www.researchmathsci.org

# Beta and Gamma Product of Fuzzy Graphs 

A.Nagoor Gani ${ }^{1}$ and B.Fathima Kani ${ }^{2}$<br>${ }^{1,2}$ P.G. \& Research Department of Mathematics, Jamal Mohamed College(Autonomous), Tiruchirappalli-620020, India<br>e-mail: ${ }^{1}$ ganijmc@yahoo.co.in and ${ }^{2}$ kanijmc2010@gmail.com

Received 8 March 2014; accepted 17 March 2014
Abstract. In this paper, Beta product and Gamma product of two fuzzy graphs are
introduced and we proved that the Beta product of two regular fuzzy graphs need not be
regular and that if $\mathrm{G}_{1} \times \mathrm{G}_{2}$ is regular, then $\mathrm{G}_{1}$ (or) $\mathrm{G}_{2}$ need not be regular. A necessary and
sufficient condition for $\mathrm{G}_{1} \times \mathrm{G}_{2}$ and $\mathrm{G}_{1} \times \mathrm{G}_{2}$ to be a regular fuzzy graph is determined. The degree of vertices in $G_{1} \times G_{\beta}$ and $G_{1} \times \underset{\gamma}{ } G_{2}$ in terms of those in $G_{1}$ and $G_{2}$ are determined for some particular cases and regular property of $\mathrm{G}_{1} \underset{\beta}{\times \mathrm{G}_{2}}$ and $\underset{\gamma}{\mathrm{G}_{1}} \times \mathrm{G}_{2}$ are studied.

Keywords: Regular fuzzy graph, product of fuzzy graph, complete graph, regular graph, complement graph
AMS Mathematics Subject Classification (2010): 03E72, 05C72

## 1. Introduction

Fuzzy graph theory was introduced and developed by Rosenfeld in [8] and generalized standard results in graph theory [1,2]. Though it is very young, it has been growing fast and has numerous applications in various fields. During the same time Yeh and Bang [9] have also introduced various connectedness concepts in fuzzy graphs. The operations of union, join, Cartesian product and composition on two fuzzy graphs were defined by Mordeson and Peng [3]. Recently, new compositions on fuzzy graphs are introduced and studied in $[4,6,7]$. In this paper, we study about the regular property of the $\beta$ - product and the $\gamma$-product of two fuzzy graphs. We determine necessary and sufficient conditions for the $\beta$ - product and the $\gamma$-product of two fuzzy graphs to be regular under some restrictions are determined. Throughout this paper we assume that $\mu$ is reflexive and need not consider loops. Also, the underlying set V is assumed to be finite and $\sigma$ can be chosen in any manner so as to satisfy the definition of a fuzzy graph in all the examples and all these properties are satisfied for all fuzzy graphs except null graphs.

## 2. Preliminaries

A fuzzy graph $\mathrm{G}:(\sigma, \mu) \mathrm{G}$ is a pair of functions $\sigma: V \rightarrow[0,1]$ and $\mu: V \times V \rightarrow[0,1]$ where for all $\mathrm{u}, \mathrm{v} \in \mathrm{V}$, we have $\mu(\mathrm{uv}) \leq \sigma(\mathrm{u}) \wedge \sigma(\mathrm{v})$. The underlying crisp graph of G : $(\sigma, \mu)$ is denoted by $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$ where $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$.
If $\mu(\mathrm{uv})=\sigma(\mathrm{u}) \wedge \sigma(\mathrm{v})$ for all $\mathrm{u}, \mathrm{v} \in \mathrm{V}$, then G is called a complete fuzzy graph. The complement $\bar{G}$ of a graph $G$ also has $\mathrm{V}(\mathrm{G})$ as its point set, but two points are adjacent in $\bar{G}$ if and only if they are not adjacent in G . Let $\mathrm{G}:(\sigma, \mu)$ be a fuzzy graph. The degree of a vertex $u$ is $\mathrm{d}_{\mathrm{G}}(\mathrm{u})=\sum_{u v \in E} \mu(u v)=\sum_{u \neq v} \mu(u v)$. Let $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$ be a graph. The degree $d_{G^{*}}(v)$ of a vertex $v$ in $\mathrm{G}^{*}$ is the number of edges incident with v.If all the vertices of $\mathrm{G}^{*}$ have the same degree r , then $\mathrm{G}^{*}$ is called a regular graph of degree r , here r is an integer.

Let $\mathrm{G}:(\sigma, \mu)$ be a fuzzy graph on $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$.If $\mathrm{d}_{\mathrm{G}}(\mathrm{v})=\mathrm{k}$ for all $\mathrm{v} \in \mathrm{V}$, that is, if each vertex has same degree k in G , then G is said to be a regular fuzzy graph of degree k or a k-regular fuzzy graph, here k need not be an integer[6]. The degree of vertices in fuzzy graphs have been studied in [5].

## 3. Beta Product of Fuzzy Graphs

Definition 3.1. The $\beta$-product of two fuzzy graphs $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ is defined as a fuzzy graph, $\underset{\beta}{\mathrm{G}_{1}} \times \mathrm{G}_{2}=\left(\left(\sigma_{1} \times \sigma_{\beta}\right),\left(\underset{\beta}{\sigma_{1}} \underset{\beta}{ } \mu_{2}\right)\right)$ on $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$ where $\mathrm{V}=\underset{\beta}{\mathrm{V}_{1}} \underset{\beta}{ } \mathrm{~V}_{2}$ and
$\mathrm{E}=\left(\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right) / \mathrm{u}_{1} \neq \mathrm{v}_{1}, \mathrm{u}_{2} \mathrm{v}_{2} \in \mathrm{E}_{2}($ or $) \mathrm{u}_{2} \neq \mathrm{v}_{2}, \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}_{1}($ or $) \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}_{1}, \mathrm{u}_{2} \mathrm{v}_{2} \in \mathrm{E}_{2}$
with $\underset{\beta}{\sigma_{1}} \times \sigma_{2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sigma_{1}\left(\mathrm{u}_{1}\right) \wedge \sigma_{2}\left(\mathrm{u}_{2}\right), \forall\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \underset{\beta}{\mathrm{V}_{1}} \underset{\beta}{ } \mathrm{~V}_{2}$
$\left(\mu_{1} \underset{\beta}{ } \mu_{2}\right)\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)$

$$
=\left\{\begin{array}{cc}
\mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right), & \text { if } u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2} \\
\sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}\left(v_{2}\right) \wedge \mu_{1}\left(u_{1} v_{1}\right), & \text { if } u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1} \\
\sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right), & \text { if } u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}
\end{array}\right.
$$

Example 3.2. Let $\mathrm{V}_{1}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$ and $\mathrm{V}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ such that


Figure 1:

## A.Nagoor Gani and B.Fathima Kani

$\beta$-product of two fuzzy graphs $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ is


Figure 2:
Definition 3.3. The $\beta$-product of two regular fuzzy graphs $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ is defined as a fuzzy graph, $\mathrm{G}_{1} \underset{\beta}{\times} \mathrm{G}_{2}=\left(\left(\sigma_{1} \times \underset{\beta}{\sigma_{2}}\right),\left(\underset{\beta}{\mu_{1}} \underset{\beta}{ } \mu_{2}\right)\right)$ on $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$ where
$\mathrm{V}=\mathrm{V}_{1} \underset{\beta}{\times} \mathrm{V}_{2}$ and
$\mathrm{E}=\left(\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right) / \mathrm{u}_{1} \neq \mathrm{v}_{1}, \mathrm{u}_{2} \mathrm{v}_{2} \in \mathrm{E}_{2}($ or $) \mathrm{u}_{2} \neq \mathrm{v}_{2}, \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}_{1}($ or $) \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}_{1}, \mathrm{u}_{2} \mathrm{v}_{2} \in \mathrm{E}_{2}$ with $\underset{\beta}{\sigma_{1}} \times \sigma_{2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sigma_{1}\left(\mathrm{u}_{1}\right) \wedge \sigma_{2}\left(\mathrm{u}_{2}\right), \forall\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \underset{\beta}{\mathrm{V}_{1}} \underset{\beta}{\times V_{2}}$
$\underset{\beta}{\left(\mu_{1} \times \mu_{2}\right)}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)=\left\{\begin{array}{c}\mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right), \quad \text { if } u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2} \\ \sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}\left(v_{2}\right) \wedge \mu_{1}\left(u_{1} v_{1}\right), \text { if } u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1} \\ \sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right), \quad \text { if } u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}\end{array}\right.$
Remark 3.4. If $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ are regular fuzzy graphs then $\beta$-product of two fuzzy graphs $G_{1}$ and $G_{2}$ is need not be regular fuzzy graph.

Example 3.5. Let $V_{1}=\left\{u_{1}, u_{2}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ such that


Figure 3:

## Beta and Gamma Product of Fuzzy Graphs

Then $\beta$-product of two fuzzy graphs $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ is


Figure 4:
Here both $G_{1}$ and $G_{2}$ are regular fuzzy graphs of degree 1.2 and 1.0. In $\mathrm{G}_{1} \times \underset{\beta}{\mathrm{G}_{2}}, \mathrm{~d}_{\mathrm{G1}} \underset{\beta}{ } \times{ }^{\mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)=3.2 . \mathrm{d}_{\mathrm{G} 1} \underset{\beta}{ }{ }^{\mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)=3$.0. Hence $\beta$-product of two fuzzy graphs $G_{1}$ and $G_{2}$ is not regular fuzzy graph.

Remark 3.6. If $\underset{\beta}{G_{1}} \times G_{2}$ is a regular fuzzy graph ,then $G_{1}$ (or) $G_{2}$ need not be regular fuzzy graph.

Example 3.7. Let $\mathrm{V}_{1}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$ and $\mathrm{V}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ such that
${ }^{6}$

$\mathrm{G}_{2}$
vi(0.4)


Figure 5:
$\mathrm{G}_{1} \times \mathrm{G}_{2}$ is shown in Figure 6. Here both $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ are regular fuzzy graphs, since $\mathrm{d}_{\mathrm{Gl}} \times \underset{\beta}{\times}$ $\mathrm{G}_{2}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=0.6, \mathrm{i}=1,2 ; \mathrm{j}=1,2,3$. But, $\mathrm{G}_{2}$ is not regular fuzzy graph.

## A.Nagoor Gani and B.Fathima Kani



Figure 6:

## 4. Regular Properties of Beta Product of two Fuzzy Graphs

Theorem 4.1. Let $G_{l}=\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}=\left(\sigma_{2}, \mu_{2}\right)$ be two fuzzy graphs such that underlying crisp graphs $G_{1} *$ and $G_{2}{ }^{*}$ are complete graphs, then $G_{I} \times G_{2}$ is a regular fuzzy graph if and only if $G_{1}$ and $G_{2}$ are regular fuzzy graphs.
Proof: Suppose that $G_{1}$ and $G_{2}$ are regular fuzzy graphs of degrees $k_{1}$ and $k_{2}$ and $G_{1}$ * and $\mathrm{G}_{2} *$ are complete graphs $\mathrm{d}_{1}$ and $\mathrm{d}_{2}$ respectively.
By definition for any $\left(u_{1}, u_{2}\right) \in \underset{\beta}{V_{1}} \underset{\beta}{ } \mathrm{~V}_{2}$,

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G} 1} \underset{\beta}{\not \mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E}\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right) \\
& =\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}}^{\sum_{2}\left(u_{2}\right) \wedge \sigma_{2}(v 2) \wedge \mu_{1}\left(u_{1} v_{1}\right)+} \sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)
\end{aligned}
$$

$$
=\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right) \quad\left[\text { Since } \mathrm{G}_{1}{ }^{*} \text { and } \mathrm{G}_{2}^{*}\right. \text { are complete graphs.] }
$$

Case 1: If $\mu_{1} \leq \mu_{2}$, then

This is true for all $\left(u_{1}, u_{2}\right) \in \underset{\beta}{ } \times \underset{\beta}{ } V_{2}$.Hence $G_{1} \times G_{2}$ is regular fuzzy graph.
Case 2: If $\mu_{2} \leq \mu_{1}$, then

$$
\text { From (4.1.1) } \begin{aligned}
\mathrm{d}_{\mathrm{G} 1} \times{ }_{\beta}^{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) & =\sum_{u_{1} v \in E_{1, u 2 v 2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right) \\
& =\mathrm{d}_{\mathrm{G}_{1}} *\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right) \\
& =\mathrm{d}_{1} \mathrm{k}_{2}\left[\operatorname{since} \mathrm{~d}_{\mathrm{G} 1} *(\mathrm{u})=\mathrm{d}_{1}, \forall \mathrm{u} \in \mathrm{~V}_{1}, \mathrm{~d}_{\mathrm{G} 2}(\mathrm{u})=\mathrm{k}_{2}, \quad \forall \mathrm{u} \in \mathrm{~V}_{2}\right]
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{d}_{\mathrm{G}_{1} \times{ }_{\beta}{ }_{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{u_{1 v \in} \in E_{1, u}, u_{2} \geq \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right)} \\
& =\mathrm{d}_{\mathrm{G} 2}{ }^{*}\left(\mathrm{u}_{2}\right) \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)  \tag{4.1.1}\\
& =\mathrm{d}_{2} \mathrm{k}_{1}\left[\text { since } \mathrm{d}_{\mathrm{G}_{2}} *(\mathrm{u})=\mathrm{d}_{2}, \forall \mathrm{u} \in \mathrm{~V}_{2}, \mathrm{~d}_{\mathrm{GI}}(\mathrm{u})=\mathrm{k}_{1}, \quad \forall \mathrm{u} \in \mathrm{~V}_{1}\right]
\end{align*}
$$

## Beta and Gamma Product of Fuzzy Graphs

This is also true for all vertices of $\mathrm{V}_{1} \times \mathrm{V}_{2}$.
Hence $\quad \beta$-product of two fuzzy graphs $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ is regular fuzzy graph. Conversely assume that $\underset{\beta}{\mathrm{G}_{1}} \times \mathrm{G}_{2}$ is a regular fuzzy graph.

Then for any two points $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \&\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ in $\underset{\beta}{\mathrm{V}_{1}} \underset{\beta}{ } \mathrm{~V}_{2}$

Fix $u \in V_{1}$ and consider $\left(u, u_{2}\right)$ and $\left(u, v_{2}\right)$ in $V_{1} \times V_{2}$, where $u_{2}, v_{2} \in V_{2}$ are arbitrary. From (4.1.3), $\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right) \mathrm{d}_{\mathrm{G} 1}(\mathrm{u})=\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right) \mathrm{d}_{\mathrm{G} 1}(\mathrm{u})$
$\Rightarrow \quad \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right)$
This is true for all vertices $u_{2}, v_{2} \in V_{2}$. Hence $G_{2}{ }^{*}$ is a regular graph.
Now fix $v \in V_{2}$ and consider $\left(u_{1}, v\right)$ and $\left(v_{1}, v\right)$ in $V_{1} \times V_{2}$, where
$\mathrm{u}_{1}, \mathrm{v}_{1} \in \mathrm{~V}_{1}$ are arbitrary.
From (4.1.3), $\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v}) \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v}) \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)$
$\Rightarrow \quad \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)$
This is true for all vertices $u_{1}, v_{1} \in V_{1}$. Hence $G_{1}$ is a regular fuzzy graph.
Similarly using (4.1.2) $\mathrm{d}_{\mathrm{G} 1} \underset{\beta}{ } \times{ }^{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 1} \underset{\beta}{ }{ }_{\beta}^{\mathrm{G} 2}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$

$$
\begin{equation*}
\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right) \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right) \tag{4.1.6}
\end{equation*}
$$

Fix $u \in V_{1}$ and consider $\left(u, u_{2}\right)$ and $\left(u, v_{2}\right)$ in $V_{1} \times V_{2}$, where $u_{2}, v_{2} \in V_{2}$ are arbitrary.

$$
\begin{array}{ll} 
\\
\Rightarrow \quad & \mathrm{d}_{\mathrm{G} 1} *(\mathrm{u}) \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u}) \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)  \tag{4.1.7}\\
\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right) \text {.This is true for all vertices } \mathrm{u}_{2}, \mathrm{v}_{2} \in \mathrm{~V}_{2} .
\end{array}
$$

Hence $G_{2}$ is a regular fuzzy graph.
Now fix $v \in V_{2}$ and consider $\left(u_{1}, v\right)$ and $\left(v_{1}, v\right)$ in $V_{1} \times V_{2}$, where $u_{1}, v_{1} \in V_{1}$ are arbitrary.

$$
\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2}(\mathrm{v})=\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right) \mathrm{d}_{\mathrm{G} 2}(\mathrm{v})
$$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right) \tag{4.1.8}
\end{equation*}
$$

This is true for all vertices $u_{1}, v_{1} \in V_{1}$. Hence $G_{1} *$ is a regular graph.
From (4.1.5) and (4.1.7), if $\underset{\beta}{G_{1}} \times \mathrm{G}_{2}$ is a regular fuzzy graph, then $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ are regular fuzzy graphs of degree $\mathrm{k}_{1}$ and $\mathrm{k}_{2}$.

Theorem 4.2. Let $G_{I}=\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}=\left(\sigma_{2}, \mu_{2}\right)$ be two fuzzy graphs and its underlying crisp graphs $G_{1} *$ is complete graph and $G_{2} *$ is regular graph. If $\sigma_{1} \geq \mu_{2}, \sigma_{2} \geq \mu_{1}$ and $\mu_{1}=\mu_{2}$, then $\underset{\beta}{G_{l}} \times G_{2}$ is a regular fuzzy graph if and only if $G_{l}$ is a regular fuzzy graph.
Proof: Let $G_{2} *$ is a regular graph of degree $d_{2}$ and $G_{1} *$ is complete graph .Let $\mu_{1}=\mu_{2}=c$ for all $E_{1}$ and $E_{2}$, where $c$ is a constant. We have $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$.Suppose that $G_{1}$ is a regular fuzzy graph of degree $k_{1}$.

$$
\begin{align*}
& \mathrm{d}_{\mathrm{G} 1} \underset{\beta}{\times \mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 1} \underset{\beta}{\times \mathrm{G}_{2}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \\
& \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right) \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right) \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right) \quad \text { [using (4.1.1)] } \tag{4.1.3}
\end{align*}
$$

## A.Nagoor Gani and B.Fathima Kani

By definition for any $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \underset{\beta}{\mathrm{V}_{1}} \underset{\beta}{ } \mathrm{~V}_{2}$.
$=\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right) \quad$ [since $\mathrm{G}_{1} *$ is complete graph]
$=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)+|\overline{E 2}| \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)$
$=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)+|\overline{E 2}|\right]$
Where $|\overline{E 2}|$ is the degree of a vertex of complement graph $\mathrm{G}_{2}{ }^{*}$.

$$
\begin{align*}
\mathrm{d}_{\mathrm{G} 1} \underset{\beta}{ } \mathrm{G}_{2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) & =\left[\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)+|\overline{E 2}|\right] \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)  \tag{4.2.1}\\
& =\left[\mathrm{d}_{2}+|\overline{E 2}|\right] \mathrm{k}_{1}\left[\text { since } \mathrm{d}_{\mathrm{G} 2}{ }^{*}(\mathrm{u})=\mathrm{d}_{2}, \forall \mathrm{u} \in \mathrm{~V}_{2} \& \mathrm{~d}_{\mathrm{G} 1}(\mathrm{u})=\mathrm{k}_{1}, \forall \mathrm{u} \in \mathrm{~V}_{1}\right]
\end{align*}
$$

This is true for all vertices of $\mathrm{G}_{1} \times \mathrm{G}_{2}$. Hence $\beta$-product of two fuzzy graphs $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ is regular fuzzy graph.
Conversely assume that $\mathrm{G}_{1} \times \mathrm{G}_{2}$ is a regular fuzzy graph and $\mathrm{G}_{2}{ }^{*}$ is a regular graph of degree $d_{2}$ and $G_{1} *$ is complete graph.Then for any two points $\left(u_{1}, u_{2}\right) \&\left(v_{1}, v_{2}\right)$ in

$$
\underset{\beta}{\mathrm{V}_{1}} \times \mathrm{V}_{2}, \quad \mathrm{~d}_{\mathrm{G} 1} \underset{\beta}{\times \mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 1} \underset{\beta}{\times \mathrm{G}_{2}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)
$$

From (4.2.1) $\left[\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)+|\overline{E 2}|\right] \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)=\left[\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right)+|\overline{E 2}|\right] \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)$

$$
\Rightarrow \quad\left[\mathrm{d}_{2}+|\overline{E 2}|\right] \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)=\left[\mathrm{d}_{2}+|\overline{E 2}|\right] \mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{v}_{1}\right)
$$

$$
\Rightarrow \quad \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right) \quad \text { This is true for all } \mathrm{u}_{1}, \mathrm{v}_{1} \in \mathrm{~V}_{1}
$$

Hence $G_{1}$ is a regular fuzzy graph.
Theorem 4.3. Let $G_{l}=\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}=\left(\sigma_{2}, \mu_{2}\right)$ be two fuzzy graphs and its underlying crisp graphs $G_{2} *$ is complete graph and $G_{1} *$ is regular graph. If $\sigma_{1} \geq \mu_{2}, \sigma_{2} \geq \mu_{1}$ and $\mu_{l}=\mu_{2}$, then $\underset{\beta}{G_{l}} \times G_{2}$ is a regular fuzzy graph if and only if $G_{2}$ is regular fuzzy graph.

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G} 1} \times{ }_{\beta}{ }_{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{\left(u_{1}, u_{2}\right)} \sum_{\left(v_{1}, v_{2}\right) \in E}\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right) \\
& =\sum_{u_{1} v_{1} \in E_{1,}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}(v 2) \wedge \mu_{1}\left(u_{1} v_{1}\right)+ \\
& \sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right) \\
& =\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right) \quad\left[\text { since } \mu_{1}=\mu_{2}\right]
\end{aligned}
$$

## Beta and Gamma Product of Fuzzy Graphs

Proof: Let $\mathrm{G}_{1} *$ is a regular graph of degree $\mathrm{d}_{1}$ and $\mathrm{G}_{2} *$ is complete graph .Let $\mu_{1}=\mu_{2}=\mathrm{c}$ for all $E_{1}$ and $E_{2}$, where c is a constant. We have $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$. Suppose that $G_{2}$ is a regular fuzzy graph of degree $k_{2}$.
By definition for any $\left(u_{1}, u_{2}\right) \in \underset{\beta}{V_{1}} \times V_{2}$.

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G1} 1} \underset{\beta}{\mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E}\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right) \\
& =\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}}^{\sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}(v 2) \wedge \mu_{1}\left(u_{1} v_{1}\right)+} \sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)
\end{aligned}
$$

$=\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right) \quad\left[\right.$ since $\left.\mu_{1}=\mu_{2}\right]$
$=\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right) \quad$ [since $\mathrm{G}_{2} *$ is complete graph]
$=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right) \mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)+|\overline{E 1}| \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)$
$=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[\mathrm{d}_{\mathrm{G} 1}{ }^{*}\left(\mathrm{u}_{1}\right)+|\overline{E 1}|\right]$
Where $|\overline{E 1}|$ is the degree of a vertex of complement graph $\mathrm{G}_{1}$.

$$
\begin{align*}
\mathrm{d}_{\mathrm{G} 1} \times \underset{\beta}{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) & =\left[\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)+|\overline{E 1}|\right] \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)  \tag{4.3.1}\\
& =\left[\mathrm{d}_{1}+|\overline{E 1}|\right] \mathrm{k}_{2}\left[\text { since } \mathrm{d}_{\mathrm{G} 1}^{*}(\mathrm{u})=\mathrm{d}_{1}, \forall \mathrm{u} \in \mathrm{~V}_{1} \& \mathrm{~d}_{\mathrm{G} 2}(\mathrm{u})=\mathrm{k}_{2}, \forall \mathrm{u} \in \mathrm{~V}_{2}\right]
\end{align*}
$$

This is true for all vertices of $\mathrm{G}_{1} \underset{\beta}{ } \times \mathrm{G}_{2}$. Hence $\beta$-product of two fuzzy graphs $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ is regular fuzzy graph.
Conversely assume that $G_{1} \times G_{\beta}$ is a regular fuzzy graph and $G_{1} *$ is a regular graph of degree $d_{1}$ and $G_{2} *$ is complete graph. Then for any two points $\left(u_{1}, u_{2}\right) \&\left(v_{1}, v_{2}\right)$ in
$\mathrm{V}_{1} \underset{\beta}{\times} \mathrm{V}_{2}$,

$$
\underset{\beta}{\mathrm{d}_{\mathrm{G} 1} \times{ }_{\beta}^{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 1} \underset{\beta}{\mathrm{G}_{2}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right), ~}
$$

From (4.3.1)

$$
\begin{array}{lr}
\text { From (4.3.1) } & {\left[\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)+|\overline{E 1}|\right] \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)=\left[\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right)+|\overline{E 1}|\right] \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)} \\
\Rightarrow & {\left[\mathrm{d}_{1}+|\overline{E 1}|\right] \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)=\left[\mathrm{d}_{1}+|\overline{E 1}|\right] \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)} \\
\Rightarrow & \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right) \text { This is true for all } \mathrm{u}_{2}, \mathrm{v}_{2} \in \mathrm{~V}_{2} .
\end{array}
$$

Hence $G_{2}$ is a regular fuzzy graph.
Theorem 4.4. Let $G_{I}=\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}=\left(\sigma_{2}, \mu_{2}\right)$ be two regular fuzzy graphs and its underlying crisp graphs $G_{1} *$ and $G_{2} *$ are regular but not complete graphs. If $\sigma_{1} \geq \mu_{2}$, $\sigma_{2} \geq \mu_{1}$, then $\beta$-product of two fuzzy graphs $G_{1}$ and $G_{2}$ is regular fuzzy graph, but converse is not true.

## A.Nagoor Gani and B.Fathima Kani

Proof: Since $G_{1}$ and $G_{2}$ are regular fuzzy graphs, we have $d_{G 1}(u)=k_{1}$, for every $u \in V_{1}$ and $d_{\mathrm{G}_{2}}(\mathrm{v})=\mathrm{k}_{2}$, for every $\mathrm{v} \in \mathrm{V}_{2}$ and $\mathrm{G}_{1} *$ and $\mathrm{G}_{2} *$ are regular graphs of degree $\mathrm{d}_{1}$ and $\mathrm{d}_{2}$. Suppose that $\mathrm{G}_{1} *$ and $\mathrm{G}_{2}{ }^{*}$ are not complete graphs.
For any $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \mathrm{V}_{1} \underset{\beta}{\times} \mathrm{V}_{2}$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G} 1} \times{ }_{\beta}^{\mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E}\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right) \\
& =\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}}^{\sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}\left(v_{2}\right) \wedge \mu_{1}\left(u_{1} v_{1}\right)+} \\
& \sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)
\end{aligned}
$$

Case(i): underlying crisp graphs $\mathrm{G}_{1}{ }^{*}$ and $\mathrm{G}_{2}{ }^{*}$ are isomorphic graphs and $\mu_{1}=\mu_{2}$, say c.
Then we have $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$.
Therefore $\mathrm{d}_{\mathrm{G} 1} \times \underset{\beta}{ } \times \mathrm{G}_{2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+$

$$
\begin{aligned}
& =\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right) \\
& =|\overline{E 1}| \mathrm{d}_{\mathrm{G}^{2} 2}\left(\mathrm{u}_{2}\right)+|\overline{E 2}| \sum_{u_{2} \neq v_{2}, u_{1} \in V_{1}, u_{2} v_{2} \in E_{2}}^{\mu_{1}\left(u_{1} v_{1}\right)+} \sum_{\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G}_{1} 1}\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)} \sum_{E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1}\right)
\end{aligned}
$$

where $|\overline{E 1}|$ and $|\overline{E 2}|$ is the degree of a vertex of a complement graphs $\mathrm{G}_{1}{ }^{*}$ and $\mathrm{G}_{2}{ }^{*}$

$$
\begin{aligned}
\mathrm{d}_{\mathrm{G} 1} \underset{\beta}{\mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) & =\left[\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)+|\overline{E 2}|\right] \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+|\overline{E 1}| \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right) \\
& =\left[\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)+|\overline{E 2}|\right] \mathrm{k}_{1}+|\overline{E 1}| \mathrm{k}_{2} \\
& \quad\left[\text { since } \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)=\mathrm{k}_{1}, \forall \mathrm{u}_{1} \in \mathrm{~V}_{1}, \mathrm{~d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)=\mathrm{k}_{2}, \forall \mathrm{u}_{2} \in \mathrm{~V}_{2}\right] \\
& =\left[\mathrm{d}_{2}+|\overline{E 2}|\right] \mathrm{k}_{1}+|\overline{E 1}| \mathrm{k}_{2}
\end{aligned}
$$

Since $\mathrm{G}_{1}{ }^{*}$ and $\mathrm{G}_{2}{ }^{*}$ are regular graphs of degree $\mathrm{d}_{1}$ and $\mathrm{d}_{2} . \mathrm{G}_{1}{ }^{*}$ and $\mathrm{G}_{2}{ }^{*}$ are isomorphic then $|\overline{E 1}|=|\overline{E 2}|$.This is true for all vertices of $\mathrm{V}_{1} \times{ }_{\beta} \times \mathrm{V}_{2}$.
Hence $\beta$-product of two fuzzy graphs $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ is regular fuzzy graph.
Case (ii): Underlying crisp graphs $\mathrm{G}_{1}{ }^{*}$ and $\mathrm{G}_{2}{ }^{*}$ are not isomorphic and $\mathrm{G}_{1}{ }^{*}, \mathrm{G}_{2} *$ are regular graphs of degrees $\mathrm{d}_{1}$ and $\mathrm{d}_{2}$. We have $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$.
Therefore $\mathrm{d}_{\mathrm{G}_{1} 1}{ }_{\beta}^{\mathrm{G}^{\mathrm{G}}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{\left(u_{1}, u_{2}\right)} \sum_{\left(v_{1}, v_{2}\right) \in E}\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right)$

$$
=\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}(v 2) \wedge \mu_{1}\left(u_{1} v_{1}\right)+
$$

## Beta and Gamma Product of Fuzzy Graphs

$$
=\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}}^{\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)}
$$

Suppose that $\mu_{1} \leq \mu_{2}$, then

$$
\begin{aligned}
\mathrm{d}_{\mathrm{G} 1} \times{ }_{\beta}^{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) & =\sum_{u_{1} v 1 \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right) \\
& =\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)+|\overline{E 2}| \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+|\overline{E 1}| \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right) \\
& =\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\right]+|\overline{E 1}| \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right) \\
& =\mathrm{k}_{1}\left[|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\right]+|\overline{E 1}| \mathrm{k}_{2} \\
& =\mathrm{k}_{1}\left[\mathrm{~d}_{2}+|\overline{E 2}|\right]+|\overline{E 1}| \mathrm{k}_{2}
\end{aligned}
$$

Clearly $\mathrm{G}_{1}{ }^{*}$ and $\mathrm{G}_{2}{ }^{*}$ are not isomorphic, then $|\overline{E 1}| \neq|\overline{E 2}|$,for each vertex.
Even though $\mathrm{G}_{1} \times \mathrm{G}_{2}$ is regular fuzzy graph. Suppose $\mu_{2} \leq \mu_{1}$,

$$
\begin{aligned}
& \text { Then, } \mathrm{d}_{\mathrm{G} 1} \times{ }_{\beta}^{\mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E}\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right) \\
& =\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}(v 2) \wedge \mu_{1}\left(u_{1} v_{1}\right)+ \\
& \sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)
\end{aligned}
$$

$$
=\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)
$$

$$
=\sum_{u_{1} v_{1} \in E_{1, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)}^{\left(x_{2}\right)}
$$

$$
=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right) \mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)+|\overline{E 2}| \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+|\overline{E 1}| \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)
$$

$$
=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1}^{*}\left(\mathrm{u}_{1}\right)\right]+|\overline{E 2}| \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)
$$

$$
=\mathrm{k}_{2}\left[|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)\right]+|\overline{E 2}| \mathrm{k}_{1}
$$

$$
=\mathrm{k}_{2}\left[|\overline{E 1}|+\mathrm{d}_{1}\right]+|\overline{E 2}| \mathrm{k}_{1}
$$

Hence $G_{1} \times G_{2}$ is a regular fuzzy graph.
5. Gamma Product of Fuzzy Graphs

Definition 5.1. The $\gamma$ - product of two fuzzy graphs $G_{1}$ and $G_{2}$ is defined as a fuzzy
graph $\mathrm{G}_{1} \times{ }_{\gamma} \mathrm{G}_{2}=\left(\underset{\gamma}{\sigma_{1}} \underset{\gamma}{\sigma_{2}}, \underset{\gamma}{\mu_{1}} \times \mu_{2}\right)$ on $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$ where

## A.Nagoor Gani and B.Fathima Kani

$\mathrm{V}=\mathrm{V}_{1} \times \mathrm{V}_{2}$ and
$E=\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right) / u_{1=} v_{1}, u_{2} v_{2} \in E_{2}($ or $) u_{2=} v_{2}, u_{1} v_{1} \in E_{1}($ or $) u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}($ or $)$
$u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}$ (or) $u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}$
with $\underset{\gamma}{\sigma_{1}} \times \sigma_{2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sigma_{1}\left(\mathrm{u}_{1}\right) \wedge \sigma_{2}\left(\mathrm{u}_{2}\right), \forall\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \underset{\gamma}{\mathrm{V}_{1}} \underset{\gamma}{ } \times \mathrm{V}_{2}$

$$
\begin{aligned}
& \left(\mu_{1} \underset{\gamma}{\times \mu_{2}}\right)\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right) \\
& \quad=\left\{\begin{array}{ccc}
\sigma_{1}\left(u_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right), & \text { if } u_{1}=v_{1}, & u_{2} v_{2} \in E_{2} \\
\sigma_{2}\left(u_{2}\right) \wedge \mu 1\left(u_{1} v_{1}\right), & \text { if } u_{2}=v_{2}, & u_{1} v_{1} \in E_{1} \\
\sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right), & \text { if } u_{1} \neq v_{1}, & u_{2} v_{2} \in E_{2} \\
\sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}\left(v_{2}\right) \wedge \mu_{1}\left(u_{1} v_{1}\right), & \text { if } u_{2} \neq v_{2}, & u_{1} v_{1} \in E_{1} \\
\mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right), & \text { if } u_{1} v_{1} \in E_{1}, & u_{2} v_{2} \in E_{2}
\end{array}\right.
\end{aligned}
$$

Example 5.2. The $\gamma$-product of two fuzzy graphs $G_{1}$ and $G_{2}$ have the vertex set $\mathrm{V}_{1}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$ and $\mathrm{V}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ such that


Figure 7:
Then $\mathrm{G}_{1} \underset{\gamma}{\times \mathrm{G}_{2}}$ is


Figure 8:

## 6. Regular Properties of Gamma Product of Two Fuzzy Graphs

Theorem 6.1. Let $G_{l}=\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}=\left(\sigma_{2}, \mu_{2}\right)$ be two fuzzy graphs such that $\sigma_{1} \leq \mu_{2}$ and $\sigma_{l}$ is a constant. Then $G_{l} \times G_{\gamma}$ is a regular fuzzy graph iff $G_{1}$ is a regular fuzzy graph and $G_{2} *$ is a regular graph.

## Beta and Gamma Product of Fuzzy Graphs

Proof: Since $\sigma_{1}$ is a constant say $c_{1}$. Given $\sigma_{1} \leq \mu_{2}$,then we have $\sigma_{2} \geq \mu_{1}$.
Suppose that $G_{1}$ is a regular fuzzy graph of degree $\mathrm{k}_{1}$ and $\mathrm{G}_{2} *$ is a regular graph of degree $\mathrm{d}_{2}$. By definition, for any $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \underset{\gamma}{\mathrm{V}_{1}} \underset{\gamma}{ } \mathrm{~V}_{2}$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G} 1} \times{ }_{\gamma}^{\mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E}\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right) \\
& =\sum_{u_{1}=v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2}=v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right) \wedge \mu_{1}\left(u_{1} v_{1}\right)+
\end{aligned}
$$

$$
\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}(v 2) \wedge \mu_{1}\left(u_{1} v_{1}\right)+
$$

$$
\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)
$$

$$
=\sum_{u_{1}=v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right)+\sum_{u_{2}=v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+
$$

$$
\sum_{u_{1 v} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right)
$$

$=\sigma_{1}\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+\sigma_{1}\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)$
$=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\right]+\sigma_{1}\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G}_{2}} *\left(\mathrm{u}_{2}\right)[1+|\overline{E 1}|]$
$=\mathrm{k}_{1}\left[1+|\overline{E 2}|+\mathrm{d}_{2}\right]+\mathrm{c}_{1} \mathrm{~d}_{2}[1+|\overline{E 1}|]$, since $\mathrm{G}_{1}$ is a regular fuzzy graph of degree $\mathrm{k}_{1} \& \mathrm{G}_{2}$ is a regular fuzzy graph of degree $\mathrm{k}_{2}$ and $\sigma_{1}$ is a constant say $\mathrm{c}_{1}$.
where $|\overline{E 1}|$ and $|\overline{E 2}|$ is the degree of the vertex of complement graphs $\mathrm{G}_{1} *$ and $\mathrm{G}_{2}{ }^{*}$.
So $\gamma$-product of fuzzy graphs $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ is regular fuzzy graph.
Conversely assume that $\mathrm{G}_{1} \times \mathrm{G}_{2}$ is regular fuzzy graph. Then for any two points

$$
\begin{align*}
& \left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \text { and }\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \text { in } \mathrm{V}_{1} \times{ }_{\gamma} \mathrm{V}_{2}, \underset{\gamma}{\mathrm{~d}_{\mathrm{G} 1} \times} \underset{\gamma}{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 1} \times \underset{\gamma}{\mathrm{G} 2}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \\
& \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\right]+\sigma_{1}\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)[1+|\overline{E 1}|] \\
& =\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right)\right]+\sigma_{1}\left(\mathrm{v}_{1}\right) \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right)[1+|\overline{E 1}|] \tag{6.1.2}
\end{align*}
$$

Now fix $v \in V_{2}$ and consider $\left(u_{1}, v\right)$ and $\left(v_{1}, v\right)$ in $V_{1} \times V_{2}$, where $u_{1}, v_{1} \in V_{1}$ are arbitrary.
From (6.1.2), $\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})\right]+\sigma_{1}\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})[1+|\overline{E 1}|]$

$$
=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})\right]+\sigma_{1}\left(\mathrm{v}_{1}\right) \mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})[1+|\overline{E 1}|]
$$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})\right]+\mathrm{c}_{1} \mathrm{~d}_{\mathrm{G} 2} *(\mathrm{v})[1+|\overline{E 1}|] \\
&=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})\right]+\mathrm{c}_{1} \mathrm{~d}_{\mathrm{G} 2} *(\mathrm{v})[1+|\overline{E 1}|]
\end{aligned}
$$

## A.Nagoor Gani and B.Fathima Kani

[since $\sigma_{1}(\mathrm{u})=\mathrm{c}_{1}, \forall \mathrm{u} \in \mathrm{V}_{1}$ ]
$\Rightarrow \quad \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2}{ }^{*}(\mathrm{v})\right]=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})\right]$
$\Rightarrow \quad \mathrm{d}_{\mathrm{Gl}}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{Gl}}\left(\mathrm{v}_{1}\right)$
$\mathrm{G}_{1}$ is regular fuzzy graph of degree $\mathrm{k}_{1}$
Fix $u \in V_{1}$ and consider $\left(u, u_{2}\right)$ and $\left(u, v_{2}\right)$ in $V_{1} \times V_{2}$, where $u_{2}, v_{2} \in V_{2}$ are arbitrary.

$$
\begin{align*}
& \mathrm{d}_{\mathrm{G} 1}(\mathrm{u})\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\right]+\sigma_{1}(\mathrm{u}) \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)[1+|\overline{E 1}|] \\
&=\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})\left[1+|\overline{E 2}|+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right)\right]+\sigma_{1}(\mathrm{u}) \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right)[1+|\overline{E 1}|] \tag{6.1.3}
\end{align*}
$$

Equation (6.1.3) can be modified in to the form,

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\left\{\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})+\sigma_{1}(\mathrm{u})[1+|\overline{E 1}|]\right\}+\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})[1+|\overline{E 2}|]= \\
& \\
& \Rightarrow \quad \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right)\left\{\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})+\sigma_{1}(\mathrm{u})[1+|\overline{E 1}|]\right\}+\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})[1+|\overline{E 2}|] \\
& \Rightarrow \quad \mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\left\{\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})+\sigma_{1}(\mathrm{u})[1+|\overline{E 1}|]\right\}=\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right)\left\{\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})+\sigma_{1}(\mathrm{u})[1+|\overline{E 1}|]\right\} \\
& \Rightarrow \\
& \hline
\end{aligned}
$$

This is true for all vertices. Hence $\mathrm{G}_{2}{ }^{*}$ is a regular graph of degree $\mathrm{d}_{2}$.
Hence $\quad \gamma$-product of two fuzzy graphs $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ are regular fuzzy graph.
Theorem 6.2. Let $G_{I}=\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}=\left(\sigma_{2}, \mu_{2}\right)$ be two fuzzy graphs and its underlying crisp graphs $G_{I} *$ and $G_{2} *$ are completegraphs. If $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$, then $\underset{\gamma}{G_{l}} \times G_{2}$ is a regular fuzzy graph if and only if $G_{1}$ and $G_{2}$ are regular fuzzy graphs.
Proof: Given $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$. Suppose that $G_{1}$ and $G_{2}$ are regular fuzzy graphs of degree $k_{1}$ and $k_{2}$ respectively.
For any vertex $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)$ in $\underset{\gamma}{\mathrm{V}_{1}} \underset{\gamma}{ } \mathrm{~V}_{2}$,

$$
\text { [since } \mathrm{G}_{1} * \text { and } \mathrm{G}_{2} * \text { are complete graphs] }
$$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G} 1} \underset{\gamma}{\times_{\mathrm{G} 2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E}\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right) \\
& =\sum_{u_{1}=v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2}=v_{2}, u_{1} v_{1} \in E_{1}}^{\sum_{2}\left(u_{2}\right) \wedge \mu_{1}\left(u_{1} v_{1}\right)+} \\
& \sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}(v 2) \wedge \mu_{1}\left(u_{1} v_{1}\right)+ \\
& \sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right) \\
& =\sum_{u_{1}=v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2}=v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)
\end{aligned}
$$

## Beta and Gamma Product of Fuzzy Graphs

## Case (i): $\mu_{1} \leq \mu_{2}$

$$
\begin{align*}
& \mathrm{d}_{\mathrm{G}_{1}} \times_{\gamma}^{\mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{u_{1}=v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2}=v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{1} v_{1} \in E_{1,}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \\
& \mathrm{d}_{\mathrm{G} 1} \underset{\gamma}{\times{ }^{\mathrm{G} 2}}{ }^{2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right) \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right) \\
& =\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[1+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\right]  \tag{6.2.1}\\
& =\mathrm{k}_{2}+\mathrm{k}_{1}\left[1+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\right] \\
& \text { [since } \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)=\mathrm{k}_{1}, \forall \mathrm{u}_{1} \in \mathrm{~V}_{1}, \mathrm{~d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)=\mathrm{k}_{2}, \forall \mathrm{u}_{2} \in \mathrm{~V}_{2} \text { ] } \\
& =k_{2}+k_{1}\left[1+d_{2}\right] \text {, since } G_{2} * \text { is complete graph of degree } d_{2}
\end{align*}
$$

Thus $\mathrm{G}_{1} \times \mathrm{G}_{2}$ is regular fuzzy graph.
Case (ii): $\mu_{2} \leq \mu_{1}$

$$
\begin{align*}
& \mathrm{d}_{\mathrm{G} 1} \times_{\gamma}^{\mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{u_{1}=v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2}=v_{2}, u_{1} v_{1} \in E_{1}} \mu_{1}\left(u_{1} v_{1}\right)+\sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right) \\
& \mathrm{d}_{\mathrm{G} 1} \underset{\gamma}{ } \underset{\mathrm{G}^{\mathrm{G}} 2}{ }\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right) \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right) \\
& =\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[1+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)\right]  \tag{6.2.2}\\
& =\mathrm{k}_{1}+\mathrm{k}_{2}\left[1+\mathrm{d}_{1}\right] \quad\left[\text { since } \mathrm{G}_{1} * \text { is complete graph of degree } \mathrm{d}_{1}\right]
\end{align*}
$$

Thus $\mathrm{G}_{1} \times \underset{\gamma}{ } \times \mathrm{G}_{2}$ is regular fuzzy graph.
Conversely assume that $\mathrm{G}_{1} \underset{\gamma}{ } \times \mathrm{G}_{2}$ is a regular fuzzy graph.
For any two vertices $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)$ and $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ in $\underset{\gamma}{\mathrm{V}_{1}} \underset{\gamma}{ } \mathrm{~V}_{2}$, we have
$\mathrm{d}_{\mathrm{G} 1} \times{ }^{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 1} \times{ }_{\mathrm{G} 2}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$
For $\boldsymbol{\mu}_{1} \leq \boldsymbol{\mu}_{2}$, from (6.2.1)
$\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[1+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\right]=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)+\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)\left[1+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right)\right]$
Fix $u \in V_{1}$ and consider $\left(u, u_{2}\right)$ and $\left(u, v_{2}\right)$ in $V_{1} \times V_{2}$, where $u_{2}, v_{2} \in V_{2}$ are arbitrary.
$\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})\left[1+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{u}_{2}\right)\right]=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)+\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})\left[1+\mathrm{d}_{\mathrm{G} 2} *\left(\mathrm{v}_{2}\right)\right]$
Since $G_{1} *$ and $G_{2} *$ are complete graphs, we have $d_{G 2} *(u)=d_{2}$, for every $u \in V_{2}$ and
$\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u})=\mathrm{d}_{1}$, for every $\mathrm{u} \in \mathrm{V}_{1}$.
Thus $\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})\left[1+\mathrm{d}_{2}\right]=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)+\mathrm{d}_{\mathrm{G} 1}(\mathrm{u})\left[1+\mathrm{d}_{2}\right]$
$\Rightarrow \quad \mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)$
This is true for all vertices $u_{2}, v_{2} \in V_{2}$. Thus $G_{2}$ is a regular fuzzy graph.
Now fix $v \in V_{2}$ and consider $\left(u_{1}, v\right)$ and $\left(v_{1}, v\right)$ in $V_{1} \times V_{2}$, where $u_{1}, v_{1} \in V_{1}$ are arbitrary.
From (6.2.1), $\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})+\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[1+\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})\right]=\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})+\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)\left[1+\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})\right]$
$\Rightarrow \quad \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)\left[1+\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})\right]=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)\left[1+\mathrm{d}_{\mathrm{G} 2} *(\mathrm{v})\right]$
$\Rightarrow \quad \mathrm{d}_{\mathrm{Gl}}\left(\mathrm{u}_{1}\right)\left[1+\mathrm{d}_{2}\right]=\mathrm{d}_{\mathrm{Gl}}\left(\mathrm{v}_{1}\right)\left[1+\mathrm{d}_{2}\right]$
[since $\mathrm{d}_{\mathrm{G}_{2}} *(\mathrm{u})=\mathrm{d}_{2}$, for every $\mathrm{u} \in \mathrm{V}_{2}$ ]
$\Rightarrow \quad \mathrm{d}_{\mathrm{Gl}}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{Gl}}\left(\mathrm{v}_{1}\right)$
This is true for all vertices $V_{1}$. Thus $G_{1}$ is a regular fuzzy graph.

## A.Nagoor Gani and B.Fathima Kani

For $\boldsymbol{\mu}_{2} \leq \boldsymbol{\mu}_{1}$ : For any two vertices $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)$ and $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ in $\underset{\gamma}{\mathrm{V}_{1}} \times \mathrm{V}_{2}$, we have

$$
\mathrm{d}_{\mathrm{G} 1} \underset{\gamma}{\mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\underset{\gamma}{\mathrm{d}_{\mathrm{G} 1}} \underset{\gamma}{\mathrm{G}_{2}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)
$$

From (6.2.2) , $\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[1+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)\right]=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)+\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)\left[1+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right)\right]$
Fix $u \in V_{1}$ and consider $\left(u, u_{2}\right)$ and $\left(u, v_{2}\right)$ in $V_{1} \times V_{2}$, where $u_{2}, v_{2} \in V_{2}$ are arbitrary.

$$
\begin{array}{cc} 
& \\
\Rightarrow & \mathrm{d}_{\mathrm{G} 1}(\mathrm{u})+\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[1+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u})\right]= \\
\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[1+\mathrm{d}_{1}\right]= & \mathrm{d}_{\mathrm{G} 1}(\mathrm{u})+\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)\left[1+\mathrm{v}_{2}\right)\left[1+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u})\right] \\
\Rightarrow & \\
\Rightarrow & \quad\left[\operatorname{since} \mathrm{d}_{\mathrm{G} 1} *(\mathrm{u})=\mathrm{d}_{1}, \text { for every } \mathrm{u} \in \mathrm{~V}_{2}\right]
\end{array}
$$

This is true for all vertices $V_{2}$. Thus $G_{2}$ is a regular fuzzy graph.
Now fix $v \in V_{2}$ and consider $\left(u_{1}, v\right)$ and $\left(v_{1}, v\right)$ in $V_{1} \times V_{2}$, where $u_{1}, v_{1} \in V_{1}$ are arbitrary Then From (6.2.2) ,we have

$$
\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})\left[1+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)\right]=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)+\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})\left[1+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right)\right]
$$

$\Rightarrow \quad \mathrm{d}_{\mathrm{G} 1}\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})\left[1+\mathrm{d}_{1}\right]=\mathrm{d}_{\mathrm{G} 1}\left(\mathrm{v}_{1}\right)+\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})\left[1+\mathrm{d}_{1}\right]$, since $\mathrm{G}_{1} *$ is complete graph of degree $d_{1}$.
Hence $\mathrm{d}_{\mathrm{G1}}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{Gl}}\left(\mathrm{v}_{1}\right)$. Thus $\mathrm{G}_{1}$ isa regular fuzzy graph.
Theorem 6.3. Let $G_{I}=\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}=\left(\sigma_{2}, \mu_{2}\right)$ be two fuzzy graphs such that $\sigma_{2} \leq \mu_{1}$ and $\sigma_{2}$ is a constant. Then $\underset{\gamma}{G_{I}} \underset{\gamma}{ } G_{2}$ is a regular fuzzy graph iff $G_{2}$ is a regular fuzzy graph and $G_{I}{ }^{*}$ is a regular graph.
Proof: Given $\sigma_{2}$ is a constant say $\mathrm{c}_{2}$ and $\sigma_{2} \leq \mu_{1}$, then we have $\sigma_{1} \geq \mu_{2}$.
By definition, for any $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \underset{\gamma}{\mathrm{V}_{1} \times \mathrm{V}_{2}}$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G} 1} \underset{\gamma}{\times{ }^{\mathrm{G} 2} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E}\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right) \\
& =\sum_{u_{1}=v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2}=v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right) \wedge \mu_{1}\left(u_{1} v_{1}\right)+ \\
& \sum_{u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}(v 2) \wedge \mu_{1}\left(u_{1} v_{1}\right)+ \\
& \sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \sigma_{1}\left(u_{1}\right) \wedge \sigma_{1}\left(v_{1}\right) \wedge \mu_{2}\left(u_{2} v_{2}\right) \\
& =\sum_{u_{1}=v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2}=v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right)+\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}(v 2)+ \\
& \sum_{u_{1} v_{1} \in E_{1, u_{2} v_{2} \in E_{2}} \mu_{1}\left(u_{1} v_{1}\right)} \wedge \mu_{2}\left(u_{2} v_{2}\right)
\end{aligned}
$$

Clearly $\mu_{2} \leq \mu_{1}$, we have

$$
\underset{\gamma}{\mathrm{d}_{\mathrm{G} 1} X_{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=} \sum_{u_{1}=v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+\sum_{u_{2}=v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right)+\sum_{u_{1} \neq v_{1}, u_{2} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right)+
$$

## Beta and Gamma Product of Fuzzy Graphs

$$
\begin{align*}
& \sum_{u_{2} \neq v_{2}, u_{1} v_{1} \in E_{1}} \sigma_{2}\left(u_{2}\right) \wedge \sigma_{2}(v 2)+\sum_{u_{1} v_{1} \in E_{1, u_{2}} v_{2} \in E_{2}} \mu_{2}\left(u_{2} v_{2}\right) \\
& =\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)+\sigma_{2}\left(\mathrm{u}_{2}\right) \mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)|\overline{E 1}|+|\overline{E 2}| \sigma_{2}\left(\mathrm{u}_{2}\right) \mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right) \mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right) \\
& =\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)\right]+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right) \sigma_{2}\left(\mathrm{u}_{2}\right)[1+|\overline{E 2}|] \tag{6.3.1}
\end{align*}
$$

Assume that $G_{2}$ is a regular fuzzy graph of degree $k_{2}$ and $G_{1}{ }^{*}$ is a regular graph of degree $\mathrm{d}_{1}$.
Then (6.3.1) becomes d $\underset{\gamma}{\mathrm{G1}} \underset{\gamma}{ }{ }^{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{k}_{2}\left[1+|\overline{E 1}|+\mathrm{d}_{1}\right]+\mathrm{d}_{1} \mathrm{c}_{2}[1+|\overline{E 2}|]$
where $\quad \sigma_{2}$ is a constant, say $\mathrm{c}_{2}$ and $|\overline{E 1}|$ and $|\overline{E 2}|$ are the degree of a vertex of complement graphs $\mathrm{G}_{1}{ }^{*}$ and $\mathrm{G}_{2}{ }^{*}$.
Thus from (6.3.2), $\gamma$-product of two fuzzy graphs $G_{1}$ and $G_{2}$ is a regular fuzzy graph. Conversely assume that $G_{1} \times \mathrm{G}_{2}$ is a regular fuzzy graph.

Then for any two points $\left(u_{1}, u_{2}\right)$ and $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ in $\mathrm{V}_{1} \times \mathrm{V}_{2}$, we have

$$
\begin{align*}
\mathrm{d}_{\mathrm{G} 1} \times{ }_{\gamma}^{\mathrm{G} 2}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) & =\mathrm{d}_{\mathrm{G} 1} \times \underset{\gamma}{\mathrm{G} 2}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \\
\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)\right] & +\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right) \mathrm{\sigma}_{2}\left(\mathrm{u}_{2}\right)[1+|\overline{E 2}|] \\
& =\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right)\right]+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right) \sigma_{2}\left(\mathrm{v}_{2}\right)[1+|\overline{E 2}|] \tag{6.3.3}
\end{align*}
$$

Now fix $v \in V_{2}$ and consider $\left(u_{1}, v\right)$ and $\left(v_{1}, v\right)$ in $V_{1} \times V_{2}$, where $u_{1}, v_{1} \in V_{1}$ are arbitrary.
From (6.3.3), $\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)\right]+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right) \mathrm{\sigma}_{2}(\mathrm{v})[1+|\overline{E 2}|]$

$$
=\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right)\right]+\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right) \sigma_{2}(\mathrm{v})[1+|\overline{E 2}|]
$$

The above equation can be modified in to

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)\left[\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})+\sigma_{2}(\mathrm{v})[1+|\overline{E 2}|]+\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})[1+|\overline{E 1}|]=\right. \\
& \\
& \\
& \Rightarrow \quad \mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right)\left[\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})+\sigma_{2}(\mathrm{v})[1+|\overline{E 2}|]+\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})[1+|\overline{E 1}|]\right. \\
& \Rightarrow \quad \mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{u}_{1}\right)\left[\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})+\sigma_{2}(\mathrm{v})[1+|\overline{E 2}|]=\mathrm{d}_{\mathrm{G} 1} *\left(\mathrm{v}_{1}\right)\left[\mathrm{d}_{\mathrm{G} 2}(\mathrm{v})+\sigma_{2}(\mathrm{v})[1+|\overline{E 2}|]\right.\right. \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

This is true for all vertices of $u_{1}, v_{1} \in V_{1}$. Hence $G_{1} *$ is a regular graph of degree $d_{1}$.
Now fix $u \in V_{1}$ and consider $\left(u, u_{2}\right)$ and $\left(u, v_{2}\right)$ in $V_{1} \times V_{2}$, where $u_{2}, v_{2} \in V_{2}$ are arbitrary.
From (6.3.3), $\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u})\right]+\mathrm{d}_{\mathrm{G1}} *(\mathrm{u}) \sigma_{2}\left(\mathrm{u}_{2}\right)[1+|\overline{E 2}|]$

$$
=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u})\right]+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u}) \sigma_{2}\left(\mathrm{v}_{2}\right)[1+|\overline{E 2}|]
$$

$\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u})\right]+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u}) \mathrm{c}_{2}[1+|\overline{E 2}|]$

$$
\begin{gathered}
\text { A.Nagoor Gani and B.Fathima Kani } \\
=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u})\right]+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u}) \mathrm{c}_{2}[1+|\overline{E 2}|] \\
\left.\Rightarrow \quad \text { (since } \sigma_{2}(\mathrm{v})=\mathrm{c}_{2}, \forall \mathrm{v} \in \mathrm{~V}_{2}\right) \\
\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u})\right]=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)\left[1+|\overline{E 1}|+\mathrm{d}_{\mathrm{G} 1} *(\mathrm{u})\right] \\
\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G} 2}\left(\mathrm{v}_{2}\right)
\end{gathered}
$$

This is true for all vertices of $V_{2}$. Hence $G_{2}$ is a regular fuzzy graph of degree $k_{2}$.

## 7. Conclusion

It is convenient to consider large fuzzy graph as a combination of small fuzzy graphs and to derive its properties from those of the small ones .Operation on fuzzy graph is a great tool that can be used for this purpose. We made a step in that direction through this paper. Much more work can be done to investigate the structure of Beta and Gamma product which would have applications in communication networks, Information technology and so on.

## REFERENCES

1. F.Harary, Graph Theory, Narosa /Addison Wesley, Indian Student Edition, 1988.
2. E.M.El-Kholy, El-Said R.Lashin and S.N. Daoud, New operations on graphs and graph foldings, International Mathematical Forum, 7 (46) (2012) 2253-2268.
3. J.N.Mordeson and C.S.Peng, Operations on Fuzzy Graphs, Inform. Sci., 79 (1994) 159-170.
4. J.N.Mordeson and P.S.Nair, Fuzzy Graphs and Fuzzy Hypergraphs, PhysicaVerlag, Heidelberg, 2000.
5. A.Nagoor Gani and K.Radha, On Composition of two fuzzy graphs, Jamal Academic Research Journal: an Interdisciplinary, 4(1) (2007) 74-80.
6. A.Nagoor Gani and K.Radha, Degree of vertices in some fuzzy graphs, International Journal of Algorithms, Computing and Mathematics, 2(3) (2009) 107-116.
7. A.Nagoor Gani and K.Radha, On regular fuzzy graphs, Journal of Physical Sciences, 12 (2008) 33-40.
8. A.Nagoor Gani and B.Fathima Kani, Alpha product of fuzzy graphs, communicated to a special issue on Advances in Fuzzy Sets and Systems.
9. A.Rosenfeld, Fuzzy Graphs, In: L.A.Zadeh, K.S.Fu, M.Shimura, Eds., Fuzzy Sets and Their Applications, Academic Press, (1975) 77-95.
10. R.T.Yeh and S.Y.Banh, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, In Fuzzy Sets and their Applications to Cognitive and Decision Process. L.A.Zadeh, K.S.Fu, M.Shimura, Eds: Academic Press, New York (1975) 125-49.
