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Abstract
In this paper we establish a mathematical framework for a range of inverse
problems for functions, given a finite set of noisy observations. The
problems are hence underdetermined and are often ill-posed. We study
these problems from the viewpoint of Bayesian statistics, with the resulting
posterior probability measure being defined on a space of functions. We
develop an abstract framework for such problems which facilitates application
of an infinite-dimensional version of Bayes theorem, leads to a well-posedness
result for the posterior measure (continuity in a suitable probability metric
with respect to changes in data), and also leads to a theory for the existence
of maximizing the posterior probability (MAP) estimators for such Bayesian
inverse problems on function space. A central idea underlying these results is
that continuity properties and bounds on the forward model guide the choice
of the prior measure for the inverse problem, leading to the desired results on
well-posedness and MAP estimators; the PDE analysis and probability theory
required are thus clearly dileneated, allowing a straightforward derivation
of results. We show that the abstract theory applies to some concrete
applications of interest by studying problems arising from data assimilation
in fluid mechanics. The objective is to make inference about the underlying
velocity field, on the basis of either Eulerian or Lagrangian observations.
We study problems without model error, in which case the inference is
on the initial condition, and problems with model error in which case the
inference is on the initial condition and on the driving noise process or,
equivalently, on the entire time-dependent velocity field. In order to undertake
a relatively uncluttered mathematical analysis we consider the two-dimensional
Navier–Stokes equation on a torus. The case of Eulerian observations—
direct observations of the velocity field itself—is then a model for weather
forecasting. The case of Lagrangian observations—observations of passive
tracers advected by the flow—is then a model for data arising in oceanography.
The methodology which we describe herein may be applied to many other
inverse problems in which it is of interest to find, given observations, an infinite-
dimensional object, such as the initial condition for a PDE. A similar approach
might be adopted, for example, to determine an appropriate mathematical
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setting for the inverse problem of determining an unknown tensor arising in a
constitutive law for a PDE, given observations of the solution. The paper is
structured so that the abstract theory can be read independently of the particular
problems in fluid mechanics which are subsequently studied by application of
the theory.

1. Introduction

The explosion of data gathering over the last few decades has been, and will continue to be,
phenomenal [35]. There has also been a massive change in the scale of computational power
which is now routinely available. These technology-driven changes are leading to both the
need for inference on massive and highly heterogeneous data sets, and for the possibility of
modelling ever more complex structures and systems. Making sense of data, in the context of
the modelling of complex systems, is a very challenging task. The field of statistics provides
a rational basis for the analysis of data. On the other hand, in many application areas, there is
an enormous amount of information in the form of sophisticated mathematical models, often
developed over decades or centuries. As a consequence of these advances in technology,
applied mathematics and statistics are required to work in concert in order to significantly
progress understanding. Blending these two view points—statistics, which is data driven, and
mathematical modelling which provides systematic predictive tools, often in the form of partial
differential equations—leads to challenging problems related to the precise specification of a
mathematical problem, its analysis and the development of computational tools for its study.

In many applications the unknown, which we wish to determine from the mathematical
model and the data, is a function, whilst the data set is finite and noisy. The problem is hence
underdetermined and is often ill-posed. It may be viewed as an inverse problem. Bayesian
statistics provides a useful viewpoint for the study of such problems and we choose to adopt
this approach [39]1. The specific motivation for our paper is to develop the Bayesian viewpoint
on function space and to demonstrate, by means of applications arising in fluid mechanics,
that the abstract machinery developed can be applied to concrete applications.

When developing the abstract framework we will consider x to be the function which
we wish to determine and y the data which we have available to us. We assume that, in
the idealized setting in the absence of observational noise, the function x is mapped to the
data y by an observation operator G : y = G(x); this operator is formed from composition
of the forward model with its projection onto the observed data2. Using this operator, and
an understanding of the statistics of the observational noise σ which inevitably pollutes the
observations in many applications so that y = G(x) +σ , it is typically straightforward to write
the likelihood of the data: the probability that we obtain the data, given the function x. We
denote this by P(y|x)3. Note, however, that we do not know x: it is the function we wish to
determine. Instead we assume that we may encode our knowledge about x, in the absence
of data, in a prior probability distribution P(x). If x was finite-dimensional, Bayes theorem
would give the posterior probability of the function x given the data y, which we denote by
P(x|y), via the formula4

1 We recognize, however, that there are serious philosophical issues associated with the viewpoint, as well as
non-trivial practical issues associated with quantifying lack of knowledge about a system in terms of probability
distributions.
2 We depart from the widely used notation in [37] since the notation therein conflicts with notation required for the
PDE setting adopted here.
3 The notation P(·) will be used consistently to denote a probability; E(·) will be used to denote an expectation.
4 Here, and in what follows, ∝ denotes ‘is proportional to’.
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P(x|y)

P(x)
∝ P(y|x). (1.1)

In the infinite-dimensional case there is no density with respect to the Lebesgue measure.
In this case, Bayes rule should be interpreted as providing the Radon–Nikodym derivative
between the posterior measure µy(dx) = P(dx|y) and the prior measure µ0(dx) = P(dx):

dµy

dµ0
(x) ∝ ρ(y − G(x)), (1.2)

where ρ is the pdf for σ .
If the Bayesian framework is adopted5 then it is arguable that the posterior probability

P(x|y) is the answer to the problem of combining observations and model. It is thus an
important object. However, whilst this conceptual development is straightforward, it raises
many interesting mathematical and computational challenges. The purpose of this paper is
to address several mathematical problems related to the posterior probability distribution.
In particular we will study the following three questions: (a) under what conditions on the
observation operator and the prior probability distribution can we find a function-space valued
version of the Bayes theorem?; (b) when is the posterior measure continuous with respect to
the data, and in what metric for measures should this continuity be understood?; (c) when are
maximum a posteriori (MAP) estimators, given by

argmaxxP(x|y), (1.3)

well defined in the function-space context? Partial answers to these three questions may be
found in theorem 2.1 (see also corollary 2.2) and theorems 2.5 and 2.7. Another important
question is (d) how can we exploit the definition of the posterior on function space in the
design of sampling methods to probe P(x|y) given by (1.2)? This question is addressed in the
paper [13].

Although we will illustrate the abstract theory in the context of problems from fluid
mechanics, the methodology which we introduce in this paper may be applied to many
other inverse problems in which it is of interest to find, given observations, an infinite-
dimensional object, such as the initial condition for a PDE. A similar approach might be
adopted, for example, to determine an appropriate mathematical setting for the inverse problem
of determining an unknown tensor arising in a constitutive law for a PDE, given observations
of the solution. Overview of a range of nonlinear inverse problems arising in PDE may be
found in the paper [8] and for geological inverse problems in [24, 25]. The basic approach
that we adopt in this paper may be viewed as the analogue for inverse problems of the well-
posedness framework for forward problems. The essential ingredients are (i) the identification
of an observation operator, mapping unknown functions to the data, in the absence of noise;
(ii) derivation of bounds and Lipschitz properties (and sometimes differentiability) of the
observation operator, in appropriate function spaces; (iii) specification of the prior measure to
ensure sufficient regularity of the observation operator in order to define the posterior measure
and obtain continuity of the measure with respect to changes in data; (iv) determination of the
properties of the posterior that are useful in the definition of efficient computational methods
for probing the posterior measure, including MAP estimators, and Markov-Chain Monte Carlo
(MCMC) methods [61].

1.1. Literature in Bayesian inverse problems

The book [39] provides an excellent introduction to the Bayesian approach to inverse problems,
especially large inverse problems arising in differential equations. The approach taken there is
5 There are nontrivial questions here associated with objective determination of the priors [64].
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to first discretize the problem and then apply the Bayesian methodology to a finite-dimensional
problem; the idea of trying to capture the limit of infinite resolution is addressed by use
of statistical extrapolation techniques based on modelling the error from finite-dimensional
approximation [41]. In contrast, the book [66] directly advocates the viewpoint taken in
this paper, namely that it can be valuable to formulate inverse problems on function space
(see chapter 5 in particular); however the problems studied there are primarily Gaussian,
whereas the theory we develop is not limited in this way. The book [59] is devoted entirely to
statistical problems for functions, although the treatment is not Bayesian, and the models are
somewhat simpler than those arising from PDE problems in the applications which motivate
our work; also the function space setting does not play a major role in the approach taken
there. There is some literature concerning the Bayesian viewpoint for linear inverse problems
on function space, including the early study [27]. A more recent paper, with references to
some of the current literature, is [36]. The papers [48, 49] also study Bayesian inversion
for linear inverse problems on function space; they introduce the notion of discretization
invariance and investigate the question of whether it is possible to derive regularizations of
families of finite-dimensional problems, in a fashion which ensures that meaningful limits
are obtained. In contrast, our viewpoint is to define the inverse problem directly on function
space; discretization invariance is then guaranteed for finite-dimensional approximations of the
function space inverse problem. Furthermore, our approach is not limited to linear observation
operators.

The regularized least squares approach to inverse problems, which underlies the MAP
estimator (also known as the variational approach) is widely studied in the infinite-dimensional
context. For the Hilbert spaces setting see the book [21] and the references therein; for the
Banach space setting see the recent papers [34, 42, 52] and the references therein. Although
we concentrate in this paper on Gaussian priors, and hence on regularization via addition of
a quadratic penalization term, there is active research in the use of different regularizations
[34, 42, 49, 52]. In particular, the use of total variation based regularization, and related
wavelet based regularizations, is central in image processing [63], and is hence an object of
some interest.

The use of MCMC methods for sampling complex high-dimensional posterior
distributions is, although extremely computationally challenging, starting to become feasible;
recent examples of work in this direction include [11, 20, 40]. In a companion paper [13]
we show that the abstract framework developed in this paper, and exploited here to prove
well posedness of the posterior measure and well definedness of the MAP estimator in infinite
dimensions, is also useful for the definition, analysis and implementation of efficient MCMC
methods for sampling the posterior measure on an infinite-dimensional space. The resulting
MCMC methods that arise are non-standard generalizations of methods such as the random
walk metropolis and metropolis-adjusted Langevin algorithms which are widely used in the
finite-dimensional setting [61]; it is shown in [8, 9] that these non-standard extensions lead to
algorithms which scale well under mesh refinement, in contrast to the standard algorithms as
analysed in [8, 61].

1.2. Literature in fluid mechanics

In fluid dynamical applications the blending of data and models, particularly in the time-
dependent context, is referred to as data assimilation. The subject has been systematically
developed over the last few decades and has had measurable impact on the efficacy of, for
example, weather forecasting. This may be considered to be one of the major achievements
in applied computational PDE from the last half century. In the context of numerical weather
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prediction the text [44] overviews much of the recent literature, whilst for oceanographic
applications the text [5] plays a similar role. See also the papers [38, 47, 50, 54] for some
representative examples related to the specific applied problems that we will consider later
in this paper. Recent mathematical overviews of the subject of data assimilation in fluid
mechanics include [3, 53].

There are two major difficulties facing the research community in data assimilation for
fluid mechanics applications: the first is that, at currently available levels of computational
capability, it is often impossible to resolve all the desired physics and hence sub-grid scale
modelling plays an important role; the second is that the resulting dynamical models are
very high dimensional, as they are approximations to PDEs. The need to deal with the first
issue leads to increased demands for resolution, as computer power grows, simultaneously
increasing the problems arising from the second issue. The situation is further complicated
by the presence of a plethora of data, or varying quality, which must be optimally blended
with the computational models, placing further demands on computational resources. The
data can, in principle, be used to help quantify uncertainty in predictions from PDE models.
This leads to a major question confronting the field: should any increase in available computer
resources be used to increase resolution of the computational model, or should it be used
to improve estimates of uncertainty? This important question is discussed, in the context of
climate modelling, in [57].

The work in this paper does not provide answers to this difficult question. However having
the notion of an ideal solution to the problem of blending data and model in the limit of infinite
resolution, which we assume to be the posterior measure given by (1.2), is a crucial conceptual
building block. In short term, this ideal solution can be used as a benchmark against which to
evaluate, and improve, practical computational methodologies which are used on large-scale
applications because of constraints arising from finite resources. In the longer term, algorithms
may even move towards attempts to directly compute the ideal solution. In order to explain
this perspective we now describe how the ideal solution (1.2) relates to current computational
practice in the field of data assimilation for fluid mechanics.

There are two competing (although sometimes overlapping) methodologies that dominate
computational practice: filtering methods and variational methods. A good overview of these
topics, aimed at applications in geophysical fluid dynamics, may be found in the book [23]. A
second important methodological distinction to make is between forecasting methods, which
are typically used online to make predictions, and hindcasting methods which are used offline
to obtain improved understanding (sometimes termed reanalysis) and, for example, may be
used for the purposes of parameter estimation to obtain improved models. It is important to
realize that the subgrid scale models referred to earlier often have parameters in them which
are not directly physically measurable and so parameter estimation can play an important role
in their identification; reanalysis is hence potentially quite important.

Filtering methods solve a different problem from that giving rise to (1.1). They
are based on the assumption that the data are acquired sequentially in time and ordered
as y = {yi = y(ti)}mi=1 with i indexing the time ti at which data are acquired. If
x = {xi = x(ti)}mi=1 denotes the solution of the desired dynamical model then filtering is
aimed at finding the sequence of probability measures

Pi = P
(
xi |{yj }ij=1

)
.

Clearly Pm agrees with the marginal distribution of P(x|y) from (1.1) at time t = tm; however
the marginal distribution at other times ti < tm will differ from Pi . Filtering is important
for two reasons: first it may be used in online situations; and second it breaks down the
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computational cost associated with the dimension of time, which is treated in a single block
in (1.1), but is broken down sequentially in the filtering approach.

In practice filtering in high-dimensional systems is extremely hard, and various forms of
approximation are employed to deal with this issue. A widely used approach is that based
on the ensemble Kalman filter [23] which uses an ensemble of particles to propagate the
dynamics, but incorporates data using a Gaussian approximation which is hard to justify in
general (see also [7, 56]). The paper [4] describes a generalization of the ensemble Kalman
filter, based on mixtures of Gaussians, motivated by the high-dimensional systems arising in
fluid dynamics data assimilation problems. The paper [6] studies the use of filtering techniques
in high dimensions, motivated by oceanographic data assimilation, and contains a study of the
question of how to define families of finite-dimensional filters which converge to a function
space valued limit as the finite-dimensional computation is refined; it is thus related to the
concept of discretization invariance referred to earlier and now starting to undergo systematic
mathematical study. However, the methodology for proving limiting behaviour in [6], based
on Fourier analysis, is useful only for linear Gaussian problems. Furthermore results similar
to those in [6] could be obtained by attempting to directly define a Gaussian measure on
function space and using ideas similar to those underlying the proof of lemma 4.3 to establish
the desired regularity; in this paper we use the same lemma to understand the regularity of
functions drawn from our prior Gaussian measures.

In theorems 3.4, 3.8, 3.11 and 3.14 we show that the ideal solution (1.2) is well defined
for a variety of problems arising in fluid mechanics which lead to non-Gaussian posteriors;
furthermore we show that these idealized problems satisfy assumptions 2.4 meaning that,
by theorem 2.5, the idealized solution responds continuously to changes in the data. By
marginalization, as described above, these ideal smoothing solutions also apply to the solution
of the filtering problem on function space, at the final observation time, and hence establish
existence and continuity with respect to data of the filter at the final time, under appropriate
prior assumptions. Similar ideas could also be used to study the existence and continuity of
the filter distribution at times prior to the last observation time.

What, then, is the potential role to be played by the ideal solution (1.2) in the understanding
of filtering? In addition to defining clearly the ideal solution, in the general nonlinear non-
Gaussian case and in the limit of infinite mesh resolution, in the short term this ideal solution
can be used to compute (a good quality approximation to) the ideal answer, which can then
be marginalized to the final time coordinate, in order to test and guide the development of
filtering methods. In [13] we show that it is within computational reach to compute such ideal
solutions for simple model problems arising in the PDEs of fluid mechanics; in particular
we study the two-dimensional Stokes equations with Eulerian or Lagrangian data (leading in
the latter case to posterior measures which are non-Gaussian) by use of MCMC methods. In
[1, 2] we include preliminary studies comparing the ideal solution with ensemble Kalman filter
methods applied to Lagrangian data driven by a low-dimensional truncation of the linearized
shallow water equations. An unambiguous and mathematically well-defined definition of the
ideal solution plays an important role in underpinning such computational studies.

Variational methods take a different approach from that employed in filtering. In essence
they are based around finding the MAP estimator (1.3) [65]. In the data assimilation
community this is done both for data distributed in space time [19] and for data in a short
time window [15]. The recent paper [51] investigates relationships between the variational
method, unpredictability of the dynamical model and statistical effects. In the absence of what
we term model error, the variational method we study in this paper is known as 4DVAR; in the
presence of model error it is known as weak constraint 4DVAR. Calculating the MAP estimator
for the time-dependent PDEs of fluid mechanics, in the presence of finite data distributed in
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time leads to boundary value problems on a space-time domain, driven by source terms at
the data points. The book [5] provides a very clear discussion of variational methods and, of
particular relevance to the development in this paper, develops a view of the subject in function
space. This development is most complete in the case where (1.2) is Gaussian so that the
PDEs defining the optimal solution can be solved analytically. The book discusses iterative
methods which can be used in the non-Gaussian case arising when the observation operator G
is nonlinear (see section 3.3 of [5]), but does not provide an answer to the question of existence
of a probability maximizer, in the appropriate function space defined by the prior covariance
operator, in the non-Gaussian case. The existence of such maximizers, using techniques from
the calculus of variations, is undertaken in [68] for Burgers equations and in [55] for a model
of ocean circulation including velocity, temperature and salinity variables. An alternative
approach is to study the existence of solutions to the resulting Euler–Lagrange equations, and
this is undertaken for a data assimilation model based on the vorticity equation in [30]; note
however that the proof of existence of a solution in that paper requires a sufficiently short time
interval. In contrast the method we employ to prove the existence of minimizers, resulting in
theorem 2.7, does not require this. Indeed in theorems 3.4, 3.8, 3.11 and 3.14, we show that
the ideal solution (1.2) is well defined for a variety of problems arising in fluid mechanics
with data on arbitrary finite time intervals and that, in each case, the ideal solution satisfies
assumptions 2.4 meaning that theorem 2.7 applies so that a MAP estimator exists. These
techniques could be extended to the PDE model arising in [30] under an appropriate least-
squares formulation dictated by a Gaussian prior measure on the initial condition (and possibly
forcing). Note, however, that theorem 2.7 does not address the question of multiple minimizers:
it simply asserts that a global minimizer exists. In practical applications, especially if the time
interval is long and/or the growth of linear perturbations to the dynamical model is strong,
many other local minimizers may exist.

What does study of the ideal solution (1.2) add to our understanding of variational
methods? The first thing that this viewpoint adds is an answer to the question of the
existence of probability maximizers, in the general non-Gaussian case, on function space.
This enables us to conclude that proper specification of the prior measures leads to a properly
specified problem for the probability maximizer, on function space. This gives a framework
which satisfies the desirable property that successive mesh refinements will lead to probability
maximizers which converge, since we establish conditions under which the function space
limit is well defined. Here we generalize the approach employed in [55] to prove the existence
of probability maximizers in function space. A second thing added to our understanding of
variational methods is that the ideal solution (1.2) provides the right object against which to
compare variational methods. The latter are useful only when the posterior measure P(x|y)

is strongly peaked at a single point (a Dirac mass) or is unimodal and well approximated by
a Gaussian; in the Gaussian case additional covariance information will need to be extracted
as well as the maximizer. As for filtering methods, we now have the opportunity to compute
(a good quality approximation to) the ideal answer in order to understand situations in which
variational approximations are accurate and in which they are not. For example, if the
posterior is multimodal, the variational method can be quite misleading. In [13] we show that
it is indeed possible to compute probability distribution arising from the ideal solution (1.2) on
some simple model PDE problems arising from the Stokes equations, with both Eulerian data
(leading to a Gaussian posterior) and Lagrangian data (leading to a non-Gaussian posterior).

In summary, then, the approach we adopt in this paper provides a mathematical framework
for the evaluation of methods widely used in practice, such as filtering and variational methods,
both of which should be viewed as giving approximations to the ideal solutions which is the
posterior probability measure. This will enable comparison of such methods with the ideal
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answer to the problem of cojoining data and model. It is also conceivable that, as computer
power grows, it will be worth investing in direct MCMC-based methods to sample the ideal
posterior distribution, and that this will give rise to new approaches to the problem of data
assimilation in fluid mechanics. This may be useful for both analysis and forecasting and,
perhaps more directly for reanalysis, parameter estimation in sub-grid scale models and
systematic study of model error. In this context we define model error to be an error term in
the dynamical model equations, as in [30], because this is both physically and mathematically
natural; note however that in practical data assimilation, model (or representativity) errors are
sometimes combined with the observations errors [14].

1.3. Outline of the paper

In section 2 we develop an abstract framework for Bayesian inversion on function space,
given noisy data. In subsection 2.1 we introduce a version of the Bayes theorem in infinite
dimensions, enabling us to show that the posterior measure is well defined and is absolutely
continuous with respect to the prior6. In subsection 2.2 we study continuity of the posterior
measure with respect to data, showing that small changes in the data lead to small changes to
the (Bayesian) solution of the inverse problem. We use the Hellinger metric to study changes
in the measure as this allows proof of continuity of expectations of polynomially bounded
functions. We thus establish a form of well posedness for the inverse problem. The same
properties used to establish well posedness of the posterior measure are also useful for the
definition, analysis and implementation of maximum a posteriori (MAP) estimators (also
known as variational methods) on function space, a subject that we pursue in subsection 2.3.
The entire section 2 is self-contained and independent of any specific applications to problems
arising in fluid mechanics; it should be accessible to readers with general interest in Bayesian
inversion on function space. Furthermore, whilst the proofs in section 2 may not be of
direct interest to readers interested mostly in applications to fluid mechanics, or other inverse
problems on function space, the basic statements of theorems 2.1, 2.5 and 2.7, as well as
corollary 2.2 summarize the useful outcomes of the theoretical framework and may be read
independently of the proofs.

In section 3 we demonstrate that the abstract theory may be applied to four concrete
problems arising in fluid mechanics. The four subsections concern problems in which the data
are Eulerian or Lagrangian and in which model error may or may not be present. Appendix 1,
section 4, contains some basic results on the existence and uniqueness of solutions to the
Navier–Stokes equations, and to the Lagrangian trajectories that it generates. The section
also contains some background material required for the specification of Gaussian random
field priors on functions of space alone (the initial condition) or space time (the forcing). The
results from this section are summarized in a readable way at the start of section 3, so that
the reader interested primarily in applications to fluid mechanics can absorb the results of
section 3 without reading section 4. The results of section 3 also rely heavily on estimates
satisfied by solutions of the Navier–Stokes equation, which are presented in a self-contained
way in appendix 2, section 5, as they may be of independent interest; these results, however,
are not required for the reader interested primarily in applications to fluid mechanics as they
are required only for the proofs, not the statements, of results in section 3.

6 Absolute continuity is a measure theoretic concept ensuring that the posterior measure does not assign non-trivial
probability to events which have probability zero under the prior; it should not be confused with standard continuity
of measures with respect to small changes which we discuss in subsection 2.2.
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2. Bayesian inversion on function space

We describe an abstract Bayesian framework for inverse problems in which the unknown is a
function and the data are finite. These problems are hence underdetermined. They are also
frequently ill-posed in a classical sense. We describe three key ideas: (a) we prove a version of
the Bayes theorem relevant to this function space setting, showing that the posterior measure is
absolutely continuous with respect to the prior measure, and identifying the Radon–Nikodym
derivative as the data likelihood; (b) we demonstrate a form of well posedness by proving that
the posterior measure is Lipschitz continuous in the data, when the Hellinger metric is used
as a metric on the posterior measure; (c) we show that the MAP estimator for the posterior
measure (the posterior probability maximizer) is well defined whenever the posterior measure
is, by using techniques from the calculus of variations (or optimal control).

Throughout the following we denote by 〈·, ·〉 the standard Euclidean scalar product on
Rm, which induces the standard Euclidean norm | · |. We also define7 〈·, ·〉C := 〈C− 1

2 ·, C− 1
2 ·〉

for any positive definite symmetric matrix C; this induces the norm | · |C := |C− 1
2 · |. We will

also use the notation 〈·, ·〉C and | · |C := |C− 1
2 · | to denote a new norm and inner product, given

a Hilbert space (X, 〈·, ·〉) and a trace class, positive and self-adjoint operator C. When C is
a covariance operator of a Gaussian measure this new Hilbert space is termed the Cameron–
Martin space [10], denoted by E. It is important because it is precisely the space in which
shifts of the mean of the Gaussian law give rise to mutually absolutely continuous measures;
however it has measure zero under the Gaussian measure itself [10, 17]. The space also arises
naturally when studying MAP estimators (variational methods).

2.1. Bayes theorem for functions

Let x denote an unknown function that we wish to determine from a finite-dimensional vector
y of observations. We assume that the observations are related to the unknown function x by

y = G(x) + σ.

Here σ is an unbiased observational noise which, for simplicity, we take to follow the Gaussian
law N (0,#)8. The function G is the observation operator which maps the unknown functions
into the data when no observational noise σ is present.

We develop a version of the Bayes theorem on function space, in order to find an expression
for the probability distribution of the desired function x, given the observations y. We assume
that x is in a Banach space (X, ‖ ·‖ X) and that y ∈ Rm. We define $ : X × Rm → R by

$(x; y) = 1
2 |y − G(x)|2# . (2.1)

The likelihood of the data is

P(y|x) ∝ exp(−$(x; y))

since σ ∼ N (0,#)9. In the case where x is finite dimensional, Bayes’ theorem [58] leads to
the conclusion that the ratio of the posterior distribution P(x|y) to the prior distribution P(x)

is
P(x|y)

P(x)
∝ P(y|x) ∝ exp(−$(x; y)).

In the case where x is infinite dimensional there is no density with respect to Lebesgue
measure. However, the ratio of the posterior to prior measures can be given a meaning and
7 We use the symbol := to denote a quantity defined by the identity.
8 We use N (m,C) to denote a Gaussian measure with mean m and covariance matrix/operator C.
9 Here, and elsewhere in the paper, ∼ is used for ‘is distributed according to’.
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the natural analogue of the finite-dimensional result is as follows: we expect that the posterior
µy(dx) = P(dx|y) is absolutely continuous with respect to the prior µ0(dx) = P(dx) and that
the Radon–Nikodym derivative is given by

dµy

dµ0
(x) ∝ exp(−$(x; y)). (2.2)

The following theorem and corollary give simple conditions under which this is indeed the
case. They may be viewed as generalizations of the Bayes theorem to the infinite-dimensional
setting.

Theorem 2.1. If G : X → Rm is µ0-measurable then the posterior measure
µy(dx) = P(dx|y) is absolutely continuous with respect to the prior measure µ0(dx) and has
the Radon–Nikodym derivative given by (2.2).

Proof. Let Q0(dy) denote the Rm-valued Gaussian measure N (0,#) and Q(dy|x) the
Rm-valued Gaussian measure N (G(x),#). By construction

dQ
dQ0

(y|x) = exp
(

−1
2
|y − G(x)|2# +

1
2
|y|2#

)

∝ exp(−$(x; y))

with constant of proportionality independent of x. Now define10

ν0(dy, dx) = Q0(dy) ⊗ µ0(dx),

ν(dy, dx) = Q(dy|x)µ0(dx).

The measure ν0 is clearly well defined by virtue of its product structure. Since G is µ0-
measurable we deduce that ν is also well defined and is absolutely continuous with respect to
ν0 with Radon–Nikodym derivative equal to that of Q with respect to Q0:

dν
dν0

(dy, dx) ∝ exp(−$(x; y));

the constant of proportionality is again independent of x. By lemma 2.3 (below) we have the
desired result since, as ν0 is a product measure, ν0(dx|y) = µ0(dx). !

In many applications the observation operator is continuous on an appropriate Banach
space X. The following corollary is hence a useful way of establishing the Bayes theorem in
the form (2.2).

Corollary 2.2. If G : X → Rm is continuous and µ0(X) = 1 then the posterior measure
µy(dx) = P(dx|y) is absolutely continuous with respect to the prior measure µ0(dx) and has
Radon-Nikodym derivative given by (2.2).

Proof. Under the stated conditions we deduce that G is µ0 almost surely continuous, and is
hence µ0 measurable [22, 43]. Thus theorem 2.1 gives the desired result. !

The following lemma, used in the proof of theorem 2.1, may be found in [22]. As stated
here it is taken from [33], where it is used to prove a specific instance of theorem 2.1 arising
in the study of conditioned diffusion processes, using the Gaussian Kalman–Bucy smoother
measure from [32] as the reference measure.

Lemma 2.3. Consider two measurable spaces (S,S) and (T , T ). Let µ, ν be probability
measures on S × T and let x : S × T → S and y : S × T → T be the canonical projections.

10 Here the symbol ⊗ is used to denote the (independent) product of two measures.
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Assume that µ has a density φ w.r.t. ν and that the conditional distribution νx|y exists. Then
the conditional distribution µx|y exists and is given by

dµx|y

dνx|y
(x) =

{
1

c(y)
φ(x, y), if c(y) > 0, and

1 else
(2.3)

with c(y) =
∫
S
φ(x, y) dνx|y(x) for all y ∈ T .

2.2. Well-posed Bayesian inverse problems

In the previous section we showed that Bayesian inverse problems for functions naturally give
rise to a posterior probability measure µy(dx) given by (2.2). Here we work in a setting
where the prior measure is Gaussian, and where G satisfies polynomial bounds in the space
X. We show that even though the underlying classical inverse problem (inversion of G) is
underdetermined, and often ill-posed, the Bayesian inverse problem is well posed and that the
posterior measure is Lipschitz in the data y. Furthermore we employ a metric on measures,
the Hellinger metric, which implies continuity of expectations of all functions with second
moments, with respect to the data.

We define the normalization constant

Z(y) =
∫

X

exp(−$(x; y)) dµ0(x) (2.4)

so that the probability measure µy is given by

dµy

dµ0
(x) = 1

Z(y)
exp(−$(x; y)). (2.5)

If G : X → Rm is polynomially bounded and Lipschitz then it is straightforward to see
that $ given by (2.1) satisfies the following three properties:

Assumption 2.4. The function $ : X × Rm → R satisfies the following:

• (i) there exists p > 0 and for every r > 0 a K1 = K1(r) > 0 such that, for all x ∈ X and
y ∈ Rm with |y| < r ,

0 " $(x; y) " K1
(
1 + ‖x‖p

X

)
;

• (ii) for every r > 0 there is K2 = K2(r) > 0 such that, for all u, v ∈ X and y ∈ Rm with
max{‖x1‖X, ‖x2‖X, |y|} < r ,

|$(x1; y) −$(x2; y)| " K2‖x1 − x2‖X;

• (iii) there is q # 0 and for every r > 0 a K3 = K3(r) > 0 such that, for all y1, y2 ∈ Rm

with max{|y1|, |y2|} < r , and for all x ∈ X,

|$(x; y1) −$(x; y2)| " K3
(
1 + ‖x‖q

X

)
|y1 − y2|.

Note that it is continuity of $, implied by the second condition on $ in assumption
2.4, which is implicitly used to prove the well definedness of the posterior measure in
corollary 2.2. We now study continuity properties of the measure µy given by (2.5) with
respect to the data y, under the first and third conditions of assumption 2.4. The total variation
distance between µ and µ′ with common reference measure ν is

dTV(µ,µ′) = 1
2

∫ ∣∣∣∣
dµ

dν
− dµ′

dν

∣∣∣∣ dν.

11
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This is a commonly used metric11. We will employ a stronger metric12, given by the Hellinger
distance between µ and µ′ and defined by

dHell(µ,µ′) =

√√√√√



1
2

∫ (√
dµ

dν
−

√
dµ′

dν

)2

dν



.

Then [28]
1√
2
dTV(µ,µ′) " dHell(µ,µ′) " dTV(µ,µ′)

1
2 . (2.6)

The Hellinger metric is natural because controlling it gives control over the calculation of
expectations from a wide class. To be precise, assume that f : X → X has second moments
with respect to both µ and µ′. Then the Hellinger metric has the following desirable property:

‖Eµf − Eµ′
f ‖ " 2(Eµ‖f ‖2 + Eµ′ ‖f ‖2)

1
2 dHell(µ,µ′). (2.7)

Furthermore, if f : X → X has fourth moments then

‖Eµf ⊗ f − Eµ′
f ⊗ f ‖ " 2(Eµ‖f ‖4 + Eµ′ ‖f ‖4)

1
2 dHell(µ,µ′). (2.8)

The following theorem proves Lipschitz continuity of the posterior measure with respect
to changes in the data, in the Hellinger distance (and hence also in the total variation distance).

Theorem 2.5. Consider a measure µy which is absolutely continuous with respect to a
measure µ0 with Radon–Nikodym derivative given by (2.5). Let assumptions 2.4 (i) and
(iii) hold and assume that the prior measure µ0 is a Gaussian measure N (m, C) and that
µ0(X) = 1. Then the measure µy is Lipschitz in the data y, with respect to the Hellinger
distance: if µy and µy ′

are two measures given by (2.5) with data y and y ′ then there is
C = C(r) > 0 such that, for all y, y ′ with max{|y|, |y ′|} " r,

dHell(µ
y, µy ′

) " C|y − y ′|.
Consequently all polynomially bounded functions of x ∈ X are continuous in y. In particular
the mean and covariance operator are continuous in y.

Proof. Throughout the proof, all integrals are over X. The constant C may depend upon r and
changes from occurrence to occurrence. Let Z and Z′ denote the normalization constants for
µy and µy ′

so that

Z =
∫

exp(−$(x; y)) dµ0(x)

Z′ =
∫

exp(−$(x; y ′)) dµ0(x).

Clearly

|Z| ∨ |Z′| " 1

since µ0 is a probability measure. Assume that |y|, |y ′| < r . Then, by assumptions 2.4, we
have

|Z| #
∫

‖x‖X!1
exp(−2K1(r)) dµ0(x) = exp(−2K1(r))µ0(‖x‖X " 1).

11 It may be viewed as the L1 norm on densities in the finite-dimensional setting where the reference measure is
Lebesgue.
12 Stronger in the sense implied by the inequalities (2.6).
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This is strictly positive because µ0(X) = 1 and µ0 is Gaussian so that all balls in X have
positive measure [10]. We have an analogous lower bound for |Z′|.

Since µ0 is Gaussian and ‖x‖X is µ0-a.s. finite, it follows that all moments ‖x‖q
X are

µ0-a.s. finite by the Fernique theorem [10, 17]. Furthermore, using the fact that $(x; ·) is
Lipschitz, and since µ0 is a probability measure,

|Z − Z′| "
∫

K3|y − y ′|
(
1 + ‖x‖q

X

)
dµ0(u)

" C|y − y ′|.
From the definition of Hellinger distance we have

2dHell(µ,µ′)2 =
∫ (

Z− 1
2 exp

(
−1

2
$(x; y)

)
− (Z′)−

1
2 exp

(
−1

2
$(x; y ′)

))2

dµ0(x)

" I1 + I2,

where

I1 = 2
Z

∫ (
exp

(
−1

2
$(x; y)

)
− exp

(
−1

2
$(x; y ′)

))2

dµ0(x),

I2 = 2|Z− 1
2 − (Z′)−

1
2 |2

∫
exp(−$(x; y ′)) dµ0(x).

Now, again using the Lipschitz property of $(x; ·) and the fact that $ is bounded from
below,

Z

2
I1 "

∫
K3

4
|y − y ′|2

(
1 + ‖x‖q

X

)2 dµ0(x)

" C|y − y ′|2.
Also, using the bounds on Z,Z′ from below,

|Z− 1
2 − (Z′)−

1
2 |2 " C(Z−3 ∨ (Z′)−3)|Z − Z′|2

" C|y − y ′|2.
Combining gives the desired continuity result in the Hellinger metric.

Finally all moments of ‖x‖X are finite under µ0 and hence under µ because the change
of measure is bounded. The desired result follows from (2.7), (2.8). !

Remark 2.6. It is natural to ask why we have asked for polynomial control in x, of the
constants arising in assumption 2.4. In fact to obtain theorem 2.5 polynomial dependence can
be replaced by dependence which grows as exp

(
ε‖x‖2

X

)
, provided ε can be chosen arbitrarily

small; this is all that is required to be able to apply the Fernique theorem [10, 17] to obtain the
required control: the Fernique theorem implies that, if µ0(X) = 1, then for all ε sufficiently
small,

∫

X

exp
(
ε‖x‖2

X

)
µ0(dx) < ∞.

2.3. Variational methods and optimal control

In this section we address the question of finding x to maximize the posterior probability given
by (2.2), using methods from the calculus of variations. Finding x to maximize the probability
µy(dx) is referred to as a MAP estimator in the Bayesian statistics literature [39]. We provide
an abstract theory for the existence of the MAP estimator, linked in a fundamental way to

13
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the natural assumptions 2.4 which imply that the posterior measure is well defined and well
posed.

We work with probability measures µy given by (2.2), with µ0 = N (m, C) and $
satisfying assumptions 2.4; as the y dependence of $ is not relevant in this subsection we
drop explicit reference to it and write $(x). As in the previous subsection we assume that
µ0(X) = 1. We let E denote the Cameron–Martin space Im(C 1

2 ), equipped with inner product
(E, 〈·, ·〉C) and we assume that m ∈ E so that µ0 is absolutely continuous with respect to the
symmetric measure N (0, C) [10, 17]. Note that E is compactly embedded in any space which
has full measure under µ0, and hence in X [31].

We define probability maximizers to be minimizers of the functional

I (x) = 1
2‖x − m‖2

C +$(x). (2.9)

Such minimizers do indeed maximize the posterior probability density, with respect to
Lebesgue measure, in finite dimensions. In infinite dimensions small balls will have highest
probability measure when centred on such minimizers. Minimizing $(x) provides the best
match to the data; however minimizing sequences xn in X will typically not converge. The
quadratic penalization term 1

2‖x − m‖2
C forces minimizers to lie in the smaller space E and

the key question is whether this penalization, which may be viewed as a generalized form
of Tikhonov regularization [66], enables us to extract a minimizer in E from minimizing
sequences. This may be viewed as a classical problem in optimal control where x is the control
and I is the objective functional, balancing the match to data with regularity constraints. We
have the following theorem.

Theorem 2.7. Let assumptions 2.4(i), (ii) hold and assume that µ0(X) = 1. Then there exists
x ∈ E such that

I (x) = I := inf{I (x) : x ∈ E}.
Furthermore, if {xn} is a minimizing sequence satisfying I (xn) → I (x) then there is a
subsequence {xn′} that converges strongly to x in E.

Proof. For any δ > 0 there is N = N1(δ):

I " I (xn) " I + δ, ∀n # N1.

Thus
1
2‖xn − m‖2

C " I + δ ∀n # N1.

Since m ∈ E the sequence {xn} is bounded in E and, since E is a Hilbert space, there exists
x ∈ E such that xn ⇀ x in E. By the compact embedding of E in X we deduce that xn → x,
strongly in X. By the Lipschitz continuity of $ in X we deduce that $(xn) → $(x). Thus $
is weakly continuous on E.

The functional J (x) := 1
2‖x − m‖2

C is weakly lower semicontinuous on E. Hence
I (x) = J (x)+$(x) is weakly lower semicontinuous on E. Since$ is bounded from below on
E and m ∈ E we have that I is coercive on E. The first result follows from chapter 3, theorem
1.1, in [16].

To prove the strong convergence of minimizing sequences we generalize an argument
from theorem II.2.1 in [46]. By passing to a further subsequence, and for n, * # N2(δ),
1
4‖xn − x*‖2

C = 1
2‖xn − m‖2

C + 1
2‖x* − m‖2

C − ‖ 1
2 (xn + x*) − m‖2

C

= I (xn) + I (x*) − 2I
( 1

2 (xn + x*)
)
−$(xn) −$(x*) + 2$

( 1
2 (xn + x*)

)

" 2(I + δ) − 2I −$(xn) −$(x*) + 2$
( 1

2 (xn + x*)
)

" 2δ −$(xn) −$(x*) + 2$
( 1

2 (xn + x*)
)
.

14
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But xn, x* and 1
2 (xn + x*) all converge strongly to x in X. Thus, by continuity of$, we deduce

that for all n, * # N3(δ),
1
4‖xn − x*‖2

C " 3δ.

Hence the sequence is Cauchy in E and converges strongly and the proof is complete. !

3. Data assimilation in fluid mechanics

In this section we study four problems involving data assimilation in fluid mechanics. Our
aim is to demonstrate that the abstract theory developed in the last section may be applied to
concrete problems of interest. We work with simplified model problems in order to exemplify
this. We study viscous incompressible fluid flow governed by the Navier–Stokes equation on
the two-dimensional unit torus T2:

∂t u − ν0u + u · ∇u + ∇p = f, ∀(x, t) ∈ T2 × (0,∞) (3.1)

∇ · u = 0, ∀t ∈ (0,∞) (3.2)

u(x, 0) = u0(x), x ∈ T2. (3.3)

We confine ourselves to a two-dimensional torus T2, simply because a mathematical theory
of global well-posed solutions in three dimensions has not been found, and to a torus (which
is equivalent to a periodic domain) because it removes mathematical technicalities associated
with boundaries13. In the following we will sometimes find it useful to view u(·, t) as a
function of t alone, taking values in a Hilbert space H or Hs (with norms ‖ ·‖ , ‖ ·‖ s defined
below) of spatially varying functions; we will then write u(t). We will also sometimes view
space-time-dependent functions as taking values in a Hilbert space H or Hs (with norms
| · |0, | · |s defined below) of space-time varying functions; we will then write u.

In the first two model problems we make noisy observations y which we view as being of
the form

y = G(u0) + σ.

Here σ is a mean zero observational noise which, for simplicity, we take to be Gaussian
N (0,#). Our objective is to determine u0, the initial condition for the Navier–Stokes equation,
from the finite-dimensional vector of observations y. In the second two-model problems, we
look at the problem of determining both the initial condition u0 and the forcing f from data.
Thus we view y as being of the form

y = G(u0, f ) + σ,

with σ as before. The function f can be viewed as a model error term about which we wish
to find information from observed data.

We will consider two kinds of data: Eulerian and Lagrangian. In the former case the
data are given as noisy observations of the velocity field at a collection of points in space
time. In the second case, the data are given as the positions of a finite collection of Lagrangian
trajectories, moving in the velocity field u, at a finite set of times. The Lagrangian trajectories
are solutions of the equations

dz(t)

dt
= u(z(t), t), z(0) = z0. (3.4)

13 Note that u0 or (u0, f ) will play the role of the unknown function x arising in the previous section; this should not
be confused with the use of x to denote the spatial variable in these particular applications to fluid mechanics.
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In the remainder of this section we describe and analyse the observation operator G in
the four different model problems. Our aim is to establish that the theory from the preceding
section applies to these problems arising in data assimilation. To do this we need to determine
a function space X and prior Gaussian measure µ0 with the properties that the operator
G : X → Rm is polynomially bounded and Lipschitz and that µ0(X) = 1. We may then apply
corollary 2.2, theorems 2.5 and 2.7, since assumptions 2.4 hold for $ given by (2.1) if G is
polynomial and Lipschitz. Intuitively our task is to choose the prior measure so that, with
probability 1, functions picked from it are sufficiently regular that the polynomial bounds and
Lipschitz properties of the observation operator may be exploited. The key theorems 3.4, 3.8,
3.11 and 3.14 summarize the results. In various lemmas, we also derive further conditions
on the observation operator which are useful in the construction, analysis and implementation
of variational and MCMC methods on function space—in particular, as well as deriving
polynomial bounds and Lipschitz properties of$, we also prove differentiability in two cases.

In appendix 1 we describe the mathematical background required to make sense of the
equations (3.1)–(3.3) and (3.4) under the desired minimal regularity requirements on the initial
condition u0 and on the forcing f . We also describe the background on Gaussian random
fields required to place prior measures on the functions u0 and f . The reader who wishes to
understand all the mathematical details will need to read appendix 1 in its entirety. However a
basic understanding of the results in this section may be obtained with the following intuitive
interpretations of various operators, norms and discussions of regularity for Gaussian random
fields of space or space time.

We start with functions u : T2 → R2 which depend on the spatial variable x only. We let
H denote the space of square integrable, divergence-free vector fields with average zero over
the unit torus. Thus H is a Hilbert space of spatially varying functions only. We denote the
norm on H by ‖ ·‖ . The Stokes operator A may be thought of as the negative Laplacian on
H. Fractional powers of the Stokes operator can then be defined by diagonalization (Fourier
analysis) as would be done for matrices. The Sobolev spaces Hs are defined on functions of the
spatial variable x alone. In particular Hs is the domain of As/2 and may thus be thought of as
the space of divergence-free vector fields with average zero over the unit torus which possess s
(possibly fractional) square integrable spatial derivatives. Note that, for every s > 0,H s ⊂ H .
We denote the norm on Hs by ‖ ·‖ s . On occasion we will also make use of the Lp Banach
spaces of x-dependent functions; in particular the supremum norm over x is denoted by ‖ ·‖L∞ .

We now turn to norms on functions of space and time. We let H denote the Hilbert space
of functions u : T2 × (0, T ) → R2 with the property that

|u|20 :=
∫ T

0
‖u(·, t)‖2 dt < ∞.

More generally we let Hs denote the Hilbert space of functions u : T2 × (0, T ) → R2 with
the property that

|u|2s :=
∫ T

0
‖u(·, t)‖2

s dt < ∞.

Thus Hs = L2(0, T ;Hs) and H = L2(0, T ;H). Note that, for every s > 0,Hs ⊂ H.
When studying problems without model error we will need only to place prior Gaussian

random field models on the initial condition u0, which is a function of space only. We will
work with a particular family of such Gaussian random field models, but before specifying
this in general we note that the key idea underlying these prior models is that the variance
associated with functions possessing increasing spatial frequency (wave number in a Fourier
expansion) should decay sufficiently rapidly under the prior model; this ensures desirable
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regularity properties for functions drawn from the prior. To carry this out in a concrete fashion
we employ prior covariance operators which are fractional negative powers of the Stokes
operator A. Lemma 4.3 shows how the regularity (number of derivatives) of the Gaussian
random field is related to the exponent α in a covariance operator of the form βA−α. As α
grows, the prior variance will decay faster with modulus of the wave number; the parameter
β can be used to set a scale for the variances. We will typically denote the mean of the initial
condition u0 by ub to denote the connection with the notation used to denote background state
for the initial condition in the applied data assimilation community. Although we work with
a particular form of Gaussian prior, the ideas are trivially extended to any Gaussian prior
which is absolutely continuous with respect to the measure N (ub,βA−α). In practical terms
this means that asymptotically, for very high wave numbers, the prior measure should have
covariances governed by βA−α; but for any finite wave numbers the practitioner is free to
choose the prior measure as he wishes.

When studying problems with model error we will need, in addition, to place prior
Gaussian random field models on the forcing f : a function of space and time. Informally this
will be in the form of a mean zero statistically stationary solution of a PDE with the form

df

dt
+ Rf = η, (3.5)

where R is a (possibly pseudo) differential operator and η is a space-time Gaussian process
with correlation operator /δ(t − s) for some spatial operator /; thus the noise η is white in
time and correlated in space with covariance operator /. Full details are given in lemma 4.4.
Informally the subsections concerning model error in this section can be understood by
recognizing that different choices of R and / give rise to Gaussian random fields f with
different space-time correlations, and different smoothness properties. Roughly speaking
smoothness will increase as smoothness of / increases and as the number of derivatives
(possibly fractional) in R increases. Statements such as D(Rγ ) ⊆ Hs mean, roughly, that R is
an operator involving s/γ (square integrable) derivatives.

3.1. Eulerian data assimilation

In weather forecasting, a number of direct observations are made of the air velocity in the
atmosphere; these observations can be made from satellites, weather balloons or aircraft, for
example. In order to understand how such observations can be combined with a mathematical
model, we consider a model problem where the fluid velocity is accurately described by
the two-dimensional Navier–Stokes equations (3.1)–(3.3). Suppose we make direct noisy
observations of the velocity field at the set of points {xj }Jj=1 at a set of times {tk}Kk=1. Then we
have JK observations in R2, {yj,k}J,K

j,k=1. Therefore m = 2JK . If u(x,t) is the actual velocity
field from which we are taking our noisy observations, then

yj,k = u(xj , tk) + σj,k, (3.6)

where the σj,k are Gaussian random variables. So in the Euclidean case, our observation
operator is constructed from {u(xj , tk)}J,K

j,k=1 ∈ R2JK , where u is the solution of (3.1)–(3.3).
Under suitable regularity conditions on u0, the Navier–Stokes equations form a dynamical
system, and so u is uniquely defined by u0. Hence the observation operator is a function
GE = GE(u0) := {u(xj , tk)}J,K

j,k=1.
We provide rigorous justification for formula (2.2) in theorem 3.4. The proof relies on

the following lemmas which establish a bound on the Eulerian observation operator, and
demonstrate that it is Lipschitz. Careful attention is paid to the dependence of the constants
on the initial condition u0. Proofs of the required estimates on the Navier–Stokes equations
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may be found in appendix 2. Note that, for the proof of the lemmas, it suffices to consider the
case J = K = 1.

Lemma 3.1. Assume that u0 ∈ H and that f ∈ Hs for some s > 0. Then there exists a
constant c independent of u0 and f such that

|GE(u0)| " ct
−(s+1)/2
0

(
|f |s + |f |20 + ‖u0‖2),

provided that mink tk > t0 > 0.

Proof. Noting by the Sobolev embedding theorem that

|u(xj , tk)| " ‖u(tk)‖L∞ " c‖u(tk)‖1+s

for any s > 0, the result follows from the estimate

‖u(t)‖2
1+s " ct−(s+1)

(
|f |s + |f |20 + ‖u0‖2)2

obtained in lemma 5.3. !

Lemma 3.2. Assume that u0, v0 ∈ H and that f ∈ H. Then for any s > 0 there exists a
constant L = L(‖u0‖, ‖v0‖, |f |0) such that

|GE(u0) − GE(v0)| " Lt
−(s+1)/2
0 ‖u0 − v0‖,

provided that mink tk > t0 > 0.

Proof. As above, the result follows from the Sobolev embedding theorem and the estimate
on ‖u(t) − v(t)‖1+s obtained in lemma 5.5, setting r = 0. !

Lemma 3.3. Let u0 ∈ H and f ∈ H. Then GE(u0) : H → Rm is differentiable.

Proof. The result is a corollary of differentiability of the solution mapping from H into H 1+s ,
using the Sobolev embedding theorem. The proof of lemma 5.6 shows that if v is a second
solution of the Navier–Stokes equations with v(0) = v0 and U solves

dU

dt
+ νAU + B(u,U) + B(U, u) = 0, with U(0) = u0 − v0

then θ(t) = u(t) − v(t) − U(t) satisfies, for t > t0,

‖θ(t)‖L∞ " ‖θ(t)‖1+s " t−s
0 C(‖u0‖, ‖w0‖, |f |0)‖w0‖4,

which proves the differentiability of GE(u0). !

Theorem 3.4. Assume that f ∈ H. Define a Gaussian measure µ0 on H, with mean
ub ∈ H α and covariance operator βA−α for any β > 0,α > 1. Then the probability measure
µy(du0) = P(du0|y) is absolutely continuous with respect to µ0 with the Radon–Nikodym
derivative

dµy

dµ0
(u0) ∝ exp(−$(u0; y)), (3.7)

where

$(u0; y) = 1
2 |y − GE(u0)|2# .

Furthermore, if f ∈ Hs for some s > 0 then assumption 2.4 holds for $ with X = H .

Proof. To establish the first result we use corollary 2.2 with X = H. By lemma 4.3, together
with the fact that ub is in the Cameron–Martin space for N (0, A−α), we have µ0(H) = 1.
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Since GE(·) is continuous on H, by lemma 3.2, the first result follows. The second result,
namely that assumption 2.4 holds, follows from the polynomial bound of lemma 3.1. !

Since we have established that assumption 2.4 holds we deduce that theorems 2.5 and
2.7 apply for any α > 1. Thus the posterior measure is continuous in the Hellinger metric,
and hence expectations of all polynomially bounded functions under the posterior measure,
including the mean and covariance operator, are continuous in the data. Furthermore, taking
α = 2, and recalling that A is the Stokes operator, we deduce from theorem 2.7 that the
functional

I (u0) = 1
2‖A(u0 − ub)‖2 + 1

2 |y − GE(u0)|2#
attains its infimum in H2. Furthermore, by lemma 3.3, GE : H → R is differentiable and
hence the derivative of GE is defined in H2, making gradient descent and adjoint methods
feasible.

3.2. Lagrangian data assimilation

Understanding the oceans is fundamental in the atmospheric and environmental sciences, for
environmental, commercial and military purposes. One way of probing the oceans is by
observing the velocity of the flow at fixed positions in the ocean, which is analogous to the
Eulerian data assimilation problem considered in the preceding subsection. Another is to
place ‘floats’ (at a specified depth) or ‘drifters’ (on the surface) in the ocean and allow them
to act as Lagrangian tracers in the flow. These tracers broadcast GPS data concerning their
positions and these data can be used to make inference about the oceans themselves.

In order to understand how such observations can be combined with a mathematical
model, we again consider a problem where the fluid velocity is accurately described by the
two-dimensional Navier–Stokes equations (3.1)–(3.3). We model the Lagrangian instruments
which gather data as J tracers {zj }Jj=1 being transported by the vector field u according to
(3.4), which we observe at times {tk}Kk=1. The tracers’ trajectories are then given by the set of
ODEs,

żj = u(zj , t), zj (0) = zj,0, (3.8)

for some set of starting positions {zj,0}Jj=1. Our observations are given by

yj,k = zj (tk) + σj,k. (3.9)

Note that each zj (tk) is a (complicated) function of the initial fluid velocity u0, assuming that
the zj,0 are known. Thus the observation operator GL is given by GL(u0) = {zj (tk)}J,K

j,k=1.
We provide rigorous justification for the formula (2.2) in theorem 3.8, building on the

following lemmas which establish a bound on the Lagrangian observation operator, and
demonstrate that it is Lipschitz. Again, careful attention is paid to the dependence of the
constants on the initial condition u0. Again, for the proof of the lemmas, it suffices to consider
the case J = K = 1.

Lemma 3.5. Assume that u0 ∈ H and that f ∈ H. Then there exists a constant c independent
of u0 and f such that

|GL(u0)| " c
(
1 + |f |20 + ‖u0‖2)3/2

.

Proof. We consider GL(u0) = z(t) with z(t) as in (4.1) and u solving (3.1)–(3.3). Since
‖u‖L∞ " c‖u‖1+s for any s > 0,
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|GL(u0)| = |z(t)| " |z(0)| +
∫ t

0
‖u(τ )‖L∞ dτ

" |z(0)| + c

∫ t

0
‖u(τ )‖1+s dτ

" |z(0)| + c
(
1 + |f |20 + ‖u0‖2)3/2

,

using the bound in (5.10). !

Lemma 3.6. Assume that u0, v0 ∈ Hs and that f ∈ Hs for some s > 0. Then there exists
L = L(‖u0‖s , ‖v0‖s , |f |s) such that

|GL(u0) − GL(v0)| " L‖u0 − v0‖s .

Proof. Let v(t) be a solution of the Navier–Stokes equations (3.1) and (3.2) with initial
condition v0 ∈ Hs (possibly different from u0) and driving force g14.

Let y(t) be the trajectory of the particle initially at a ∈ T2, moving under the velocity
field v(t):

dy

dt
= v(y, t), with y(0) = a.

When z(t) is the solution of (4.1), the difference z(t) − y(t) satisfies

d|z − y|
dt

" |u(z, t) − v(y, t)|

" |u(z, t) − u(y, t)| + |u(y, t) − v(y, t)|
" ‖Du‖L∞ |z − y| + ‖u − v‖L∞

" ‖u‖2+ε |z − y| + c‖u − v‖1+s ,

where we choose 0 < ε < s.
Integrating with respect to time we obtain

|z(t) − y(t)| " c exp
(∫ t

0
‖u(τ )‖2+ε dτ

) ∫ t

0
‖u(τ ) − v(τ )‖1+s dτ. (3.10)

Since u0 ∈ Hs it follows from lemma 5.2 that
∫ t

0
‖u(τ )‖2+ε dτ " C(‖u0‖s , |f |ε),

while (5.23) gives bounds on the separation of trajectories in time which imply that
∫ t

0
‖u(τ ) − v(τ )‖1+s dτ " t1/2

(∫ t

0
‖u(τ ) − v(τ )‖2

1+s dτ
)1/2

" C(‖u0‖s , ‖v0‖s , |f |s)‖u0 − v0‖s ,

from which it follows that

|z(t) − y(t)| " C(‖u0‖s , ‖v0‖s , |f |s)‖u0 − v0‖s (3.11)

as required. !

Lemma 3.7. Assume that u0 ∈ Hs and f ∈ Hε for some ε, s > 0. Then GL(u0) : Hs → Rm

is differentiable.

14 Here we take g equal to f , but in the analogous proof of lemma 3.13 they are chosen to differ.
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The proof of this lemma is an order of magnitude more involved than those above, and is
included in appendix 2, along with the estimates on the Navier–Stokes equations used in all
the preceding proofs.

Theorem 3.8. Assume that f ∈ Hr for some r > 0. Define a Gaussian measure µ0 on
H with mean ub ∈ H α and covariance operator βA−α for any β > 0,α > 1. Then the
probability measure µy(du0) = P(du0|y) is absolutely continuous with respect to µ0 with the
Radon–Nikodym derivative

dµy

dµ0
(u0) ∝ exp (−$(u0; y)) , (3.12)

where

$(u0; y) = 1
2 |y − GL(u0)|2# .

Furthermore assumption 2.4 holds for $ with X = Hs for any s > 0.

The proof is similar to that for theorem 3.4 and we omit it. Similar conclusions to those
in the previous section may also be made: the posterior measure is continuous in the Hellinger
metric, and hence expectations of all polynomially bounded functions are Lipschitz in the
data; and the variational problem

I (u0) = 1
2‖A(u0 − ub)‖2 + 1

2 |y − GL(u0)|2#
attains its infimum in H2.

3.3. Eulerian data assimilation with model error

Data assimilation problems such as that outlined in subsection 3.1 are notoriously hard to solve,
especially in situations where there is sensitivity to initial conditions, such as in turbulent fluid
flow. In this situation it is desirable to regularize the problem by assuming that the Navier–
Stokes equations are not satisfied exactly, but are subject to a forcing process which can be
chosen, in conjunction with the choice of initial condition, to explain the data. The unknown
forcing may be viewed as model error.

In order to model this situation we consider the case where the fluid velocity is accurately
described by the two-dimensional noisy Navier–Stokes equations (3.1)–(3.3). Suppose we
make direct noisy observations of the velocity field at the set of points {xj }Jj=1 at a set of times
{tk}Kk=1. The observation operator GEN is now viewed as a function of both the initial condition
u(x, 0) = u0(x) and the driving noise f : GEN = GEN(u0, f ) = {u(xj , tk)}J,K

j,k=1.
We provide rigorous justification for the formula (2.2) in theorem 3.11, building on the

following lemmas, whose proofs follow from the estimates in the appendix 2, using arguments
identical to those for the case without model error discussed above.

Lemma 3.9. Assume that u0 ∈ H and that ζ ∈ Hs for some s > 0. Then there exists a
constant c independent of u0 and ζ such that

|GEN(u0, ζ )| " ct
−(s+1)/2
0

(
|ζ |s + |ζ |20 + ‖u0‖2)

provided that mink tk > t0 > 0.

Lemma 3.10. Assume that u0, v0 ∈ H and that ζ, ξ ∈ Hs for some s > 0. Then there exists
L = L(‖u0‖, ‖v0‖, |ζ |0, |ξ |0, s) such that

|GEN(u0, ζ ) − GEN(v0, ξ)| " Lt
−(s+1)/2
0

(
‖u0 − v0‖2 + |ζ − ξ |2s

) 1
2 ,
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provided that mink tk > t0 > 0.

Theorem 3.11. Assume that, for some s > 0 and γ ∈
(
0, 1

2

]
, D(Rγ ) ⊆ Hs. Define a Gaussian

measure µ0 on H × H by choosing u0 distributed according to the Gaussian measure on H
with mean ub and covariance operator βA−α, any β > 0,α > 1, and f independent of u0

and distributed according to stationary measure ν0 on H given by equation (3.5) (constructed
in lemma 4.4). If ub ∈ H α then the probability measure µy(du0, df ) = P(du0, df |y) is
absolutely continuous with respect to µ0 with the Radon-Nikodym derivative

dµy

dµ0
(u0, f ) ∝ exp (−$(u0, f ; y)) , (3.13)

where

$(u0, f ; y) = 1
2 |y − GEN(u0, f )|2# .

Furthermore, assumption 2.4 holds for $ with X = H × Hs for any s > 0.

Proof. To establish the first result we use corollary 2.2 with X = H × Hs for some s > 0
sufficiently small. By lemmas 4.3 and 4.4 together with the fact that ub is in the Cameron–
Martin space for N (0, A−α) and the assumptions on D(Rγ ) we have µ0(X) = 1. Since GEN(·)
is continuous on X, by lemma 3.10, the first result follows. The second result, namely that
assumption 2.4 holds, follows from the polynomial bound of lemma 3.9. !

Thus the posterior measure on (u0, f ) is Lipschitz continuous, with respect to changes
in data, in the Hellinger metric, and hence expectations of polynomially growing functions of
(u0, f ) perturb smoothly with respect to changes in the data.

We can also study variational problems. To do this we need to identify the Cameron–
Martin space for the Gaussian reference measure µ0. For the posterior measure to be well
defined we choose the measure on the initial condition to have covariance operator A−α, for
any α > 1; for the prior on the forcing we choose R so that, for some s > 0,D(R

1
2 ) ⊆ Hs.

The Cameron–Martin space E is the subspace of H × H determined by the space-time inner
product 〈·, ·〉E which we now define. In the following note that ui are initial conditions and
functions of space only; the fi are forcing functions of space and time. With this in hand we
may define

〈(u1, f1), (u2, f2)〉E = (Aα/2u1, A
α/2u2)

+ (〈f1(0), f2(0)〉R−1/ + 〈f1(T ), f2(T )〉R−1/)

+
∫ T

0

(〈
df1

dt
(t),

df2

dt
(t)

〉

/

+ 〈Rf1(t), Rf2(t)〉/
)

dt.

The norm is thus

‖(u0, f )‖2
E = ‖Aα/2u0‖2 +

(
‖f (0)‖2

R−1/ + ‖f (T )‖2
R−1/

)

+
∫ T

0

(∥∥∥∥
df

dt
(t)

∥∥∥∥
2

/

+ ‖Rf (t)‖2
/

)

dt.

Thus E is contained in H α × E′ where

E′ = H 1(0, T ;D(/− 1
2 )) ∩ L2(0, T ;D(/− 1

2 R)).

By lemmas 3.9 and 3.10, the function $ is continuous from X = H × Hs for any s > 0.

Since / is trace class we have

E′ ⊆ H 1(0, T ;H) ∩ L2(0, T ;D(R)).
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Hence by the compactness theorem 8.1 in [62] we deduce that E′ is compactly embedded into
L2(0, T ;D(R

1
2 )). Since H α is compactly embedded into H, it is immediate that H α × E′ is

compactly embedded into H × L2(0, T ;D(R
1
2 )) and hence into X = H × Hs . Theorem 2.7

then shows that the functional

I (u0, f ) = 1
2‖(u0, f )‖2

E + 1
2

∣∣y − GEN(u0, f )
∣∣2
#

attains its infimum in E.

3.4. Lagrangian data assimilation with model error

In the case of Lagrangian data, the problem can exhibit sensitivity to initial conditions even
when the underlying fluid flow is not itself chaotic. This is since the particle trajectories
can still exhibit chaoic behaviour in this case. It is again of interest in this situation to
assume that the equations of fluid motion are subject to noise. In order to understand this
situation we again consider the case where the fluid velocity is accurately described by the two-
dimensional Navier–Stokes equations (3.1)–(3.3). We again model the Lagrangian instruments
which gather data as J tracers {zj }Jj=1 being transported by the vector field u according to
equation (3.8), which we observe at times {tk}Kk=1. Since u in (3.8) is uniquely determined by
u0 and f , the observation operator is given by GLN = GLN(u0, f ) = {zj (tk)}J,K

j,k=1.

We provide rigorous justification for the formula (2.2) in theorem 3.14. The results
follow from the next lemmas which provide the requisite bounds and Lipschitz properties
on the observation operator. Again, the proofs of the following lemmas follow the same
arguments as those without model error discussed in detail above.

Lemma 3.12. Assume that u0 ∈ H and that ζ ∈ H. Then there exists a constant c independent
of u0 and ζ such that

|GLN(u0, ζ )| " c
(
1 +

∣∣ζ
∣∣2
0 + ‖u0‖2)3/2

.

Lemma 3.13. Assume that u0, v0 ∈ Hs and that ζ, ξ ∈ Hs for some s > 0. Then there exists
L = L(‖u0‖s , ‖v0‖s , |ζ |s , |ξ |s) such that

|GL(u0, ζ ) − GL(v0, ξ)| " L
(
‖u0 − v0‖2

s +
∣∣ζ − ξ

∣∣2
0

) 1
2
.

Theorem 3.14. Assume that, for some s > 0 and γ ∈
(
0, 1

2

]
, D(Rγ ) ⊆ Hs. Define

a Gaussian measure µ0 on H × H by choosing u0 distributed according to the Gaussian
measure on H with mean ub ∈ H α and covariance operator βA−α, any β > 0,α > 1, and
f independent of v and distributed according to the stationary measure ν0 on H constructed
in lemma 4.4. If ub ∈ H α then the probability measure µy(du0, df ) = P(du0, df |y) is
absolutely continuous with respect to µ0 with the Radon–Nikodym derivative

dµy

dµ0
(u0, f ) ∝ exp (−$(u0, f ; y)) , (3.14)

where

$(u0, f ; y) = 1
2

∣∣y − GLN(u0, f )
∣∣2
#
.

Furthermore, assumption 2.4 holds with X = Hs × Hs for any s > 0 sufficiently small.

The situation here is identical to that in the previous subsection, but taking X = Hs ×Hs

for some s > 0 sufficiently small; we omit the proof of the theorem. We again have continuity
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of expectations of all polynomially bounded functions of (u0, f ). The Cameron–Martin space
is the same as in the previous subsection and the functional I (u0, f ) given by

I (u0, f ) = 1
2‖(u0, f )‖2

E + 1
2

∣∣y − GLN(u0, f )
∣∣2
#

attains its infimum in E.

4. Appendix 1: Mathematical setting for applications to fluid mechanics

We describe the mathematical setting for the differential equations of interest to us when
applying the theory of section 2 to applications arising in fluid mechanics described in section 3.
We also include discussion of the requisite theory of Gaussian measures in Hilbert space,
including linear stochastic PDEs, required to define prior measures on the initial condition (a
measure on functions of space only) and on the model error (a measure on functions of space
time).

4.1. Navier-stokes equations and the stokes operator

We study viscous incompressible fluid flow governed by the Navier–Stokes equation on the
two-dimensional unit torus T2 given by equations (3.1)–(3.3). The following result from [67]
shows existence and uniqueness of weak solutions under these assumptions. Let L2 denote the
space of square integrable functions on T2. Define the Hilbert space

H =
{
u ∈ L2,

∫

T2
u dx = 0,∇ · u = 0

}
,

with inner product denoted by (f, g) :=
∫

T2 f (x)g(x) dx, and the resulting norm ‖ ·‖ . We
define Hs to be the Sobolev space of functions on T2 with s weak derivatives in L2; for the
moment s is an integer but we extend to non-integer s below. We define V = H 1 ⋂

H and
denote the dual space of V by V ′.

Theorem 4.1. [67] Assume that u0 ∈ H and f ∈ L2(0, T ;V ′). Then there exists a unique
weak solution u to the Navier–Stokes equations (3.1)–(3.3) satisfying

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).

In the following we use 〈·, ·〉 to denote the inner product on Rm or Cm, and | · | denotes the
resulting norm. We let P denote the orthogonal projection from L2 into H (the Leray projector)
and define the Stokes operator by Au = −P0u for all u ∈ D(A), where

D(A) = {u ∈ H,0u ∈ H } = H 2 ∩ H.

We can create an orthonormal basis for H by letting

φk = k⊥

|k|
exp(2π ik.x),

where k = (k1, k2) and k⊥ = (k2,−k1); note that ∇ · φk = 0 so that the basis is divergence
free. We define uk = 〈u,φk〉. Then any u ∈ H may be written as

u =
∑

k

ukφk.

Here, and in what follows, all sums in k are over Z2\{0}. The function u is real and so u−k = uk.

Note that A acts as the negative Laplacian on its domain, the φk are its eigenfunctions, and
Aφk = 4π2|k|2φk . We denote the eigenvalues ak = 4π2|k|2. In this setting we can specify the
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Sobolev spaces Hs by Hs = {u ∈ H :
∑

k as
k|uk|2 < ∞}, with norm ‖u‖s =

(∑
k as

k|uk|2
)1/2.

This agrees with the preceding definition in the case where s is an integer, but is valid for any
s ∈ R and hence gives notions of spaces of functions with fractional and negative derivatives.
Note that ‖ ·‖ 0 = ‖ · ‖ and that ‖ ·‖ 1 is a norm on V.

The Navier–Stokes equation is sometimes written as an ODE in the Hilbert space H and
we use this compact notation:

du

dt
+ νAu + B(u, u) = f, u(0) = u0.

Here B(u,u) is the bilinear form found from projecting the nonlinear term u · ∇u into H, and
(abusing notation) f is now the original forcing, projected into H.

4.2. Lagrangian trajectories

Given a velocity field u(x,t) from the Navier–Stokes equation, it is natural to wish to define
Lagrangian trajectories describing the motion of fluid particles advected by the flow. Doing so
is integral to the mathematical formulation of Lagrangian data assimilation. Our goal is thus
to make sense of the ordinary differential equation (3.4) in the case where the initial velocity
field u(·, 0) = u0 may not be regular enough to employ the classical theory of differential
equations. Thus we consider the integral equation formulation of the trajectory equations,
namely

z(t) = z0 +
∫ t

0
u(z(s), s) ds, z(0) = z0. (4.1)

The following result from [12, 18] achieves such a result with minimal regularity assumptions
on the initial condition for the velocity field.

Theorem 4.2. [12, 18] For u0 ∈ H and f ∈ L2(0, T ;H), let u ∈ L2(0, T ;V )∩L∞(0, T ;H)

be a weak solution of the two dimensional Navier–Stokes equation (3.1–3.3), extended by
periodicity to a function u : R2 × (0, T ] → R2. Then the ordinary differential equation (4.1)
has a unique solution z ∈ C(R+, R2).

4.3. Gaussian measures on Hilbert space

We setup the machinery to define prior measures on the initial condition and on the driving
force for the Navier–Stokes equation. We will assume that both prior measures are Gaussian.

We will define a prior distribution for the initial condition u0 to be the Gaussian measure
µ0 = N (ub, A

−α), where α > 1 to ensure that the covariance operator is trace class. To make
a sample from this distribution, we can use the Karhunen–Loève expansion: if

u = ub +
∑

k

a
−α/2
k φkξk,

where ξk is a sequence of complex unit Gaussians, i.i.d except for the reality constraint that
ξ−k = ξk , then u ∼ N (ub, A

−α). We now wish to ascertain the values of α for which
(u − ub) ∈ Hs. The proof technique used for the following lemma is well known and may be
found in, for example, [17].

Lemma 4.3. If α > s + 1 then (u − ub) ∈ Hs,µ0-almost surely.
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Proof. It is enough to show that E
(
‖u − ub‖2

s

)
< ∞ for s < α − 1.

E
(
‖u − ub‖2

s

)
= E

(
∑

k

as
k

∣∣a−α/2
k ξk

∣∣2

)

=
∑

k

as−α
k E|ξk|2

∝
∑

k

|k|2(s−α).

Since we are in two dimensions, this sum is finite if s < α−1, as may be shown by comparison
with an integral. !

For the prior on the model error (driving noise), we will employ Gaussian measures on
the Hilbert space H = L2(0, T ;H). We will construct these measures through stationary
solutions of an infinite-dimensional Ornstien–Uhlenbeck (OU) process. We write this as an
SDE in Hilbert space H:

df

dt
+ Rf =

√
/

dW

dt
. (4.2)

Here W is cylindrical Brownian motion in H:

W(t) =
∑

k

φkβk(t),

where the βk are independent standard complex valued Brownian motions, except for the
correlation arising from imposing the reality constraint φ−k = φk; thus dW/dt is white in time
(because the derivative of Brownian motion is white) and white in space (because all Fourier
components are statistically identical). We assume that R and / are self-adjoint positive
operators in H, diagonalized in the same basis as the Stokes operator A. Thus

Rφk = rkφk, /φk = λkφk.

The {rk} and {λk} are positive. We assume that R generates an analytic semigroup, so that
exp(−Rt) maps bounded functions into analytic ones, and that / is trace-class so that its
eigenvalues are summable. To understand (4.2), note that each component of f in the basis
{φk} is a (complex) scalar-valued OU process. As such, each component is ergodic: the
statistical distribution converges exponentially fast to a Gaussian in time; furthermore, this
Gaussian distribution is preserved by the OU process, giving rise to a stationary Gaussian
process with exponential correlations. Synthesizing the behaviour in each individual Fourier
component we deduce that f is itself ergodic, and is stationary if given an appropriate Gaussian
distribution in H. This, together with a regularity statement, is the content of the following
lemma.

Lemma 4.4. Equation (4.2) is ergodic with invariant measure N
(
0, 1

2R−1/
)
. If f (0) ∼

N
(
0, 1

2R−1/
)
, independently of W , then f (t) is stationary with f (t) ∼ N

(
0, 1

2R−1/
)

for
all t > 0 and, almost surely with respect to f (0) and W,f ∈ L2(0,∞;D(Rγ )) for all
γ ∈

(
0, 1

2

]
.

Proof. Ergodicity follows from theorems 11.7 and 11.11 in [17]. The stationary solution is
given by

WR(t) :=
∫ t

−∞
exp

(
−R(t − s)

)√
/dW(s).
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By use of the Karhunen–Loève expansion we have

f (0) =
∑

k

√
λk

2rk

φkξk,

with {ξk} a sequence of complex unit Gaussians, i.i.d. except for the reality constraint that
ξ−k = ξk. Then for γ ∈

(
0, 1

2

]
, since / is trace class,

E‖Rγ f (0)‖2 =
∑

k

1
2
r

2γ−1
k λk

" c
∑

k

λk

2

< ∞.

By stationarity

E‖Rγ f (t)‖2 = E‖Rγ f (0)‖2.

Thus

E
∫ T

0
‖Rγ f (t)‖2dt = T E‖Rγ f (0)‖2.

Since the right-hand side is finite for γ ∈
(
0, 1

2

]
we deduce that f ∈ L2(0, T ;D(Rγ )) for

γ ∈
(
0, 1

2

]
, almost surely. !

4.4. The noisy Navier-stokes equations

We wish to make sense of the Navier–Stokes equation driven by a noise process f :

∂t u − ν0u + u · ∇u + ∇p = f, ∀(x, t) ∈ T2 × (0,∞) (4.3)

∇ · u = 0, ∀t ∈ (0,∞) (4.4)

u(x, 0) = u0(x), x ∈ T2. (4.5)

We assume that f is a mean zero Gaussian process. Specifically we will be interested in the
case where f is given by the OU process solving (4.2). As a pair of differential equations in
H × H we have15

du

dt
+ Au + B(u, u) = f, u(0) = u0,

df

dt
+ Rf =

√
/

dW

dt
, f (0) ∼ N

(
0,

1
2
R−1/

)
. (4.6)

We let
∣∣ψ

∣∣2
0 =

∫ T

0
‖ψ(t)‖2dt and

∣∣ψ
∣∣2
l

=
∫ T

0
‖ψ(t)‖2

l dt (4.7)

denote the norms in H := L2(0, T ;H) and Hl := L2(0, T ;Hl), respectively.
We assume that R is such that, for some s # 0 and γ ∈

(
0, 1

2

]
,D(Rγ ) ⊆ Hs. Then,

by lemma 4.4, the law of the stationary paths f (t) given by (4.2) is a probability measure

15 Again we abuse notation and write f for Pf .

27



Inverse Problems 25 (2009) 115008 S L Cotter et al

which has full measure on Hs ; as such we view it as a probability measure on this space,
by considering an appropriate version. We denote this measure by ν0. A straightforward
application of theorem 4.1 gives the following result:

Theorem 4.3. Assume that R is such that, for some s # 0 and γ ∈
(
0, 1

2

]
,D(Rγ ) ⊆ Hs. Let

f be distributed according to the measure ν0 given by a stationary solution of (4.2). Then, for
u0 ∈ H , (4.3)–(4.5) has a weak solution u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), ν0 almost surely.

5. Appendix 2: Estimates on solutions of the Navier–Stokes equations

This appendix contains detailed estimates on solutions, and differences of solutions, of
the Navier–Stokes equations. Many of the basic estimates and tools in this section derive
from using modifications of techniques frequently used in the analysis of the Navier–Stokes
equations (see [62], for example). However, our emphasis is on isolating precisely the
dependence on initial data and forcing and hence it is not possible to simply quote existing
results. Throughout, lower case c is a constant, independent of initial condition and driving
force, but depending on ν and possibly changing between occurrences. We first derive a
number of results concerning solutions of the Navier–Stokes equations, or differences of
solutions of the equations, all of which are used in proving the lemmas in this section. The
results assume either u0 ∈ H , required for the Eulerian case, or u0 ∈ Hs for s > 0, required
in the Lagrangian case.

In what follows we use the notation

Dm =
∑

α1+α2=m

∂α1+α2

∂xα1
1 ∂x

α2
2

with α1,α2 ∈ N and (x1, x2) ∈ T2.

5.1. Orthogonality relations and bounds for the nonlinear term

In this section, we will frequently have to find upper bounds on expressions involving the
nonlinear term of the form |

(
(u · ∇)v,Asw

)
|, so we will give a short derivation of these

estimates here. However, before deriving bounds on such expressions, we note that

((u · ∇)v, v) = 0, (5.1)

which shows in particular that the nonlinear term makes no contribution to the kinetic energy.
(This equality is easy to check using an integration by parts.) Since we are working in a
two-dimensional periodic domain, we also have the higher order orthogonality relation

((u · ∇u),Au) = 0, (5.2)

which can be checked by expanding in components and using the divergence-free property to
cancel appropriately grouped terms.

The following bounds on the trilinear form ((u · ∇)v,w) will be used repeatedly in what
follows.

Lemma 5.1. For s = 0,

|((u · ∇)v,w)| " c‖u‖1/2‖u‖1/2
1 ‖v‖1‖w‖1/2‖w‖1/2

1 . (5.3)

For 0 < s < 1,

|((u · ∇)v,Asw)| " c‖u‖s ‖v‖1 ‖w‖1+s . (5.4)
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For 0 < s " 1

|((u · ∇)v,Asw)| " c‖u‖1/2‖u‖1/2
s ‖v‖1/2

1 ‖v‖1/2
s+1‖w‖s+1. (5.5)

For s = 1 + l, 0 < l < 1,

|((u · ∇)v,A1+lw)| " c ‖u‖1+l ‖v‖1 ‖w‖2+l + c ‖u‖l ‖v‖2 ‖w‖2+l . (5.6)

Proof. For s = 0 write

|((u · ∇)v,w)| " ‖|u||Dv||Aw|‖L1

" ‖u‖L4‖Dv‖L2‖w‖L4 (Hölder’s inequality)

" c‖u‖1/2‖u‖1/2
1 ‖v‖1‖w‖1/2‖w‖1/2

1 ,

where the last line follows using Ladyzhenskaya’s inequality

‖u‖L4 " c‖u‖1/2‖u‖1/2
1 . (5.7)

For 0 < s < 1 we have

|((u · ∇)v,Asw)| " ‖|u||Dv||Asw|‖L1

" ‖u‖L2/(1−s)‖Dv‖L2‖Asw‖L2/s (Hölder’s inequality)

" c‖u‖s‖v‖1‖Asw‖1−s (Sobolev embedding)

" c‖u‖s‖v‖1‖w‖1+s ,

where the Sobolev embedding result used is the inclusion Lr ⊂ H 1−(2/r) valid for two-
dimensional domains. Using different Lp spaces in Hölder’s inequality we can obtain

|((u · ∇)v,Asw)| " ‖|u||Dv||Asw|‖L1

" ‖u‖L4/(2−s)‖Dv‖L4/(2−s)‖Asw‖L2/s (Hölder’s inequality)

" ‖u‖1/2
L2 ‖u‖1/2

L2/(1−s)‖Dv‖1/2
L2 ‖Dv‖1/2

L2/(1−s)‖Asw‖L2/s (Lp interpolation)

" c‖u‖1/2‖u‖1/2
s ‖v‖1/2

1 ‖v‖1/2
s+1‖w‖s+1 (Sobolev embedding);

a result that is also true for s = 1 using (5.7) in place of the Lp interpolation and Sobolev
embedding results.

For s = 1 + l

((u · ∇)v,A1+lw) =
2∑

k=1

(
(u · ∇)v,− ∂2

∂x2
k

Alw

)

=
2∑

k=1

((
∂

∂xk

u · ∇
)

v +
(

u · ∂
∂xk

∇
)

v,
∂

∂xk

Alw

)
(parts)

" 2‖|Du||Dv||DAlw|‖L1 + 2‖|u||D2v||DAlw|‖L1

" c‖Du‖L2/1−l ‖Dv‖‖DAlw‖L2/l

+ c‖u‖L2/(1−l)‖D2v‖‖DAlw‖L2/l (Hölder)

" c‖u‖1+l‖v‖1‖w‖2+l + c‖u‖l‖v‖2‖w‖2+l . (Sobolev) !

5.2. Bounds on solutions

Here we give bounds on the norms of solutions, and on integrals of those norms. Since
often bounds on quantities like ‖u‖s will depend on integral bounds on the same (or similar)
quantities, we will adopt the notation

Ks(t) =
∫ t

0
‖u(τ )‖2

s dτ. (5.8)
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First we give bounds on Hs norms when the initial condition is also in Hs.

Lemma 5.2. Choose 0 " s " 1, and suppose that u0 ∈ Hs and f ∈ L2(0, T ;H). Then

‖u(t)‖2
s + K1+s(t) " C(‖u0‖s , |f |0). (5.9)

Furthermore if u0 ∈ H then for any 0 < s " 1/2,
∫ t

0
‖u(s)‖1+s " c

(
1 + |f |20 + ‖u0‖2)3/2; (5.10)

and if u0 ∈ Hs, 0 < s " 1, and f ∈ L2(0, T ;H ε) for some 0 < ε < s, then
∫ t

0
‖u(τ )‖2+ε dτ " C(‖u0‖s , |f |ε). (5.11)

Proof. Assume that u0 ∈ H . By taking the inner product in the Navier–Stokes equations (3.1)
with u we obtain, using the orthogonality property (5.1), and the Cauchy–Schwarz and the
Poincaré inequalities,

1
2

d
dt

‖u‖2 + ν‖u‖2
1 = (f, u) " c‖f ‖2 +

ν

2
‖u‖2

1.

From this it follows that

‖u(t)‖2 + ν
∫ T

0
‖u(s)‖2

1 ds " ‖u0‖2 + 2c

∫ t

0
‖f (s)‖2 ds, (5.12)

which is precisely (5.9) for s = 0.
Now consider the case where u0 ∈ Hs for some s ∈ (0, 1). We take the inner product

of (3.1) with Asu. Since the domain is periodic, ∇p is perpendicular to any divergence-free
square integrable vector, and while we do not know here a priori that u ∈ H 2s , the resulting
cancellation of ∇p can be justified via a Galerkin process. Therefore

1
2

d
dt

‖u‖2
s + ν‖u‖2

1+s " |((u · ∇)u,Asu)| + (f,Asu),

and since

|(f,Asu)| " ‖f ‖‖u‖2s " ‖f ‖‖u‖s+1 " c‖f ‖2 +
ν

4
‖u‖2

s+1,

using (5.4) we obtain

1
2

d
dt

‖u‖2
s + ν‖u‖2

1+s " c‖u‖s‖u‖1‖u‖1+s + c‖f ‖2 +
ν

4
‖u‖2

s+1

" c‖u‖2
s‖u‖2

1 + c‖f ‖2 +
ν

2
‖u‖2

1+s . (5.13)

From this we deduce that
d
dt

‖u‖2
s + ν‖u‖2

s+1 " c‖u‖2
s‖u‖2

1 + c‖f ‖2.

Dropping the ν‖u‖2
s+1 term and integrating the inequality gives the bound

‖u(t)‖2
s " exp(cK1(t))

(
‖u0‖2

s + c

∫ t

0
‖f (s)‖2ds

)

" C(‖u0‖s , |f |0) (5.14)

from which we deduce that

K1+s(t) =
∫ t

0
‖u(τ )‖2

1+s dτ " C(‖u0‖s , |f |0). (5.15)
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For s = 1 the analysis is simpler, since we have the orthogonality relation (5.2). In this
case taking the inner product with Au yields

1
2

d
dt

‖u‖2
1 + ν‖u‖2

2 = (f,Au) " c‖f ‖2 +
ν

2
‖u‖2

2,

from which bounds on ‖u‖1 and K2 easily follow, and we have shown (5.9).
The additional integral bounds follow using a method due to Foias, Guillopé and Temam

[26]. For the first bound (5.10), return to (5.13) (note that the derivation of this inequality
does not rely on having u0 ∈ Hs for s > 0), which, after relabelling c, implies that

d
dt

‖u‖2
s + ν‖u‖2

1+s " c‖u‖2
s‖u‖2

1 + c‖f ‖2 " c
(
1 + ‖u‖2

s

)2(‖u‖2
1 + ‖f ‖2).

Dividing both sides by
(
1 + ‖u‖2

s

)2 and integrating, we obtain

1(
1 + ‖u(0)‖2

s

) − 1(
1 + ‖u(t)‖2

s

) + ν
∫ t

0

‖u‖2
1+s(

1 + ‖u‖2
s

)2 dτ "
∫ t

0

(
‖u‖2

1 + ‖f ‖2)dτ

and therefore ∫ t

0

‖u‖2
1+s(

1 + ‖u‖2
s

)2 dτ " c
1

1 + ‖u(t)‖2
s

+ |f |20 +
∫ t

0
‖u‖2

1dτ

" c
(
1 + |f |20 + ‖u0‖2).

Now we use the Cauchy–Schwarz inequality to write
∫ t

0
‖u(τ )‖1+sdτ "

(∫ t

0

‖u‖2
1+s(

1 + ‖u‖2
s

)2 dτ

)1/2 (∫ t

0

(
1 + ‖u‖2

s

)2dτ
)1/2

" c
(
1 + |f |20 + ‖u0‖2)1/2

(
1 +

∫ t

0
‖u‖4

s dτ
)1/2

.

Assuming that s " 1/2 we have, by interpolation, ‖u‖4
s " c‖u‖2‖u‖2

1. Thus
∫ t

0
‖u(τ )‖1+sdτ " c

(
1 + |f |20 + ‖u0‖2)1/2(1 + c

(
‖u0‖2 + 2c|f |20

)
K1(t)

)1/2

" c(1 + |f |20 + ‖u0‖2)3/2.

For the second bound (5.11), taking the inner product of the Navier–Stokes equations
with A1+εu we obtain, using (5.6),
1
2

d
dt

‖u‖2
1+ε + ν‖u‖2

2+ε " |(u · ∇u,A1+εu)| + |(f,A1+εu)|

" c‖u‖1+ε‖u‖1‖u‖2+ε + c‖u‖ε‖u‖2‖u‖2+ε + |(Aε/2f,A1+ε/2u)|
" c‖u‖1+ε‖u‖1‖u‖2+ε + c‖u‖ε‖u‖ε1+ε‖u‖2−ε

2+ε + ‖f ‖ε‖u‖2+ε

" c
(
‖u‖2

1 + ‖u‖2ε
ε

)
‖u‖2

1+ε + c‖f ‖2
ε +
ν

2
‖u‖2

2+ε .

We first obtain a bound on
∫ t

0 ‖u(τ )‖2+ε dτ . Taking the inner product of the Navier–Stokes
equations with A1+εu we obtain, using (5.6),
1
2

d
dt

‖u‖2
1+ε + ν‖u‖2

2+ε " |(u · ∇u,A1+εu)| + |(f,A1+εu)|

" 2‖|Du||Du||DAεu|‖L1 + 2‖|u||D2u||DAεu|‖L1 + |(Aε/2f,A1+ε/2u)|
" c‖u‖1+ε‖u‖1‖u‖2+ε + c‖u‖ε‖u‖ε1+ε‖u‖2−ε

2+ε + ‖f ‖ε‖u‖2+ε

" c
(
‖u‖2

1 + ‖u‖2/ε
ε

)
‖u‖2

1+ε + c‖f ‖2
ε +
ν

2
‖u‖2

2+ε
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and where we have also used the interpolation inequality ‖u‖2 " c‖u‖ε1+ε ‖u‖1−ε
2+ε to obtain the

second term in the third line. The final inequality implies that
d
dt

‖u‖2
1+ε + ν‖u‖2

2+ε " c
(
‖u‖2

1 + ‖u‖2/ε
ε + ‖f ‖2

ε

)(
1 + ‖u‖2

1+ε

)1+β

for any β > 0. Therefore after dividing both sides by
(
1 + ‖u‖2

1+ε

)1+β and integrating, we
conclude from (5.12) that, by interpolation,

∫ t

0

‖u‖2
2+ε(

1 + ‖u‖2
1+ε

)1+β ds " 1

β
(
1 + ‖u(t)‖2

1+ε

)β

+ c

∫ t

0

(
‖u‖2

1 + ‖u‖2(1−ε)/ε‖u‖2
1 + ‖f ‖2

ε

)
ds

" C
(
‖u0‖)(1 + |f |2ε + K1(t)

)
.

Now, by the Hölder inequality, we can write
∫ t

0
‖u‖2+εds "

(∫ t

0

‖u‖2
2+ε(

1 + ‖u‖2
1+ε

)1+β ds

)1/2 (∫ t

0

(
1 + ‖u‖2

1+ε

)1+βds

)1/2

.

Let β = s−ε
1+ε . By the interpolation inequality, since ε < s, we have

∫ t

0

(
1 + ‖u‖2

1+ε

)1+βdτ "
∫ t

0

(
1 + ‖u‖2(1− 1+ε

1+s
)‖u‖2 1+ε

1+s

1+s

)1+β
dτ

" c + c sup
0<τ<t

‖u(τ )‖2(s−ε)/(1+s)

∫ t

0
‖u‖2

1+sdτ

" C(‖u0‖s , |f |0),
by (5.15). Therefore we conclude that

∫ t

0
‖u(τ )‖2+εdτ " C(‖u0‖s , |f |0)

(
1 + |f |2ε + ‖u0‖2) 1

2 . (5.16)
!

We now give bounds on the decay of the Hs norms when u0 ∈ H . Note that the following
gives an alternative proof of the decay rate of weak solutions obtained by Giga and Mirakawa
[29], which was obtained using the semigroup approach of Kato and Fujita [45], and which
is used in the proof of uniqueness of particle trajectories for 2D weak solutions due to Dashti
and Robinson [18].

Lemma 5.3. Assume that u0 ∈ H and that f ∈ L2(0, T ;Hl), with l = 0 when 0 " s " 1
and l = s − 1 otherwise. Then there exists a constant c independent of u0 such that, for any
t > t0,

‖u(t)‖2
s +

∫ t

t0

‖u(τ )‖2
1+s dτ "

{
ct−s

0

(
|f |20 + ‖u0‖2

)
for 0 < s " 1,

ct−s
0

(
|f |l + |f |20 + ‖u0‖2

)2 for 1 < s < 2.
(5.17)

Proof. To obtain (5.17) in the case s = 1, we take the inner product of the Navier–Stokes
equations with Au. Since we are in a periodic domain ((u · ∇)u,Au) = 0, and we obtain

1
2

d
dt

‖u‖2
1 + ν‖u‖2

2 " |(f,Au)| " c‖f ‖2 +
ν

2
‖u‖2

2

and therefore
d
dt

‖u‖2
1 + ν‖u‖2

2 " c‖f ‖2. (5.18)
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After dropping ν‖u‖2
2 and integrating we obtain, for 0 < σ < t " T ,

‖u(t)‖2
1 " ‖u(σ )‖2

1 + c|f |20,

recalling the notation (4.7). Integrating with respect to σ between 0 and t " T we obtain,
from (5.12),

t‖u(t)‖2
1 "

∫ T

0
‖u(σ )‖2

1dσ + tc|f |20

" c
(
|f |20 + ‖u0‖2).

Therefore the bound (5.17) follows for s = 1, and that for 0 < s < 1 by interpolation between
this bound and (5.12). We note also that

ν

∫ T

t0

‖u(t)‖2
2 dt " ct−1

0

(
|f |20 + ‖u0‖2); (5.19)

again one can interpolate to deduce that for 0 " l " 1 we have

ν

∫ T

t0

‖u(t)‖2
1+l dt " ct−l

0

(
|f |20 + ‖u0‖2). (5.20)

Now consider 1 < s < 2, and write s = 1 + l. Taking the inner-product of the Navier–
Stokes equations with Asu we obtain, using (5.6), and Young’s inequality,

1
2

d
dt

‖u‖2
s + ν‖u‖2

1+s " c‖u‖s‖u‖1‖u‖1+s + c‖u‖l‖u‖2‖u‖1+s + (f,Asu)

" c‖u‖2
s‖u‖2

1 + c‖u‖2
l ‖u‖2

2 + +
ν

2
‖u‖2

1+s + c‖f ‖2
l +

3ν
8

‖u‖2
1+s .

Thus

d
dt

‖u‖2
s + ν‖u‖2

1+s " c‖u‖2
s‖u‖2

1 + c‖u‖2
l ‖u‖2

2 + c‖f ‖2
l . (5.21)

Choose t0 < t and integrate over [t0/2 + σ, t] to give

‖u(t)‖2
s " ‖u(t0/2 + σ )‖2

s + c

(
sup

t0/2+σ!τ!t

‖u(τ )‖2
1

) ∫ t

t0/2+σ
‖u(τ )‖2

s dτ

+ c

(
sup

t0/2+σ!τ!t

‖u(τ )‖2
l

) ∫ t

t0/2+σ
‖u(τ )‖2

2dτ + c|f |2l .

It follows from (5.17) that

‖u(t)‖2
s " ‖u(t0/2 + σ )‖2

s + ct
−(1+l)
0

(
|f |20 + ‖u0‖2)2 + c|f |2l

recalling the notation (4.7). We now integrate with respect to σ in the interval [0, t − t0/2] to
find, since s < 2,

(t − t0/2)‖u(t)‖2
s " c

∫ t

t0/2
‖u(σ )‖2

s dσ + (t − t0/2)ct−s
0

(
|f |20 + ‖u0‖2)2 + c|f |2l .

Since t > t0 we obtain, using (5.17) for 0 < s < 1,

‖u(t)‖2
s " ct−s

0

(
|f |l + |f |20 + ‖u0‖2)2

.

The related bound on
∫ t

t0
‖u‖2

1+s dτ then follows from integrating (5.21). !
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5.3. Bounds on differences of solutions: Lipschitz continuity

Now we consider the difference of two solutions of the Navier–Stokes equations, showing
that the solution mapping is Lipschitz continuous between various Sobolev spaces. Let
(u(x, t), p(x, t)) and (v(x, t), q(x, t)) be solutions of (3.1) and (3.2) with initial condition u0

and v0, and driving forces ζ and ξ , respectively; furthermore assume that both u0 and v0 are in
H. The difference function w(t) = u(t) − v(t) satisfies
∂w

∂t
+ νAw + (u · ∇)w + (w · ∇)u − (w · ∇)w + ∇(p − q) = r, w(0) = u0 − v0, (5.22)

where r = ζ − ξ . By analogy with the notation Ks(t) for the integral of the Hs norm of u, we
define

Ws(t) :=
∫ t

0
‖w(τ )‖2

s dτ.

First we show that u0 6→ u(t) is Lipschitz from Hs into Hs, and that the solution mapping
is Lipschitz from Hs into L2(0, T ;Hs+1).

Lemma 5.4. Let u0, v0 ∈ Hs and ζ, ξ ∈ L2(0, T ;H). Then for 0 " s " 1,

‖w(t)‖2
s + W1+s(t) " C(‖u0‖, |ζ |0, |r|0, ‖w(0)‖)

(
‖u0 − v0‖2

s + |r|20
)
. (5.23)

Proof. Let s ∈ [0, 1). To bound ‖w(t)‖s , we take the inner product of (5.22) with Asw.
Since the inner product of the gradient of a scalar function with a divergence free vector field
is zero in a periodic domain, we obtain, noting that 2s < 1 + s,
1
2

d
dt

‖w‖2
s + ν‖w‖2

1+s " |((w · ∇)u,Asw)| + |((u · ∇)w,Asw)| + |((w · ∇)w,Asw)|

+ c‖r‖2 +
ν

4
‖w‖2

1+s . (5.24)

For s = 0 two of the terms on the right-hand side vanish (using the orthogonality property
(5.1)). Then using (5.3),

1
2

d
dt

‖w‖2 + ν‖w‖2
1 " |((w · ∇)u,w))| + c‖r‖2 +

ν

4
‖w‖2

1

" c‖w‖‖u‖1‖w‖1 + c‖r‖2 +
ν

4
‖w‖2

1

" c‖w‖2‖u‖2
1 + c‖r‖2 +

ν

2
‖w‖2

1

and therefore
d
dt

‖w‖2 + ν‖w‖2
1 " c‖w‖2‖u‖2

1 + c‖r‖2. (5.25)

Dropping ν‖w‖2
1 and integrating we obtain the bound

‖w(t)‖2 " exp(K1(T ))
(
‖w(0)‖2 + c|r|20

)
for a.e. t ∈ [0, T ]. (5.26)

Having this, going back to (5.25) and integrating again, we obtain from the bound on K1 in
(5.9),

νW1(t) = ν
∫ T

0
‖w(t)‖2

1dt

" ‖w(0)‖2 + c

∫ T

0
‖r(s)‖2ds + c sup

0!t!T

‖w(t)‖2K1(T )

" C(‖u0‖, |ζ |0)
(
‖w(0)‖2 + |r|20

)
. (5.27)
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For 0 < s < 1 we have, using (5.4),

|((w · ∇)u,Asw)| " ‖w‖s‖u‖1‖w‖s+1

" c‖w‖2
s‖u‖2

1 +
ν

8
‖w‖2

s+1;

for the second term we use (5.4) once again along with the Sobolev interpolation inequalities
‖u‖s " ‖u‖1−s‖u‖s

1 and ‖w‖1 " ‖w‖s
s‖w‖1−s

1+s ,

|((u · ∇)w,Asw)| " ‖u‖s‖w‖1‖w‖s+1

" ‖u‖1−s‖u‖s
1‖w‖s

s‖w‖2−s
1+s (Sobolev interpolation)

" c‖u‖2(1−s)/s‖u‖2
1‖w‖2

s +
ν

8
‖w‖2

s+1;

and for the third term we use (5.5),

|((w · ∇)w,Asw)| " c‖w‖1/2‖w‖1/2
s ‖w‖1/2

1 ‖w‖3/2
s+1

" c‖w‖2‖w‖2
s‖w‖2

1 +
ν

8
‖w‖2

s+1.

Together these imply that

d
dt

‖w‖2
s + ν‖w‖2

1+s " c
(
‖u‖2

1 + ‖u‖2(1−s)/s‖u‖2
1 + ‖w‖2‖w‖2

1

)
‖w‖2

s + c‖r‖2. (5.28)

Therefore, dropping ν‖w‖2
1+s and integrating over [0, t], we have

‖w(t)‖2
s " exp

(
c

∫ t

0

(
‖u‖2

1 + ‖u‖2(1−s)/s ‖u‖2
1 + ‖w‖2 ‖w‖2

1

)
dτ

) (
‖w(0)‖2

s + c|r|20
)
. (5.29)

Using the bounds in (5.9), (5.26) and (5.27) to obtain pointwise and integral bounds on u and
w we conclude that

‖w(t)‖2
s " C(‖u0‖, |ζ |0, |r|0, ‖w(0)‖)

(
‖u0 − v0‖2

s + |r|20
)
. (5.30)

This also implies, by integrating (5.28), that

W1+s(T ) =
∫ T

0
‖w(τ )‖2

1+s dτ " C
(
‖u0‖, |ζ |0, |r|0, ‖w(0)‖

) (
‖u0 − v0‖2

s + |r|20
)
. (5.31)

For s = 1 we use (5.5) repeatedly and eventually obtain

d
dt

‖Dw‖2 + ν‖Aw‖2 " c
(
‖u‖2

1 + ‖u‖2‖u‖2
1

)
‖Dw‖2 + c ‖u‖2

2 ‖w‖2. (5.32)

Since both ‖u‖2
2 ‖w‖2 and the expression in the parentheses in the right-hand side are integrable

when u0 ∈ H 1, the estimate (5.23) follows for s = 1 after integrating in the same way as
above. !

A more refined analysis shows that in fact for t > 0 the map u0 6→ u(t) is Lipschitz
continuous from H into more regular Hs spaces, as is the solution mapping from H into
L2(t, T ;Hs+1).

Lemma 5.5. Let u0, v0 ∈ H, ζ, ξ ∈ L2(0, T ;H) and r ∈ L2(0, T ;Hl) with l = 0 for
0 " s " 1 and l = s − 1 for 1 < s < 2. Then for 0 " s < 2 and any t > t0,

‖w(t)‖2
s +

∫ T

t0

‖w(τ )‖2
1+s dτ " t−s

0 C(‖u0‖, |ζ |0, |r|0, ‖w(0)‖)
(
‖u0 − v0‖2 + |r|2l

)
. (5.33)
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Proof. We now return to the case u0, v0 ∈ H , and consider the case s = 1. We drop ν‖Aw‖2

in (5.32) integrate with respect to time between σ + t0/2 and t, with 0 < σ < t and t # t0, to
obtain, using (5.17),

‖w(t)‖2
1 " c‖w(σ + t0/2)‖2

1

+ c sup
τ∈[σ+t0/2,t]

‖u(τ )‖2
1(1 + ‖u(τ )‖2)

∫ t

0
‖w‖2

1dτ

+ c sup
τ∈[0,T ]

‖w(τ )‖2
∫ t

σ+t0/2
‖u‖2

2dτ

" c‖w(σ + t0/2)‖2
1 + t−1

0 C(‖u0‖, ‖w(0)‖, ‖f ‖L2(0,T ;H))‖w(0)‖2.

Integrating the above inequality with respect to σ over (0, t − t0/2) yields

t‖w(t)‖2
1 " C(‖u0‖, ‖w(0)‖, ‖f ‖L2(0,T ;H))‖w(0)‖2,

since t0 " t was arbitrary. From the above inequality and (5.26) we conclude (5.33) for
0 < s " 1 by interpolation. This also implies, by integrating (5.32) and interpolation, that for
any 0 " s " 1,

t s0

∫ T

t0

‖w(τ )‖2
1+s dτ " C(‖u0‖, |ζ |0, |r|0, ‖w(0)‖)

(
‖u0 − v0‖2 + |r|20

)
. (5.34)

Now we have the estimates needed to obtain the bounds on ‖w(t)‖s with s ∈ (1, 2).
Taking the inner product of (5.22) with Asw and using (5.6), we can write

d
dt

‖w‖2
s + ν‖w‖2

1+s " c
(
‖u‖2

s + ‖w‖2
s

)
‖w‖2

1 + c
(
‖u‖2

s−1 + ‖w‖2
s−1

)
‖w‖2

2

+ c‖w‖2
s‖u‖2

1 + c‖w‖2
s−1‖u‖2

2 + c‖r‖2
s−1.

Now dropping ν‖w‖2
1+s and integrating between σ + t0/2 and t with 0 < σ < t and t > t0, we

obtain, using (5.17), (5.34) and (5.23)

‖w(t)‖2
s " ‖w(σ + t0/2)‖2

s + c|r|2s−1

+ c sup
τ∈[σ+t0/2,t]

‖w(τ )‖2
1

∫ t

σ+t0/2

(
‖u‖2

s + ‖w‖2
s

)
dτ

+ c sup
τ∈[σ+t0/2,t]

(
‖u‖2

s−1 + ‖w‖2
s−1

) ∫ t

σ+t0/2
‖w‖2

2dτ

+ c sup
τ∈[σ+t0/2,t]

‖u(τ )‖2
1

∫ t

σ+t0/2
‖w‖2

s dτ

+ c sup
τ∈[σ+t0/2,t]

‖w(τ )‖2
s−1

∫ t

σ+t0/2
‖u‖2

2dτ

" ‖w(σ + t0/2)‖2
s + t−s

0 C(‖u0‖, |ζ |0, |r|0, ‖w(0)‖)
(
‖w(0)‖2 + |r|2s−1

)
.

After integrating with respect to σ between 0 and t − t0/2, we end up with

t s0‖w(t)‖2
s " C(‖u0‖, |ζ |0, |r|0, ‖w(0)‖)

(
‖w(0)‖2 + |r|2s−1

)
.

for t > t0 > 0. !
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5.4. Differentiability

We show here that the solution mapping u0 6→ u(t) is differentiable as a map from H into Hs

for any 0 " s < 2.

Lemma 5.6. Let u(x, t; u0) be a solution of the Navier–Stokes equations with u(0) = u0 ∈ H .
Then for each t > 0 the mapping u0 6→ u(t) is differentiable from H into Hs for all 0 " s < 2,
with U = ∂u

∂u0
(u0 − v0) the solution of the linearized equation

dU

dt
+ νAU + B(u,U) + B(U, u) = 0, with U(0) = u0 − v0. (5.35)

Proof. Assume that v is the solution of the Navier–Stokes equations with v(0) = v0. The
function θ = u − v − U satisfies

dθ
dt

+ νAθ + B(u, θ) + B(θ, u) − B(w,w) = 0, θ(0) = 0 (5.36)

where w = u − v. To show the required differentiability we need to show

sup
‖u0−v0‖<ε

‖u(x, t) − v(x, t) − U(x, t)‖s

‖u0 − v0‖
→ 0 as ε → 0.

Let s ∈ [0, 1). Taking the inner product of (5.36) with Asθ and after finding appropriate
estimates for the nonlinear terms as before, we obtain

1
2

d
dt

‖θ‖2
s + ν‖θ‖2

1+s " c′‖u‖s‖θ‖1‖θ‖1+s + c‖θ‖s‖u‖1‖θ‖1+s

+ c‖w‖s‖w‖1‖θ‖1+s .

Here both c and c′ are constants independent of u,w, θ and c′ = 0 if s = 0, but is nonzero
otherwise. By the interpolation inequality

‖u‖s‖θ‖1‖θ‖1+s " ‖u‖1−s‖u‖s
1‖θ‖s

s‖θ‖2−s
1+s

we have, from the Hölder inequality,

d
dt

‖θ‖2
s + ν‖θ‖2

1+s " c′ ‖u‖2(1−s)/s ‖u‖2
1 ‖θ‖2

s + c ‖u‖2
1 ‖θ‖2

s + c ‖w‖2
s ‖w‖2

1. (5.37)

In the case s = 0 we deduce, by first bounding ‖θ(t)‖2 using Gronwall, and then integrating
to bound

∫ t

0 ‖θ(τ )‖2
1 dτ , that

‖θ(t)‖2 +
∫ t

0
‖θ(τ )‖2

1 dτ " C(‖u0‖, ‖w0‖)‖w0‖4. (5.38)

Now we consider 0 < s < 1. Dropping ν‖θ‖2
1+s , integrating using Gronwall’s inequality, we

find that

‖θ(t)‖2
s "

(∫ t

t0/2+σ
c′′‖u(r)‖2

1dr

)(
‖θ(t0/2 + σ )‖2

s + c

∫ t

t0/2+σ
‖w‖2

s‖w‖2
1dr

)

" C(‖u0‖, ‖w0‖, |f |0)‖θ(t0/2 + σ )‖2
s + C(‖u0‖, ‖w0‖, |f |0)t−s

0 ‖w0‖4,

from which it follows that

‖θ(t)‖2
s " t−s

0 C(‖u0‖, ‖w0‖, |f |0) ‖w0‖4, s ∈ (0, 1). (5.39)

for t > t0. Having the bound on ‖θ‖s , going back to (5.37) and integrating, yields
∫ T

t0

‖θ‖2
s+1 dτ " t−s

0 C(‖u0‖, ‖w0‖, |f |0) ‖w0‖4, s ∈ (0, 1). (5.40)
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For s = 1 we have, using (5.5) repeatedly, and Young’s inequality
d
dt

‖θ‖2
1 + ν‖θ‖2

2 " c‖u‖2‖u‖2
1‖θ‖2

1 + c‖θ‖‖θ‖1‖u‖1‖u‖2 + c‖w‖‖w‖2
1‖w‖2.

Integrating the above inequality, and bounding ‖u‖, ‖θ‖, and ‖w‖ using (5.9), (5.38), and
(5.23), give

‖θ(t)‖2
1 " ‖θ(t0/2 + σ )‖2

1 + c‖u‖2
1

∫ t

t0/2+σ
‖θ‖2

1

+ c‖u‖1

(∫
‖θ‖2

1

)1/2 (∫
‖u‖2

2

)1/2

‖w0‖2

+ c‖w‖1

(∫
‖w‖2

1

)1/2 (∫
‖w‖2

2

)1/2

‖w0‖

" ‖θ(t0/2 + σ )‖2
1 + t−1

0 C(‖u0‖, ‖w0‖, |f |0)‖w0‖4,

where we have also used (5.33). From this we obtain

‖θ(t)‖2
1 " t−1

0 C(‖u0‖, ‖w0‖, |f |0)‖w0‖4.

Now consider any s ∈ (1, 2). Taking the inner product of (5.36) with Asθ and using (5.6),
we can write

d
dt

‖θ‖2
s + ν‖θ‖2

1+s " c‖θ‖2
s‖u‖2

1 + c‖θ‖2
s−1‖u‖2

2

+ c‖u‖2
s‖θ‖2

1 + c‖u‖2
s−1‖θ‖2

2

+ c‖w‖2
s‖w‖2

1 + c‖w‖2
s−1‖w‖2

2.

Again, dropping ν ‖θ‖2
1+s , integrating twice similarly as above, and using (5.17), (5.33), (5.39)

and (5.40) we obtain

‖θ(t)‖2
s " t−s

0 C(‖u0‖, ‖w0‖, |f |0) ‖w0‖4, 1 < s < 2, (5.41)

for t > t0 > 0, and the required differentiability follows. !

5.5. Differentiability of the Lagrangian mapping: proof of lemma 3.7

We have
dz

dt
= u(z, t; u0).

Letting U = ∂u
∂u0

(u0 − v0) and Z = ∂z
∂u0

(u0 − v0), the linearized form of the above equation
with respect to the initial velocity field is as follows

dZ

dt
= U(z, t) + ∇u(z, t) Z, with Z(0) = 0, (5.42)

where U satisfies the linearized Navier–Stokes equations (5.35). To prove the required
differentiability, we show that

sup
‖u0−v0‖s<ε

|z(t) − y(t) − Z(t)|
‖u0 − v0‖s

→ 0 as ε → 0.

We can write
d|z − y − Z|

dt
" |u(z, t) − v(y, t) − U(z, t) − ∇u(z, t)Z|

" |u(y, t) − v(y, t) − U(y, t)|
+ |u(z, t) − u(y, t) − ∇u(z, t)(z − y)|
+ |U(y, t) − U(z, t)| + |∇u(z, t)(z − y − Z)|
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with z(0) − y(0) − Z(0) = 0. By the Sobolev embedding theorem we have

|u(y, t) − v(y, t) − U(y, t)| " c‖u(t) − v(t) − U(t)‖1+s

and

|∇u(z, t)(z − y − Z)| " c‖u‖2+ε |z − y − Z|
with some ε < s. By the mean value theorem (which makes sense here since the solution
u(x,t) is smooth in space for any t > 0), with ς and η two points on the line connecting z(t)

and y(t), we can write

|u(z, t) − u(y, t) − ∇u(z, t)(z − y)|

=
∣∣∣∣

(
∇u1(ς, t) − ∇u1(z, t)

∇u2(η, t) − ∇u2(z, t)

)
(z − y)

∣∣∣∣

" c‖u‖2+ε |z − y|1+ε/2,

where in the last line we have used the following inequality ([60], lemma 7.26)

|Du(z) − Du(y)| " c‖u‖2+ε |z − y|ε1 .
for any ε1 < ε. Finally, since θ = u − v − U and therefore ‖U‖1+s " ‖θ‖1+s + ‖w‖1+s , we
have

|U(z, t) − U(y, t)| " c‖U‖1+s |z − y|ε " c(‖θ‖1+s + ‖w‖1+s)|z − y|ε .
Hence

d
dt

|z − y − Z| " c‖u‖2+ε |y − z − Z|

+ ‖θ‖1+s + c‖u‖2+ε |z − y|1+ε/2 + c(‖θ‖1+s + ‖w‖1+s)|z − y|ε

implying that

|z(t) − y(t) − Z(t)| " exp
( ∫ t

0
‖u‖2+εdτ

)(∫ t

0
‖θ‖1+sdτ

+ c sup
τ∈[0,t]

|z(τ ) − y(τ )|1+ε/2
∫ t

0
‖u‖2+εdτ

+ c sup
τ∈[0,t]

|z(τ ) − y(τ )|ε
∫ t

0

(
‖θ‖1+s + ‖w‖1+s

)
dτ

)

.

Now, to bound
∫ t

0 ‖θ‖1+s dτ appropriately, we note that having u0, v0 ∈ Hs , from (5.37)—after
integration with respect to time and using (5.23)—we can obtain

‖θ(t)‖2
s " c exp

(
C(‖u0‖, |f |0)

∫ t

0
‖u‖2

1dτ
) ∫ t

0
‖w‖2

s‖w‖2
1

" C(‖u0‖, ‖w(0)‖, |f |0)‖w(0)‖2‖w(0)‖2
s

and therefore
∫ t

0
‖θ(τ )‖2

1+sdτ " C(‖u0‖, ‖w(0)‖, |f |0)‖w(0)‖2‖w(0)‖2
s .

This gives the required differentiability, because by (5.23), (5.11) and (3.11) we have

|z(t) − y(t) − Z(t)|
" C(‖u0‖s , ‖w(0)‖s , |f |ε)

(
‖u0 − v0‖ + ‖u0 − v0‖ε/2

s + ‖u0 − v0‖εs
)
‖u0 − v0‖s .
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6. Conclusions

The main contributions of this paper are twofold:
(A) We develop an abstract framework in which to study inverse problems for functions,

given finite data (section 2).
(B) We employ the abstract framework to study the integration of data with the PDE

models arising in fluid mechanics (section 3).
Regarding item (A) there are three main results. In theorem 2.1 and corollary 2.2

we describe an infinite-dimensional version of the Bayes theorem which will be useful in
applications; this theorem gives conditions under which the posterior measure is absolutely
continuous with respect to the prior measure and identifies the Radon–Nikodym derivative
between them. In theorem 2.5 we prove a well-posedness result for the posterior measure,
demonstrating continuity of the measure with respect to changes in the data; such results are,
of course, sensitive to the choice of probability metric and we are able to work in the Hellinger
metric, implying continuity of expectations of all polynomially bounded functions in the data,
a very strong conclusion. In theorem 2.7 we study MAP estimators on function space and
show that the same conditions which give rise to a well-defined posterior measure also give
rise to a well-defined maximization problem for the probability, using straightforward ideas
from the calculus of variations.

Regarding item (B) we study four problems in detail, all based around determining the
solution of the Navier–Stokes equations in two dimensions. We study problems with or
without model error and where the data involve direct pointwise observations of the velocity
field (Eulerian) or indirect observations of it via the positions of particle tracers (Lagrangian).
We show that the posterior measure is well defined and absolutely continuous with respect to
the prior measure, identifying the Radon–Nikodym derivative as the exponential of a quadratic
form measuring model-data mismatch. Roughly speaking, the posterior measure gives high
probability to functions which lead to a small model-data mismatch, and low probability
otherwise, all stated relative to the prior probability measure; this prior will specify quantitative
information, such as the mean, as well as qualitative information such as the regularity expected
from the function of interest. Results of this type are stated in theorems 3.4, 3.8, 3.11 and
3.14 for the four problems studied. The lemmas in these sections also show that the abstract
theorems 2.5 and 2.7 both apply to all four model problems and that, hence, there are continuity
results for the posterior measure with respect to data and variational methods are well defined,
both in the function space setting.

Looking forward we anticipate three primary directions in which this work can be
taken. First the existence of a form of well posedness for the Bayesian inverse problem
on function space suggests the possibility of deriving approximation theories for the finite-
dimensional approximations of the posterior required in computational practice. Second,
demonstrating that the abstract framework can be applied to study different inverse problems
in differential equations, such as determination of constitutive models in porous media or
medical tomography applications. And third to use the ideal solution encapsulated in the
posterior measure as a benchmark against which to test, study and improve existing methods
used in practical data assimilation.
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Differ. Equ. 121 314–28
[13] Cotter S L, Dashti M, Robinson J C and Stuart A M 2009 MCMC Methods on Function Space and Applications

to Fluid Mechanics in preparation
[14] Cohn S E 1997 An introduction to estimation theory J. Met. Soc. Japan 75 257–88
[15] Courtier P, Anderson E, Heckley W, Pailleux J, Vasiljevic D, Hamrud M, Hollingworth A, Rabier F and

Fisher M 1998 The ECMWF implementation of three-dimensional variational assimilation (3d-var) Q. J. R.
Met. Soc. 124 1783–808

[16] Dacorogna B 1989 Direct Methods in the Calculus of Variations (Berlin: Springer)
[17] DaPrato G and Zabczyk J 1992 Stochastic Equations in Infinite Dimensions (Cambridge: Cambridge University

Press)
[18] Dashti M and Robinson J C 2009 A simple proof of uniqueness of the particle trajectories for solutions of the

Navier–Stokes equations Nonlinearity 22 735–46
[19] Derber J C 1989 A variational continuous assimilation technique Mon. Weather Rev. 117 2437–46
[20] Dostert P, Efendiev Y, Hou T Y and Luo W 2006 Coarse-grain Langevin algorithms for dynamic data integration

J. Comput. Phys. 217 123–42
[21] Engl H K, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer)
[22] Dudley R M 2002 Real Analysis and Probability (Cambridge: Cambridge University Press)
[23] Evensen G 2007 Data Assimilation: the Ensemble Kalman Filter (New York: Springer)
[24] Farmer C L 2007 Bayesian field theory applied to scattered data interpolation and inverse problems Algorithms

for Approximation ed A Iske and J Leveseley (Berlin: Springer) pp 147–66
[25] Farmer C L 2005 Geological modelling and reservoir simulation Mathematical Methods and Modelling in

Hydrocarbon Exploration and Production ed A Iske and T Randen (Berlin: Springer-Verlag)
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