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The purpose of this Forum is to stimulate critical debate in the area of theory use and 
theory development, and to consider future directions for the advancement of our 
discipline. The Forum opens with a discussion of why theories are essential to the 
work of mathematics educators and addresses possible reasons for why some 
researchers either ignore or misunderstand/misuse theory in their work. Other issues 
to be addressed include the social turn in mathematics education, an evolutionary 
perspective on the nature of human cognition, the use of theory to advance our 
understanding of student cognitive development, and models and modelling 
perspectives. The final paper takes a critical survey of European mathematics 
didactics traditions, particularly those in Germany and compares these to historical 
trends in other parts of the world. 

INTRODUCTION 
Our conception and preference for a particular mathematics education theory 
invariably influences our choice of research questions as well as our theoretical 
framework in mathematics education research. Although we have made significant 
advances in mathematics education research, our field has been criticized in recent 
years for its lack of focus, its diverging theoretical perspectives, and a continued 
identity crisis (Steen, 1999). At the dawn of this new millennium, the time seems ripe 
for our community to take stock of the multiple and widely diverging mathematical 
theories, and chart possible courses for the future. In particular, we need to consider 
the important role of theory building in mathematics education research.  

Issues for consideration include: 

1. What is the role of theory in mathematics education research?  

2. How does Stokes (1997) model of research in science apply to research in 
mathematics education? 

3. What are the currently accepted and widely used learning theories in 
mathematics education research? Why have they gained eminence?  

4. What is happening with constructivist theories of learning?  

5. Embodied cognition has appeared on the scene in recent years. What are the 
implications for mathematics education research, teaching, and learning?  

6. Theories of models and modelling have received considerable attention in the 
field in recent years. What is the impact of these theories on mathematics 
research, teaching, and learning? 
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7. Is there a relationship between researchers’ beliefs about the nature of 
mathematics and their preference for a particular theory?  

8. How do theories used in European mathematics didactics traditions compare 
with those used in other regions of the world? Do European traditions reveal 
distinct theoretical trends? 

There are several plausible explanations for the presence of multiple theories of 
mathematical learning, including the diverging, epistemological perspectives about 
what constitutes mathematical knowledge. Another possible explanation is that 
mathematics education, unlike “pure” disciplines in the sciences, is heavily 
influenced by cultural, social, and political forces (e.g., D'Ambrosio, 1999; Secada, 
1995; Skovsmose & Valero, 2002). As Lerman indicates in his paper, the switch to 
research on the social dimensions of mathematical learning towards the end of the 
1980s resulted in theories that emphasized a view of mathematics as a social product. 
Social constructivism, which draws on the seminal work of Vygotsky and 
Wittgenstein (Ernest, 1994) has been a dominant research paradigm ever since. On 
the other hand, cognitively oriented theories have emphasized the mental structures 
that constitute and underlie mathematical learning, how these structures develop, and 
the extent to which school mathematics curricula should capture the essence of 
workplace mathematics (e.g., see Stevens, 2000).  

Stokes (1997) suggested a new way of thinking about research efforts in science, one 
that moves away from the linear one-dimensional continuum of "basic, to applied, to 
applied development, to technology transfer." Although this one-dimensional linear 
approach has been effective, Stokes argued that it is too narrow and does not 
effectively describe what happens in scientific research. In Pasteur's Quadrant, Stokes 
proposed a 2-dimensional model, which he claimed offered a completely different 
conception of research efforts in science. If one superimposes the Cartesian co-
ordinate system on Stokes’ model, the Y -axis represents "pure" research (such as the 
work of theoretical physicists) and the X-axis represents "applied" research" (such as 
the work of inventors). The area between the two axes is called "Pasteur's Quadrant" 
because it is a combination (or an amalgam) of the two approaches. If we apply 
Stokes’ model to mathematics education research, we need to clearly delineate what 
is on the Y-axis of Pasteur's quadrant if we are to call our field a science. Frank 
Lester elaborates further on this issue in the opening paper of this Forum. Steve 
Lerman extends the discussion initiated in Lester’s contribution on the pivotal, albeit 
misunderstood role of theories in mathematics education, and presents theoretical 
frameworks most frequently used in PME papers during the 1990-2001 time period. 
Lerman’s analysis reveals that a wide variety of theories are used by PME 
researchers with a distinct preference for social theories over cognitive theories. An 
interesting avenue for discussion is whether the particular social theories used in this 
time period reveal a distinct geographic distribution, and if so why? Luis Moreno-
Armella presents an evolutionary perspective on the nature of human cognition, 
particularly the evolution of representations, which he aptly terms pre-theory, as it 
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serves as a foundation for the present discussion. John Pegg and David Tall compare 
neo-Piagetian theories in order to use the similarities and differences among theories 
to address fundamental questions in learning. Lyn English and Richard Lesh present 
a models and modeling perspective which innovatively combines the theories of 
Piaget and Vygotsky to pragmatically address the development and real life use of 
knowledge via model construction. The Forum concludes with a review by Günter 
Törner and Bharath Sriraman on European theories of mathematics education, with a 
focus on German traditions. Eight major tendencies are highlighted in 100 years of 
mathematics education history in Germany; these tendencies reflect trends that have 
occurred internationally. 
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THE PLACE OF THEORY IN MATHEMATICS EDUCATION 
RESEARCH 

Frank K. Lester, Jr., Indiana University, Bloomington, USA 

As most, if not all, of you know, the current emphasis in the United States being 
placed on so called scientific research in education, is driven in large part by political 
forces. Much of the public and some of the professional conversation has begun with 
an assumption that the purpose of research is to determine “what works,” and the 
discourse has focused largely on matters of research design and methods. One 
consequence has been the rekindling of attention to experimental designs and 
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quantitative methods that had faded from prominence in education research over the 
past two decades or so. Far less prominent in recent discussions about educational 
research has been the place of theory.  

Scholars in other social science disciplines (e.g., anthropology, psychology, 
sociology) often justify their research investigations on grounds of developing 
understanding by building or testing theories. In contrast, the current infatuation in 
the U.S. with “what works” seems to leave education researchers with less latitude to 
conduct studies to advance theoretical goals. It is time for a serious examination of 
the role that theory should play in the formulation of problems, in the design and 
methods employed, and in the interpretation of findings in education research. In this 
brief presentation, I speculate about why so many researchers seem to misunderstand 
or misuse theory and suggest how we might think about the goals of research that 
might help eliminate this misunderstanding and misuse. 

Why is so much of our research atheoretical? 
Mathematics education research is an interesting and important area for such an 
examination. Although math ed research was aptly characterized less than 15 years 
ago by Kilpatrick (1992) and others as largely atheoretical, a perusal of recent 
articles in major MER journals reveals that theory is alive and well: indeed, Silver 
and Herbst (2004) have noted that expressions such as “theory-based,” “theoretical 
framework,” and “theorizing” are common. In fact, they muse, manuscripts are often 
rejected for being atheoretical. The same is true of proposals submitted for PME 
meetings. However, the concerns raised decades ago persist; too often researchers 
ignore, misunderstand, or misuse theory in their work.  

We are our own worst enemies  
In my mind there are two basic problems that must be dealt with if we are to expect 
theory to play a more prominent role in our research. The first has to do with the 
widespread misunderstanding of what it means to adopt a theoretical stance toward 
our work. The second is that some researchers, while acknowledging the importance 
of theory, do not feel qualified to engage in serious theory-based work. I attribute 
both of these problems to: (a) the failure of our graduate programs to properly equip 
novice researchers with adequate preparation in theory, and (b) the failure of our 
research journals to insist that authors of research reports offer serious theory-based 
explanations of their findings.  

Writing about the state of U.S. doctoral programs, Hiebert, Kilpatrick, and Lindquist 
(2001) suggest that mathematics education is a complex system and that improving 
the process of preparing doctoral students means improving the entire system, not 
merely changing individual features of it. They insist that “the absence of system-
wide standards for doctoral programs [in mathematics education] is, perhaps, the 
most serious challenge facing systemic improvement efforts. . . . Indeed, participants 
in the system have grown accustomed to creating their own standards at each local 
site” (p. 155). One consequence of the absence of commonly accepted standards is 
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that there is a very wide range of requirements of different programs. At one end of 
the continuum of requirements are a few programs that focus on the preparation of 
researchers. At the other end are those programs that require little or no research 
training beyond taking a research methods course or two. In general, with few 
exceptions, doctoral programs are replete with courses and experiences in research 
methodology, but woefully lacking in courses and experiences that provide students 
with solid theoretical underpinnings for future research. Without solid understanding 
of the role of theory in conceptualizing and conducting research, there is little chance 
that the next generation of mathematics education researchers will have a greater 
appreciation for theory than is currently the case. Put another way, we must do a 
better job of cultivating a predilection for theory within the mathematics education 
research community.  

During my term as editor of the Journal for Research in Mathematics Education in 
the early1990s, I found the failure of authors of research reports to pay serious 
attention to explaining the results of their studies one of the most serious 
shortcomings. A simple example from the expert-novice problem solver research 
illustrates what I mean. It is not enough simply to report: Experts do X when they 
solve problems and novices do Y. Were the researcher guided by theory, a natural 
question would be to ask WHY? Having some theoretical perspective guiding the 
research provides a framework within which to attempt to answer Why questions. 
Without a theoretical orientation, the researcher can speculate at best or offer no 
explanation at all. 

Many mathematics educators hold misconceptions about the role of theory 
Time constraints prevent me from providing a detailed discussion of what I see as the 
most common misconceptions about theory, so I will simply list four and say a few 
words about them. 

1. Theory-based explanation given by “decree” rather than evidence. Some 
researchers (e.g., Eisenhart, 1991) insist that educational theorists prefer to address 
and explain the results of their research by “theoretical decree” rather than with solid 
evidence to support their claims. That is to say, there is a belief among some 
researchers that theorists make their data fit their theory. 

2. Data have to “travel.” Sociologist and ethnographer, John Van Maanen (1988), 
has observed that data collected under the auspices of a theory has to “travel” in the 
sense that (in his view) data too often must be stripped of context and local meaning 
in order to serve the theory. 

3. Standard for discourse not helpful in day-to-day practice. Related to the previous 
concern, is the observation that researchers tend to use a theory to set a standard for 
scholarly discourse that is not functional outside the academic discipline. 
Conclusions produced by the logic of theoretical discourse too often are not at all 
helpful in day-to-day practice. Researchers don’t speak to practitioners! The theory is 
irrelevant to the experience of practitioners (cf., Lester & Wiliam, 2002). 
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4. No triangulation. Sociologist, Norman Denzin (1978) has discussed the 
importance of theoretical triangulation, by which he means the process of compiling 
currently relevant theoretical perspectives and practitioner explanations, assessing 
their strengths, weaknesses, and appropriateness, and using some subset of these 
perspectives and explanations as the focus of empirical investigation. By using a 
single theoretical perspective to frame one’s research, such triangulation does not 
happen. 

There is no doubt that rigid, uncritical adherence to a theoretical perspective can lead 
to these sorts of offenses. However, I know of no good researchers who are guilty of 
such crimes. Instead, more compelling arguments can be marshaled in support of 
using theory. 

Why theory is essential 
Again, time constraints for this presentation prevent me from elaborating on the 
reasons why theory should play an indispensable role in our research. Let me mention 
a few of the most evident. (In the following brief discussion I borrow heavily from an 
important paper written about 15 years ago by Andy diSessa [1991]) 

1. There are no data without theory. We have all heard the claim, “The data speak for 
themselves!” Dylan Wiliam and I have argued elsewhere that actually data have 
nothing to say. Whether or not a set of data can count as evidence of something is 
determined by the researcher’s assumptions and beliefs as well as the context in 
which it was gathered (Lester & Wiliam, 2000). One important aspect of a 
researcher’s beliefs is the theoretical perspective he or she is using; this perspective 
makes it possible to make sense of a set of data. 

2. Good theory transcends common sense. In the paper mentioned above, diSessa 
(1991) argues that theoretical advancement is the linchpin in spurring practical 
progress. He notes that, sure, you don’t need theory for many everyday problems—
purely empirical approaches often are enough. But often things aren’t so easy. Deep 
understanding that comes from concern for theory building is often essential to deal 
with truly important problems. 

3. Need for deep understanding, not just “for this” understanding. Related to the 
above, is the need we have to deeply understand some things—the important, big 
questions (e.g., What does it mean to be intelligent? What does it mean to understand 
something?)—not simply find solutions to immediate problems and dilemmas. 
Theory helps us develop deep understanding. (I say more about understanding in the 
next section.) 

A different way to think about the goals of research and the place of theory 
In his book, Pasteur’s Quadrant: Basic Science and Technological Innovation, 
Donald Stokes (1997) presents a new way to think about scientific and technological 
research and their purposes. Stokes begins with a detailed discussion of the history of 
development of the current U.S. policy for supporting advanced scientific study (I 
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suspect similar policies exist in other industrialized countries). He notes that from the 
beginning of the development of this policy shortly after World War II there has been 
an inherent tension between the pursuit of fundamental understanding and 
considerations of use. This tension is manifest in the, often radical, separation 
between basic and applied science. He argues that prior to the latter part of the 19th 
Century, scientific research was conducted largely in pursuit of deep understanding 
of the world. But, the rise of microbiology in the late 19th Century brought with it a 
concern for putting scientific understanding to practical use. He illustrates this 
concern with the work of Louis Pasteur. Of course, Pasteur working in his laboratory 
wanted to understand the process of disease at the most basic level, but he wanted 
that understanding to be applicable to dealing with silk worms, anthrax in sheep, 
cholera in chickens, spoilage in milk, and rabies in people. The work of Pasteur 
suggests that one could not understand his science without knowing the extent to 
which he had considerations of use in mind as well as fundamental understanding. 
Stokes proposed a model for thinking about scientific research that blends the two 
motives: the quest for fundamental understanding and considerations of use.  

Adapting Stokes’s model to educational research in general, and mathematics 
education research in particular, I have come up with a slightly different model (see 
Figure 1). In the final section of this short paper, I describe the relationship between 
my model and the place of theory in mathematics education research. 
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Figure 1. Adaptation of Stokes’s model to educational research 
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almost mystifying range of theories and theoretical perspectives that are being used. 
In a chapter to appear in a forthcoming handbook of research in mathematics 
education, Cobb (in press) considers how mathematics education researchers might 
cope with the multiple and frequently conflicting theoretical perspectives that 
currently exist. He observes: 

The theoretical perspectives currently on offer include radical constructivism, 
sociocultural theory, symbolic interactionism, distributed cognition, information-
processing psychology, situated cognition, critical theory, critical race theory, and 
discourse theory. To add to the mix, experimental psychology has emerged with a 
renewed vigor in the last few years. . . . In the face of this sometimes bewildering 
array of theoretical alternatives, the issue . . . is that of how we might make and 
justify our decision to adopt one theoretical perspective rather than another.1 

Cobb goes on to question the repeated (mostly unsuccessful) attempts that have been 
made in mathematics education to derive instructional prescriptions directly from 
background theoretical perspectives. He insists that it is more productive to compare 
and contrast various theoretical perspectives in terms of the manner in which they 
orient and constrain the types of questions that are asked about the learning and 
teaching of mathematics, the nature of the phenomena that are investigated, and the 
forms of knowledge that are produced. To his recommendation, I would add that 
comparing and contrasting various perspectives would have the added benefit of both 
enhancing our understanding of important phenomena and increasing the usefulness 
of our investigations (c.f., Lester & Wiliam, 2002). 

I propose to view the theoretical perspectives we adopt for our research as sources of 
ideas that we can appropriate and modify for our purposes as mathematics educators. 
This process of developing tools for our research is quite similar to that of 
instructional design as described by Gravemeijer (1994). He suggests that 
instructional design resembles the thinking process characterized by the French word 
bricolage, a notion borrowed from Claude Levi–Strauss. A bricoleur is a handyman 
who invents pragmatic solutions in practical situations and is adept at using whatever 
is available. Similarly, I suggest, as do Cobb and Gravemeijer, that rather than 
adhering to one particular theoretical perspective, we act as bricoleurs by adapting 
ideas from a range of theoretical sources to suit our goals—goals that should aim not 
only to deepen our fundamental understanding of mathematics learning and teaching, 
but also to aid us in providing practical wisdom about problems practitioners care 
about. If we begin to pay serious attention to these goals, the problem of theory is 
likely to be resolved. 
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THEORIES OF MATHEMATICS EDUCATION: A PROBLEM OF 
PLURALITY? 

Stephen Lerman, London South Bank University, UK 

Today, in many countries around the world, constraints on the funding of Universities 
are leading to restrictions on educational research. In some countries national policy 
is also placing constraints on the kinds of research that will be funded (e.g. the effects 
of No Child Left Behind policy in the USA). At the same time we see research in 
mathematics education proliferating, not just in quantity but also, as in the concerns 
of this Research Forum, in the range of theories that are drawn upon in our research. 
In my contribution I want to ask: is this surprising, or unusual, and is it necessarily a 
hindrance to the effectiveness of educational research in mathematics? 

In discussing this, I would argue that we need a specific language that enables an 
analysis of intellectual fields and their growth, a language that will not be provided 
by mathematics or by psychology. I will draw on some of the later work of the 
sociologist of education, Basil Bernstein, in particular his 1999 paper on research 
discourses (Bernstein, 1999). Following that, I will make some remarks about the use 
of theory. 

A Language of Research Fields 
Bernstein draws on two notions: hierarchy and verticality. Discourses are described 
as hierarchical where knowledge in the domain is a process of gradual distancing, or 
abstraction, from everyday concepts. Hierarchical discourses require an 
apprenticeship; they position people as initiated or apprenticed. Clearly academic and 
indeed school mathematics are examples of hierarchical discourses. Research 
(Cooper & Dunne, 2000) shows that setting mathematics tasks in everyday contexts 
can mislead some students, namely those from low socio-economic background, into 
privileging the everyday context and the meanings carried in them over the abstract 
or esoteric meanings of the discourse of academic mathematics. 

His second notion, verticality, describes the extent to which a discourse grows by the 
progressive integration of previous theories, what he calls a vertical knowledge 
structure, or by the insertion of a new discourse alongside existing discourses and, to 
some extent, incommensurable with them. He calls these horizontal knowledge 
structures. Bernstein offers science as an example of a vertical knowledge structure 
and, interestingly, both mathematics and education (and sociology) as examples of 
horizontal knowledge structures. He uses a further distinction that enables us to 
separate mathematics from education: the former has a strong grammar, the latter a 
weak grammar, that is, with a conceptual syntax not capable of generating 
unambiguous empirical descriptions. Both are examples of hierarchical discourses in 
that one needs to learn the language of linear algebra or string theory just as one 
needs to learn the language of radical constructivism or embodied cognition. It will 
be obvious that linear algebra and string theory have much tighter and specific 



RF04 

 

1- 180 PME29 — 2005 

concepts and hierarchies of concepts than radical constructivism or embodied 
cognition. Adler and Davis (forthcoming) point out that a major obstacle in the 
development of accepted knowledge in mathematics for teaching may well be the 
strength of the grammar of the former and the weakness of the latter. Where we can 
specify accepted knowledge in mathematics, knowledge about teaching is always 
disputed. 

As a horizontal knowledge structure, then, it is typical that mathematics education 
knowledge will grow both within discourses and by the insertion of new discourses in 
parallel with existing ones. Thus we can find many examples in the literature of work 
that elaborates the functioning of the process of reflective abstraction, as an instance 
of the development of knowledge within a discourse. But the entry of Vygotsky’s 
work into the field in the mid-1980s (Lerman, 2000) with concepts that differed from 
Piaget’s did not lead to the replacement of Piaget’s theory (as the proposal of the 
existence of oxygen replaced the phlogiston theory). Nor did it lead to the 
incorporation of Piaget’s theory into an expanded theory (as in the case of non-
Euclidean geometries). Indeed it seems absurd to think that either of these would 
occur precisely because we are dealing with a social science, that is, we are in the 
business of interpretation of human behaviour. Whilst all research, including 
scientific research, is a process of interpretation, in the social sciences, such as 
education, there is a double hermeneutic (Giddens, 1976) since the ‘objects’ whose 
behaviour we are interpreting are themselves trying to make sense of the world. 

Education, then, is a social science, not a science. Sociologists of scientific 
knowledge (Kuhn, Latour) might well argue that science is more of a social science 
than most of us imagine, but social sciences certainly grow both by hierarchical 
development but especially by the insertion of new theoretical discourses alongside 
existing ones. Constructivism grows, and its adherents continue to produce novel and 
important work; models and modelling may be new to the field but already there are 
novel and important findings emerging from that orientation. 

I referred above to the incommensurability, in principle, of these parallel discourses. 
Where a constructivist might interpret a classroom transcript in terms of the possible 
knowledge construction of the individual participants, viewing the researcher’s 
account as itself a construction (Steffe & Thompson, 2000), someone using socio-
cultural theory might draw on notions of a zone of proximal development. 
Constructivists might find that describing learning as an induction into mathematics, 
as taking on board concepts that are on the intersubjective plane, incoherent in terms 
of the theory they are using (and a similar description of the reverse can of course be 
given). In this sense, these parallel discourses are incommensurable. 

There is an apparent contradiction between the final sentences of the last two 
paragraphs. If I am claiming that there is important work emerging in different 
discourses of mathematics education research, but I also claim that discourses are 
incommensurable, within which discourse am I positioning myself to write these 
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sentences? Is there a meta-discourse of mathematics education in which we can look 
across these theories? I will make some remarks about this position in the next 
section. 

Theories in Use in Mathematics Education 
First I will make some remarks drawn from a recent research project on the use of 
theories in mathematics education. Briefly we (Tsatsaroni, Lerman & Xu, 2003) 
examined a systematic sample of the research publications of the mathematics 
education research community between 1990 and 2001, using a tool that categorised 
research in many ways. I will only refer here to our findings concerning how 
researchers use theories in their work as published in PME Proceedings. 

Our analysis showed that just over 85% of all papers in the proceedings had an 
orientation towards the empirical, with a further 5% moving from the theoretical to 
the empirical, and this has changed little over the years. A little more than three-
quarters are explicit about the theories they are using in the research reported in the 
article. Again this has not varied across the years. The theories that are used have 
changed, however. We can notice an expanding range of theories being used and an 
increase in the use of social theories, based on the explicit references of authors, in 
some cases by referring to a named authority. These fields or names represent 
theories used, not the frequency of their occurrence in papers. 

Year Theoretical fields other than educational psychology and/or 
mathematics 

1990 Brousseau 

1991 Philosophy of mathematics 

1992 Vygotsky 

1993 Vygotsky 

1994 Brousseau, Chevellard, Poststructuralism 

1995 Embodied cognition, Educational research 

1996 Vygotsky, Situated cognition, Philosophy of mathematics 

1997 Situated cognition, Vygotsky, Philosophy of mathematics 

1998 Situated cognition, Vygotsky, Philosophy of mathematics 

1999 Socio-historical practice 

2000 Chevellard 

2001 Semiotics, Bourdieu, Vygotsky, Philosophy 

Table 1: Theoretical fields 
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We might suggest that there is a connection here with creating identities, making a 
unique space from which to speak in novel ways, but we would need another study to 
substantiate and instantiate this claim. 

We can say that there has been a substantial increase in the number of fields from 
1994, although it is too early to say whether this trend will continue, as 1999 and 
2000 showed a dropping off. What is clear is that the range of intellectual resources, 
including sociology, philosophy, semiotics, anthropology, etc., is very broad. 

In our analysis of how authors have used theories we have looked at whether, after 
the research, they have revisited the theory and modified it, expressed dissatisfaction 
with the theory, or expressed support for the theory as it stands. Alternatively, authors 
may not revisit the theory at all, content to apply it in their study. We have found that 
more than three-quarters fall into this last category, just over 10% revisit and support 
the theory, whilst four percent propose modifications. Two authors in our sample 
ended by opposing theory. This pattern has not changed over the years. Further 
findings can be found in Tsatsaroni, Lerman and Xu (2003). 

The development and application of an analytical tool in a systematic way, paying 
attention to the need to make explicit and open to inspection the ways in which 
decisions on placing articles in one category or another, enables one to make all sorts 
of evidence-based claims. In particular, I would argue that one can observe and 
record development within discourses and the development of new parallel 
discourses because of the adoption of a sociological discourse as a language for 
describing the internal structure of our intellectual field, mathematics education 
research. 

Conclusion 
Finally, I will comment on concerns about the effectiveness of educational research 
in a time of multiple and sometimes competing paradigms, described here as 
discourses. ‘Effectiveness’ is a problematic notion, although one that certainly figures 
highly in current discourses of accountability. It arises because by its nature 
education is a research field with a face towards theory and a face towards practice. 
This contrasts with fields such as psychology in which theories and findings can be 
applied, but practice is not part of the characteristic of research in that field. Research 
in education, in contrast, draws its problems from practice and expects its outcomes 
to have applicability or at least significance in practice. Medicine and computing are 
similar intellectual fields in this respect. 

However, what constitutes knowledge is accepted or rejected by the criteria of the 
social field of mathematics education research. Typically, we might say necessarily, 
research has to take a step away from practice to be able to say something about it. 
Taking the results of research into the classroom calls for a process of 
recontextualisation, a shift from one practice into another in which a selection must 
take place, allowing the play of ideology. To look for a simple criterion for 
acceptable research in terms of ‘effectiveness’ is to enter into a complex set of issues. 
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Indeed ‘effectiveness’ itself presupposes aims and goals for, in our case, mathematics 
education. To ignore the complexity is to lose the possibility of critique and hence I 
am not surprised by the multiplicity of theories in our field and the debates about 
their relative merits, nor do I see it as a hindrance. 
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THE ARTICULATION OF SYMBOL AND MEDIATION IN 
MATHEMATICS EDUCATION 

Luis Moreno Armella, Cinvestav, Mexico. 

I describe some basic elements of a pre-theory of Mathematics Education. Our field 
is at the crossroad of a science, mathematics, and a community of practice, education. 
The interests of this community include the people whose learning takes place at 
schools and the corresponding intellectual offer from the institutional sides. But as 
soon as we enter the space of mathematics, we discover a different discipline from 
the natural sciences. It is the strictly symbolic nature of mathematics that makes a big 
difference and gives to mathematics education, as a research field, its characteristic 
features that distinguishe it from similar endeavours with respect to other scientific 
fields, such as biology for instance. I am not implying, of course, that there is no 
abstraction or concept development involved in those other fields.  

More recently, the presence of computers has introduced a new way of looking at 
symbols and mathematical cognition and has offered the potentiality to re-shape the 
goals of our whole research field. The urgency to take care of teaching and learning 
from the research activities has resulted in practices without corresponding theories. 
Again, I must make clear I am not dismissing the considerable and important results 
this community has produced. I simply want to underline that institutional pressures 
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can result more frequently than desirable, in losing track of research goals. Perhaps 
this is a motive to re-consider the need to enter a more organized level of reflection in 
our community. There is nothing bad in having the chance to look at educational 
phenomena from different viewpoints but it is better if we can generate a synergy 
between those viewpoints that, eventually, has as its output a new and stronger 
theory. Nevertheless the tension between the local and the global also comes to 
existence here. Being an interested observer and modest participant in the field, I 
have come to think that only local explanations are possible in our field. Local 
theories might be the answer to the plethora of explanations we encounter around us. 
But even if local, a mathematics education theory must be developed from 
scaffolding that eventually crystallizes in the theory. In our case, part of that 
scaffolding is constituted by mathematics itself, and by a community of practice, as 
already mentioned.  

What sort of machine is the human brain, that it can give birth to mathematics? – an 
old question that Stanislas Dehaene has aptly posed anew in his book The Number 
Sense (1997). This is the kind of question that, in the long run, must be answered in 
order to improve the understanding of our field. Nevertheless, trying to answer it will 
demand an interdisciplinary and longitudinal effort. At the end of the day, we will 
need to understand why we are able to create symbolic worlds (mathematics, for 
instance) and why our minds are essentially incomplete outside the co-development 
with material and symbolic technologies. Our symbolic and mediated nature comes to 
the front as soon as we try to characterize our intellectual nature. Evolution and 
culture have left its traits in our cognition, in particular, in our capacity to duplicate 
the world at the level of symbols.  

Diverging epistemological perspectives about what constitutes mathematical 
knowledge modulate multiple conceptions of learning and the present theories of 
what constitutes mathematical education as a research discipline. Today, however, 
there is substantial evidence that the encounter between the conscious mind and 
distributed cultural systems has altered human cognition and has changed the tools 
with which we think. The origins of writing and how writing as a technology changed 
cognition is key from this perspective (Ong, 1988). These examples suggest the 
importance of studying the evolution of mathematical systems of representation as a 
vehicle to develop a proper epistemological perspective for mathematics education.  

Human evolution is coextensive with tool development. In a certain sense, human 
evolution has been an artificial process as tools were always designed with the 
explicit purpose of transforming the environment. And so, since about 1.5 millions 
years ago, our ancestor Homo Erectus designed the first stone tools and took profit 
from his/her voluntary memory and gesture capacities (Donald, 2001) to evolve a 
pervasive technology used to consolidate their early social structures. The increasing 
complexity of tools demanded optimal coherence in the use of memory and in the 
transmission, by means of articulate gestures, of the building techniques. We witness 
here what is perhaps the first example of deliberate teaching. Voluntary memory 
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enabled our ancestors to engender a mental template of their tools. Templates lived in 
their minds, resulting from activity, granting an objective existence as abstract 
objects even before they were extracted from the stone. Thus, tool production was 
not only important for plain survival, but also for broadening the mental world of our 
ancestors –introducing a higher level of objectivity. 

The actions of our ancestors were producing a symbolic version of the world: A 
world of intentions and anticipations they could imagine and crystallize in their tools. 
What their tools meant was the same as what they intended to do with them. They 
could refer to their tools to indicate their shared intentions and, after becoming 
familiar with those tools, they were looked as crystallized images of all the activity 
that was embedded in them.  

We suggest that the synchronic analysis of our relationship with technology, no 
matter how deep, hides profound meanings of this relationship that coheres with the 
co-evolution of man and his tools. It is then, unavoidable, to revisit our technological 
past if we want to have an understanding of the present. Let us present a substantial 
example. 

Arithmetic: Ancient Counting Technologies 
Evidence of the construction of one–to–one correspondences between arbitrary 
collections of concrete objects and a model set (a template) can already be found 
between 40000 and 10000 B.C. For instance, hunter-gatherers used bones with marks 
(tallies). In 1937, a wolf bone dated to about 30000 B.C. was found in Moravia 
(Flegg, 1983). This reckoning technique (using a one-to-one correspondence) reflects 
a deeply rooted trait of human cognition. Having a set of stone bits or the marks on a 
bone as a modeling set constitutes, up to our knowledge, the oldest counting 
technique humans have designed. The modeling set plays, in all cases, an 
instrumental role for the whole process. In fact, something is crystallized by marking 
a bone: The intentional activity of finding the size of a set of hunted pieces, for 
instance, or as some authors have argued, the intentional activity of computing time.  

The modeling set of marks, plays a role similar to the role played by a stone tool as 
both mediate an activity, finding the size, and both crystallize that activity. Between 
10000 and 8000, B.C. in Mesopotamia, people used sets of pebbles (clay bits) as 
modeling sets. This technique was inherently limited. If, for instance, we had a 
collection of twenty pebbles as modeling set then, it would be possible to estimate the 
size of collections of twenty or less elements. Nevertheless, to deal with larger 
collections (for instance, of a hundred or more elements), we would need increasingly 
larger models with evident problems of manipulation and maintenance. And so, the 
embodiment of the one-to-one technique in the set of pebbles inhibits the extension 
of it to further realms of experience. It is very plausible that being conscious of these 
difficulties, humans looked for alternative strategies that led them to the brink of a 
new technique: the idea that emerged was to replace the elements of the model set 
with clay pieces of diverse shapes and sizes, whose numerical value were 
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conventional. Each piece compacted the information of a whole former set of simple 
pebbles ––according to its shape and size. The pieces of clay can be seen as 
embodiments of pre-mathematical symbols. Yet, they lacked rules of transformation 
that allowed them to constitute a genuine mathematical system.  

Much later, the consolidation of the urbanization process (about 4000 B.C.) 
demanded, accordingly, more complex symbol systems. In fact, the history of 
complex arithmetic signifiers is almost determined by the occurrence of bullae. These 
clay envelopes appeared around 3500-3200 B.C. The need to record commercial and 
astronomic data led to the creation of symbol systems among which mathematical 
systems seem to be one of the first. The counters that represented different amounts 
and sorts ––according to shape, size, and number–– of commodities were put into a 
bulla which was later sealed. And so, to secure the information contained in a bulla, 
the shapes of the counters were printed on the bulla outer surface. Along with the 
merchandise, producers would send a bulla with the counters inside, describing the 
goods sent. When receiving the shipment, the merchant could verify the integrity of 
it.  

A counter in a bulla represents a contextual number –– for example, the number of 
sheep in a herd; not an abstract number: there is five of something, but never just five. 
The shape of the counter is impressed in the outer surface of the bulla. The mark on 
the surface of the bulla indicates the counter inside. That is, the mark on the surface 
keeps an indexical relation with the counter inside as its referent. And the counter 
inside has a conventional meaning with respect to amounts and commodities. It must 
have been evident, after a while, that counters inside were no longer needed; 
impressing them in the outside of the bulla was enough. That decision altered the 
semiotic status of those external inscriptions. Afterward, instead of impressing the 
counters against the clay, scribes began using sharp styluses that served to draw on 
the clay the shapes of former counters. From this moment on, the symbolic 
expression of numerical quantities acquired an infra-structural support that, at its 
time, led to a new epistemological stage of society. Yet the semiotic contextual 
constraints, made evident by the simultaneous presence of diverse numerical systems, 
was an epistemological barrier for the mathematical evolution of the numerical 
ideographs. Eventually, the collection of numerical (and contextual) systems was 
replaced by one system (Goldstein, La naissance du nombre en Mesopotamie. La 
Recherche, L’Univers des Nombres (hors de serie),1999). That system was the 
sexagesimal system that also incorporated a new symbolic technique: numerical 
value according to position. In other words, it was a positional system. There is still 
an obstacle to have a complete numerical system: the presence of zero that is of 
primordial importance in a positional system to eliminate representational 
ambiguities. For instance, without zero, how can we distinguish between 12 and 102? 
We would still need to look for the help of context. 

Mathematical objects result from a sequence of crystallization processes that, at a 
certain level of evolution, has an ostensible social and cultural dimension. As the 



RF04 

 

PME29 — 2005 1- 187 

levels of reference are hierarchical the crystallization process is a kind of recursive 
process that allows us to state:  

Mathematical symbols co-evolve with their mathematical referents and the induced 
semiotic objectivity makes possible for them to be taken as shared in a community of 
practice.  

In what follows, we should try to articulate some reflections regarding the presence 
of the computational technologies in mathematical thinking. It is interesting to notice 
that even if the new technologies are not yet fully integrated within the mathematical 
universe, their presence will eventually erode the mathematical way of thinking. The 
blending of mathematical symbol and computers has given way to an internal 
mathematical universe that works as the reference fields to the mathematical 
signifiers living in the screens of computers. This takes abstraction a large step 
further. 

Acknowledgement. This writing has benefited from discussions, along the years, with 
my friends Jim Kaput and Steve Hegedus, both from the University of Massachusetts 
at Dartmouth. 
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USING THEORY TO ADVANCE OUR UNDERSTANDINGS OF 
STUDENT COGNITIVE DEVELOPMENT 
John Pegg David Tall 

University of New England (Australia) University of Warwick (UK) 

INTRODUCTION 
Over recent years, various theories have arisen to explain and predict cognitive 
development in mathematics education. Our focus is to raise the debate beyond a 
simple comparison of detail in different theories to move to use the similarities and 
differences among theories to address fundamental questions in learning. In 
particular, a focus of research on fundamental learning cycles provides an empirical 
basis from which important questions concerning the learning of mathematics can 
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and should be addressed.To assist us with this focus we identify two kinds of theory 
of cognitive growth:  

• global theories of long-term growth of the individual, such as the stage-
theory of Piaget (e.g., Piaget & Garcia, 1983). 

• local theories of conceptual growth such as the action-process-object-schema 
theory of Dubinsky (Czarnocha et al., 1999) or the unistructural-
multistructural-relational-extended abstract sequence of SOLO Model 
(Structure of Observed Learning Outcomes, Biggs & Collis, 1982, 1991; Pegg, 
2003). 

Some theories (such as that of Piaget, the SOLO Model, or more broadly, the 
enactive-iconic-symbolic theory of Bruner, 1966) incorporate both aspects. Others, 
such as the embodied theory of Lakoff and Nunez (2000) or the situated learning of 
Lave and Wenger (1990) paint in broader brush-strokes, featuring the underlying 
biological or social structures involved. A range of global longitudinal theories each 
begin with physical interaction with the world and, through the use of language and 
symbols, become increasingly abstract. Table 1 shows four of these theoretical 
developments.  

Piaget Stages van Hiele Levels 
(Hoffer,1981) 

SOLO Modes Bruner 
Modes 

Sensori Motor 
Preoperational 
Concrete Operational 
Formal Operational 

  I  Recognition 
 II  Analysis 
III  Ordering 
IV  Deduction 
 V  Rigour 

Sensori Motor 
Ikonic 
Concrete 
Symbolic 
Formal  
Post-formal 

Enactive 
Iconic 
Symbolic 

Table 1: Global stages of cognitive development 

What stands out from such ‘global’ perspectives is the gradual biological 
development of the individual, growing from dependence on sensory perception 
through physical interaction and on, through the use of language and symbols, to 
increasingly sophisticated modes of thought. SOLO offers a valuable viewpoint as it 
explicitly nests each mode within the next, so that an increasing repertoire of more 
sophisticated modes of operation become available to the learner. At the same time, 
all modes attained remain available to be used as appropriate. As we go on to discuss 
fundamental cycles in conceptual learning, we therefore need to take account of the 
development of modes of thinking available to the individual. 

LOCAL CYCLES 
Our current focus is on ‘local’ theories, formulated within a ‘global’ framework 
whereby the cycle of learning in a specific conceptual area is related to the overall 
cognitive structures available to the individual. A recurring theme identified in these 
theories is a fundamental cycle of growth in the learning of specific concepts, which 
we frame within broader global theories of individual cognitive growth.  
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One formulation is found in SOLO. This framework can be considered under the 
broad descriptor of neo-Piagetian models. It evolved as reaction to observed 
inadequacies in Piaget’s formulations and shares much in common with the ideas of 
such theorists as Case, Fischer, and Halford.  

In particular, SOLO focuses attention upon students’ responses rather than their level 
of thinking or stage of development. It arose, in part, because of the substantial 
décalage problem associated with Piaget’s work when applied to the school learning 
context, and the identification of a consistency in the structure of responses from 
large numbers of students across a variety of learning environments in a number of 
subject and topic areas. While SOLO has its roots in Piaget’s epistomelogical 
tradition, it is based strongly on information-processing theories and the importance 
of working memory capacity. In addition, familiarity with content and context 
invariably plays an influential role in determining the response category.  

At the ‘local’ focus SOLO comprises a recurring cycle of three levels referred to as 
unistructural, multistructural, and relational (a UMR cycle). The application of 
SOLO takes a multiple-cycle form of at least two UMR cycles in each mode where 
the R level response in one cycle evolves to a new U level response in the next cycle. 
This not only provides a basis to explore how basic concepts are acquired, but it also 
provides us with a description of how students react to reality as it presents itself to 
them. The second cycle then offers the type of development that is most evident and a 
major focus of primary and secondary education. 

Another formulation concerns various theories of process-object encapsulation, in 
which processes become interiorised and then conceived as mental concepts, which 
has been variously described as action, process, object (Dubinsky), interiorization, 
condensation, reification (Sfard) or procedure, process, concept (Gray & Tall).  

Theories of ‘process-object encapsulation’ were formulated at the outset to describe a 
sequence of cognitive growth. Each of these theories, founded essentially on the ideas 
of Piaget, saw cognitive growth through actions on existing objects that become 
interiorized into processes and then encapsulated as mental objects.  

Dubinsky described this cycle as part of his APOS theory (action-process-object-
schema), although he later asserted that objects could also be formed by 
encapsulation of schemas as well as encapsulation of processes. Sfard (1991) 
proposed an operational growth through a cycle she termed interiorization-
condensation-reification, which she complemented by a ‘structural’ growth that 
focuses on the properties of the reified objects formed in an operational cycle.  

Gray and Tall (1994) focused more on the role of symbols acting as a pivot, switching 
from a process (such as addition of two numbers, say 3+4) to a concept (the sum 3+4, 
which is 7). The entity formed by a symbol and its pivotal link to process or concept 
they named a procept. They observed that the growth of procepts occurred often (but 
not always) through a sequence that they termed procedure-process-procept. In this 
model a procedure is a sequence of steps carried out by the individual, a process is 
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where a number of procedures (�0) giving the same input-output are regarded as the 
same process, and the symbol shared by both becomes process or concept. 

The various process-object theories have a spectrum of development from process to 
object. The process-object theories of Dubinsky and Sfard were mainly based on 
experiences of students doing more advanced mathematical thinking in late 
secondary school and at university. For this reason their emphasis is on formal 
development rather than on earlier acquired forms of thinking such as associated with 
Piaget’s sensori-motor or pre-operational stages. Note too that Sfard’s first state is 
referred to as an ‘interiorized process’, which is the same name given in Dubinsky’s 
second, however, both see the same main components of the second stage:– that the 
process is seen as a whole without needing to perform the individual steps. 

We now turn to the cycles of development that occur within a range of different 
theories. These have been developed for differing purposes. The SOLO Model, for 
instance, is concerned with assessment of performance through observed learning 
outcomes. Other theories, such as those of Davis (1984), Dubinsky (Czarnocha et al., 
1999), Sfard (1991), and Gray and Tall (1994) are concerned with the sequence in 
which the concepts are constructed by the individual).  

SOLO of Biggs & 
Collis 

Davis APOS of 
Dubinsky 

Gray & Tall 

 
Unistructural 
Multistructural 
Relational 
Unistructural 

 
Procedure (VMS) 
Integrated Process 
Entity 

 
Action 
Process 
Object 
Schema 

[Base Objects] 
Procedure 
Process 
Procept 

Table 2: Local cycles of cognitive development 

As can be seen from table 2, there are strong family resemblances between these 
cycles of development. Note that Davis used the term ‘visually moderated sequence’ 
for a step-by-step procedure. Although a deeper analysis of the work of individual 
authors will reveal discrepancies in detail, there are also insights that arise as a result 
of comparing one theory with another as assembled in table 3.  

SOLO Davis APOS Gray & Tall 
 Base Object(s)  

Unistructural 
 

Multistructural 

 
VMS 
Procedure 
 

Action 
 

 
Procedure 
[Multi-Procedure] 

Relational Process Process Process 
Unistructural 
(Extended 
Abstract) 

Entity Object 
Schema 

Procept 

Table 3: The fundamental cycle of conceptual construction 
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CONCLUSION 
Our purpose in this brief paper is not so much to attempt to produce a unified theory 
incorporating these perspectives. Instead, it is to advocate an approach that seeks to 
understand the meanings implicit in each broad theory and to see where each may 
shed light on the other, leading to theoretical correspondences and dissonances. 

While at first glance there may appear to be irreconcilable differences between the 
theoretical stances (e.g., van Hiele is concerned with underlying thinking skills and 
SOLO with observable behaviours), a closer examination can reveal there is much to 
consider. A synthesis provides a fresh perspective in considering student growth in 
understanding. 

A primary goal of teaching should be to stimulate cognitive development in students. 
Such development as described by these fundamental learning cycles is not 
inevitable. Ways to stimulate growth, to assist with the reorganisation of earlier levels 
need to be explored. Important questions about strategies appropriate for different 
levels or even if it is true that all students pass through all levels in sequence. 
Research into such questions is sparse. Nevertheless, the notion of fundamental 
cycles of learning does provide intriguing potential for research. 
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TRENDS IN THE EVOLUTION OF MODELS & MODELING 
PERSPECTIVES ON MATHEMATICAL LEARNING AND 

PROBLEM SOLVING 
Richard Lesh  Lyn English 

Indiana University (USA) Queensland University of Technology 
(Australia) 

Models and modeling (M&M) research often investigates the nature of 
understandings and abilities that are needed in order for students to be able to use 
what they have (presumably) learned in the classroom in “real life” situations beyond 
school. Nonetheless, M&M perspectives evolved out of research on concept 
development more than research on problem solving; and, rather than being 
preoccupied with the kind of word problems emphasized in textbooks and 
standardized tests, we focus on (simulations of) problem solving “in the wild.” Also, 
we give special attention to the fact that, in a technology-based age of information, 
significant changes are occurring in the kinds of “mathematical thinking” that is 
coming to be needed in the everyday lives of ordinary people in the 21st century – as 
well as in the lives of productive people in future-oriented fields that are heavy users 
of mathematics, science, and technology. 

In modern knowledge economies, systems – ranging from communication systems to 
economic or accounting systems - are among the most important “things” that impact 
the lives of ordinary people. Some of these systems occur naturally, while others are 
created by humans. But, in any case, mathematics is useful for making (or making 
sense of) such systems precisely because mathematics is the study of structure. That 
is, it is the study of systemic properties of structurally interesting systems.  
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In future-oriented fields that range from design sciences to life sciences, industry 
advisors to university programs consistently emphasize that:  

The kind of people we most want to hire are those who are proficient at (a) making sense 
of complex systems, (b) working within teams of diverse specialists, (c) adapting rapidly 
to a variety of rapidly evolving conceptual tools, (d) working on multi-staged projects 
that require planning and collaboration among many levels and types of participants, and 
(e) developing sharable and re-useable conceptual tools that usually need to draw on a 
variety of disciplines – and textbook topic areas.  

Both of the preceding trends shift attention beyond mathematics as computation 
toward mathematics as conceptualization, description, and explanation. But, they 
also raise the following kinds of questions that lie at the heart of M&M research in 
mathematics education. 

• What is the nature of the most important classes of problem-solving situations 
where mathematics, science, and technology are needed for success in real life 
situations beyond school?  

• What mathematical constructs or conceptual systems provide the best 
foundations for success in these situations?  

• What does it mean to “understand” these constructs and conceptual systems?  
• How do these understandings develop?  
• What kinds of experiences facilitate (or retard) development? 
• How can people be identified whose exceptional abilities do not fit the narrow 

and shallow band of abilities emphasized on standardized tests – or even school 
work?  

Related questions are: (a) Why do students who have histories of getting A’s on tests 
and coursework often do not do well beyond school? (b) What is the relationship 
between the learning of “basic skills” and a variety of different kinds of deeper or 
higher-order understandings or abilities? (c) Why do problem solving situations that 
involve collaborators and conceptual tools tend to create as many conceptual 
difficulties as they eliminate? (d) In what ways is “mathematical thinking” becoming 
more multi-media - and more contextualized (in the sense that knowledge and 
abilities are organized around experience as much as around abstractions, and in the 
sense that relevant ways of thinking usually need to draw on ways for thinking that 
seldom fall within the scope of a single discipline or textbook topic area). (e) How 
can instruction and assessment be changed to reflect the fact that, when you 
recognize the importance of a broader range of understandings and abilities, a 
broader range of people often emerge as having exceptional potential? 

M&M perspectives assume that such questions should be investigated through 
research, not simply resolved though political processes - such as those that are 
emphasized when “blue ribbon” panels of experts develop curriculum standards for 
teaching or testing. Furthermore, we believe that such questions are not likely to be 
answered through content-independent investigations about how people learn or how 
people solve problems, and they are only indirectly about the nature (and/or the 
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development) of humans - or the functioning of human brains. This is because they 
are about the nature of mathematical and scientific knowledge, and they are about the 
ways this knowledge is useful in “real life” situations. So, researchers with broad and 
deep expertise in mathematics and science should play significant roles in 
collaborating with experts in the learning and cognitive sciences. 

Theoretical perspectives for M&M research trace their lineage to modern descendents 
of Piaget and Vygotsky - but also (and just as significantly) to American Pragmatists 
such as William James, Charles Sanders Peirce, Oliver Wendell Holmes, George 
Herbert Mead, and John Dewey. And partly for this reason, M&M perspectives 
reflect “blue collar” approaches to research. That is, we focus on the development of 
knowledge (and conceptual tools) to inform “real life” decision-making issues – 
where (a) the criteria for success are not contained within any preconceived theory, 
(b) productive ways of thinking usually need to draw on more than a single theory, 
and (c) useful knowledge usually needs to be expressed in the context of conceptual 
tools that are powerful (for some specific purpose), sharable (with other people), and 
re-useable (beyond the context in which they were developed). Thus, M&M research 
often focuses on model-development rather than proceeding too quickly to theory 
development and hypothesis testing; and, before rushing ahead to try to teach or test 
various mathematical concepts, processes, beliefs, habits of mind, or components of a 
productive problem solving personae, we conduct developmental investigations about 
the nature of what it means to “understand” them.  

One way that mathematics educators have investigated questions about what is 
needed for success beyond school is by observing people “thinking mathematically” 
in everyday situations. Sometimes, such studies compare “experts” with “novices” 
who are working in fields such as engineering, agriculture, medicine, or business 
management - where “mathematical thinking” often is critical for success. Such 
ethnographic investigations often have been exceedingly productive and illuminating. 
Nonetheless, from the perspectives of M&M research, they also tend to have some 
significant shortcomings. For example, we must be skeptical of observations which 
depend heavily on preconceived notions about where to observe (in grocery stores? 
carpentry shops? car dealerships? engineering firms? Internet cafés?), whom to 
observe (street vendors? shoppers? farmers? cooks? engineers? baseball fans?), when 
to observe (when they’re estimating sizes? calculating with numbers? minimizing 
routes? describing, explaining, or predicting the behaviors of complex systems?), and 
what to count as “mathematical thinking” (e.g., planning, monitoring, assessing, 
explaining, justifying steps during multi-step projects, or deciding what information 
to collect about specific decision-making issues). Consequently, in simple 
observational studies, close examinations of underlying assumptions often expose 
unwarranted prejudices about what it means to “think mathematically” - and about 
the nature of “real life” situations in which mathematics is useful.  

A second way to investigate what’s needed for success beyond school is to use multi-
tier design experiments (Lesh, 2002) in which (a) students develop models for 
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making senses of mathematical problem solving situations, (b) teachers develop 
models for creating (and making sense of) students’ modeling activities, and (c) 
researchers develop models for creating (or making sense of) interactions among 
students, teachers, and relevant learning environments. We sometimes refer to such 
studies as evolving expert studies (Lesh, Kelly & Yoon, in press) because the final 
products that are produced tend to represent significant extensions or revisions in the 
thinking of each of the participants who were involved. Such methodologies respect 
the opinions of diverse groups of stake holders whose opinions should be considered. 
On the one hand, nobody is considered to have privileged access to the truth – 
including, in particular, the researchers. All participants (from students to teachers to 
researchers) are considered to be in the model development business; and, similar 
principles are assumed to apply to “scientific inquiry” at all levels. So, everybody’s 
ways of thinking are subjected to examination and possible revision.  
For the preceding kind of three-tiered design experiments, each tier can be thought of 
as a longitudinal development study in a conceptually enriched environment. That is, 
a goal is to go beyond studies of typical development in natural environments to also 
focus on induced development within carefully controlled environments. Finally, 
because the goal of M&M research is to investigate the nature and development of 
constructs or conceptual systems (rather than investigating and making claims 
students per se), we often investigate how understandings evolve in the thinking of 
“problem solvers” who are in fact teams (or other learning communities) rather than 
being isolated individuals. So, we often compare individuals with groups in 
somewhat the same manner that other styles of research might compare experts and 
novices, or gifted students and average ability students. 
Investigations from an M&M perspective have led to the growing realization that, in 
a technology-based age of information, even the everyday lives of ordinary people 
are increasingly impacted by systems that are complex, dynamic, and continually 
adapting; and, this is even more true for people in fields that are heavy users of 
mathematics and technology. Such fields include design sciences such as engineering 
or architecture, social sciences such as economics or business management, or life 
sciences such as new hyphenated fields involving bio-technologies or nano-
technologies. In such fields, many of the systems that are most important to 
understand and explain are dynamic (living), self-organizing, and continually 
adapting.  
M&M research is showing that it is possible for average ability students to develop 
powerful models for describing complex systems that depend on only new uses of 
elementary mathematical concepts that are accessible to middle school students. 
However, when we ask What kind of mathematical understandings and abilities 
should students master? attention should shift beyond asking What kind of 
computations can they execute correctly? to also ask What kind of situations can they 
describe productively? ... This observation is the heart of M&M perspectives on 
learning and problem solving. 
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Traditionally, problem solving in mathematics education has been defined as getting 
from givens to goals when the path is not obvious. But, according to M&M 
perspectives, goal directed activities only become problematic when the "problem 
solver" (which may consist of more than an isolated individual) needs to develop a 
more productive way of thinking about the situation (given, goals, and possible 
solution processes). So, solutions to non-trivial problems tend to involve a series of 
modeling cycles in which current ways of thinking are iteratively expressed, tested, 
and revised; and, each modeling cycle tends to involve somewhat different 
interpretations of givens, goals, and possible solution steps. 

Results from M&M research make it clear that average ability students are indeed 
capable of developing powerful mathematical models and that the constructs and 
conceptual systems that underlie these models often are more sophisticated than 
anything that anybody has tried to teach the relevant students in school.  

However, the most significant conceptual developments tend to occur when students 
are challenged to repeatedly express, test, and revise their own current ways thinking 
- not because they were guided along a narrow conceptual trajectory toward 
(idealized versions of) their teachers ways of thinking (Lesh & Yoon, 2004). That is, 
development looks less like progress along a path; and, it looks more like an inverted 
genetic inheritance tree - where great grandchildren trace their evolution from 
multiple lineages which develop simultaneously and interactively.  

In general, when knowledge develops through modeling processes, the knowledge 
and conceptual tools that develop are instances of situated cognition. Models are 
always molded and shaped by the situations in which they are created or modified; 
and, the understandings that evolve are organized around experience as much as 
around abstractions. Yet, the models and underlying conceptual systems that evolve 
often represent generalizable ways of thinking. That is, they are not simply situation-
specific knowledge which does not transfer. This is because models ( and other 
conceptual tools) are seldom worthwhile to develop unless they are intended to by 
powerful (for a specific purpose in a specific situation), re-useable (in other 
situations), and sharable (with other people). 
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It is a positive sign that an international discussion on theories of mathematics 
education is taking place especially in the wake of TIMMS and PISA. It is laudable 
of PME to take the initiative to closely examine specific geographic trends in 
mathematics education research in comparison with trends that are concurrently 
occurring (or occurred) elsewhere (as reported in English et al., 2002; Schoenfeld, 
1999, 2002). In doing so we can reflect and hypothesize on why certain trends seem 
to re-occur, sometimes invariantly across time and geographic location. Numerous 
reviews about the state of German mathematics didactics are available in German 
(see [1], Hefendehl et al., 2004; Vollrath et al., 2004). However there are no extant 
attempts to trace and analyze the last hundred years of “mathematics didactic” trends 
in Germany in comparison to what is happening internationally. This is our modest 
attempt to fill this void. 

Some preliminary remarks on terminology and history: It has become standard 
practice for researchers writing in English to use the term “Mathematikdidaktik” 
when referring to mathematics education in Germany. However, there is no real 
comprehensive English equivalent for the term "Mathematikdidaktik". Neither 
"didactics" nor "math-education" describes the full flavor and the historical nuances 
associated with this German word. Even the adjective “German” is imprecise since 
educational research approaches in Germany splintered in the aftermath of World 
War II, with different philosophical schools of thought developing in the former East 
(GDR) and the west (FRG) on research priorities for university educators, until the 
reunification which occurred in 1990. Currently the 16 states in Germany reveal a 
rich heterogeneity in the landscape of mathematics teaching, teacher training and 
research methods, which manifests itself to insiders who microscopically examine the 
TIMSS- and PISA-results. However the reasons for this heterogeneity remain a 
mystery to outsiders. Given the page limits we outline in macroscopic terms the 
historical reasons for this heterogeneity. In doing so we do not differentiate explicitly 
between the alignment (or misalignment!) of theories preferred by university 
educators in comparison to practices of mathematics instruction in schools. The 
mutual dependencies between the two is certainly an interesting research question 
which brings into focus the system wide effectiveness (or ineffectiveness) of 
educational research (see for example Burkhardt & Schoenfeld, 2003). 

1. The Pedagogical tradition of mathematics teaching-Mathematics as 
Educational Value: Reflections on the processes of mathematics teaching and 
learning have been a long-standing tradition in Germany. The early proponents of 
these theories of teaching and learning are recognizable names even for current 



RF04 

 

1- 198 PME29 — 2005 

researchers. Chief among these early theorists was Adam Reise “the arithmetician” 
who stressed hand computation as a foundational learning process in mathematics. 
This emphasis is found in the pedagogical classics of the 19th century written by 
Johann Friedrich Herbart (1776-1841), Hugo Gaudig (1860-1923), Georg 
Kerschensteiner (1854-1932) (see Jahnke, 1990; Führer, 1997; Huster, 1981). The 
influence of this approach echoed itself until the 1960’s in the so-called didactics of 
mathematics teaching in elementary schools to serve as a learning pre-requisite for 
mathematics in the secondary schools.  

2. Mathematician-Initiators of traditions in didactics research (20th Century): In 
the early part of the previous century, mathematicians like Felix Klein (1849-1925) 
and Hans Freudenthal (1905-1990) (who was incidentally of German origin) became 
interested in the complexities of teaching and learning processes for mathematics in 
schools. The occasionally invoked words “Erlangen program” and “mathematization” 
are the present day legacy of the contributions of Klein and Freudenthal to 
mathematics education. Klein characterized geometry (and the teaching of it) by 
focussing on the related group of symmetries to investigate mathematical objects left 
invariant under this group. The present day emphasis of using functions (or 
functional thinking) as the conceptual building block for the teaching and learning of 
algebra and geometry, is reminiscent of a pre-existing (100 year old) Meraner 
Program. During this time period one also finds a growing mention in studying the 
psychological development of school children and its relationship to the principles of 
arithmetic (Behnke, 1950). This trend was instrumental in the shaping of German 
mathematics curricula in the 20th century with the goal being to expose students to 
mathematical analysis at the higher levels. The most notable international 
development in this time period was the founding of the ICMI in 1908, presided by 
Felix Klein. One of the founding goals of ICMI was to publish mathematics 
education books, which were accessible to both teachers and their students. We see 
this as one of the first attempts to “elementarize” (or simplify) higher level 
mathematics by basing it on a sound scientific (psychological) foundation. 
Mathematics educators like Lietzmann (1919) claimed that “didactic” principles were 
needed in tandem with content to offer methodological support to teachers. This 
approach mutated over the course of the next 50 years well into the 1970’s. The over-
arching metaphor for mathematics education researchers during this time period was 
to be a gardener, one who maintains a small mathematical garden analogous to 
ongoing research in a particular area of mathematics. The focus of research was on 
analyzing specific content and using this as a basis to elaborate on instructional 
design (Reichel 1995, Steiner, 1982). This approach is no longer in vogue and is 
instrumental in creating a schism between mathematicians and “mathematics-
didakters,” partly analogous to the math wars in the United States.  

3. “Genetic” Mathematics Instruction: Ineffectual Visionary Bridges (1960 – 
1990): The word “genetic” was used to exemplify an approach to mathematics 
instruction to prevent the danger of mathematics taught completely via procedures 



RF04 

 

PME29 — 2005 1- 199 

(Lenné, 1969). Several theorists stressed that mathematics instruction should be 
focussed on the “genetic” or a natural construction of mathematical objects. This can 
be viewed as an earlier form of constructivism. This approach to mathematics 
education did not gather momentum. The word “genetisch” occurs frequently in the 
didactics research literature until the 1990’s. 

4. The New Math (1960 – 1975): Parallel to the new math movement occurring in 
post-Sputnik United States, an analogous reform movement took place in Germany 
(mostly in the West, but partly adopted by the East, see [1]). A superficial inspection 
seems to point to a realization of Klein’s dream of teaching and learning mathematics 
by exposing students to its structure. This reform took on the dynamic of polarizing 
scientists (mathematicians) to work in and with teacher training, the resulting 
outcome being a lasting influence on mathematics instruction during this time period. 
Unlike the United States teachers were able to implement a structural approach to 
mathematics in the classroom. This can be attributed to the fact that during this time 
period there was no social upheaval in Germany, unlike the U.S where the press for 
social reform in the classroom (equity and individualized instruction) interfered with 
this approach to mathematics education. The fact that German “new math” did not 
survive the tide of time indicates that there was difficulty in implementing it 
effectively. 

5. The birth of didactics as a research discipline (1975): While the new 
mathematics movement was subject to a host of criticisms, one positive outcome was 
the founding of the Gesellschaft für Didaktik der Mathematik (German Mathematics 
Didactics Society), which stresses that mathematics didactics was a science whose 
concern was to rest the mathematical thinking and learning on a sound theoretical 
(and empirically verifiable foundation). This was a radical step search for 
mathematics education research in Germany, one that consciously attempted to move 
away from the view of a math educator as a part-time mathematician (recall Klein’s 
garden). Needless to say, we could easily write an entire book if we wanted to spell 
out the ensuing controversy over the definition of this new research discipline in 
Germany (see Bigalke, 1974; Dress, 1974; Freudenthal, 1974; Griesel, 1974, 
Laugwitz, 1974; Leuders, 2003; Otte, 1974; Tietz, 1974 Wittmann, 1974; 1992). 
However, the point to be taken from the founding of this society and a new scientific 
specialty is that the very debate we have undertaken here, that is, to globally define 
theories of mathematics education has in fact many localized manifestations such as 
in Germany.  

6. Mathematical Teaching and Learning- A Socialistic and an Individualistic 
Process (1980 – today): One of the consequences of founding a new discipline of 
science was the creation of new theories to better explain the phenomenon of 
mathematical learning. The progress in cognitive science in tandem with 
interdisciplinary work with social scientists led to the creation of “partial” paradigms 
about how learning occurs. Bauersfeld’s (1988,1995) views of mathematics and 
mathematical learning as a socio-cultural process within which the individual 
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operates can be viewed as one of the major contributions to theories of mathematics 
education.  

7. An Orientation Crisis - The Conundrums posed by new Technology (1975 – 
today): Weigand’s (1995) work poses the rhetorical question as to whether 
mathematics instruction is undergoing yet another crisis. The advent of new 
technologies opened up a new realm of unimagined possibilities for the learner, as 
well as researchable topics for mathematics educators. The field of mathematics 
education in Germany oriented itself to address the issues of teaching and learning 
mathematics with the influx of technology. However the implications of redefining 
mathematics education, particularly the “hows” of mathematics teaching and learning 
in the face of new technology poses the conundrum of the need to continually re-
orient the field, as technology continually evolves (see Noss / Hoyles (1995) for an 
ongoing global discussion).  

8. TIMMS and PISA -The Anti-Climax (1997 – today): The results of TIMMS and 
PISA brought these seven aforementioned “tendencies” to a collision with 
mathematics educators and teachers feeling under-appreciated in the wake of the poor 
results. These assessments also brought mathematicians and politicians back into the 
debate for framing major policies, which would affect the future of mathematics 
education in Germany. Mathematics education is now in the midst of new crisis 
because the results of these assessments painted German educational standing in a 
poor global light. A detailed statistically sieved inspection of the results indicated that 
poor scores could be related to factors other than flaws in the mathematics 
curriculum, and/or its teaching and learning, that is to socioeconomic and cultural 
variables in a changing modern German society. Thus mathematics education in 
Germany would now have to adapt to the forces and trends creating havoc in other 
regions of the globe (see Burton, 2003; Steen, 2001).  

Conclusions  
Epochal viewpoints: The eight major tendencies that we have highlighted in the 100 
years of mathematics education history in Germany reflect trends that have occurred 
internationally. Each epoch is characterized by an underlying metaphor that shaped 
the accepted theories of that time period. Felix Klein’s view of a mathematics 
educator was that of a mathematician-gardener tending to all aspects of a specialized 
domain within mathematics, including its teaching and learning. This shifted to a 
focus on the structure of modern mathematics itself and partly to the teacher as a 
“transmitter” of structural mathematics in the 1960’s during the New Math period. 
This was followed by an epoch where the science of mathematics education and the 
student (finally!) came into focus and brought forth attempts to delineate theories for 
this new science such as Bauersfeld’s socio-cultural theories. New technologies 
shifted the focus of theories to accommodate how learning occurs in the human-
machine interface. Finally TIMMS and PISA brought into focus assessment issues 
along with societal and political variables that are changing conceptions of 
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mathematics education as we speak. In a sense we have come full circle because we 
still haven’t defined what mathematics didactics is. However, in the search through 
history for the answer, we have understood the epochal nuances of this interesting 
term. Perhaps it is time we finally defined it!  
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CONCLUDING POINTS 
The diversity in the perspectives presented in the six contributions parallel 
conundrums recently elicited by Tommy Dreyfus at the 4th European Congress in 
Mathematics Education (Spain, February 2005). In his concluding report about the 
working group on mathematics education theories, Dreyfus stated that although 
theories were a vital aspect of mathematics education, they were much too wide of a 
topic. However the field can take solace from the fact that although contradictions 
exist, there are also connections and degrees of complementarities among theories. 
The coordinators of this particular Forum have reached a similar conclusion. Many of 
the points we make here echo the recommendations of Tommy Dreyfus. Although it 
is impossible to fully integrate theories, it is certainly possible to bring together 
researchers from different theoretical backgrounds to consider a given set of data or 
phenomena and examine the similarities and differences in the ensuing analysis and 
conclusions. The interaction of different theories can also be studied by applying 
them to the same empirical study and examining similarities and differences in 
conclusions. Last but not least, although it is impossible to expect everybody to use 
the mathematics education “language,” a more modest undertaking would be to 
encourage researchers to understand one or more perspectives different from their 
own. This will ensure that the discussion continues as well as creates opportunities 
for researchers to study fruitful interactions of seemingly different theories. We 
consider such work vital to help move the field forward. 
 


