (A) and y from (B), either $p y-q x<-\frac{q}{2}$ or $p y-q x>\frac{p}{2}$.
Let ρ be the number of pairs (x, y) for which the first possibility holds, and λ the number of pairs for which the second possibility holds. Then

$$
\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)=\mu+\nu+\rho+\lambda
$$

As x and y run through (A) and (B) respectively, $x^{\prime}=\frac{p+1}{2}-x$ and $y^{\prime}=\frac{q+1}{2}-y$ run through (A) and (B) respectively, but in reverse order.
And note $p y-q x>\frac{p}{2}$ if and only if $p y^{\prime}-q x^{\prime}=p\left(\frac{q+1}{2}-y\right)-q\left(\frac{p+1}{2}-x\right)=\frac{p-q}{2}-(p y-q x)<-\frac{q}{2}$.
Further, $p y-q x<-\frac{y}{2}$ if and only if $p y^{\prime}-q x^{\prime}=\frac{p-q}{2}-(p y-q x)>\frac{p}{2}$.
Then $\lambda=\rho$. So

$$
\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)=\mu+\nu+2 \lambda \equiv \mu+\nu \quad(\bmod 2)
$$

Examples:

(1) What is $\left(\frac{13}{17}\right)$?

By the Law of Quadratic Reciprocity, $\left(\frac{13}{17}\right)\left(\frac{17}{13}\right)=(-1)^{\left(\frac{17-1}{2}\right)\left(\frac{13-1}{2}\right)}=1$.
$\operatorname{But}\left(\frac{17}{13}\right)=\left(\frac{4}{13}\right)=1$ so $\left(\frac{13}{17}\right)=1$.
(2) What is $\left(\frac{713}{1009}\right)$?

1009 is prime and $713=23 \cdot 31$. So $\left(\frac{713}{1009}\right)=\left(\frac{23}{1009}\right)\left(\frac{31}{1009}\right)$.
By the Law of Quadratic Reciprocity, $\left(\frac{23}{1009}\right)=\left(\frac{1009}{23}\right)=\left(\frac{20}{23}\right)$ and $\left(\frac{31}{1009}\right)=\left(\frac{1009}{31}\right)=\left(\frac{17}{31}\right)$.
Now, $\left(\frac{20}{23}\right)=\left(\frac{4}{23}\right)\left(\frac{5}{23}\right)=\left(\frac{5}{23}\right)$ and $\left(\frac{5}{23}\right)=\left(\frac{23}{5}\right)=\left(\frac{3}{5}\right)=-1$.
Further $\left(\frac{17}{31}\right)=\left(\frac{31}{17}\right)=\left(\frac{14}{17}\right)=\left(\frac{2}{17}\right)\left(\frac{7}{17}\right)$.

Applying the result on the quadratic character of 2 from our corollary to Gauss' Lemma, we have $\left(\frac{2}{17}\right)=1$, so $\left(\frac{17}{31}\right)=1 \cdot\left(\frac{7}{17}\right)=\left(\frac{3}{7}\right)=-1$.
Thus $\left(\frac{713}{1009}\right)=1$.
(3) 5 is a quadratic residue for all primes p of the form $10 k \pm 1$ and is a quadratic nonresidue for all primes of the form $10 k \pm 3$ since by the Law of Quadratic Reciprocity, $\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)$, and 1 and -1 are quadratic residues $\bmod 5$ while 3 and -3 are not.
(4) The equation

$$
x^{4}-17 y^{4}=2 w^{2}
$$

has no solution in the integers x, y, w.
Assume we have a solution. We may suppose that x and y are coprime, hence that x and w are coprime.
If p is an odd prime which divides w then $\left(\frac{17}{p}\right)=1$ since $x^{4} \equiv 17 y^{4}(\bmod p)$.
By the Law of Quadratic Reciprocity, $\left(\frac{p}{17}\right)(-1)^{\left(\frac{17-1}{2}\right)\left(\frac{p-1}{2}\right)}=1$ so p is a quadratic residue of 17. Further, $\left(\frac{2}{17}\right)=(-1)^{\frac{17^{2}-1}{8}}=1$.

Thus, $w \equiv t^{2}(\bmod 17)$ for some t. Therefore, $x^{4} \equiv 2 t^{4}(\bmod 17)$ so there exists an integer r with $r^{4} \equiv 2(\bmod 17)$, which is a contradiction, since no such r exists.
(5) Is the congruence $3 x^{2}-7 x-42 \equiv 0(\bmod 391)$ solvable?

Note $391=17 \cdot 23$.
Multiply by $12: 36 x^{2}+84 x-516 \equiv 0(\bmod 391)$ thus we have $(6 x+7)^{2} \equiv 565(\bmod 391)$. This is equivalent to solving $x^{2} \equiv 174(\bmod 391)$.
Note $x^{2} \equiv 174(\bmod 17)$ is $x^{2} \equiv 4(\bmod 17)$, which has a solution.
Also, $x^{2} \equiv 174(\bmod 23)$ if and only if $x^{2} \equiv 13(\bmod 23)$.
And $\left(\frac{13}{23}\right)=\left(\frac{23}{13}\right)=\left(\frac{10}{13}\right)=\left(\frac{2}{13}\right)\left(\frac{5}{13}\right)=-\left(\frac{5}{13}\right)=-\left(\frac{13}{5}\right)=-\left(\frac{3}{5}\right)=1$. Hence by the Chinese Remainder Theorem, the original congruence has a solution.

23. Lecture: Monday, November 6, 2000

Review of congruences

Recall: $a, b \in \mathbb{Z}$ implies there exist $x, y \in \mathbb{Z}$ such that $a x+b y=\operatorname{gcd}(a, b) . x, y$ are found using the Euclidean Algorithm.

Theorem 29 (Chinese Remainder Theorem). Let $m_{1}, \ldots, m_{t} \in \mathbb{Z}^{+}$with $\operatorname{gcd}\left(m_{i}, m_{j}\right)$ for $i \neq j$. Set $m=m_{1} \cdots m_{t}$.
Let $b_{1}, \ldots, b_{t} \in \mathbb{Z}^{+}$. Then the simultaneous congruences

$$
\begin{array}{rcll}
x & \equiv & b_{1} & \left(\bmod m_{1}\right) \\
x & \equiv & b_{2} & \left(\bmod m_{2}\right) \\
& \vdots & & \\
x & \equiv b_{t} & \left(\bmod m_{t}\right)
\end{array}
$$

have a unique solution modulo m.
Proof. Let $n_{i}=\frac{M}{m_{i}}$ for $i=1, \ldots, t$.
Then $\operatorname{gcd}\left(m_{i}, n_{i}\right)=1$ so there exist $r_{i}, s_{i} \in \mathbb{Z}$ such that $r_{i} n_{i}+s_{i} m_{i}=1$ for $i=1, \ldots, t$.
Let $e_{i}=r_{i} n_{i}$ so that $e_{i} \equiv 1\left(\bmod m_{i}\right)$.
Then take $x_{0}=\sum_{i=1}^{t} b_{i} e_{i}$.
Notice that $x_{0} \equiv b_{i}\left(\bmod m_{i}\right)$ for $i=1, \ldots, t$.
Suppose also $x_{1} \equiv b_{i}\left(\bmod M_{i}\right)$ for $i=1, \ldots, t$.
Then $m_{i} \mid x_{1}-x_{0}$ for $i=1, \ldots, t$ and since $\operatorname{gcd}\left(m_{i}, m_{j}\right)$ for $i \neq j$ then $m=\prod_{i=1}^{t} m_{i} d v x_{1}-x_{0}$.
Thus there is a unique solution modulo m.
For any positive integer $n,(\mathbb{Z} / n \mathbb{Z})^{*}$ is the set of invertible elements in $\mathbb{Z} / n \mathbb{Z}$. In particular, it is the set of congruence classes $r+n \mathbb{Z}$ for which there exists $s+n \mathbb{Z}$ with $(r+n \mathbb{Z})(s+n \mathbb{Z})=1+n \mathbb{Z}$.

Theorem 30. Let m_{1}, \ldots, m_{t} be positive integers with $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $i \neq j$ and put $m=$ $m_{1} \cdots m_{t}$.
Then the ring $\mathbb{Z} / m \mathbb{Z}$ is isomorphic to the ring $\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}$ and the group $(\mathbb{Z} / m \mathbb{Z})^{*}$ is isomorphic to the group $\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{*} \times \cdots \times\left(\mathbb{Z} / m_{k} \mathbb{Z}\right)^{*}$.
Proof. Let $\psi: \mathbb{Z} \rightarrow \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}$ be defined by $\psi(n)=\left(n+m_{1} \mathbb{Z}, \ldots, n+m_{t} \mathbb{Z}\right)$.
We check that ψ is a ring morphism.
ψ is surjective by the Chinese Remainder Theorem. Also by the Chinese Remainder Theorem, $\operatorname{ker} \psi=m \mathbb{Z}$. Thus by the First Isomorphism Theorem for Rings,

$$
\mathbb{Z} / m \mathbb{Z} \cong \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}
$$

Let $\lambda:(\mathbb{Z} / m \mathbb{Z})^{*} \rightarrow\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{*} \times \cdots \times\left(\mathbb{Z} / m_{k} \mathbb{Z}\right)^{*}$ be defined by $\lambda(n+m \mathbb{Z})=\left(n+m_{1} \mathbb{Z}, \ldots, n+m_{t} \mathbb{Z}\right)$. We see that λ is a group morphism. It is bijective by the Chinese Remainder Theorem.
Corollary 1. Let m_{1}, \ldots, m_{t} be positive integers which are pairwise coprime. Put $m=m_{1} \cdots m_{t}$. Then

$$
\varphi(m)=\varphi\left(m_{1}\right) \cdots \varphi\left(m_{t}\right)
$$

Proof. $\varphi(m)=\left|(\mathbb{Z} / m \mathbb{Z})^{*}\right|$ and

$$
\varphi\left(m_{1}\right) \cdots \varphi\left(m_{t}\right)=\left|\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{*}\right| \cdots\left|\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{*}\right|=\left|\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{*} \times \cdots \times\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{*}\right|
$$

and so the result follows from Theorem 30.
Corollary 2. Let $m=p_{1}{ }^{a_{1}} \cdots p_{t}{ }^{a_{t}}$ where $p_{1}, \cdots p_{t}$ are distinct primes, a_{1}, \ldots, a_{t} positive integers. Then

$$
\varphi(m)=m \prod_{i=1}^{t}\left(1-\frac{1}{p_{i}}\right)
$$

Proof. Take $m_{i}=p_{i}{ }^{a_{i}}$ for $i=1, \ldots, t$ in Corollary 1.
Since $\varphi\left(p_{i}^{a_{i}}\right)=p_{i}^{a_{i}}-p_{i}^{a_{i}-1}=p_{i}\left(1-\frac{1}{p_{i}}\right)$, then

$$
\varphi(m)=\varphi\left(p_{1}^{a_{1}}\right) \cdots \varphi\left(p_{t}^{a_{t}}\right)=p_{1}^{a_{i}} \cdots p_{t}^{a_{t}}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{t}}\right)=m \prod_{i=1}^{t}\left(1-\frac{1}{p_{i}}\right)
$$

Proposition 1. Let p be a prime. If $d \mid p-1$ then $x^{d} \equiv 1(\bmod p)$ has exactly d solutions modulo p.

Proof. Suppose $p-1=d k$ with $k \in \mathbb{Z}^{+}$. Then

$$
\frac{x^{p-1}-1}{x^{d}-1}=\frac{\left(x^{d}\right)^{k}-1}{x^{d}-1}=\left(x^{d}\right)^{k-1}+\cdots+1=g(x) \in \mathbb{Z} / p \mathbb{Z}[x]
$$

By Fermat's Theorem, $x^{p-1}-1$ has $p-1$ distinct roots in $\mathbb{Z} / p \mathbb{Z}$ so $\left(x^{d}-1\right) g(x)$ factors into linear factors in $\mathbb{Z} / p \mathbb{Z}[x]$ and our result follows.

Theorem 31. $(\mathbb{Z} / p \mathbb{Z})^{*}$ is a cyclic group.
Proof. For each divisor d of $p-1$ we let $\lambda(d)$ denote the number of elements of $(\mathbb{Z} / p \mathbb{Z})^{*}$ of order d. By Proposition 1, there are exactly d elements of $(\mathbb{Z} / p \mathbb{Z})^{*}$ whose order divides d hence

$$
d=\sum_{c \mid d} \lambda(c)
$$

Now by Möbius inversion, we then have

$$
\lambda(d)=\sum_{c \mid d} \mu(c) \frac{d}{c}=d \sum_{c \mid d} \frac{\mu(c)}{c}=d \prod_{p \mid d}\left(1-\frac{1}{p}\right)=\varphi(d)
$$

Thus there are $\varphi(p-1)$ elements of $(\mathbb{Z} / p \mathbb{Z})^{*}$ of order $p-1$. In particular, $(\mathbb{Z} / p \mathbb{Z})^{*}$ is cyclic.
Definition. Let n be a positive integer and let a be an integer. a is said to be a primitive root modulo n if $a+n \mathbb{Z}$ generates $(\mathbb{Z} / n \mathbb{Z})^{*}$.

24. Lecture: Wednesday, November 8, 2000

Note: For any prime $p(\mathbb{Z} / p \mathbb{Z})^{*}$ is cyclic and so there exists a primitive root modulo p. In fact, there are $\varphi(p-1)$ primitive roots modulo p.
Artin conjectured that if a is a positive integer and a is not a perfect square, then a is a primitive root modulo p for infinitely many primes p. This is still open. It can be deduced from the generalized Riemann Hypothesis.
(Why do we require a not a perfect square? $p-1$ is even. We want a to have order $p-1$. Well, if $a=k^{2}$ then no power of a is congruent to k, for if $a^{i} \equiv k$ then $a^{2 i} \equiv a$ so $a^{2 i-1} \equiv 1$ so $p-1 \mid 2 i-1$, but even cannot divide odd!)
Notice 2 is a primitive root $\bmod 5\left(2 \equiv 2,2^{2} \equiv 4,2^{3} \equiv 5,2^{4} \equiv 1\right)$ but 2 is not a primitive root modulo 7 since $2^{3} \equiv 1$.
In general, $(\mathbb{Z} / n \mathbb{Z})^{*}$ is not cyclic so primitive roots do not exist modulo n.
(E.g. $(\mathbb{Z} / 8 \mathbb{Z})^{*}=\{[1],[3],[5],[7]\}$ and $1^{2} \equiv 1,3^{2} \equiv 1,5^{2} \equiv 1,7^{2} \equiv 1$. Therefore this group is not cyclic!)

Proposition 2. Let p be a prime. If $\ell \geq 1$ and $a \equiv b\left(\bmod p^{\ell}\right)$, then $a^{p} \equiv b^{p}\left(\bmod p^{\ell+1}\right)$.

Proof. We may write $a=b+c p^{\ell}$ for some $c \in \mathbb{Z}$. Then

$$
a^{p}=\left(b+c p^{\ell}\right)^{p}=b^{p}+\binom{p}{1} b^{p-1} c p^{\ell}+\binom{p}{2} b^{p-2}\left(c p^{\ell}\right)^{2}+\cdots
$$

So $a^{p} \equiv b^{p}\left(\bmod p^{\ell+1}\right)$ since $2 \ell \geq \ell+1$.
Proposition 3. If $\ell \geq 2$ and p is an odd prime, then for any integer a,

$$
(1+a p)^{p^{\ell-2}} \equiv 1+a p^{\ell-1} \quad\left(\bmod p^{\ell}\right)
$$

Proof. We prove the result by induction on ℓ.
The result is immediate for $\ell=2$. Assume the result holds for some integer ℓ with $\ell \geq 2$ and we shall prove it for $\ell+1$.
By Proposition 2, and our inductive hypothesis,

$$
\begin{gathered}
(1+a p)^{p^{\ell-1}} \equiv\left(1+a p^{\ell-1}\right)^{p} \quad\left(\bmod p^{\ell+1}\right) \\
\equiv 1+\binom{p}{1} a p^{\ell-1}+\binom{p}{2}\left(a p^{\ell-1}\right)^{2}+\cdots \quad\left(\bmod p^{\ell+1}\right)
\end{gathered}
$$

Note that $p^{2(\ell-1)+1}$ divides $\left(a p^{\ell-1}\right)^{k}$ for $k=3, \ldots, p$ since $\ell \geq 2$ implies that $2(\ell-1)+1 \leq 3(\ell-1) \leq$ $k(\ell-1)$.
Further, $p^{2(\ell-1)+1}$ divides $\binom{p}{2}\left(a p^{\ell-1}\right)^{2}$ also, since $\binom{p}{2}\left(a p^{\ell-1}\right)^{2}=\frac{p(p-1)}{2}\left(a p^{\ell-1}\right)^{2}=\frac{p-1}{2}\left(a p^{\ell}\right)^{2}$. Note $\frac{p-1}{2}$ is an integer since p is odd.
So $p^{2(\ell-1)+1}$ divides the sum

$$
\binom{p}{2}\left(a p^{\ell-1}\right)^{2}+\binom{p}{3}\left(a p^{\ell-1}\right)^{3}+\cdots+\binom{p}{p}\left(a p^{\ell-1}\right)^{p} \quad\left(\bmod p^{\ell+1}\right)
$$

Thus since $\ell \geq 2$ implies $2(\ell-1)+1 \geq \ell+1$ since p is odd, then

$$
1+\binom{p}{1} a p^{\ell-1}+\binom{p}{2}\left(a p^{\ell-1}\right)^{2}+\cdots \quad\left(\bmod p^{\ell+1}\right) \equiv 1+\binom{p}{1} a p^{\ell-1} \equiv 1+a p^{\ell} \quad\left(\bmod p^{\ell+1}\right)
$$

The result follows by induction.
Proposition 4. If p is an odd prime, ℓ a positive integer and a an integer coprime with p then $1+$ ap has order $p^{\ell-1}$ in $\left(\mathbb{Z} / p^{\ell} \mathbb{Z}\right)^{*}$.

Proof. By Proposition 3,

$$
(1+a p)^{p^{\ell-2}} \equiv 1+a p^{\ell-1} \quad\left(\bmod p^{\ell}\right)
$$

Hence, since a is coprime with p,

$$
(1+a p)^{p^{\ell-2}} \not \equiv 1 \quad\left(\bmod p^{\ell}\right)
$$

But again by Proposition 3,

$$
(1+a p)^{p^{\ell-1}} \equiv 1+a p^{\ell} \quad\left(\bmod p^{\ell+1}\right)
$$

hence

$$
(1+a p)^{p^{\ell-1}} \equiv 1 \quad\left(\bmod p^{\ell}\right)
$$

Thus $1+a p$ has order $p^{\ell-1}$ in $\left(\mathbb{Z} / p^{\ell} \mathbb{Z}\right)^{*}$.

25. Lecture: Friday, November 10, 2000

Theorem 32. Let p be an odd prime and let ℓ be a positive integer. Then $\left(\mathbb{Z} / p^{\ell} \mathbb{Z}\right)^{*}$ is a cyclic group.

Proof. By Theorem 31, there is a primitive root g modulo p.
If $g^{p-1} \equiv 1\left(\bmod p^{2}\right)$, then

$$
(g+p)^{p-1}=g^{p-1}+\binom{p-1}{1} g^{p-2} p+\binom{p-1}{2} g^{p-3} p^{2}+\cdots
$$

so

$$
(g+p)^{p-1} \equiv 1+\binom{p-1}{1} g^{p-2} p \quad\left(\bmod p^{2}\right)
$$

hence $(g+p)^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$.
Therefore at least one of g^{p-1} and $(g+p)^{p-1}$ is not congruent to 1 modulo p^{2}. Without loss of generality, we may suppose that $g^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$.
We claim that in this case, g is a primitive root modulo p^{ℓ}.
Suppose that g has order m. By Euler's Theorem, $g^{\varphi\left(p^{\ell}\right)} \equiv 1\left(\bmod p^{2}\right)$ so $m \mid p^{\ell}-p^{\ell-1}=(p-1) p^{\ell-1}$. Write $m=d p^{s}$ where $d \mid p-1$ and $0 \leq s \leq \ell-1$.
By Fermat's Theorem, $g^{p} \equiv g(\bmod p)$. Hence $g^{p^{s}} \equiv g(\bmod p)$ provided $s \neq 0$.
But $g^{m} \equiv 1\left(\bmod p^{\ell}\right)$ so $g^{m} \equiv 1(\bmod p)$, so $g^{d} \equiv 1(\bmod p)$.
Since g is a primitive root, $p-1 \mid d$. Thus $d=p-1$, so $m=(p-1) p^{\ell}$.
Since $g^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$ and $g^{p-1} \equiv 1(\bmod p)$ there exists an integer a coprime with p such that $g^{-1} \equiv 1+a p\left(\bmod p^{2}\right)$.

And by proposition $4,1+a p$ has order $p^{\ell-1}$ in $\left(\mathbb{Z} / p^{\ell} \mathbb{Z}\right)^{*}$ and so g has order $(p-1) p^{\ell}$ hence $\left(\mathbb{Z} / p^{\ell} \mathbb{Z}\right)^{*}$ is cyclic.

Theorem 33. Let ℓ be a positive integer.
$\left(\mathbb{Z} / 2^{\ell} \mathbb{Z}\right)^{*}$ is cyclic for $\ell=1,2$.
For $\ell \geq 3$,

$$
\left(\mathbb{Z} / 2^{\ell} \mathbb{Z}\right)^{*} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \cdots
$$

In particular,

$$
\left(\mathbb{Z} / 2^{\ell} \mathbb{Z}\right)^{*}=\left\{(-1)^{a} 5^{b}+2^{\ell} \mathbb{Z}: a \in\{0,1\}, b \in\left\{0 \ldots, 2^{\ell-2}-1\right\}\right\}
$$

Proof. $(\mathbb{Z} / 2 \mathbb{Z})^{*}$ and $(\mathbb{Z} / 4 \mathbb{Z})^{*}$ are plainly cyclic. Suppose $\ell \geq 3$. We claim that

$$
\begin{equation*}
5^{2^{\ell-3}} \equiv 1+2^{\ell-1} \quad\left(\bmod 2^{\ell}\right) \tag{1}
\end{equation*}
$$

We'll prove it by induction. For $\ell=3$ we have $5=1+2^{2}\left(\bmod 2^{3}\right)$ as required.

Suppose (1) holds for some ℓ for $\ell \geq 3$.
Note that $\left(1+2^{\ell-1}\right)^{2}=1+2^{\ell}+2^{2(\ell-1)}$ and $2(\ell-1) \geq \ell+1$ for $\ell \geq 3$.
Now, $5^{2^{\ell-3}}=1+2^{\ell-1}+k 2^{\ell}$ for some $k \in \mathbb{Z}$. Hence

$$
\begin{gathered}
5^{2^{\ell-2}=\left(1+2^{\ell-1}+k 2^{\ell}\right)^{2}}=1+2^{\ell-1}+k 2^{\ell}+2^{\ell-1}+2^{2 \ell-1}+k 2^{2 \ell-1}+k 2^{\ell}+k 2^{2 \ell-1} \\
=1+2^{\ell}+k 2^{\ell+1}+2^{2 \ell-2}+k 2^{2 \ell}+k^{2} 2^{2 \ell}
\end{gathered}
$$

so $5^{2^{\ell-2}} \equiv 1+2^{\ell}\left(\bmod 2^{\ell+1}\right)$ since $2 \ell-2 \geq \ell+1$ for $\ell \geq 3$.
The result follows by induction.
Thus by $5^{2^{\ell-3}} \not \equiv 1\left(\bmod 2^{\ell}\right)$ and $5^{2^{\ell-2}} \equiv 1\left(\bmod 2^{\ell}\right)$, hence 5 has order $2^{\ell-2}$ in $\mathbb{Z} / 2^{\ell} \mathbb{Z}^{*}$.
We now show that the numbers

$$
(-1)^{a} 5^{b} \text { with } a \in\{0,1\}, b \in\left\{0, \ldots, 2^{\ell-2}-1\right\}
$$

are distinct modulo 2 , for $\ell \geq 3$.
Suppose that

$$
(-1)^{a_{1}} 5^{b_{1}} \equiv(-1)^{a_{2}} 5^{b_{2}} \quad\left(\bmod 2^{\ell}\right)
$$

with $0 \leq a_{i} \leq 1$ and $0 \leq b_{i}<2^{\ell-2}$ for $i=1,2, \ldots$.
Then

$$
(-1)^{a_{1}} 5^{b_{1}} \equiv(-1)^{a_{2}} 5^{b_{2}} \quad(\bmod 4)
$$

So $(-1)^{a_{1}} \equiv(-1)^{a_{2}}(\bmod 4)$ hence $a_{1}=a_{2}$.
Therefore $5^{b_{1}} \equiv 5^{b_{2}}\left(\bmod 2^{\ell}\right)$ and since 5 has order $2^{\ell-2}$, we see that $b_{1}=b_{2}$.
Our result follows.
Theorem 34. The only positive integers having primitive roots are $1,2,4, p^{a}$ and $2 p^{a}$ with a a positive integer and p an odd prime.

Proof. Let $n=2^{\ell_{0}} p_{1}{ }^{\ell_{1}} \cdots p_{r}{ }^{\ell_{r}}$ with $\ell_{0}, \ell_{1} \ldots, \ell_{r}$, non-negative integers and p_{1}, \ldots, p_{r} distinct odd primes. Then by Theorem $30,(\mathbb{Z} / n \mathbb{Z})^{*}$ is isomorphic to $\left(\mathbb{Z} / 2^{\ell_{0}} \mathbb{Z}\right)^{*} \times\left(\mathbb{Z} / p_{1}{ }^{\ell_{1}} \mathbb{Z}\right)^{*} \times \cdots \times\left(\mathbb{Z} / p_{r}{ }^{\ell_{r}} \mathbb{Z}\right)^{*}$.

By Theorem 32, $\left(\mathbb{Z} / p_{i}{ }^{\ell_{i}} \mathbb{Z}\right)^{*}$ is cyclic for $i=1, \ldots, r$.
By Theorem 33, $\left(\mathbb{Z} / 2^{\ell_{0}} \mathbb{Z}\right)^{*}$ is cyclic for $0 \leq \ell_{0} \leq 2$ and is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{\ell_{0}-2} \mathbb{Z}$ for $\ell \geq 3$. Therefore, the order of any element of $\mathbb{Z} / n \mathbb{Z}$ is a divisor of

$$
\lambda(n)=\operatorname{lcm}\left(b, \varphi\left(p_{1}^{\ell_{1}}\right), \ldots, \varphi\left(p_{r}^{\ell_{r}}\right)\right)
$$

where

$$
b=\left\{\begin{array}{cc}
\varphi\left(2^{\ell_{0}}\right) & \text { for } 0 \leq \ell_{0} \leq 2 \\
\frac{\varphi\left(2^{\ell_{0}}\right)}{2} & \ell_{0} \geq 3
\end{array}\right.
$$

Plainly, $\lambda(n)<\varphi\left(2^{\ell_{0}}\right) \varphi\left(p_{1}^{\ell_{1}}\right) \cdots \varphi\left(p_{r}^{\ell_{r}}\right)$ except in the cases $1,2,4, p^{a}$ and $2 p^{a}$.
Definition. $\lambda(n)$ is known as the universal exponent of n.

Theorem 35. Let n be a positive integer and define $\lambda(n)$ as before. Then for any integer a coprime with n,

$$
a^{\lambda(n)} \equiv 1 \quad(\bmod n)
$$

Proof. The proof follows from the proof of Theorem 34.
Theorem 35 gives a strengthening of Euler's Theorem.

26. Lecture: Monday, November 13, 2000

Given a prime p one can ask for an upper bound for the smallest positive integer a which is a primitive root modulo p.
Hua proved

$$
a<2^{\omega(p-1)+1} \sqrt{p}
$$

Theorem 36. If p is a prime of the form $4 q+1$ with q an odd prime then 2 is a primitive root modulo p.

Proof. Let t be the order of 2 modulo p. By Fermat's Theorem, $t \mid p-1$ so $t \mid 4 q$. Thus t is one of $1,2,4, q, 2 q$ and $4 q$.

Note that $p=13$ or $p>20$ so t is not $1,2,4$.
Further, by Euler's Criterion,

$$
2^{\frac{p-1}{2}} \equiv 2^{2 q} \equiv\left(\frac{2}{p}\right) \quad(\bmod p)
$$

But $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}=(-1)^{\frac{(4 q)^{2}+8 q}{8}}=(-1)^{q}=-1$.
Thus t is not q or $2 q$ hence $t=4 q=p-1$ as required.

Let k and ℓ be positive integers with k and ℓ coprime. Dirichlet's Theorem asserts that $k n+\ell$ is prime for infinitely many integers n. For many primes (k, ℓ), we can prove Dirichlet's Theorem by elementary means.
Consider (4,3). Suppose that there are only finitely many primes, p_{1}, \ldots, p_{k} say, of the form $4 n+3$. Consider $4 p_{1} \cdots p_{k}+3$.
This must be divisible by a prime of the form $4 m+3$ (since a product of primes congruent to 1 modulo 4 can only yield numbers congruent to 1 modulo 4), and this prime $4 n+3$ cannot be any of the p_{1}, \ldots, p_{k}.

Theorem 37. Let n be a positive integer. There are infinitely many primes congruent to 1 modulo n.

Proof. (Due to Birkhoff and Vandiver, 1904)

Let a be a positive integer with $a>2$, and consider $\Phi_{n}(a)$, the nth cyclotomic polynomial evaluated at a.

$$
\Phi_{n}(a)=\prod_{\substack{j=1,(j, n)=1}}\left(a-\zeta_{n}{ }^{j}\right)
$$

where $\zeta_{n}=e^{\frac{2 \pi i}{n}}, \Phi_{n}(x) \in \mathbb{Z}[x]$, and $x^{n}-1=\prod_{d \mid n} \Phi_{n}(x)$.
We claim that if p is a prime dividing $\Phi_{n}(a)$, then $p \mid n$ or $p \equiv 1(\bmod n)$.
To see this, note that $p \mid a^{n}-1^{n}$ hence $p \nmid a$. If $p \nless a^{d}-1$ for d a proper divisor of n, then the order of $a(\bmod p)$ is n. By Fermat's Theorem, $n \mid p-1$, hence $p \equiv 1(\bmod n)$.
Suppose next that $p \mid a^{d}-1$ for some proper divisor d of n. Then since $p \mid \Phi_{n}(a)$, then $p \left\lvert\, \frac{a^{n}-1}{a^{d}-1}\right.$. We have

$$
a^{n}=\left(1+\left(a^{d}-1\right)\right)^{\frac{n}{d}}=1+\frac{n}{d}\left(a^{d}-1\right)+\binom{n}{2}\left(a^{d}-1\right)^{2}+\binom{n}{3}\left(a^{d}-1\right)^{3}+\cdots
$$

hence

$$
\frac{a^{n}-1}{a^{d}-1}=\frac{n}{d}+\binom{n / d}{2}\left(a^{d}-1\right)+\binom{n / d}{3}\left(a^{d}-1\right)^{2}+\cdots
$$

Since $p \left\lvert\, \frac{a^{n}-1}{a^{d}-1}\right.$ and $p \mid a^{d}-1$, we conclude that $p \left\lvert\, \frac{n}{d}\right.$ hence $p \mid n$ as required.
Assume that there only finitely many primes p_{1}, \ldots, p_{k} which are congruent to 1 modulo n.

$$
\Phi_{n}(x)=x^{\varphi(n)}+\cdots \pm 1
$$

so $\Phi\left(n p_{1} \cdots p_{k} m\right)$ is not divisible by p_{i} for $i=1, \ldots, k$ and is coprime with n.
Letting $m \rightarrow \infty$ we see that for m sufficiently large, $\Phi\left(n p_{1} \cdots p_{k} m\right) \geq 2$ and so has a prime divisor congruent to 1 modulo n which is not one of $\left\{p_{1}, \ldots, p_{k}\right\}$.

This is a contradiction.
27. Lecture: Wednesday, November 15, 2000

Definition. Let G be a finite abelian group. A character of G is a homomorphism $\chi: G \rightarrow \mathbb{C}^{*}$.
The set of characters of a group form a group under $\left(\chi_{1} \cdot \chi_{2}\right)(g)=\chi_{1}(g) \chi_{2}(g)$.
This group is called the dual group of G and is denoted \hat{G}.
The identity of \hat{G} is the character χ_{0} where $\chi_{0}(g)=1$ for all $g \in G$. χ_{0} is known as the principal character.

Note that if $|G|=n$ then $g^{n}=e$ for all $g \in G$, hence $(\chi(g))^{n}=1$ so $\chi(g)$ is an nth root of unity.

Theorem 38. Let G be a finite abelian group. Then
(i) $|\hat{G}|=|G|$
(ii) $\hat{G} \cong G$
(iii) We have

$$
\sum_{\chi \in \hat{G}} \chi(g)= \begin{cases}|G| & \text { if } g=e \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\sum_{g \in G} \chi(g)= \begin{cases}|G| & \text { if } \chi=\chi_{0} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Recall that any finite abelian group is the direct product of cyclic groups.
Hence there exist $g_{1}, \ldots, g_{r} \in G$ and $h_{1}, \ldots, h_{r} \in \mathbb{N}$ with $h_{1} \cdots h_{r}=n$ such that every element $g \in G$ has a unique representation in the form $g=g_{1}{ }^{a_{1}} \cdots g_{r}{ }^{a_{r}}$ with $0 \leq a_{i} \leq h_{i}$ for $i=1, \ldots, r$ and $g_{i}{ }^{h_{i}}=e$ for $i=1, \ldots, r$.

Now any character is determined by its action on g_{1}, \ldots, g_{r}. But $\left(\chi\left(g_{i}\right)\right)^{h_{i}}=1$.
Therefore $\chi\left(g_{i}\right)$ is an h_{i} th root of unity. Hence there are at most $h_{1} \cdots h_{r}$ characters.
But there are at least $h_{1} \cdots h_{r}$ characters, since if w_{i} is a h_{i} th root of unity, we may define $\chi\left(g_{i}\right)=w_{i}$ for each i and extending multiplicatively to G.
(i) Hence $|G|=|\hat{G}|$.
(ii) Let χ_{i} be the character which maps g_{i} to $e^{\frac{2 \pi i}{h_{i}}}$ and maps g_{j} to 1 , for $j \neq i$.

Define $\phi: G \rightarrow \hat{G}$ by

$$
\phi\left(g_{1}{ }^{a_{1}} \cdots g_{r}{ }^{a_{r}}\right)=\chi_{1}{ }^{a_{1}} \cdots \chi_{r}{ }^{a_{r}}
$$

Note ϕ is a homomorphism.
Clearly ϕ is injective since

$$
\chi_{1}{ }^{a_{1}} \cdots \chi_{r}{ }^{a_{r}}\left(g_{j}\right)=e^{\frac{2 \pi j a_{j}}{h_{j}}}
$$

Therefore, ϕ is surjective since G is finite and $|G|=|\hat{G}|$.
Therefore, $G \cong \hat{G}$.
(iii) Let $S(g)=\sum_{\chi \in G} \chi(g)$.

If $g=e$ then $\chi(e)=1$ for all $\chi \in \hat{G}$ so $S(e)=|\hat{G}|=|G|$.
So assume $g \neq e$. Then there exists a character $\chi_{1} \in \hat{G}$ such that $\chi_{1}(g) \neq 1$. Now

$$
\begin{aligned}
& S(g)=\sum_{\chi \in \hat{G}} \chi(g)=\sum_{\chi \in \hat{G}}\left(\chi_{1} \chi\right)(g) \\
& =\chi_{1}(g) \sum_{\chi \in \hat{G}} \chi(g)=\chi_{1}(g) S(g)
\end{aligned}
$$

Therefore $S(g)=0$ since $\chi_{1}(g) \neq 1$, as required.
Let $T(\chi)=\sum_{g \in G} \chi(g)$.
If $\chi=\chi_{0}$ then $\chi_{0}(g)=1$ for all $g \in G$; therefore $T(\chi)=|G|$.
If $\chi \neq \chi_{0}$ then there exists $g_{1} \in G$ such that $\chi\left(g_{1}\right) \neq 1$. So

$$
T(\chi)=\sum_{g \in G} \chi\left(g_{1} g\right)=\chi\left(g_{1}\right) T(\chi)
$$

Therefore $T(\chi)=0$ since $\chi\left(g_{1}\right) \neq 1$.

28. Lecture: Friday, November 17, 2000

Let k be a positive integer and denote $(\mathbb{Z} / k \mathbb{Z})^{*}$ by $G(k)$. Let χ be a character on $G(k)$. We associate to it a map from \mathbb{Z} to \mathbb{C}^{*}. which we also denote by χ, by putting

$$
\chi(a)=\chi([a])
$$

where $[a]$ denote the congruence class of a for a coprime with k, and $\chi(a)=0$ otherwise. χ is known as a character mod k.
Theorem 39. Let χ be a character mod k.
(a) If $(n, k)=1$ then $\chi(n)$ is a kth root of unity.
(b) The function χ is completely multiplicative, i.e. $\chi(m n)=\chi(m) \chi(n)$ for all $m, n \in \mathbb{Z}$.
(c) χ is periodic modulo k, i.e. $\chi(n+k)=\chi(n)$ for all $n \in \mathbb{Z}$.
(d) We have

$$
\sum_{n=1}^{k} \chi(n)= \begin{cases}\varphi(k) & \text { if } \chi \text { is the principal character } \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\sum_{\chi a \text { character } \bmod k} \chi(n)= \begin{cases}\varphi(k) & \text { if } n \equiv 1(\bmod k) \\ 0 & \text { otherwise }\end{cases}
$$

(e) Let $\bar{\chi}$ denote the conjugate character to χ.

In particular, $\bar{\chi}(n)=\overline{\chi(n)}$ for all $n \in \mathbb{Z}$.
Let χ^{\prime} be a character mod k. Then

$$
\sum_{n=1}^{k} \chi(n) \chi^{\prime}(n)= \begin{cases}\varphi(k) & \text { if } \chi^{\prime}=\bar{\chi} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\sum_{\chi a \text { character mod } k} \chi(n) \bar{\chi}(m)= \begin{cases}\varphi(k) & \text { if } n \equiv m \\ 0 & \text { otherwise }\end{cases}
$$

We'll now describe the group of characters mod k.
It is enough, by multiplicity, to discuss the characters $\bmod p^{a}$ for p prime.
Assume first that p is an odd prime. Let g be a primitive root $\bmod p^{a}$.
If n is coprime with p there is a unique integer ν with $1 \leq \nu \leq \varphi\left(p^{a}\right)$ such that $n \equiv g^{\nu}\left(\bmod p^{a}\right)$.
To each integer b with $1 \leq b \leq \varphi\left(p^{a}\right)$ we define the character $\chi^{b}(n)$ by

$$
\chi^{b}(n)=\exp \left(\frac{2 \pi i b \nu}{\varphi\left(p^{a}\right)}\right)
$$

We get in this way $\varphi\left(p^{a}\right)$ different characters $\bmod p^{a}$, and so this is the complete list.
Next suppose that $k=2^{a}$. If $a=1$ we just have the principal character. If $a=2$ then we have the principal character and the character χ_{4} where

$$
\chi_{4}(n)=\left\{\begin{array}{cl}
1 & \text { if } n \equiv 1 \quad(\bmod 4) \\
-1 & \text { if } n \equiv-1 \quad(\bmod 4) \\
0 & \text { otherwise }
\end{array}\right.
$$

If $a \geq 3$ then $\left(\mathbb{Z} / 2^{a} \mathbb{Z}\right)^{*}$ is not cyclic but for each odd integer there is a unique pair of integers (x, y) with $0 \leq x \leq 1,0 \leq y \leq 2^{a-2}$ such that

$$
n \equiv(-1)^{x} 5^{y} \quad\left(\bmod 2^{a}\right)
$$

For each b with $1 \leq b \leq \varphi\left(2^{a}\right)$ we put

$$
\chi^{b}(n)=\left\{\begin{array}{cc}
\exp \left(\pi i b x+\frac{\pi i b y}{2^{a-3}}\right. & \text { for } n \equiv 1 \quad(\bmod 2) \\
0 & \text { otherwise }
\end{array}\right.
$$

We have $\varphi\left(2^{a}\right)$ different characters $\bmod 2^{a}$, and so we have them all.
Let k be a positive integer, and let χ be a character $\bmod k$. We define, for $\operatorname{Re}(s)>1$,

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

Theorem 40. The function $L(s, \chi)$ can be analytically continued to $\operatorname{Re}(s)>0$ except when χ is the principal character.
If χ_{0} is the principal character mod k then $L\left(s, \chi_{0}\right)$ can be analytically continued to $\operatorname{Re}(s)>0$ except for the point $s=1$ where $L\left(s, \chi_{0}\right)$ has a simple pole of residue $\frac{\varphi(k)}{k}$.
Proof. Let $C(x)=\sum_{n \leq x} \chi(n)$ and

$$
E(\chi)= \begin{cases}1 & \text { if } \chi=\chi_{0} \\ 0 & \text { otherwise }\end{cases}
$$

From Theorem 39 (d),

$$
C(x)=E(\chi) \frac{\varphi(k) x}{k}+R(x)
$$

where $|R(x)| \leq 2 \varphi(k)$.
(This follows since for $\chi=\chi_{0}$,

$$
C(x)=\left\lfloor\frac{x}{k}\right\rfloor \varphi(k)+T(x)
$$

and for $\chi \neq \chi_{0}$,

$$
C(x)=\left\lfloor\frac{x}{k}\right\rfloor 0+T(x)
$$

where in both cases $0 \leq T(x) \leq \varphi(k)$.)
By Abel's summation formula, with $A(x)=\sum_{n \leq x} \chi(n)$ and $f(n)=\frac{1}{n^{s}}$, we have

$$
\begin{gathered}
\sum_{n \leq x} \frac{\chi(n)}{n^{s}}=\frac{C(x)}{x^{s}}+s \int_{1}^{x} \frac{C(u)}{u^{s+1}} d u \\
=E(\chi) \frac{\varphi(k)}{k} \frac{1}{x^{s-1}}+s E(\chi) \frac{\varphi(k)}{k}\left(\left.\frac{-u^{-s+1}}{s-1}\right|_{1} ^{x}+\frac{R(x)}{x^{s}}+s \int_{1}^{x} \frac{R(u)}{u^{s+1}} d u\right. \\
=E(\chi) \frac{\varphi(k)}{k}\left(x^{1-s}+\frac{s}{1-s}\left(x^{1-s}-1\right)\right)+\frac{R(x)}{x^{s}}+s \int_{1}^{x} \frac{R(u)}{u^{s+1}} d u
\end{gathered}
$$

For $\operatorname{Re}(s)>E(\chi)$ we see on letting $x \rightarrow \infty$ that the term on the right hand side tends to

$$
E(\chi) \frac{\varphi(k)}{k} \frac{s}{s-1}+s \int_{1}^{\infty} \frac{R(u)}{u^{s+1}} d u
$$

29. Lecture: Monday, November 20, 2000

Definition. Let $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ be a strictly increasing sequence of positive real numbers. A Dirichlet series attached to $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is a series of the form

$$
\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n} z}
$$

where $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of complex numbers, and $z \in \mathbb{C}$.
Theorem 41. If the Dirichlet series $\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n} z}$ converges for $z=z_{0}$, then it converges uniformly for $\operatorname{Re}\left(z-z_{0}\right) \geq 0$ and $\left|\arg \left(z-z_{0}\right)\right|<\alpha$ with $\alpha<\frac{\pi}{2}$.
Proof. Without loss of generality, we may assume $z_{0}=0$. Then $\sum_{n=1}^{\infty} a_{n}$ converges.
Therefore, given $\epsilon>0$, there exists $N=N(\epsilon)$ such that if $\ell, m>N$, then

$$
\left|\sum_{n=\ell}^{m} a_{n}\right|<\epsilon
$$

Denote $\sum_{n=\ell}^{m} a_{n}$ by $A_{\ell, m}$. Then

$$
\begin{aligned}
& \sum_{n=\ell}^{m} a_{n} e^{-\lambda_{n} z}=\sum_{n=\ell}^{m}\left(A_{\ell, n}-A_{\ell, n-1}\right) e^{\lambda_{n} z} \\
= & \sum_{n=\ell}^{m-1} A_{\ell, n}\left(e^{-\lambda_{n} z}-e^{-\lambda_{n+1} z}\right)+A_{\ell, m} e^{-\lambda_{m} z}
\end{aligned}
$$

Thus, for $\operatorname{Re}(z)>0$,

$$
\left|\sum_{n=\ell}^{m} a_{n} e^{-\lambda_{n} z}\right| \leq \epsilon\left(\sum_{n=\ell}^{m-1}\left|e^{-\lambda_{n} z}-e^{-\lambda_{n+1} z}\right|+1\right)
$$

But

$$
e^{-\lambda_{n} z}-e^{-\lambda_{n+1} z}=z \int_{\lambda_{n}}^{\lambda_{n+1}} e^{-t z} d t
$$

hence

$$
\left|e^{-\lambda_{n} z}-e^{-\lambda_{n+1} z}\right| \leq|z| \int_{\lambda_{n}}^{\lambda_{n+1}} e^{-t x} d t
$$

where $z=x+i y . x, y \in \mathbb{R}$. So

$$
\left|e^{-\lambda_{n} z}-e^{-\lambda_{n+1} z}\right| \leq|z|\left(-\left.\frac{e^{-t x}}{x}\right|_{\lambda_{n}} ^{\lambda_{n+1}}\right)=\frac{|z|}{x}\left(e^{-\lambda_{n} x}-e^{-\lambda_{n+1} x}\right)
$$

Therefore,

$$
\left|\sum_{n=\ell}^{m} a_{n} e^{-\lambda_{n} z}\right| \leq \epsilon\left(\frac{|z|}{x}\left(e^{-\lambda_{\ell} x}-e^{-\lambda_{m} x}\right)+1\right)
$$

Hence for $|\arg (z)|<\alpha$, we have $\frac{|z|}{x}<k$, for some $k=k(\alpha)$. Further, $\left|e^{-\lambda_{\ell} x}-e^{-\lambda_{m} x}\right| \leq 2$.
Thus $\left|\sum_{n=\ell}^{m} a_{n} e^{-\lambda_{n} z}\right|<(2 k+1) \epsilon$ and so the Dirichlet series converges for $\operatorname{Re}(z) \geq 0$ and $|\arg (z)| \leq \alpha$.

Therefore, if the series converges for $z=z_{0}$, it determines an analytic function for $\operatorname{Re}\left(z-z_{0}\right) \geq 0$. We'll show next that if the a_{n} 's are positive real numbers, then the domain of convergence for the analytic function determined by the series is limited only by a singularity on the real axis.
30. Lecture: Wednesday, November 22, 2000

Theorem 42. Let $f(z)=\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n} z}$ be a Dirichlet series with $a_{n} \in \mathbb{R}$ and $a_{n} \geq 0$, for $n=$ $1,2, \ldots$ Suppose that the series converges for $\operatorname{Re}(z)>\sigma_{0}$ with $\sigma_{0} \in \mathbb{R}$ and suppose that f can be analytically continued in a neighbourhood of σ_{0}.
Then there exists an $\epsilon>0$ such that $\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n} z}$ converges for $\operatorname{Re}(z)>\sigma_{0}-\epsilon$.
Proof. Assume, without loss of generality, that $\sigma_{0}=0$. Since f is holomorphic (analytic) in a neighbourhood of 0 and is holomorphic for $\operatorname{Re}(z)>0$ by Theorem 41 (using uniform convergence), there is a positive real number ϵ such that f is analytic in $|z-1| \leq 1+\epsilon$.
We now consider the Taylor series expansion in $|z-1| \leq 1+\epsilon$.
Note that for $\operatorname{Re}(z)>0$,

$$
f^{(m)}(z)=\sum_{n=1}^{\infty} a_{n}\left(-\lambda_{n}\right)^{m} e^{-\lambda_{n} z}
$$

hence

$$
f^{(m)}(1)=\sum_{n=1}^{\infty} a_{n}\left(-\lambda_{n}\right)^{m} e^{-\lambda_{n}}
$$

The Taylor series expansion around 1 in $|z-1| \leq 1+\epsilon$ is

$$
\sum_{m=0}^{\infty} \frac{f^{m}(1)}{m!}(z-1)^{m}
$$

We now consider f at the point $z=-\epsilon$. We have

$$
\begin{aligned}
f(-\epsilon) & \left.=\sum_{m=0}^{\infty}\left(\sum_{n=1}^{\infty} a_{n}\left(-\lambda_{n}\right)^{m} e^{-\lambda_{n}}\right)\right) \frac{(-1-\epsilon)^{m}}{m!} \\
& \left.=\sum_{m=0}^{\infty}\left(\sum_{n=1}^{\infty} a_{n}\left(\lambda_{n}\right)^{m} e^{-\lambda_{n}}\right)\right) \frac{(1+\epsilon)^{m}}{m!}
\end{aligned}
$$

and since $a_{n} \geq 0$ we may switch the orders of summation and so

$$
f(-\epsilon)=\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n}}\left(\sum_{m=1}^{\infty} \frac{\left(\lambda_{n}\right)^{m}(1+\epsilon)^{m}}{m!}\right)
$$

$$
=\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n}+\lambda_{n}(1+\epsilon)}=\sum_{n=1}^{\infty} a_{n} e^{\lambda_{n} \epsilon}=\sum_{n=1}^{\infty} a_{n} e^{\left(-\lambda_{n}\right)(-\epsilon)}
$$

Thus the series converges to f for $z=-\epsilon$ and so by Theorem 41 it converges to f for $\operatorname{Re}(z)>-\epsilon$.
31. Lecture: Friday, November 24, 2000

Theorem 43. if χ is a character mod k then $L(s, \chi)$ is nonzero for $\operatorname{Re}(s)>1$. Further, if χ is not principal then $L(1, \chi)$ is nonzero.

Proof. The first claim follows on noting that $L(s, \chi)$ converges absolutely for $\operatorname{Re}(s)>1$. Further, χ is completely multiplicative and so $L(s, \chi)$ has a Euler product representation for $\operatorname{Re}(s)>1$ given by

$$
L(s, \chi)=\prod_{p}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
$$

Since the Euler product representation converges for $\operatorname{Re}(s)>1$, then $L(s, \chi)$ is nonzero for $\operatorname{Re}(s)>$ 1.

The second assertion splits into two cases, depending on whether χ is a real or a complex character. For $\operatorname{Re}(s)>1$ we have, from the Euler product representation,

$$
\begin{aligned}
\log ^{*}(L(s, \chi)) & =\sum_{p}-\log \left(1-\frac{\chi(p)}{p^{s}}\right) \\
= & \sum_{p} \sum_{a=1}^{\infty} \frac{\chi\left(p^{a}\right)}{a p^{a s}}
\end{aligned}
$$

where \log indicates the principal branch and $\log ^{*}$ indicates a branch of the logarithm.
Let $k \geq 2$, and let ℓ be an integer coprime with k. Then

$$
\sum_{\chi \in G(k)} \bar{\chi}(\ell) \log ^{*} L(s, \chi)=\sum_{p} \sum_{a=1}^{\infty} \frac{1}{a p^{a s}} \sum_{\chi \in G(k)} \bar{\chi}(\ell) \chi\left(p^{a}\right)
$$

So by Theorem 39e,

$$
\begin{equation*}
\sum_{\chi i n G(k)} \bar{\chi}(\ell) \log ^{*} L(s, \chi)=\varphi(k) \sum_{a=1}^{\infty} \sum_{p^{a} \equiv \ell} \frac{1}{(\bmod k)} \frac{1}{a p^{a s}} \tag{1}
\end{equation*}
$$

If we take $\ell=1$ in (1) and then exponentiate both sides of (1),

$$
\prod_{\chi \in G(k)} L(s, \chi)=\exp \left(\varphi(k) \sum_{a=1}^{\infty} \sum_{p^{a} \equiv \ell} \frac{1}{(\bmod k)} \frac{p^{a s}}{}\right)
$$

and so for s real with $s>1$,

$$
\begin{equation*}
\prod_{\chi \in G(k)} L(s, \chi) \geq 1 \tag{2}
\end{equation*}
$$

Suppose first that $L(1, \chi)=0$ with χ a character which is not a real character. Then $\bar{\chi}$ is a character $\bmod k$ with $\chi \neq \chi_{0}$.
But notice that $\overline{L(s, \chi)}=L(s, \bar{\chi})$ for s real with $s>1$. Thus

$$
L(1, \bar{\chi})=\overline{L(1, \chi)}=0
$$

$L\left(s, \chi_{0}\right)$ has a simple pole at $s=1$ and $L(s, \chi)$ does not have a pole at $s=1$ unless $\chi=\chi_{0}$ by Theorem 40.
Thus as $s \rightarrow 1$ from above on the real axis,

$$
\prod_{\chi \in G(k)} L(s, \chi)=O\left((s-1)^{-1}(s-1)^{2}\right)=O(s-1)
$$

But this contradicts (2).
Next, suppose that $L(1, \chi)=0$ with χ a real character.
Put $g(s)=\frac{\zeta(s) L(s, \chi)}{\zeta(2 s)}$ for $\operatorname{Re}(s)>1$.
Consider the Euler product representation for $\operatorname{Re}(s)>1$,

$$
\begin{gathered}
g(s)=\prod_{p} \frac{\left(1-p^{-2 s}\right)}{\left(1-p^{-s}\right)\left(1-\frac{\chi(p)}{p^{s}}\right)}=\prod_{p} \frac{\left(1+p^{-s}\right)}{\left(1-\frac{\chi(p)}{p^{s}}\right)} \\
=\prod_{p}\left(1+\frac{1}{p^{s}}\right) \sum_{a=0}^{\infty} \frac{\chi\left(p^{a}\right)}{p^{a s}}=\prod_{p}\left(1+\sum_{a=1}^{\infty} \frac{\chi\left(p^{a-1}\right)+\chi\left(p^{a}\right)}{p^{a s}}\right)=\prod_{p}\left(1+\sum_{a=1}^{\infty} \frac{b\left(p^{a}\right)}{p^{a s}}\right)
\end{gathered}
$$

Note that χ is a real character and so takes on values from $\{-1,0,1\}$.
Further, χ is multiplicative and so

$$
b\left(p^{a}\right)=\chi\left(p^{a-1}\right)+\chi(p) \chi\left(p^{a-1}\right) \geq 0 \text { for } a=1,2, \ldots
$$

Thus $g(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ where $a_{1}=1$ and $a_{i} \in \mathbb{R}$ with $a_{i} \geq 0$ for $i=2,3, \ldots$
We have $g(s)=\frac{\bar{\zeta}(s) L(s, \chi)}{\zeta(2 s)}$ for $\operatorname{Re}(s)>1$.
Since the zero of $L(1, \chi)$ eliminates the pole of $\zeta(s)$ at $s=1$, and since $\zeta(2 s)$ is nonzero and analytic for $\operatorname{Re}(s)>\frac{1}{2}$, then $g(s)$ has an analytic continuation to $\operatorname{Re}(s)>\frac{1}{2}$.
We now apply Theorem 42 to conclude that the series defining g converges to g for $\operatorname{Re}(s)>\frac{1}{2}$.
Letting $s \rightarrow \frac{1}{2}$ from above on the real axis, we see, since $\zeta(2 s)$ has a pole at $s=\frac{1}{2}$,

$$
g(s)=O\left(s-\frac{1}{2}\right)=o(1)
$$

But $g(s) \geq 1$ for $\operatorname{Re}(s)>\frac{1}{2}$ since

$$
g(s)=1+\sum_{n=2}^{\infty} \frac{a_{n}}{n^{s}}
$$

with $a_{n} \geq 0$ for $n=2,3, \ldots$, which is a contradiction. Therefore $L(1, \chi) \neq 0$.

32. Lecture: Monday, November 27, 2000

Theorem 44. If ℓ and k are coprime integers with $k \geq 2$ then the series $\sum_{p \equiv \ell(\bmod k)} \frac{1}{p}$ diverges.
Proof. We appeal to (1) from Theorem 43:

$$
\frac{1}{\varphi(k)} \sum_{\chi \in G(k)} \bar{\chi}(\ell) \log L(s, \chi)=\sum_{a=1}^{\infty} \sum_{p^{a} \equiv \ell} \frac{1}{(\bmod k)} \frac{1}{a p^{a s}}
$$

Now as s tends to 1 from the right on the nonzero real axis, $(s-1)^{E(\chi)} L(s, \chi)$ tends to a finite non-zero limit by Theorem 43 .
Here $E(\chi)=1$ if $\chi=\chi_{0}, E(\chi)=0$ if $\chi \neq \chi_{0}$.
Thus $E(\chi) \log (s-1)+\log L(s, \chi)$ tends to a limit, hence $\log L(s, \chi)=-E(\chi) \log (s-1)+O(1)$ as $s \rightarrow 1$ from the right on the real axis, hence

$$
\frac{1}{\varphi(k)} \sum_{\chi \in G(k)} \bar{\chi}(\ell) \log L(s, \chi)=-\frac{1}{\varphi(k)} \log (s-1)+O(1)
$$

therefore

$$
\begin{gathered}
\sum_{a=1}^{\infty} \sum_{p^{a} \equiv \ell} \frac{1}{a \bmod k)^{a p^{a s}}=-\frac{1}{\varphi(k)} \log (s-1)+O(1)} \\
\sum_{p \equiv \ell} \frac{1}{(\bmod k)}+\sum_{a=2}^{\infty} \sum_{p^{a} \equiv \ell} \frac{1}{(\bmod k)}=-\frac{1}{\varphi p^{a s}} \log (s-1)+O(1)
\end{gathered}
$$

But for $\operatorname{Re}(s) \geq 1$ and $s \in \mathbb{R}$,

$$
\begin{gathered}
\sum_{a=2}^{\infty} \sum_{p^{a} \equiv \ell} \frac{1}{a p^{a s}} \leq \frac{1}{2} \sum_{a=2}^{\infty} \sum_{p^{a} \equiv \ell} \frac{1}{p^{a s}} \\
\leq \sum_{a=2}^{\infty}\left(\frac{1}{n^{2 s}}+\frac{1}{n^{3 s}}+\cdots\right) \leq \frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{n^{2 s}}\left(\frac{1}{1-\frac{1}{n^{s}}}\right) \leq \sum_{n=2}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
\end{gathered}
$$

Therefore

$$
\sum_{p \equiv \ell} \frac{1}{(\bmod k)} p^{s}=-\frac{1}{\varphi(k)} \log (s-1)+O(1)
$$

as $s \rightarrow 1$ from the right on the real axis, and the quantity $-\frac{1}{\varphi(k)} \log (s-1)$ blows up as $s \rightarrow 1$, so the result follows.

Let k and ℓ be coprime integers with $k \geq 2$.
Denote, for each $x \in \mathbb{R}$, the number of primes p with $p \leq x$ and $p \equiv \ell(\bmod k)$ by $\pi(x, k, \ell)$.
Then it is possible to prove that

$$
\pi(x, k, \ell) \sim \frac{1}{\varphi(k)} \frac{x}{\log x} \sim \frac{\operatorname{Li}(x)}{\varphi(k)}
$$

Let t be a real number and k a positive integer, and put $\tau(k, t)=\max \{|t|, k+2\}$.
Let $c \in \mathbb{R}$ with $0<c<1$, and define $R_{c}(k)$ by

$$
R_{c}(k)=\left\{\sigma+i t: 1-\frac{c}{\log \tau(k, t)}<\sigma\right\}
$$

There exists a positive constant c_{0} such that one can prove that if χ is a non-real character mod k, $k \geq 2$, then $L(s, \chi)$ is nonzero in $R_{c_{0}}(k)$.
For χ a real non-principal character we can't prove this, but we can show that such a c_{0} exists if we change the requirement from " $L(s, \chi)$ is nonzero in $R_{c_{0}}(k)$ " to " $L(s, \chi)$ is nonzero in $R_{c_{0}}(k)$ except perhaps for one point β on the real axis in $R_{c_{0}}(k)$ ".

Definition. If $L(s, \chi)$ vanishes at β then β is a simple zero of $L(s, \chi)$, and is known as a Siegel zero.
By the Extended Riemann Hypothesis, $L(s, \chi)$ is nonzero for $\operatorname{Re}(s)>\frac{1}{2}$ and so under this hypothesis, no Siegel zero exists.
Let k and ℓ be coprime integers with $k \geq 2$. Put $b=\beta(k)$ if there is a real nonprincipal character χ with β a zero of $L(s, \chi)$ in $R_{c_{o}}(k)$, and $b=1$ otherwise. Then there exists $a>0$ such that

$$
\pi(x, k, \ell)=\frac{\operatorname{Li}(c)}{\varphi(k)}-\frac{\lambda(b)}{b} \frac{x^{b}}{\varphi(k)}+O(x \exp (-a \sqrt{\log x}))
$$

where $\lambda(b)=0$ if $b=1$, and $\lambda(b)=\chi(\ell)$ if $b \neq 1$.
(We would like to know the term $\frac{\lambda(b)}{b} \frac{x^{b}}{\varphi(k)}$ doesn't exist (no Siegel zero exists) but we haven't been able to prove this.)
33. Lecture: Wednesday, November 29, 2000

The best "effective" estimate for the size of a Siegel zero $\beta(k)$ associated to $L(s, \chi)$ where χ is a real character mod k is due to Pintz. He proved

$$
\beta(k)<1-\frac{c}{\sqrt{k}}
$$

where c is an effectively computable positive number.
Siegel proved that for each $\epsilon>0$, there exists a positive number $c(\epsilon)$ such that

$$
\beta(k)<1-\frac{c(\epsilon)}{k^{\epsilon}}
$$

Unfortunately, given ϵ, there is no general algorithm known for computing $c(\epsilon)$.

Using Siegel's estimate, one can prove that for each positive real number H if $k \leq(\log x)^{H}$. Then

$$
\pi(x, k, \ell)=\frac{\operatorname{Li}(x)}{\varphi(k)}+O\left(\frac{x}{\exp a \sqrt{\log x}}\right)
$$

for some $a>0$. The big-O term is not effective.
One can also prove for each $H>0$,

$$
\pi(x, k, \ell)=\frac{\operatorname{Li}(x)}{\varphi(k)}+O\left(\frac{x}{(\log x)^{H}}\right)
$$

(The big-O term is not effective.)
In 1770 Waring stated without proof that every positive integer can be expressed as the sum of 4 squares, of 9 cubes, of 19 biquadrates, and so on. For each positive integer k, let $g(k)$ denote the smallest positive integer such that every positive integer can be expressed as the sum of $g(k) k$ th powers.

It was not until 1909 that Hilbert proved that $g(k)$ exists for each positive integer k, Previously it had been shown that $g(k)$ exists for $k=2,3,4,5,6,7,8$ and 10 .

From work by Vinogradov it is known that

$$
g(k)=2^{k}+\left\lfloor\left(\frac{3}{2}\right)^{k}\right\rfloor-2
$$

provided that $k \geq 5$ and

$$
3^{k}-2^{k}\left\lfloor\left(\frac{3}{2}\right)^{k}\right\rfloor \leq 2^{k}-\left\lfloor\left(\frac{3}{2}\right)^{k}\right\rfloor-2
$$

If the condition isn't satisfied, there is another explicit formula for $g(k)$.
We know that $g(2)=4, g(3)=9, g(4)=19$. We'll now prove that $g(2)=4$.
Observe that $x^{2}(\bmod 8)$ assumes only the congruences $0,1,4(\bmod 8)$ as x runs over \mathbb{Z}. Thus $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2} \not \equiv 7(\bmod 8)$. Therefore $g(2) \geq 4$.

In 1770 Lagrange proved that $g(2)=4$.
Theorem 45. If p is an odd prime then there are integers x and y such that

$$
1+x^{2}+y^{2}=m p \text { with } 1 \leq m<p
$$

Proof. Consider the set $S_{1}=\left\{x^{2}+p \mathbb{Z}: 0 \leq x \leq \frac{1}{2}(p-1)\right\}$ and the set $S_{2}=\left\{-1-y^{2}+p \mathbb{Z}: 0 \leq\right.$ $\left.y \leq \frac{1}{2}(p-1)\right\}$.

Note that $\left|S_{1}\right|=\left|S_{2}\right|=\frac{1}{2}(p+1)$. Therefore there is a congruence class in $S_{1} \cap S_{2}$. In particular, for some x with $0 \leq x \leq \frac{1}{2}(p-1)$ and some y with $0 \leq y \leq \frac{1}{2}(p-1)$,

$$
1+x^{2}+y^{2} \equiv 0 \quad(\bmod p)
$$

Therefore, $1+x^{2}+y^{2}=m p$ and

$$
0<m \leq \frac{1+\left(\frac{1}{2}(p-1)\right)^{2}+\left(\frac{1}{2}(p-1)\right)^{2}}{p}<p
$$

For his proof, Lagrange appealed to the following identity:

$$
\begin{gathered}
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right) \\
=\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}\right)^{2}+\left(x_{1} y_{2}-x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)^{2} \\
+\left(x_{1} y_{3}-x_{3} y_{1}+x_{4} y_{2}-x_{2} y_{4}\right)^{2}+\left(x_{1} y_{4}-x_{4} y_{1}+x_{2} y_{3}-x_{3} y_{2}\right)^{2}
\end{gathered}
$$

Therefore the product of two numbers which are representable as the sum of 4 squares is also representable as the sum of 4 squares.
Since $2=1^{2}+1^{2}+0^{2}+0^{2}$ it only remains to show that every odd prime is representable as the sum of 4 squares.

Theorem 46 (Lagrange's Theorem). Every positive integer can be expressed as the sum of 4 squares.
Proof. Let p be an odd prime. It remains to show that p can be expressed as the sum of 4 squares.
It follows from Theorem 45 that there is a multiple of $p, m p$, such that

$$
x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+x_{4}{ }^{2}=m p
$$

with $1 \leq m \leq p$.
Let m_{0} be the smallest positive multiple of p which can be written as the sum of 4 squares. It remains to show that $m_{0}=1$.

If m_{0} is even, then since $x_{1}^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+x_{4}{ }^{2}=m_{0} p$, we have that $x_{1}+x_{2}+x_{3}+x_{4}$ is even. We can have $x_{1}, x_{2}, x_{3}, x_{4}$ all even or all odd. Otherwise, 2 are even (say x_{1}, x_{2}), and 2 are odd $\left(x_{3}, x_{4}\right)$. Therefore, in all cases,

$$
x_{1}+x_{2}, x_{1}-x_{2}, x_{3}+x_{4}, x_{3}-x_{4}
$$

are all even, and therefore

$$
\frac{1}{2} m_{0} p=\left(x_{1}+x_{2}\right)^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{3}+x_{4}\right)^{2}+\left(x_{3}-x_{4}\right)^{2}
$$

which contradicts the minimality of m_{0}.
Thus m_{0} is odd. Assume that $m_{0}>1$.
Note that not all of $x_{1}, x_{2}, x_{3}, x_{4}$ are divisible by m_{0}, for otherwise $m_{0}{ }^{2} \mid m_{0} p$ and $1<m_{0}<p$.
Thus we can find integers $b_{1}, b_{2}, b_{3}, b_{4}$ so that $y_{i}=x_{i}-b_{i} m_{0}$ satisfies $\left|y_{i}\right|<\frac{m_{0}}{2}$ for $i=1,2,3,4$ and not all of the y_{i} 's are 0 .
Then

$$
0<y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}<4\left(\frac{1}{2} m_{0}\right)^{2}=m_{0}^{2}
$$

and $y_{1}{ }^{2}+y_{2}^{2}+y_{3}{ }^{2}+y_{4}{ }^{2} \equiv 0\left(\bmod m_{0}\right)$.

Thus there exists a positive integer m_{1} with $m_{1}<m_{0}$ such that

$$
y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}=m_{0} m_{1}
$$

Applying this, together with the fact that $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+x_{4}{ }^{2}=m_{0} p$, to Lagrange's identity, we have

$$
m_{0}^{2} m_{1} p=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}
$$

where $z_{1}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}$, etc.
But $z_{1}=\sum_{i=1}^{4} x_{1}\left(x_{1}-b_{i} m_{0}\right)$, hence $z_{1} \equiv 0\left(\bmod m_{0}\right)$. Similarly z_{2}, z_{3}, z_{4} are divisible by m_{0}.
Let $t_{i}=\frac{z_{i}}{m_{0}}$ for $i=1,2,3,4$.
Then $m_{1} p=t_{1}{ }^{2}+t_{2}{ }^{2}+t_{3}{ }^{2}+t_{4}{ }^{2}$ and $1 \leq m_{1} \leq m_{0}$, a contradiction.
Thus $m_{0}=1$ for all primes p and the result follows.

34. Lecture: Friday, December 1, 2000

Theorem 47.

$$
g(4) \leq 53
$$

Proof. We appeal to the identity

$$
\begin{aligned}
6\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2} & =(a+b)^{4}+(a-b)^{4}+(c+d)^{4}+(c-d)^{4} \\
& +(a+c)^{4}+(a-c)^{4}+(b+d)^{4}+(b-d)^{4} \\
& +(a+d)^{4}+(a-d)^{4}+(b+c)^{4}+(b-c)^{4}
\end{aligned}
$$

By Theorem 46, every integer of the form $6 x^{2}$ can be expressed as the sum of 12 fourth powers (by the identity above).
Every positive integer can be written in the form $6 k+r$ with k a nonnegative integer and $0 \leq r \leq 5$. Thus by Theorem 46 there is a representation for k as a sum of 4 squares, hence $6 k$ can be represented as a sum of 48 fourth powers.
Finally, $r=\overbrace{1^{4}+\cdots+1^{4}}^{r \text { times }}$, and the result follows.

