Nested Loops

Nested loops

+ Just as a selection structure can be nested
within another selection structure (or within
a loop), a loop can also be nested

* When one loop is nested within another,
each iteration of the “outer” loop contains
several iterations of the “inner” loop

Example — multiplication table

» Suppose you wanted to print a multiplication
table of the sort your instructor was forced to
memorize in second grade

+ Each line and column of the table has a number
between 2 and 15 as its heading; the entries at
each row/column intersection are the results
when the row heading is multiplied by the
column heading

Multiplication table program
output — an excerpt

2] 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4] 8 12 16 20 24 28 32 36

Multiplication table - headings

Print the numbers between 2 and 15, spaced evenly
Print a series of hyphens in a single line
Place an end of line character after each of the lines above

public void printHeadings () {

System.out.printf ("%8s", "");

for (int x=2; x<=15; x++)
System.out.printf ("$%$5d", x);

System.out.print("\n") ;

for (int y=0; y<80; y++)
System.out.print("-");

System.out.print("\n") ;

Multiplication table

» Outer loop controls the number of lines to
be printed; contains:
—Inner loop
— Line to print a newline character

* Inner loop controls the contents of each
line
— Row heading
— Product of current row & column headings

Code to print table

public void drawTable () {
for (int x = start; x <= size; x++)
{
for (int y = start; y <= size; y++)
{
if (y==start)
System.out.printf ("%$7d%s", x, "|");
System.out.printf ("$5d4d", (x * y));
}
System.out.printf ("\n") ;

Tracing nested loops

» Write down value of each loop counter as
it changes during loop execution

« If any output or change in other variable

occurs, write this down next to the tally of
loop counters

Example — multiplication table

X y output

2 23 4..1516 46 8..30
3 23 4 ..1516 69 12...45
4 2 .. 1516 8 ... 60

15 2 .. 1516 30 ... 225
16

Pattern of a Nested Loop

initialize outer loop
while (outer loop condition)

{
initialize inner loop
while (inner loop condition)
{
inner loop processing and update
}
}

Example Problem

Suppose we have data in the form below,
involving several ID strings. For each ID
string, a variable number of readings
have been recorded; the number of
readings for each ID is shown in the
howMany column

ID howMany Readings

4567 5 180 140 150 170 120
2318 2 170 210

5232 3 150 151 151

Our goal: read in the data and
display a summary chart like the
one shown below:

ID Average
4567 152
2318 190
5232 151

There were 15 data sets on file

Algorithm

¢ initialize count to 0
e read first ID and howMany
* while not at end of data

increment count

display ID

use a count-controlled loop to read and sum
up this ID’s howMany readings

calculate and display average for ID

read next ID and howMany

* display count

import java.util.*;

public class NestLoop {
public static void main (String [] args) {

int total =0; // total for all IDs

int thisID, /I current ID number
howMany, // number of readings for current ID
reading, /I current reading
idTotal, /I total for current ID number
idCount, /I counter for inner loop
again; /I outer loop control variable

double average; // average for current ID
Scanner kb = new Scanner(System.in);

do { / start of outer loop

System.out.print("Enter ID number");
thisID = kb.nextInt();
System.out.print

("How many readings for this ID?");
howMany = kb.nextInt();

idTotal = 0;
idCount = 0;
total++;

// inner loop starts here

// inner loop — process all readings for this ID

while (idCount < howMany) {
System.out.print ("Enter reading");
reading = kb.nextInt();
idTotal += reading;
idCount++;

}

// outer loop continues here

// continuation of outer loop

average = (double)idTotal / howMany;
System.out.print(thisID);
System.out.printf("%17.2f\n", average);
System.out.print
(“Enter O to quit, 1 to continue: ”);

again = kb.nextInt();

} while (again == 1);

System.out.println ("Total of " + total +

" records were processed.");
}// end of main
}// end of class

Using nested loops to draw
figures (ASCII art)
» Drawing figures can illustrate how nested
loops work

» Keep in mind the principle: outer loop
controls number of lines, inner loop
controls content of lines

Trace the following loop

int X, y;
for(x=0; x<5; x++)
{
for(y=5; y>0; y--)
System.out.print(“*);
System.out.print(“\n”);

Trace the following loop

import java.util.*; height = 4
Xy z
public class triangle { 043210 01
public static void main (String [] args) { 14321 012

intx, y, z, height; 2432 0123

Scanner kb = new Scanner(System.in); 343 01234

System.out.print ("Enter height: ");

height = kb.nextint(); Output: .

for (x=0; x<height; x++) . %

{

for (y=height; y>x; y--) *******

System.out.print(" *);
for (z=0; z<=x; z++)
System.out.print("* ");
System.out.print("\n");
}
}
}

« y loop prints spaces
« z loop prints stars

Loop example with break
statement

int xy; OUTPUT:
for (x=1; x<5; x++)

{
for (y=1; y<5; y++)
{

if (y > x)
break;
System.out.print(“* ”);

* * *

}
System.out.print(“\n”);

Continue statement

is valid only within loops

terminates the current loop iteration, but not
the entire loop

in a For or While, continue causes the rest of
the body statement to be skipped--in a For
statement, the update is done

in a Do-While, the exit condition is tested,
and if true, the next loop iteration is begun

Loop example with continue

int x,y;
for (x=1; x<5; x++) ouTPUT
{ * * %
for (y=1; y<5; y++) * ko k Kk k Kk *
if (y > x)
break;
System.out.print(“* ”);
}
if (x % 21=0)
continue;
System.out.print(“\n”);
}

Loop Testing and
Debugging
test data should test all sections of program
beware of infinite loops -- program doesn’t stop

check loop termination condition, and watch for “off-
by-1” problem

trace execution of loop by hand with code walk-
through

use debugging output statements

