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Breakthrough

 Deep Learning: machine
learning algorithms based on
learning multiple levels of
representation / abstraction.

Amazing improvements in error rate in object recognition, object
detection, speech recognition, and more recently, some in
machine translation



Onaomg Progress: Natural Language
Understanding

e Recurrent nets generating credible sentences, even better if
conditionally:

* Machine translation
Xu et al, to appear ICML'2015

* Image 2 text

-

A dog is standing on a hardwood floor. A stop sign is on a road with a
- mountain in the background.

== i

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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Why is Deep Learning
Worlking so Well?



Machine Learning, Al
% No Free Lunch

 Three key ingredients for ML towards Al
1. Lots & lots of data
2. Very flexible models

3. Powerful priors that can defeat the curse of
dimensionality



OLkimate Goals

* Al

Needs knowledge
Needs learning

Needs generalization

Needs ways to fight the curse of dimensionality

Needs disentangling the underlying explanatory factors



ML 101, What We Are Fighting Against:
The Curse of Dimensionality

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

1 dimension:
10 positions

2 dimensions:
100 positions
Q

» 3 dimensions:
1000 positions!



Nokt bimensionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around

e |nsufficient

e Guess some ‘structure’ and
generalize accordingly



Bypassing the curse of
dimensionality

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently
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Now-distributed representations

e (Clustering, n-grams, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

LOCAL PARTITION

e # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples
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The need for distributed
rapresew&a&iov\s
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Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions
grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

C1
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Cl=1
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C3=0
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C2=1
\ C3=1

\

DISTRIBUTED PARTITION \

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



Classical Symbolic AI vs
Representation Learning

e Two symbols are equally far from each other

e Concepts are not represented by symbols in our
brain, but by patterns of activation

(Connectionism, 1980’s)

Output units

Hidden units

person

Input
units

catb
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Neural Language Models: fiﬂk&ing ohe

exponential b3 anoclther one!

. ’
¢ (Benglo et al NIPS 2000) i~th output = P(w(t) =i | context)
Output softmax
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Neural word embeddings - visualization
Directions = Learned Attributbes

need help
come
go
take
give keep
make get
meet cee continue
expect want become
think
say remain
are .
IS
be
wergas
being
been
haq1as
have
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Analogical Representations for Free
(Mirolov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome
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Summary of New Theoretical Results

e Expressiveness of deep networks with piecewise linear
activation functions: exponential advantage for depth

(Montufar et al NIPS 2014)

 Theoretical and empirical evidence against bad local minima
(Dauphin et al NIPS 2014)
e Manifold & probabilistic interpretations of auto-encoders
* Estimating the gradient of the energy function (Alain & Bengio ICLR 2013)
e Sampling via Markov chain (Bengio et al NIPS 2013)
* Variational auto-encoder breakthrough (Gregor et al arxiv 2015)
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The Depth Prior can be Exponentially
Advantageous -

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approximat
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014, Montufar et al NIPS 2014) 1 2 3 2n

Some functions compactly

represented with k layers may
require exponential size with 2
layers 1 2 3 n



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Sharing Components in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

(X2X3) 9X3) + (r374)
Sum-product
network
X9X3 Ty
2 3

Theorems in
(Bengio & Delalleau, ALT 2011;
T W €Ty
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New theoretical result:
Expressiveness of deep hets with
ri.ecewise.-*uv\aar activakion fis

P

ascanu, Montufar, Cho & Bengio; ICLR 2014)
(Montufar, Pascanu, Cho & Bengio; NIPS 2014)

Deeper nets with rectifier/maxout units are exponentially more
expressive than shallow ones (1 hidden layer) because they can split
the input space in many more (not-independent) linear regions, with
constraints, e.g., with abs units, each unit creates mirror responses,
folding the input space:

22



A Myth is Being Debuniced: Local
Minima in Neural Nets

= Cov\ve.xilzv s not needed

e (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

e (Choromanska, Henaff, Mathieu, Ben Arous & LeCun 2014): The
Loss Surface of Multilayer Nets
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Saddle Poinks

* Local minima dominate in low-D, but
saddle points dominate in high-D ¢

e Most local minima are close to the
bottom (global minimum error)

O e cpupe et O ¢

0700 0.05 0.10 0.15 0.20 0.25
Index of critical point

24

YWolfram Global Problem




Saddle Points During Training

e QOscillating between two behaviors:

25

Training error (MSE)

Slowly approaching a saddle point

Escaping it
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Low Index Critical Poinks

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum
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Saddle-Free Optimization

(Pascanu, Da\upki.v\, Granquli, Bengio 2014)

e Saddle points are ATTRACTIVE for Newton’s method

Replace eigenvalues A of Hessian by |A|
e Justified as a particular trust region method
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£ e® minibatch SGD
¢:¢ Damped Newton method
m—8 Saddle-Free Newton method
10_1 50

25
Number of hidden units

5
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How do humans generalize
from very few examples?

* They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

* Previous learning from: unlabeled data
+ labels for other tasks

* Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)
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Multi-Task Learning

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate
because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks
29



Sharing Statistical Strength by Semi-
Supervised Learhing

e Hypothesis: P(x) shares structure with P(y|x)

purely semi-
supervised P supervised
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Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|
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The Next Challenge:
Unsupervised Learning

e Recent progress mostly in supervised DL

e Real technical challenges for unsupervised DL

e Potential benefits:
e Exploit tons of unlabeled data
* Answer new questions about the variables observed
e Regularizer — transfer learning — domain adaptation
* Easier optimization (local training signal)
e Structured outputs
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Why Latent Factors & Unsupervised
Representation Learning? Because of

C ausalééy.

e If Ys of interest are among the causal factors of X, then
P(X|Y)P(Y

P(X)

is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X|Y), i.e.

e The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

e Representation learning SEEKS the latent variables H that
explain the variations of X, making it likely to also uncover.
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Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality
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Emergence of msenkavxgtmg

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)

35



Manifold Learning =
Representation Learning

angext directions

tangent plane
X

Data on a curved manifold
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Non-Parametric Manifold Learning:
hopeless without powerful enough priors

Manifolds estimated out of the
neighborhood graph:

- node = example

- arc = near neighbor

Al-related data manifolds have too many
twists and turns, not enough examples
to cover all the ups & downs & twists



Auto-Encoders Learn Salienk
Variakions, Like a non-linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.

38



Denoising Auto-Encoder

e Learns a vector field pointing towards @

prior: examples

higher probability direction (Alain & Bengio 2013) concentrate near a
0 1ng(3;) lower dimensional
reconstruction(z) —xz — o 5 “manifold”
€T ,

e Some DAEs correspond to a kind of
Gaussian RBM with regularized Score
Matching (Vincent 2011)

[equivalent when noise—>0] Corrupted input




(Alain & Bengio ICLR 2013)

ularized Auto-Encoders Learn a
teld that Estimabes a

9

Vector £
Grodient Field
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Denoising Auto-Encoder Markov Chain

corrupt

C(X|X)
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Denoising Auto-Encoders Learn a
Marikov Chain Transition Distribution

(Bengio et al NIPS 2013)
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Grenerative Stochastic Networks (GSN)

(Bengio et al ICML 2014, Alain et al arXiv 2015)

e Recurrent parametrized stochastic computational graph that
defines a transition operator for a Markov chain whose
asymptotic distribution is implicitly estimated by the model

 Noise injected in input and hidden layers
e Trained to max. reconstruction prob. of example at each step
e Example structure inspired from the DBM Gibbs chain:

h, noise

o /”"'2/7<\\\7*’£\>/"°"z/7i\wg\>/wz/7

sample x;

sample x, sample x;

3 to 5 steps

43



Space-Filling n Representation-Space
 Deeper representations = abstractions = disentangling
e Manifolds are expanded and flattened

- X-space
4 Pixel space A Representation space
" 3 magifls q symantol e htod X
Lmenr interpolation at Iayer 2 3’s manifold
. 3
o} ®
9’s mahifold B -
Pe_Linear interpolation at layer 1 ®

1 E

Linear mterpolatlon in pixel space
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Extracting Structure By Gradual

Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407,7906) 3

ahy) 1=
Each level transforms the o
data into a representation in T ’ T
which it is easier to model, B
unfolding it more,
contracting the noise ath,h,) Tz lgz P(h,/h,)
dimensions and mapping the
sighal dimensions to a ath,) ’/'\-J P(
factorized (uniform-like) . P(x/h.)
distribution. Q(h;[x) Tl l 1
min K L(Q(z, h)||P(z, h))

Q(x)

for each intermediate level h
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DRAW: the Latest variant of
Variakional Auto-Encoder

(Gregor et al of Google DeepMind, arXiv 1502.04623, 2015)

e Even for a static input, the encoder and decoder are now
recurrent nets, which gradually add elements to the answer,
and use an attention mechanism to choose where to do so.
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DRAW Samples of SVHN Images: the
drawing process
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DRAW Samples of SVHN Images:
generated samples vs training v\earesl:
neighbor
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Conclusions
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Distributed representations:
e prior that can buy exponential gain in generalization
Deep composition of non-linearities:
e prior that can buy exponential gain in generalization
Both yield non-local generalization
Strong evidence that local minima are not an issue, saddle points
Auto-encoders capture the data generating distribution
* Gradient of the energy
* Markov chain generating an estimator of the dgd
e Can be generalized to deep generative models
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