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Motion of a Fluid Element (Fluid Kinematics)

• In a general flow field, fluid motion can be decomposed into the following 4
components

1) translation

2) linear deformation

3) rotation

4) angular deformation

Movie :
Fluid deformation

= + + +

Original fluid 
element

Deformed fluid 
element

Overall 
motion

Translation
Linear 

deformation
Rotation

Angular 
deformation

= + + +
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Fluid Kinematics (cont’d)

• Consider the following 2D, differential fluid element with corner A moving with a 
velocity of 𝑢 𝑖 + 𝑣 𝑗 . 

• Velocity components of the other corners can be determined as follows using first-
order Taylor series approximation.

𝑢

𝑢 +
𝜕𝑢

𝜕𝑦
𝑑𝑦

A B

D C

𝑥

𝑦 𝑣
𝑑𝑥

𝑑𝑦

𝑢 +
𝜕𝑢

𝜕𝑥
𝑑𝑥

𝑣 +
𝜕𝑣

𝜕𝑥
𝑑𝑥

𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦

𝑢 +
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦

𝑣 +
𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦
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Fluid Kinematics (cont’d)
• Due to different velocities of each corner, fluid element will move and deform in a 

small 𝑑𝑡 time.
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𝑑𝑦 𝑑𝑡

A B

CD

A’
B’

C’

D’

𝑣 +
𝜕𝑣
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1) Translation

• Only the position of the fluid element changes. Its size, orientation and shape remain 
the same.

• All corners are moving with the same 𝑢 and 𝑣 velocity.
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• Only the size of the fluid element changes. Its position, orientation and shape 
remain the same.

• Corner A is fixed, because all its motion was previously considered in translation.

• Corner B moves in 𝑥 direction only and corner D moves in 𝑦 direction only.
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2) Linear Deformation (cont’d)

• When we extend linear deformation to 3D, size changes in 𝑥, 𝑦 and 𝑧 directions are

𝜕𝑢

𝜕𝑥
𝑑𝑥 𝑑𝑡 ,

𝜕𝑣

𝜕𝑦
𝑑𝑦 𝑑𝑡 ,

𝜕𝑤

𝜕𝑧
𝑑𝑧 𝑑𝑡

• These values can be positive or negative.

• Size changes can also be expressed as linear strains as ‘‘Size change / Original size’’

𝜀𝑥 =

𝜕𝑢
𝜕𝑥

𝑑𝑥 𝑑𝑡

𝑑𝑥
=

𝜕𝑢

𝜕𝑥
𝑑𝑡 , 𝜀𝑦 =

𝜕𝑣
𝜕𝑦

𝑑𝑦 𝑑𝑡

𝑑𝑦
=

𝜕𝑣

𝜕𝑦
𝑑𝑡 , 𝜀𝑧 =

𝜕𝑤
𝜕𝑧

𝑑𝑧 𝑑𝑡

𝑑𝑧
=

𝜕𝑤

𝜕𝑧
𝑑𝑡

• Comparison of initial and final volume of a 3D fluid element provides an important 
quantity called dilation.
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2) Linear Deformation (cont’d)

• Initial volume of fluid element in 3D :    ∀𝑖= 𝑑𝑥 𝑑𝑦 𝑑𝑧

• Final volume of fluid element :

∀𝑓 = 𝑑𝑥 +
𝜕𝑢

𝜕𝑥
𝑑𝑥 𝑑𝑡 𝑑𝑦 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 𝑑𝑡 𝑑𝑧 +

𝜕𝑤

𝜕𝑧
𝑑𝑧 𝑑𝑡

∀𝑓 ≈ 1 +
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
𝑑𝑡 𝑑𝑥 𝑑𝑦 𝑑𝑧

• Dilation is the rate of change of volume per initial volume

Dilation =

∀𝑓 − ∀𝑖

𝑑𝑡
∀𝑖

=
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 𝛻 ∙ 𝑉

Divergence of 
the velocity field
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2) Linear Deformation (cont’d)

• Dilation (𝛻 ∙ 𝑉) is related to the compressibility of the flow.

• For incompressible flows dilation is zero, i.e. fluid element’s size can not change.

Incompressible     → 𝛻 ∙ 𝑉 = 0

Exercise : In the cylindrical coordinate system divergence of velocity is

𝛻 ∙ 𝑉 =
1

𝑟

𝜕 𝑟𝑉𝑟
𝜕𝑟

+
1

𝑟

𝜕𝑉𝜃

𝜕𝜃
+

𝜕𝑉𝑧
𝜕𝑧

Repeat the dilation calculation of the previous slide for a
differential fluid element in cylindrical coordinate system
and see if you can get the above result or not.
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2) Linear Deformation (cont’d)

Exercise : The velocity field  𝑉 = 0.3𝑥 𝑖 − 0.3𝑦 𝑗 represents the flow turning at a 90o

corner. A square is marked in the fluid as shown in 𝑡 = 0. Evaluate the new position of 
four corner points when corner ‘‘a’’ has moved to 𝑥 = 1.5 m after 𝜏 seconds.

• Evaluate the size changes and linear strains in 𝑥 and 𝑦 directions.

• Calculate area change and dilation of the element.

• Is this an incompressible flow?

a b

d c

𝑥 [m]

𝑦 [m]

1 2

1

2
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• In translation and linear deformation, changes due to 
𝜕𝑢

𝜕𝑦
and 

𝜕𝑣

𝜕𝑥
are not considered.

• These terms cause a combined rotation and angular deformation.

• In rotation, orientation of the fluid element changes.

• In angular deformation, shape of the fluid element changes.

3 & 4) Rotation and Angular Deformation

𝛼𝐴𝐵 − 𝛼𝐴𝐷

2

𝛼𝐴𝐵 − 𝛼𝐴𝐷

2

Rotation
only

𝛼𝐴𝐵 + 𝛼𝐴𝐷

2

𝛼𝐴𝐵 + 𝛼𝐴𝐷

2

Angular
deformation

only
D’

𝑥

𝑦

A, A’ B

CD 𝜕𝑣

𝜕𝑥
𝑑𝑥 𝑑𝑡

C’

𝜕𝑢

𝜕𝑦
𝑑𝑦𝑑𝑡

B’

𝛼𝐴𝐵
𝛼𝐴𝐷

Combined
rotation and 

angular 
deformation



3) & 4) Combined Rotation and Angular Deformation

• Due to combined rotation and angular 
deformation, sides AB and AD will rotate as 
shown.

tan 𝑑𝛼𝐴𝐵 ≈ 𝑑𝛼𝐴𝐵 =

𝜕𝑣
𝜕𝑥

𝑑𝑥𝑑𝑡

𝑑𝑥
=

𝜕𝑣

𝜕𝑥
𝑑𝑡

tan 𝑑𝛼𝐴𝐷 ≈ 𝑑𝛼𝐴𝐷 =

𝜕𝑢
𝜕𝑦

𝑑𝑦𝑑𝑡

𝑑𝑦
=

𝜕𝑢

𝜕𝑦
𝑑𝑡

• Angular speeds of sides AB and AD are

𝜔𝐴𝐵 =
𝑑𝛼𝐴𝐵

𝑑𝑡
=

𝜕𝑣

𝜕𝑥

𝜔𝐴𝐷 = −
𝑑𝛼𝐴𝐷

𝑑𝑡
= −

𝜕𝑢

𝜕𝑦

𝑑𝛼𝐴𝐷
𝜕𝑣

𝜕𝑥
𝑑𝑥𝑑𝑡

A
B

CD

𝜕𝑢

𝜕𝑦
𝑑𝑦𝑑𝑡

D’

B’

𝑑𝛼𝐴𝐵

Line AD rotates CW if   𝜕𝑢 𝜕𝑦 is positive. But a 
CW angular speed should be negative. Minus 
sign is added for this purpose.
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3) Rotation

• Rate of rotation of fluid element ABCD 
about the 𝑧-axis is defined as the average 
of the angular speeds of two mutually 
perpendicular lines AB and AD.

𝜔𝑧 =
1

2
(𝜔𝐴𝐵 + 𝜔𝐴𝐷) =

1

2

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
𝜔𝑧𝑑𝑡 𝑑𝑥A B

CD

𝜔𝑧𝑑𝑡 𝑑𝑦

C’

B’

𝜔𝑧

D’

• For a 3D flow field angular speeds around 𝑥 and 𝑦 axes are defined in a similar way

𝜔𝑥 =
1

2

𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
, 𝜔𝑦 =

1

2

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
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3) Rotation (cont’d)

• Angular velocity vector is defined as 

𝜔 =
1

2

𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
 𝑖 +

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
 𝑗 +

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
𝑘 =

1

2
𝛻 × 𝑉

• In cylindrical coordinate system

𝜔 =
1

2
𝛻 × 𝑉 =

1

2

1

𝑟

𝜕𝑉𝑧
𝜕𝜃

−
𝜕𝑉𝜃

𝜕𝑧
𝑖𝑟 +

𝜕𝑉𝑟
𝜕𝑧

−
𝜕𝑉𝑧
𝜕𝑟

𝑖𝜃 +
1

𝑟

𝜕 𝑟𝑉𝜃

𝜕𝑟
−

𝜕𝑉𝑟
𝜕𝜃

𝑖𝑧

• Vorticity of a flow field is defined as

 𝜉 = 2𝜔 = 𝛻 × 𝑉

• For an irrotational flow vorticity (or angular velocity, or curl of velocity) is zero 
everywhere in the flow field.

Curl of velocity
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4) Angular Deformation

• Angular deformation is related to the rate of 
change of the right angle between sides AB 
and AD, which is

𝑑𝛼𝑥𝑦

𝑑𝑡
=

𝑑𝛼𝐴𝐵

𝑑𝑡
+

𝑑𝛼𝐴𝐷

𝑑𝑡
=

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦

where 𝛼𝑥𝑦 is the shear strain in the 𝑥𝑦 plane.

• For a 3D flow field rate of shear strains in 𝑦𝑧
and 𝑥𝑧 planes can be defined in a similar way

𝑑𝛼𝑦𝑧

𝑑𝑡
=

𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧

𝑑𝛼𝑥𝑧

𝑑𝑡
=

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧

𝑑𝛼𝑥𝑦

2
𝑑𝑥A B

CD

𝑑𝛼𝑥𝑦

2
𝑑𝑦

D’

B’

C’
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4) Angular Deformation (cont’d)

• Remember that for a Newtonian fluid shear stress is proportional to the rate of shear 
strain. For a flow in the 𝑥𝑦 plane

𝜏𝑥𝑦 = 𝜇
𝑑𝛼𝑥𝑦

𝑑𝑡
= 𝜇

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

• There is a direct link between shear stress and rotationality.

• Pressure or body forces can not rotate a fluid element.

• But shear forces can create rotation.

• Shear (viscous) forces are especially important close to solid boundaries.

• Away from the solid boundaries flow may be assumed irrotational.

• A totally irrotational flow is an idealization, which can not exist in real life. But it 
is still a very useful assumption. Many aerodynamic studies are based on 
irrotational theory.

This 2nd term was zero for the “flow between 
parallel plates” example that was studied in Part 
1. In a general flow field it is not necessarily zero.
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Exercises for Kinematics of Fluid Flow

Exercise : Combine the translation, linear deformation, rotation and angular 
deformation that we studied separately in the previous slides and show that the new 
positions of corners B and D of the square fluid element ABCD are actually the ones 
shown in slide 6-4.

Exercise : Velocity field for the flow in a narrow gap is given as 𝑉 =
𝑈𝑦

ℎ
 𝑖 where

𝑈 = 4 mm/s and ℎ = 4 mm. At 𝑡 = 0 the segments AC and BD are marked to form a 
cross. Determine the positions of the marked points at 𝑡 = 1.5 s. Calculate the rate 
of angular deformation and rate of rotation of a fluid particle in this flow field
(Reference: Fox’s book).

𝑦

𝑈

𝑥

ℎ 𝑢 =
𝑈𝑜

ℎ
𝑦A(1,2) C(3,2)

B(2,3)

D(2,1)
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Exercises for Kinematics of Fluid Flow

Exercise : Fluid particles in a 2D flow field are rotating 
in circular paths about the z-axis at a constant angular 
velocity of 𝜔, as if they were a rigid body. The velocity 

field is given as 𝑉 = 𝜔𝑟 𝑖𝜃. This flow is known as a 
forced vortex. Is this a rotational flow field ?

Exercise : Fluid particles in a 2D flow field are rotating 
in circular paths according to the following velocity 

field 𝑉 =
𝐶

𝑟
𝑖𝜃. This flow is known as a free vortex. Is 

this a rotational flow field ?

𝑉𝜃
𝑥

𝑦

𝑉𝜃
𝑥

𝑦
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Exercise : In Slide 6-10 𝜏𝑥𝑦 is given for a flow in the 𝑥𝑦 plane. Use your fluid mechanics 

book to find the expression for 𝜏𝑟𝜃 for a flow in the 𝑟𝜃 plane. Calculate 𝜏𝑟𝜃 for the 
flow fields given in the above exercises. Are there angular deformation in these flows?



Differential Formulation of Continuity Equation

• Consider the following infinitesimal control volume. At its centroid

𝜌𝑉 = 𝜌𝑢 𝑖 + 𝜌𝑣 𝑗 + 𝜌𝑤𝑘

• Mass flow rates passing through the faces can be determined using first order TSE.

𝑑𝑥

𝜌𝑢 +
𝜕(𝜌𝑢)

𝜕𝑥

𝑑𝑥

2
𝑑𝑦𝑑𝑧

𝑑𝑦

𝑑𝑧

𝜌𝑤 −
𝜕(𝜌𝑤)

𝜕𝑧

𝑑𝑧

2
𝑑𝑥𝑑𝑦

𝜌𝑤 +
𝜕(𝜌𝑤)

𝜕𝑧

𝑑𝑧

2
𝑑𝑥𝑑𝑦

𝜌𝑢 −
𝜕(𝜌𝑢)

𝜕𝑥

𝑑𝑥

2
𝑑𝑦𝑑𝑧

𝜌𝑣 +
𝜕(𝜌𝑣)

𝜕𝑦

𝑑𝑦

2
𝑑𝑥𝑑𝑧𝜌𝑣 −

𝜕(𝜌𝑣)

𝜕𝑦

𝑑𝑦

2
𝑑𝑥𝑑𝑧

𝑦
𝑥

𝑧

𝜌𝑢
𝜌𝑣

𝜌𝑤
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Continuity Equation (cont’d)

• Add all the mass fluxes through the faces to get net mass outflow per unit time

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑧

• This net mass outflow rate should be balanced with the rate of change of mass with 
the differential CV

𝜕𝑚

𝜕𝑡
=

𝜕𝜌

𝜕𝑡
𝑑𝑥𝑑𝑦𝑑𝑧

resulting in the continuity equation in differential form

𝜕𝜌

𝜕𝑡
𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑧 = 0
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Rate of change of 
mass within the 
differential CV

Net mass outflow 
per unit time



Continuity Equation (cont’d)

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0 →

𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑉) = 0

• Opening up the dot product

𝜕𝜌

𝜕𝑡
+ 𝑉 ∙ 𝛻𝜌 + 𝜌 𝛻 ∙ 𝑉 = 0

𝑑𝜌

𝑑𝑡
+ 𝜌 𝛻 ∙ 𝑉 = 0 →

𝑑𝜌

𝑑𝑡
+ 𝜌

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0

• For a steady flow, using the first boxed equation :           𝛻 ∙ 𝜌𝑉 = 0

• For an incompressible flow, using the second boxed equation :           𝛻 ∙ 𝑉 = 0

( using     
𝑑𝑁

𝑑𝑡
=

𝜕𝑁

𝜕𝑡
+ 𝑉 ∙ 𝛻 𝑁 for density )

𝑑𝜌

𝑑𝑡
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Exercises for Continuity Equation

Exercise : Velocity components for a certain incompressible steady flow are as 
follows. Determine 𝑤 (Reference: Munson’s book).

𝑢 = 𝑥2 + 𝑦2 + 𝑧2

𝑣 = 𝑥𝑦 + 𝑦𝑧 + 𝑧

𝑤 =?

Exercise : For an incompressible flow, even if the flow is unsteady no time derivative 
remains in the continuity equation. What does this mean physically?

Exercise : Consider a differential CV in the cylindrical coordinate system, similar to 
the one given in slide 6-9. Using the procedure described in slide 6-20 derive the 
following continuity equation in the cylindrical coordinate system.

𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ 𝜌𝑉 =

𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕 𝑟𝜌𝑉𝑟
𝜕𝑟

+
1

𝑟

𝜕 𝜌𝑉𝜃

𝜕𝜃
+

𝜕 𝜌𝑉𝑧
𝜕𝑧

= 0
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Exercises for Continuity Equation

Exercise : Velocity components for a certain incompressible steady flow are as 
follows. Determine 𝑤 (Reference: Munson’s book).

𝑢 = 𝑥2 + 𝑦2 + 𝑧2

𝑣 = 𝑥𝑦 + 𝑦𝑧 + 𝑧

𝑤 =?

Exercise : For an incompressible flow, even if the flow is unsteady no time derivative 
remains in the continuity equation. What does this mean physically?

Exercise : Consider a differential CV in the cylindrical coordinate system, similar to 
the one given in slide 6-9. Using the procedure described in slide 6-20 derive the 
following continuity equation in the cylindrical coordinate system.

𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ 𝜌𝑉 =

𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕 𝑟𝜌𝑉𝑟
𝜕𝑟

+
1

𝑟

𝜕 𝜌𝑉𝜃

𝜕𝜃
+

𝜕 𝜌𝑉𝑧
𝜕𝑧

= 0
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Streamfunction (𝜓 (psi))

• Streamfunction is a mathematical tool that can be used to define a flow field using a 
single scalar instead of multiple velocity components.

• It can be defined for ‘‘2D incompressible’’ or ‘‘2D steady’’ flows.

• Consider the 2D incompressible flow in the 𝑥𝑦 plane case.

• Continuity equation :    𝛻 ∙ 𝑉 = 0 →
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (for a flow in the 𝑥𝑦 plane)

• Velocity field is defined by two components 𝑢 and 𝑣, but they are related via the 
continuity equation.

• If we define a function 𝜓 (𝑥, 𝑦) as

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥

continuity equation is automatically satisfied, i.e.

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
=

𝜕

𝜕𝑥

𝜕𝜓

𝜕𝑦
+

𝜕

𝜕𝑦
−

𝜕𝜓

𝜕𝑥
=

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕2𝜓

𝜕𝑥𝜕𝑦
= 0
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Streamfunction (cont’d)

• Therefore for a ‘‘2D incompressible’’ flow instead of working with two velocity 
components, it is possible to work with a single variable called the streamfunction.

Exercise : Show that streamfunction has a constant value on a streamline.

Exercise : Show that for a 2D incompressible flow, volumetric flow rate per unit depth 
between any two streamlines is equal to difference between the streamfunctions 
defining these streamlines.

𝜓 = 𝜓0

𝜓 = 𝜓1

𝜓 = 𝜓2
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𝜓 = 𝜓1

𝜓 = 𝜓2

𝑥

𝑦

𝑞 =
𝑄

depth
= 𝜓2 − 𝜓1

𝑞



Streamfunction (cont’d)

Exercise : The velocity components in a flow field are 𝑢 = 0 , 𝑣 = −𝑦3 − 4𝑧 and
𝑤 = 3𝑦2𝑧 . Is this a 2D flow? Is this an incompressible flow? If possible determine the 
streamfunction. Draw a few streamlines. Is the flow rotational?

Exercise : Consider a steady, but not necessarily incompressible flow in the 𝑥𝑦 plane. 
What should be the relations (similar to the ones in the box of Slide 6.24) between the 
streamfunction and the velocity components so that the continuity equation is exactly 

satisfied. Hint: Continuity equation to be used is 𝛻 ∙ (𝜌𝑉) = 0 and now density is also
a part of the formulation.

Exercise : Consider an incompressible flow in the 𝑟𝜃 plane of the cylindrical 
coordinate system. What should be the relations between the streamfunction and the 
velocity components so that the continuity equation is exactly satisfied. Hint: Use the
continuity equation of slide 6-22.

Repeat this exercise if the flow is in the 𝑟𝑧 plane.

6-26



Euler’s Equation of Motion

• Euler’s equation is the differential form of linear momentum conservation for inviscid 
flows.

• To derive it consider the pressure and body forces acting on a differential fluid 
element. Pressure is 𝑝 at the element’s centroid.
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𝑑𝑥

𝑝 +
𝜕𝑝

𝜕𝑥

𝑑𝑥

2
𝑑𝑦𝑑𝑧

𝑑𝑦

𝑑𝑧

𝑝 −
𝜕𝑝

𝜕𝑧

𝑑𝑧

2
𝑑𝑥𝑑𝑦

𝑝 +
𝜕𝑝

𝜕𝑧

𝑑𝑧

2
𝑑𝑥𝑑𝑦

𝑝 −
𝜕𝑝

𝜕𝑥

𝑑𝑥

2
𝑑𝑦𝑑𝑧

𝑝 +
𝜕𝑝

𝜕𝑦

𝑑𝑦

2
𝑑𝑥𝑑𝑧𝑝 −

𝜕𝑝

𝜕𝑦

𝑑𝑦

2
𝑑𝑥𝑑𝑧

𝑦
𝑥

𝑧

𝐹𝑏 = 𝜌𝑑∀ 𝑓𝑏

𝑝

𝑓𝑏 is the body force per unit mass. 
It is  𝑔 for the weight of the fluid.



Euler’s Equation (cont’d)

• Sum of all the forces will accelerate the fluid element as follows

−𝛻𝑝 𝑑∀ + 𝜌 𝑑∀ 𝑓𝑏 = 𝜌 𝑑∀  𝑎

 𝑎 = 𝑓𝑏 −
1

𝜌
𝛻𝑝 or

𝜕𝑉

𝜕𝑡
+ (𝑉 ∙ 𝛻)𝑉 = 𝑓𝑏 −

1

𝜌
𝛻𝑝

• Three components of the Euler’s equation in the Cartesian coordinate system are

𝑎𝑥 =
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= 𝑓𝑏𝑥

−
1

𝜌

𝜕𝑝

𝜕𝑥

𝑎𝑦 =
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= 𝑓𝑏𝑦

−
1

𝜌

𝜕𝑝

𝜕𝑦

𝑎𝑧 =
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= 𝑓𝑏𝑧

−
1

𝜌

𝜕𝑝

𝜕𝑧
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Typically 𝑓𝑏𝑥 = 𝑓𝑏𝑦 = 0 and   𝑓𝑏𝑧 = −𝑔



• Three components of the Euler’s equation in the cylindrical coordinate system are

𝑎𝑟 =
𝜕𝑉𝑟
𝜕𝑡

+ 𝑉𝑟
𝜕𝑉𝑟
𝜕𝑟

+
𝑉𝜃

𝑟

𝜕𝑉𝑟
𝜕𝜃

−
𝑉𝜃

2

𝑟
+ 𝑉𝑧

𝜕𝑉𝑟
𝜕𝑧

= 𝑓𝑏𝑟
−

1

𝜌

𝜕𝑝

𝜕𝑟

𝑎𝜃 =
𝜕𝑉𝜃

𝜕𝑡
+ 𝑉𝑟

𝜕𝑉𝜃

𝜕𝑟
+

𝑉𝜃

𝑟

𝜕𝑉𝜃

𝜕𝜃
−

𝑉𝑟𝑉𝜃

𝑟
+ 𝑉𝑧

𝜕𝑉𝜃

𝜕𝑧
= 𝑓𝑏𝜃

−
1

𝜌

1

𝑟

𝜕𝑝

𝜕𝜃

𝑎𝑧 =
𝜕𝑉𝑧
𝜕𝑡

+ 𝑉𝑟
𝜕𝑉𝑧
𝜕𝑟

+
𝑉𝜃

𝑟

𝜕𝑉𝑧
𝜕𝜃

+ 𝑉𝑧
𝜕𝑉𝑧
𝜕𝑧

= 𝑓𝑏𝑧
−

1

𝜌

𝜕𝑝

𝜕𝑧

Exercise : 𝑥 compoent of the velocity in a 2D, incompressible, irrotational, frictionless 
flow is given as 𝑢 = 6𝑥. At point (2,0,0) the 𝑦 component of velocity is known to be 

zero. 𝑤 = 0 everywhere. Body force is −𝑔𝑘. Obtain an expression for 𝑣. Find the
acceleration at point (2,0,0). Obtain an expression for the pressure field if the pressure 
is known to be 𝑝0 at (0,0,0).
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Euler’s Equation (cont’d)



• Consider a body of fluid that is in rigid body motion, i.e. it moves as if it is a solid 
body with fluid particles having no relative motion with respect to each other.

• In such a case, fluid is free of shear stress. 

• Two examples of this are fluids moving with constant linear acceleration and fluids 
rotating around an axis with constant angular velocity.

Use of Euler’s Equation for Fluids in Rigid Body Motion

Liquid

Stationary liquid 
with a horizontal 

free surface

Liquid

Constant linear acceleration
causes a tilted planar free 
surface.

𝑎

Liquid

𝜔
Rotation at constant speed 
causes a curved (parabolic) 
free surface.
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• For a fluid in rigid body motion, there are no viscous forces.

• There are only pressure and body forces, similar to a static fluid.

• But the difference is, now we have nonzero acceleration.

• Euler’s equation is valid for fluids in rigid body motion.

 𝑎 = 𝑓𝑏 −
1

𝜌
𝛻𝑝

• Nonzero acceleration will cause a change in the pressure distribution, compared to a 
static fluid.

Fluids in Rigid Body Motion (cont’d)

 𝑎 was zero for a static fluid. 
But here it is not zero.

6-31

Typically  𝑓𝑏 =  𝑔



 𝑎 =  𝑔 −
1

𝜌
𝛻𝑝

Fluids in Rigid Body Motion (cont’d)

For a static fluid

 𝑎 = 0

𝛻𝑝 = 𝜌  𝑔

 𝑔 𝛻𝑝

For a fluid moving with 
constant linear acceleration

 𝑎 = constant

𝛻𝑝 = 𝜌(  𝑔 −  𝑎)

𝑎

 𝑔 𝛻𝑝

For a fluid rotating at 
constant speed

 𝑎 = 𝑎𝑟  𝑖𝑟

𝛻𝑝 = 𝜌(  𝑔 −  𝑎)

𝜔

 𝑔

Red lines are constant pressure 
lines. 𝛻𝑝 is perpendicular to them.
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Exercise : We want to use the following U-tube filled with a liquid as a crude 
accelerometer in our car. As the car speeds up with constant acceleration we should 
observe a difference between the levels of the two liquid columns. Determine

a) the pressure distribution inside the liquid

b) relation between acceleration and the parameters of our device.

Fluids in Rigid Body Motion (cont’d)

ℎ

𝐿

𝜌
𝑎

𝑎
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Exercise : A cylindrical tank, with its top open to atmospheric pressure has a Radius of 
𝑅 = 0.5 m and a height of 𝐻 = 2 m. It is completely filled with water and rotated 
about its axis at an angular velocity of 𝜔 = 5 rad/s. Determine

a) the pressure distribution inside the water

b) the pressures at (𝑟 = 0, 𝑧 = 0) and (𝑟 = 0.5 m, 𝑧 = 0)

c) the pressure distribution on the side wall of the tank

d) the force exerted by the water on the bottom of the tank

e) the volume of the spilled water.

Fluids in Rigid Body Motion (cont’d)
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Navier-Stokes Equation

• Navier-Stokes equation is the differential form of linear momentum conservation for 
viscous flows. It is Newton’s second law written for fluid flow.

• Pressure, viscous and body forces need to be considered.

Note : Only 𝑥 components 
of the surface forces are 
shown for clarity.

𝑑𝑥
𝑑𝑦

𝑑𝑧

𝜏𝑧𝑥 +
𝜕𝜏𝑧𝑥

𝜕𝑧

𝑑𝑧

2
𝑑𝑥𝑑𝑦

𝑦
𝑥

𝑧

𝜏𝑧𝑥 −
𝜕𝜏𝑧𝑥

𝜕𝑧

𝑑𝑧

2
𝑑𝑥𝑑𝑦

𝜏𝑦𝑥 +
𝜕𝜏𝑦𝑥

𝜕𝑦

𝑑𝑦

2
𝑑𝑥𝑑𝑧

𝜏𝑦𝑥 −
𝜕𝜏𝑦𝑥

𝜕𝑦

𝑑𝑦

2
𝑑𝑥𝑑𝑧

𝜎𝑥𝑥 +
𝜕𝜎𝑥𝑥

𝜕𝑥

𝑑𝑥

2
𝑑𝑦𝑑𝑧

𝜎𝑥𝑥 −
𝜕𝜎𝑥𝑥

𝜕𝑥

𝑑𝑥

2
𝑑𝑦𝑑𝑧

𝐹𝑏 = 𝑑𝑚 𝑓𝑏
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Navier-Stokes Equation (cont’d)

• Add all the forces and substitute the sum into Newton’s 2nd Law of Motion.

• Express normal and viscous stresses in terms of pressure and velocity components.

• Skipping the details (you are NOT responsible for them), for a Newtonian fluid with
constant fluid properties (viscosity and density), we get

 𝑎 =
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ 𝛻 𝑉 = 𝑓𝑏 −

1

𝜌
𝛻𝑝 + 𝜈 𝛻2𝑉

• Navier-Stokes equation can also be written in terms of dynamic viscosity by multiplying 
all the terms with density

𝜌
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ 𝛻 𝑉 = 𝜌𝑓𝑏 − 𝛻𝑝 + 𝜇𝛻2𝑉

Euler’s 
Equation

Additional viscous term.

𝜈 = 𝜇/𝜌 : Kinematic viscosity

𝛻2 :  Laplace operator
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Navier-Stokes Equation (cont’d)

• Components in the Cartesian coordinate system are

𝑎𝑥 =
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= 𝑓𝑏𝑥

−
1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2

𝑎𝑦 =
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= 𝑓𝑏𝑦

−
1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2

𝑎𝑧 =
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= 𝑓𝑏𝑧

−
1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2

• These equations can be solved analytically only for a few simple geometries and 
boundary conditions, such as the ones given in the exercises of the coming slides.

Exercise : Find the three components of the Navier-Stokes equations in cylindrical 
coordinate system from a fluid mechanics textbook and write them at the back of this 
slide for future reference.
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Poiseuille Flow

Exercise : Consider the flow between two infinitely wide parallel plates driven by a 
pressure gradient in the axial direction. Neglect body forces and consider steady, 
laminar, incompressible flow of a Newtonian fluid with constant viscosity and 
density. Simplify the continuity and Navier-Stokes equations and determine

• velocity profile

• shear stress distribution

• volumetric flow rate

• maximum and average velocities

• pressure drop over a length of 𝐿.

flow

𝑥

𝑦 ℎ
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Hagen-Poiseuille Flow

Exercise : Repeat the exercise of the
previous slide for the steady, incompressible
flow inside a constant diameter pipe.

Exercise : An incompressible fluid flows down an inclined plane in a steady, fully 
developed laminar film of thickness ℎ. This time fluid weight is not negligible. 
Simplify the continuity and N-S equations for this flow and study the flow field in 
detail.

Hint: At the free surface consider that
the air applies negligible shear force to
the liquid.

ℎ

𝑥

𝑦

𝜃

𝑝𝑎𝑡𝑚

Flow Down an Inclined Plane

flow 𝑅𝑧

𝑟
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Flow Between Concentric Cylinders

Exercise : A liquid fills the annular gap between vertical concentric cylinders. Inner 
cylinder is stationary and outer one rotates at constant speed. Simplify the continuity 
and Navier-Stokes equations for this steady, laminar flow and determine

• the velocity profile

• shear stress distribution

Compare the shear stress at the surface of the 
inner cylinder with that computed from a planar 
approximation obtained by “unwrapping” the 
annulus into a plane and assuming a linear velocity 
profile across the gap.  Determine the ratio of 
cylinder radii for which the planar approximation 
predicts the correct shear stress at the surface of 
the inner cylinder within 1 % accuracy.

(Reference: Fox’s book)

𝑧

𝑟

𝜃

𝜔
𝑅2

𝑅1
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