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INTRODUCTION  

In this experiment the resistances to heat flow from liquids to solids is examined. The 
coupling of convective heat transfer across a fluid-solid boundary, followed by conductive heat 
transfer through a solid will be compared for different solids and different fluid flow rates. The 
experimental test system is a simple cylindrical rod (and other simple shapes) with water flowing 
past. The temperature at the center of the rod depends on the rate at which heat is convected from 
the water to the outside of the solid cylinder followed by the heat conduction through the solid 
cylinder. By measuring the temperature at the center of the rod as a function of time it is possible 
to determine the thermal diffusivity of the rod or  the convective heat transfer coefficient or both. 
The procedures to use in these measurements depend on which process dominates the heat 
transfer.  

BACKGROUND  

Thermal conductivity 

The thermal conductivity (k, dimensions of energy/time-length-temperature-interval) of a 
material is the physical quantity that measures the rate at which heat moves through the material 
by conduction. It is a fundamental transport coefficient like viscosity and diffusivity (Bird et al., 
2002).  The defining equation for thermal conductivity is Fourier’s law of heat conduction:  

 
୯౮
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  (1) 

where ݍ௫/ܣ	is the heat flux in the ݔ-direction, and ܶሺݔሻ is the temperature as a function of 
position ݔ.  Good conductors have high thermal conductivities; poor conductors have low 
thermal conductivities. For example, iron has a thermal conductivity of 80 W/m-K, whereas a 
ceramic or glass such as silica will have a thermal conductivity of about 1 W/m-K. Gases have 
thermal conductivities much smaller than solids; for example, carbon dioxide at 300 K and 1 atm 
has a thermal conductivity of 0.0166 W/m-K (Green and Perry, 2007).   Thermal conductivity is 
a material property. 

Heat transfer coefficient 

The heat transfer coefficient (h, dimensions of energy/time-length2-temperature-interval) is a 
measure of the rate at which heat is transferred from a surface into a bulk fluid. The defining 
equation for heat transfer coefficient is Newton’s law of cooling: 

 ቚ௤ೣ
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where ݍ௫/ܣ|௦௨௥௙௔௖௘ is the heat flux at the boundary, ௦ܶ௨௥௙௔௖௘ and ௕ܶ௨௟௞ are the surface and bulk 
phase temperatures, and ݄ is the heat transfer coefficient.  Heat transfer coefficient is not a 
material property; it is a property of a situation, that is, it reflects a particular surface and fluid 
and how they are in contact.  The mechanism for heat transfer from the surface to the fluid may 
be convection (dominated by the flow of the fluid, natural or forced), conduction (due to the 
thermal conductivity of the fluid), or may be due to other mechanisms such as radiation (Bird et 
al., 2002; Geankoplis, 2003). 

As an example of heat transfer from a surface to a bulk fluid, consider an automobile 
radiator: heat is transferred from the hot radiator fluid (antifreeze) to the inside of the radiator 
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wall by a combination of convection and conduction, then conducted through the radiator wall 
and fins, to the outside wall of the radiator, is transferred from the outside wall to the outside air, 
and finally is convected away by the flow of air past the fins.  There are different surface-to-
bulk-fluid heat-transfer coefficients on the antifreeze side and on the air side. The value of h 
depends both on properties of the fluid (e.g., antifreeze vs. air) as well as the system 
hydrodynamics—for example, the purpose of the fan in an automobile is to increase the value of 
h between the fins and the air. 

While h can be calculated in a few special cases (e.g., laminar flow in a tube with uniform 
heat flux through the wall, see Bird et al., 2002), h is usually determined by experiment. For 
many common geometries, correlations have been developed from experimental measurements 
which allow convenient estimation of h, although perhaps with limited accuracy. Correlations are 
generally expressed in terms of dimensionless variables (Reynolds, Nusselt and Prandtl numbers, 
as determined by non-dimensionalization of the governing equations; see Bird et al., 2002) so as 
to allow correlation of the behavior of fluids with a wide variety of physical properties. 

Resistance to heat transfer and Biot number 

Heat exchange between two working fluids is done in a heat exchanger where the two fluids are 
separated by a solid, such as in a shell-and-tube heat exchanger (Geankoplis, 2003). The overall 
heat transfer between the two bulk fluids is a coupling of a series of heat transfer steps. Heat 
transfer from one medium to another almost always involves the convection of heat from a fluid 
to a solid, followed by thermal conduction through the solid, and then heat transfer from the solid 
to another fluid. Each of these heat transfer steps can be associated with a resistance to heat 
transfer, and the overall resistance to heat transfer is the sum of the resistances.  The Biot number 
 .is a ratio of internal to external heat transfer resistances in a particular system ݅ܤ

݅ܤ  ≡ ௛௔

௞
 (3) 

where ݄ is the heat transfer coefficient (characterizes transport from solid surface to bulk), ݇ is 
the thermal conductivity of the solid, and ܽ is a characteristic length of the solid object (in our 
case, the radius of the cylinder). 

Consider the case of heat transfer to a cylinder.  Initially the cylinder is at a uniform temperature.  
Suddenly the cylinder is dropped into a well mixed liquid that is maintained at a constant bulk 
temperature that is higher than the initial cylinder temperature.  If the cylinder has a low thermal 
conductivity, the value of ݅ܤ is high.  As Bi, heat can transfer easily from the fluid to the 
surface of the cylinder, but the overall rate of heat transfer is limited by the slow conduction 
within the cylinder. This situation is usually referred to as being internally limited or internally 
controlled. In this case there will be a significant radial temperature gradient internal to the 
cylinder when the system is not at equilibrium.  

Conversely, if the cylinder has a very high thermal conductivity, then Bi  0; in this case heat 
transfer is facile within the cylinder, and most of the resistance to heat transfer occurs in 
transferring heat from the fluid to the cylinder (governed by the heat transfer coefficient, ݄). This 
situation is usually referred to as being externally limited or externally controlled. In this case the 
radial temperature gradient internal to the cylinder will be negligible, while a significant 
temperature drop will occur across the boundary layer between the fluid and the surface of the 
cylinder.  
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We can measure heat transfer properties of a system ሺ݄ሻ or of a material ሺ݇ሻ by performing the 
cylinder experiments described above.  Appendix D describes five methods that may be used to 
obtain the values from experiments.  The methods are not all applicable or equally accurate in all 
cases (internally controlled versus eternally controlled, for example).  Experimenters need to 
choose wisely from among the available methods. 

 
Experimental guidelines 

Small cylindrical samples of the materials of construction of the test pieces are available for you 
to directly measure density and heat capacity.  

Consider how to maintain the initial condition of the test pieces (room temp) 

Consider how long it takes to regain the initial condition after a test. 

Try to space out the Biot numbers you investigate 

Externally controlled systems (Small Biot numbers): Measurement of h  
 Vary diameter, flow rate 
 Perform replicates 
 Suggestion:  if you block the runs by flow rate (i.e., run four different rods at one flow 

rate, then all four at the next flow rate, etc.) the time between runs on a given rod may be 
sufficient for it to cool completely to room temperature.  

 Once you have values of h for the externally controlled case, use it to evaluate the 
dependence of h on system hydrodynamics, and estimate Bi for all other test pieces 

Internally controlled systems (large Biot numbers): Measurement of h  
 These experiments are more time consuming 
 Estimate time to steady state before coming to lab 
 Pick flow rates that will yield large Biot number, Perform replicates 

Neither externally nor internally controlled systems (Bi≈1) 
 Look for test conditions for this range 
 Perform replicates 
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Appendix A: Heat Transfer Lab Equipment Inventory  

Omegatherm 201:.High temperature high thermal conductivity paste 
Omega Engineering Inc One Omega Drive 
Stamford,CT 06907 
(203) 359-1660  

GE Silicone II Clear RTV Sealant: Wal-Mart- approximately $2.00  

Jeweler's screwdrivers: for repairing thermocouples, 
purchased at Home Depot (approximately $5.00) 
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Appendix B:  Heat Transfer Operating Procedure (CBE346) 

Apparatus Description 

A schematic of the Heat Transfer experimental apparatus is shown in Figure B1. The 
apparatus consists of a large thermostated reservoir containing hot water, which is pumped 
through a smaller vessel (“test reservoir”) that is able to hold test pieces of various shapes and 
compositions.  The test pieces have a dedicated thermocouple embedded along the axis of 
cylindrical symmetry. The hot water flow rate through the test reservoir is controlled by two ball 
valves (the metering valves) and measured using two rotameters in parallel (this design was 
dictated by the available capacity of the rotameters). In the test reservoir, hot water flows 
coaxially with the test shape, which is mounted such that it is centered in the cylindrical test 
reservoir.  The test reservoir has an inner diameter of 95.0 mm.  A bypass path diverts water 
from the pump back to the main reservoir to modulate water flow rate and to prevent pump dead 
heading during sample loading. 

Cylindrical test pieces are available in two rod diameters (either 1 or 2” outer diameter) and 

 
 

Figure B1:  Equipment diagram for Heat Transfer experiment in CBE346 CBE Laboratory 
 



CBE346: Heat Transfer 12 March 2013 Page 9 of 28  

are made of a variety of materials (Table B1).  There are also test pieces that are not simple 
cylinders. 

 

Standard Operating Procedure: 
 

1.  Prepare the system for operation.  Seal the empty test reservoir with a cap clamped 
securely, and verify that the two metering valves (ball valves with yellow grips) are 
closed. You will not need to touch any other valves for your experiments. Make sure the 
water level in the water bath is at least an inch above the liquid-level safety shut-off 
switch (a white cylindrical device mounted inside the tank for safety measures—the 
power of the apparatus will automatically shut off if the liquid level falls below the 
switch).   

 
 
Figure B2:  Screen shot whenPreheat.dsb is first started up.  

Table B1:  Materials of Construction of Test Pieces 

1. Copper 
2. Aluminum 
3. Polymethylmethacrylate (PMMA) 
4. Stainless Steel 
5. Machinable Ceramic 
6. Phenolic Resin-Cloth Composite 
7. Aluminum over Plexiglas 
8. Plexiglas over Aluminum 
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2. Heat the water in the main reservoir.  To start up the heating system, push the Main 
Power START button located in the middle of the control panel, and the red power 
indicator will light up. The fault light should also blink once. The fault light indicate 
either a low water level in the reservoir or a high reservoir tem condition (above 75oC ). 
If the fault light is on at any time during the experiment and neither of these conditions is 
met, notify your AI immediately. Switch on the Heater Enable and Stirrer for the main 
reservoir. Do not turn on the pump at this time. To preheat your bath, open up 
PREHEAT.DSB in directory C:\ChE_CL. Click on the Start button. The program will 
prompt you to set bath temperature. Set the heater bath temperature controller to the 
desired set point (for example 60oC). It takes about 40 minutes for the bath temperature to 
completely stabilize. (You may wish to come to the lab a half an hour before the lab start 
time to preheat the water; see the Safety Manual for the procedure for unattended 
operation of laboratory equipment).  Due to evaporative losses, check the water level 
often throughout the day and top off the water as need. 

3. Preheat the test reservoir and flow system. When the bath temperature is at 
temperature or getting close to the set point (say within 2-3 degrees), turn on the pump. 
Adjust the metering valves to set the flow rate to 1 gal/min in order to preheat the test 
reservoir. Never leave a running pump unattended.  Allow the test reservoir and flow 
system to come to thermodynamic equilibrium at the test temperature. It is up to you to 
validate that you have chosen this thermal soak time wisely. 

4. Set up the data acquisition program.  Once the temperature of the reservoirs is fully 
stabilized, quit PREHEAT.DSB and open the data acquisition program HOTROD.DSB. 
This program logs the data from the centerline temperature of the test piece when it is 
installed. You will be prompted for a bath temperature and for a file location where data 
will be saved. Data will be acquired at a rate fixed by the program (1 Hz). It is strongly 
suggested that you store the data on a flash drive, or FTP it to your PU account at the end 
of the lab period. The data acquisition rate in HOTROD.DSB is set at 1 Hz, which is 
adequate for most runs. If you wish to take more frequent data points for test pieces that 
exhibit fast equilibration there is another program called “HOTROD 10Hz” in the same 
folder with a data acquisition rate of 10 Hz. 

5. Install the test piece and begin a run.  Plug the thermocouple of the test piece to be 
examined into the control board. Wait until you get a good steady temperature reading for 
the cylinder on the HOTROD program prior to beginning your run. To begin a run, one 
partner shuts any open metering valves and then plunges the sample cylinder into the test 
reservoir and seals the top while the other partner records the starting time reading in the 
notebook. It is important to insert the test piece into the reservoir quickly so that the 
initial condition in the modeling analysis is accurately reflected in the experimental 
process. Warning: inserting the test piece too rapidly may result in slight overflow of 
water; take appropriate safety precaution to avoid slip hazards and electrical hazards. 
Make sure the cylinder is tightly clamped in place before directing water flow through the 
test reservoir with the metering valves.  

6. Record the flow rate using the scales on the rotameters. The rotameter should be read 
at the top of the “cap” on the float 
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7. End a run.  Take data until the dimensionless test piece temperature is within 2% of the 
bath temperature, or reaches steady state (the test piece and bath temperatures are the 
same). Because of small differences in the thermocouples and the amplifier circuits the 
temperature measurements are only accurate to +/- 1ºC. When you are satisfied that you 
have taken sufficient data for your purposes, terminate the data logging by pressing the 
STOP button.  

8. Remove the test piece.  At the end of the run, close the metering valves and turn off the 
pump before removing the test piece. Clean up all water spills. 

Shut-Down Procedure: 

1. Close the metering valves and turn off the pump and remove any test piece that is 
present.  

2. Close the test reservoir with the cap and turn off the system.  

3. Before you leave, check the water level in the tank to make sure there is adequate water 
to cover the automatic shut-off switch.  

4. Turn off the Stirrer and Heater Enable. 

5. Power off the system with the Main Power STOP button. 

6. Log off of the computer. 

Emergency Shut-Down Procedure: 

1. Power off the system with the Main Power STOP button.  This will cut power to the 
pump, heaters, and thermocouples.  
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Appendix C: Exact Solution to Transient Radial Heat Conduction in 
a Cylinder  
Author:  Ilhan Aksay and CBE Core Lab Faculty 2012; edits in 2013 by Faith Morrison 

The governing equation for heat conduction in an infinitely-long solid cylinder, as shown 
schematically in Figure C1, is the microscopic energy balance (ݒ ൌ 0,  symmetry, no axial ߠ
conduction; Carslaw and Jaeger, 1946; Bird et al., 2002):  

 

















r

T
r

rrt

T 
 (C1)  

where T is the temperature in the cylinder at any radial distance r and time t, and ߙ is the thermal 
diffusivity, ߙ ൌ  ௣ is heat capacity ofܥ is density, and ߩ ,௣, where ݇ is thermal conductivityܥߩ/݇
the rod.  To obtain a solution to this partial differential equation we need an initial condition and 
two boundary conditions. 

Consider the solution to this equation corresponding to an idealized experiment. The rod is 
initially at uniform temperature Ti, and it is submerged at time t = 0 into an infinite constant-
temperature bath that is perfectly mixed. The initial condition is thus written as:  

 T = Ti for 0  r  a at t = 0 (C2)  

The first boundary condition for our idealized experiment is Newton’s Law of Cooling, namely 
that the heat flux across the fluid-solid interface is proportional to the temperature difference 
between the temperature of the solid surface and the bulk fluid temperature ଴ܶ:   

Boundary condition 1:             o

T
k h T T at r a

r


   


 (C3)  

where ܽ is the radius of the cylinder, and this equation serves as the definition of the heat transfer 
coefficient h.  The second boundary condition is symmetry at the centerline of the cylinder:  

rTemp.0

a

T o
 

Figure C1:  Schematic of heat conduction in a long solid cylinder of radius a. Unsteady-state 
radial temperature profile is sketched at left. Fluid surrounding the cylinder is assumed to be at 
a uniform bulk temperature T0. 
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Boundary condition 2: 0          0
T

at r
r


 


 (C4)  

The partial differential equation (C1) can be solved by the method of separation of variables. 
This is a classic problem, so the complete solution can be found in a number of references on 
heat transfer (e.g., Carslaw and Jaeger, 1946; Arpaci, 1966). The solution is an infinite series 
given in dimensionless form as:  

  

Θሺܴ, ߬ሻ ൌ෍݁ିఉ೔
మఛ ௜ሻߚ଴ሺܴܬ݅ܤ2
ሼߚ௜

ଶ ൅ ௜ሻߚ଴ሺܬଶሽ݅ܤ

ஶ

௜ୀଵ

 

  (C5) 

where: Θ =  
 

o

i o

T T

T T




, dimensionless temperature at any R and  

  = t/a2, Fourier number, a dimensionless time (characteristic time for this  
conduction problem is a2/) 

  = k/cp, thermal diffusivity, dimensions of length2/time 
  = mass density of rod material, dimensions of mass/length3 
 cp = heat capacity of rod material, dimensions of energy/mass-temperature 
 R = r/a, dimensionless radial distance 

J0 and J1 are Bessel functions of the first kind (of order zero and one, respectively) 
Bi = ha/k, Biot number for this problem; Biot number is the ratio of the heat-transfer resistances 
inside of and at the surface of a body 
i are the eigenvalues to this heat transfer problem, and are roots to the characteristic equation: 

 ݂ሺߚሻ ൌ ሻߚଵሺܬߚ െ ሻߚ଴ሺܬ	݅ܤ ൌ 0 (C6)  

Bessel functions may be thought of simply as tabulated functions, just like trigonometric 
functions. A good discussion of Bessel functions may be found in Hildebrand (1976). Bessel 
functions of the first kind (and integral order) typically arise in problems having cylindrical 
symmetry, as is the case here. Qualitatively, Bessel functions resemble sine or cosines functions 
multiplied by a decaying exponential. Tables of J0(x) and J1(x) may be found in the literature 
(Abramowitz and Stegun, 1964) or values may be obtained in MS Excel with the function 
௡ܬ ൌ BESSELJሺx, nሻ.   

To visualize the roots of equation C6, we plot the function ݂ሺߚሻ and note where the function 
crosses the x-axis.  For Bi=0, the characteristic equation is shown in Figure C2.  The roots of 
equation C6 may be calculated by numerically solving the equation ݂ሺߚሻ ൌ 0 for the various 
 .and these are also tabulated in the literature; the first six roots are given in Table C1	௜,ߚ

We can plot the solution to the cylinder heat transfer model equation (equation C5) using 
computer software (Excel, Matlab, Mathematica, for example).  The result is Θሺܴ, ߬ሻ in 
dimensionless form or ܶሺݎ,   .ሻ in dimensional form and is a complex three-dimensional functionݐ
The material response to the proposed experiments fall into two categories: a response that 
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exhibits internal resistance (internally controlled); and a response that exhibits no internal 
resistance (externally controlled). 

When the heat transfer exhibits internal resistance (high Biot number), this means that the 
thermal conductivity of the rod is sufficiently low (relative to ݄) that temperature varies within 
the rod (Figure C3a) and the wall temperature is always equal to the bulk fluid temperature.  If 
thermal conductivity is high, however (low Biot number), the temperature equilibrates rapidly 
within the rod and everywhere in the rod the temperature is equal to the wall temperature (Figure 
C3b) and the wall temperature varies with time depending on the heat transfer coefficient ݄.  At 
intermediate Biot number, the behavior exhibits sensitivity to both internal and external 
resistances and the temperature varies within the rod and at the wall (Figure C4). 

When analyzing ܶሺ0,  ሻ data to obtain ݄, we can always fit the complete model to the data andݐ
obtain a best fit for ݄; this is unnecessarily complex, however.   Approximations to the exact 
solution that are appropriate to our experiments are described in Appendix D.   

 

 

 

 
Figure C2:  The characteristic equation ݂ሺߚሻ for the eigenvalues of the problem of heat conduction 
from a rod with Newton’s law of cooling boundary conditions (Bi=0).  The roots of the equation 
are where it crosses the x-axis; these roots correspond to the first row in Table C1. 

‐6.0

‐4.0

‐2.0

0.0

2.0

4.0

6.0

0 10 20 30 40 50

Biot=0

ߚ

݂
ሺ ߚ
ሻ
ൌ
ߚ
ܬ 1
ሺ ߚ
ሻ
െ
ܤ
ܬ	݅
0
ሺߚ
ሻ 



CBE346: Heat Transfer 12 March 2013 Page 15 of 28  

 

 

  

Table C1:  The first six roots of ߚ௜ܬଵሺߙሻ െ ௜ሻߚ଴ሺܬ݅ܤ ൌ 0 as tabulated in the literature (Carslaw 
and Jaeger, 1946).  Note that ߙ௡ in this table corresponds to ߚ௜ in this document and  
 .݅ܤ ,corresponds to the Biot number	ܥ
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a) 

 
b) 

 
 
Figure C3:  If the heat transfer to a rod is internally controlled (top, a, ݅ܤ ൌ 1000), the 
temperature varies within the rod; for this case the wall temperature ሺݎ/ܽ ൌ 1ሻ is equal to 
the bulk temperature of the surrounding fluid.  If the heat transfer is externally controlled 
ሺ݅ܤ ൌ 0.001ሻ, the temperature is uniform within the rod and the wall temperature varies 
with time as heat moves between the fluid and the rod.  All points shown were calculated 
from the exact solution (Equation C5). 
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Figure C4:  When the Biot number is neither high nor low ሺ݅ܤ ൌ 1.0 shown), both the 
temperature profile shape and the wall temperature vary with time.  All points shown were 
calculated from the exact solution (Equation C5). 
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Appendix D:  Five Analysis Methods to Determine Heat Transfer 
Coefficient from Transient Data on a Cylinder Suddenly Immersed 
in a Fluid 

Method 1: Long-Time Behavior 

 (Faith Morrison, 2013; includes some text from Ilhan Aksay, 2012) 

The solution to the heat-transfer problem that is represented by the laboratory experiments is 
given in Appendix C.  In the experimental apparatus, the temperature is measured at the rod 
centerline (R = 0), so the PDE solution (infinite sum) simplifies to:  

 

Θሺ0, ߬ሻ ൌ ሺ߬ሻߠ ൌ ∑ ݁ିఉ೔
మఛ ଶ஻௜

൛ఉ೔
మା஻௜మൟ௃బሺఉ೔ሻ

ஶ
௜ୀଵ , (D1)  

    1 0 0i i iJ BiJ     (D2)  

where ߠሺ߬)  refers to the centerline temperature. There are an infinite number of roots, i, to 
equation D2, each corresponding to one term in the infinite series. All the roots are positive and 
increase with an approximate spacing of . A tabulation of the first six roots to equation (D2) as 
a function of the Biot number, Bi, is given in Appendix C (Table C1 ) (from Carslaw and Jaeger, 
1946). 

We can use Excel (or similarly capable software) to plot the solution ߠሺ߬ሻ; the first five 
terms in the series are plotted in Figure D1 as a function of Fourier number ߬.  The first term is 
positive and is by far the largest term; the terms alternate in sign.  As shown in Figure D1, for 
Fourier number ݋ܨ ൌ  .ଶ greater than 0.2, the leading order term dominatesܽ/ݐߙ

If we discard all terms higher than i = 1 and take the logarithm of both sides of equation 
(D1), we obtain:  

       2 2 2
1 1 12

ln ln 2 ln ln o

t
Bi Bi J

a

          
 

 (D3)  

This is the equation of a straight line for ln vs. time with slope 2 2
1 /S a   , and intercept I 

equal to the quantity contained between { }.  The slope is a function of Biot number (through ߚଵ) 
and thermal diffusivity ߙ; the intercept is only a function of Biot number.  One can envision the 
following procedure for the determination of h:  

1) Produce the flow we are modeling (rapid immersion of a cylinder in a well mixed fluid) and 
measure cylinder centerline temperature vs. time (to obtain  (t)), taking data out to long time 
݋ܨ ൐ 0.2ሻ, where ln vs. time is a straight line and equation D3 holds. 

2) Fit the experimental data to equation D3 to obtain the slope S. 

3) If ߙ ൌ  ଵ.  From tables or a correlation (see Figure D2) obtain theߚ ௣ is known, obtainܥߩ/݇
Biot number ݅ܤ ൌ ݄ܽ/݇ from ߚଵ and from Bi calculate the heat transfer coefficient.   
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Uncertainty in the experimental starting conditions introduces a large amount of error into a 
determination of the intercept I of equation D3.  If the intercept could be accurately measured, 
we could determine both Bi and ߙ from the data. 

 

 
  

 
 

Figure D1:  The contribution of the higher-order terms increases with Biot number, but their 
significance decreases with Fourier number, ݋ܨ ൌ  ଶ (scaled time).  For Fourier numberܽ/ݐߙ
greater than 0.2 we need not consider the higher order terms.  All points shown were calculated 
from the exact solution (Equation C5). 
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The slope ܵሺ݅ܤ,  ሻ, which measures the overall rate of heat transfer to the rod center, isߙ

governed predominantly by which process (conduction within the rod or convection in the fluid 
to the rod surface) is limiting. That is, if the system is externally controlled, then the slope 
predominantly reflects h and should not depend strongly on k; conversely, if the system is 
internally controlled, the slope is predominantly sensitive to k and not h.  

 

References: 

Faith Morrison, “Empirical fit of first eigenvalue of characteristic equation for heat transfer 
to a rod as a function of Biot number,” CBE346 Chemical Engineering Laboratory Handout for 
Heat Transfer, 11 March 2013, Princeton University, NJ; unpublished. 

 

 

 

 

 

 

 

  

 
Figure D2:  We can numerically solve the characteristic equation (Equation C6) for ߚଵ as a function 
of Biot number as was done to produce the published data in Table C1.  With the data for ߚଵሺ݅ܤሻ in 
hand, we can empirically fit an arbitrary function to the data to make it easier to use the ߚଵሺ݅ܤሻ data.  
Morrison (2013) performed such a fit, which is shown above. 
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Method 2: Asymptotic Expressions (Good for low and high Bi) 

(I. Aksay and prior CBE346 faculty, 2012) 

External control 

Consider first the case of external control (Bi  0). An inspection of the table of 1 values 
(Appendix C) reveals that, in this limit, 1 approaches zero as well. Examination of the Bessel 
function values (Table D1) reveals the following limiting behavior for J0(1) and J1(1) as 1  
0:  

 J0(1)  1 - (1/2)2 (D4)  

 J1(1)  1/2
 (D5)  

Therefore, from the characteristic equation (C6):  

 Bi = 1J1(1)/J0(1)  1
2/2 (D6)  

or:  

  1 = (2Bi) (D7)  

It then follows that the intercept approaches zero as Bi  0, so there is a large relative 
uncertainty in the intercept, and its value is unlikely to be significant. The slope S, however, can 
be determined accurately, and is given by:  

 2 2
1 /S a    (D8)  

so, if  is known (e.g., from independent experiments reported in the literature), a good value of 
Bi (and hence h) can be obtained (from equation D7) in this limit from:  

 2 / 2Bi Sa    (D9)  

Any error in the values for  and cp will propagate into the absolute values of h so calculated. 
However, if we are generally looking for changes in h (with flowrate, cylinder size, etc.), a 
systematic error of a few percent is not of concern.  Using equation D9 we can find ‘h’ even 
without knowing ‘k’. 

Internal control 

For the other extreme, internal control (Bi >>1), by inspection of the table of 1 it is evident 
that at large Bi:  
 1  2.4048(1- Bi-1) (D10)  
 
The limiting value, approximately 2.4048 (denoted as A below for convenience), is also the first 
root of J0 (i.e., J0(A) = 0). Taking the large Bi limit, the slope S becomes:  
 
 2 2/S A a   (D11)  
or:  
  = -Sa2/A2  (D12)  
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so,  can be obtained from the slope directly, although no information on h is obtained. In this 
case, the intercept is not small; however, it approaches a finite limit as Bi increases. By 
inspection of the table of J0 in Table D1, the local slope dJ0(x)/dx in the vicinity of x = A is 
approximately 0.520. Therefore, for Bi  , from equation (15):  
 
 J0(1)  J0(A(1-Bi-1))  0.520A/Bi (D13)  
 
 ln(1

2 + Bi2)  2ln(Bi) (D14)  
and the intercept I then becomes: 
 
 I  ln(2/(0.520*2.4048))  0.470 (D15)  
 
All the information in h is thus tied up in how much the intercept I deviates from this limiting 
value of 0.47. When Bi is large, the extrapolation from the linear region of ln to time zero is so 
long (in time) that it can introduce a substantial error in the intercept (relative to the difference 
between the real I and the limiting value of I), thus making an accurate determination of h 
difficult. If h is known from other sources (e.g., measurements under identical conditions but 
with rods made from material such that the heat transfer is externally controlled), then it is 
possible to refine the estimate of  by calculating Bi, then calculating 1 from equation (D10), 
then substituting this value (which will be slightly less than 2.4048) into equation D12).  

 
All these approximations are, of course, asymptotically valid (exact only for Bi = 0 and ). 

If we consider a 10% departure from the exact result to be the limit of validity of these 
approximations, then the Bi  0 limit holds for Bi < 0.4; the extreme high Bi limit (1 = 2.4048) 
holds for Bi > 20; and the high Bi limit (equation ( D10)) holds for Bi > 4. One should always 
check for self-consistency when using an asymptotic expression, i.e. one should check that the 
values of h and k which are obtained place the results in the appropriate regime of Bi.  

 

Intermediate control 

For 0.4 < Bi < 4, there is no valid limiting approximation, and the full solution needs to be 
considered. There are two possibilities involving the asymptotic approach:  

1) use the values of S and I, solving for both h and k;  
2) if either h or k is known, use only the value of S to solve for the other (h or k).  

To do either of these, simply use the tables provided (Table C1 and Table D1)  and use an 
interpolation method.  
 
To choose among the various methods we need to consider the uncertainty associated with the 
asymptotic approach. 
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Table D1:  Bessel functions of orders 0, 1, 2; from Abramowitz and Stegun (1964).  The same 
values may be generated with Excel’s function BESSELJ(x,n). 
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Method 3: Heisler Chart  

(Faith A. Morrison, 2013) 

A traditional approach to one-dimensional heat conduction is to use the Heisler charts 
(Heisler, 1947).  These plots (see Figure D2, which was taken from Geankoplis, 2003) were 
created using a one-term truncation of the exact solution (see Appendix C).  Heisler charts are 
only applicable for Fourier number ݋ܨ ൌ  is the thermal ߙ ଶgreater than 0.2.  The parameterܽ/ݐߙ
diffusivity and ܽ is the characteristic lengthscale for conduction (the cylinder radius).   

Data from the lab may be re-cast and plotted on the same type of axes as used in the Heisler 
chart.  The value of ݉ ൌ ଵݔ݄/݇ ൌ ݇/݄ܽ is deduced by comparing the data with the chart: the ݉ 
of the experiment is that associated with the line that most closely matches the measurements 
(note that ݉ is not the slope of the line; it is the inverse Biot number, ݉ ൌ  Once ݉ is  .(.݅ܤ/1
known, ݄ may be deduced. 

 

 

 

  

 
 

Figure D2:  Heisler chart for determining temperature at the center of a long cylinder for 
unsteady-state heat conduction (Heisler, 1947); ݔଵ is the cylinder radius, and thus the abscissa is 
the Fourier number.  Reproduced from Geankoplis (2003). 
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Method 4: Use general computer software to plot the solution to the governing 
equation 

Laboratory group members who are sufficiently proficient in Excel, Mathematica, or 
Matlab, may choose to use these programs to fit the exact solution to the data directly.  Comsol 
Multiphysics may also be used to solve the problem numerically. 
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Appendix E:  Material Data 
Suggested values of , cp, and k for Al, Cu, stainless steel, and PMMA are given in Table 

E1, with sources.  Be aware that the Al and Cu rods may not necessarily be the pure element—
that is, they may be alloyed with a minor amount of another metal to improve material properties 
(usually hardness). Moreover, “stainless steel” is actually a whole class of materials, basically 
steel (iron plus carbon) alloyed with minor quantities of Ni and Cr (and perhaps other elements 
as well). The exact compositions of all these metal rods are unknown, at least to the instructor. 
Alloying (at low levels of the alloying element) generally has only a small effect (a few percent 
at most) on  and cp, but it can have a much larger effect on k; see, for example, the tables in 
Holman Appendix A-2. 

The “ceramic” is some type of machinable ceramic, meaning that it is an unfired 
(hydrated) aluminosilicate. The “resin” rod is a laminate of cloth and a thermosetting resin, 
probably phenol-formaldehyde (like Formica). Values of , cp and k for materials with similar 
compositions are given in Table E2. 

These values should be helpful to you in analyzing your data, and in estimating what flow 
rate-cylinder diameter combinations to use so as to place Bi within a certain range.  

 

Table E1: Physical Properties of Selected Materials.a  

Material  (kg/m3) cp (kJ/kg-K) k (W/m-K) Comments and Source 
Al 2707 0.896 204 pure Al 

(Holman, p.535) 
Cu 8954 0.3831 386 pure Cu 

(Holman, p.535) 
type 316 
stainless 

steel 

 
7865 

 
0.46 

 
16 

type 316 has 16-18% Cr; 10-14% Ni; 
2-3% Mo; 1% Si; and 2% Mn 

(Liley, p. 3-262; Holman, p. 536) 
PMMA 1190 

1150b 
1.255c 
1.42d 
1.72e 

0.193f 
0.250e 

 
(Wunderlich, p.V-79) 

avalues at 20oC unless otherwise noted 
bat 105oC 
cat 0oC 
dat 25oC 
eat 100oC 
faverage over 0-50oC  
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Table E2:  Material properties for two composite test pieces. 
 

Material  (kg/m3) cp (kJ/kg-K) k (W/m-K) Comments and Source 
“resin” 1000 1.38 0.15 values are for hardboard, which is a 

composite of phenol-formaldehyde or 
urea-melamine resin with sawdust 

(Liley, p.3-263) 
“ceramic” 2600b 0.96b 1.00b values are for Missouri firebrick, 

which is a fired (dehydrated) 
aluminosilicate (Holman, p.538) 

 
avalues at 20oC unless otherwise noted 
bat 200oC  
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Appendix F:  Convective  Heat Transfer Correlations 
(I. Aksay and prior CBE346 faculty, 2012) 

Some forced-convection heat transfer relationships which you may find useful (taken from 
Holman (1981)) are given below. Note that the relevant thermal conductivity is that of the 
convected fluid, denoted for clarity by kf:   Geankoplis (2003) also has correlations for ܰݑ. 

Laminar flow in a smooth tube of diameter d, constant wall temperature: 

 Nud = hd/kf = 48/11 Holman 5-106 (21)  

where Nud is the Nusselt number.  

 

Turbulent flow in a smooth tube of diameter d, constant wall heat flux:  

 Nud = 0.0395Red
3/4Pr1/3 Holman 5-115a (22)  

where Re is the Reynolds number and Pr is the Prandtl number. This equation was developed 
from the analogy between heat transfer and fluid friction, using an empirical expression for the 
friction factor developed from data up to Re  200,000.  

Turbulent flow in a smooth tube of diameter d, constant wall temperature:  

 Nud = 0.023Red
0.8Prn Holman 6-4 (23)  

Here n = 0.4 if the fluid is being heated and it is equal to 0.3 if the fluid is being cooled.  

This is an empirical relation developed directly from heat transfer measurements. Measurements 
show that this equation can correlate the data to 25% for 5000 < Re < 500,000 and 0.6 < Pr < 
100.  

 

Since your flow geometry is not that of a tube, it is clear that these correlations are not going to 
be directly (quantitatively) applicable. However you should study these correlations for 
suggestions as to how your own data would best be examined.  

 


