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Abstract 
After the publication of Hydrodynamics by Daniel Bernoulli in 1738, there was a fierce competition 
for priority with his father, Johann Bernoulli, and controversies with Jean le Rond D’Alembert, in 
which Leonard Euler seemed to have tacitly accepted the role of presiding over the disputes. These 
disputes were aroused by the almost simultaneous publications of Hydraulics by J. Bernoulli in 
1743 and of Traité de l’équilibre et du mouvement des fluides by D’Alembert in 1744. It would be 
shown that despite the fact that the Bernoullis and D’Alembert used their own principles and ap-
proaches to the fluid mechanics problem of discharge, they essentially reached the same end. None-
theless, it was Euler who brought the fluid mechanics problem of discharge to a new and definitive 
level with two publications. In these publications, for the first time, the pressure force and the 
friction force appeared explicitly in the formulations. However, the friction force was built under 
the wrong assumption that, as for the case of solid friction, the fluid friction force was proportion-
al to the pressure. Finally, Lagrange’s memoir on the theory of fluid motion of 1781 is presented as 
a sequel to these first theoretical constructions. 
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1. Introduction 
Since Newton (1642-1727) in the middle of the 17th century, fluid mechanics emerged as science as part of 
mechanics, whereas since antiquity and until the middle of the 18th century, hydraulics was mainly an activity 
of practitioners, and as such, could not be considered as a science in the modern sense. It was associated with an 
activity concerned with the motion of water, an art of channeling, raising and handling it for the different re-
quirements of daily life. By the middle of the 18th century, mathematicians or geometers, as they were often 
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called at the time, gave the name hydrodynamics to the science of internal and external fluid motion in general, 
and reserved the name hydraulics for applied activities related to the motions of water. It was possible to say that 
at that time hydraulics was concerned with the practical and hydrodynamics with the theoretical aspects of the 
same subject. 

The term hydrostatics, which today is reserved for the study of liquids at rest, was then often also associated 
with hydraulics, up to the point that Daniel Bernoulli (1700-1782) gave the following title to the 12th chapter of 
his 1738 Hydrodynamics book (Bernoulli, 1968a) “Which Shows the Statics of Moving Fluids, Which I Call Hy-
draulico-Statics”. This book is in fact mainly concerned with the problem of water discharge from reservoirs 
through conduits, which can be considered as a typical hydraulic subject. This nomenclature was adopted by 
Johann Bernoulli (1667-1748), which entertained the same subject of the discharge in his 1743 Hydraulics book 
(Bernoulli, 1968b). Since this book was in direct competition with that of his son D. Bernoulli, he had, of course, 
to give to it a different title, but revealing that he was treating essentially the same subject, however, using his 
own nomenclature and symbology based on his own principles and points of view. 

Nowadays, fluid mechanics problems can be classified in internal and external flows, being the former, re-
lated to formulations that allow the calculation of flow parameters such as flow-rate and pressure in conduits and 
vessels, and the latter, the calculation of pressure forces that arise in bodies immersed in fluids. Calero (2008) 
called them “the problem of discharge”1 and “the problem of resistance”, respectively, and this seemed to be a 
convenient historical divide for the purpose of the present work of revisiting the theoretical developments re-
lated to the problem of discharge, in the second half of the 18th century. 

The problem of discharge was also dealt with by Jean le Rond D’Alembert (1717-1783) in his book of 1744 
(D’Alembert, 1744), although this author was more famous for having dealt with the problem of resistance in his 
book of 1752 (D’Alembert, 1752), which was concerned to the forces that external flows exerted on bodies im-
mersed in fluids, and traced the origin of the famous D’Alembert paradox. 

The developments then made were chosen because it was during that time that the first analytical approaches 
(theoretical constructions) to the problem of discharge were to appear, proposed by the aforementioned authors, 
namely the Bernoullis and D’Alembert, and also by Leonard Euler (1707-1783), in his 1754 paper (Euler, 1754). 
According to Truesdell (1955: p. XLV), this work may also contain the first solution of a theoretical design 
problem in engineering (hydraulics), as we shall see later on in the present work. 

As we know, discharge problems can be solved nowadays by invoking the fluid mechanics equations of con-
tinuity, momentum and energy. Although the equivalent of the equation of continuity was longer known even at 
that time, the concept of mechanical energy and its conservation was not. By the end of the 17th century and the 
beginning of the 18th century, the conservation of vis viva (“living force” 2mv , akin to kinetic energy) and 
conservation of momentum mv  were mechanical principles under debate and not unanimously accepted by the 
savants of the time. Therefore, those involved in such undertaking who do not embrace such principles, have to 
find their own substitutes to undergird a Theory and to struggle in their approaches, which make most of the de-
velopments to be presented here rather hard to follow by the modern reader. 

In the 17th century, body collisions were the main pattern of development of mathematical physics. Perhaps 
the most prominent author in this area was Huygens (1629-1695) who in 1669 submitted to the Royal Society a 
paper summarizing without proof rules of motion in the impact of bodies, which was printed in both the Philo-
sophical Transactions and in the Journal de Sçavans (letter of March 18) of the same year (Huygens, 1669). 
Both the papers were excerpted from a work largely complete by 1656 but not published until 1703 after Huy-
gens death, De Motu Corporum ex Percussione (Huygens, 1929). In these summaries, Huygens formulated sev-
en rules for bodies whose sizes were to be estimated by their weights, which behaved as did elastic bodies. The 
conservation of momentum mv  appears as rule 5, and the conservation of 2mv  appears as rule 6. In asserting 
this rule, Huygens did not apply it beyond the relative motion of bodies. It was Leibniz’s contribution to interp-
ret this quantity as a measure of an “absolute”, existing in the universe as a measure of “force” (differing from 
Newton’s idea of force), which started the so-called vis viva controversy with a publication by Leibniz (1646- 
1716) on the subject in 1686 (Iltis, 1971). 

In the posthumous work, De Motu Corporum ex Percussione, Huygens had developed a more detailed theory 
of percussion, in which thirteen propositions were developed. In Proposition IV, Huygens shows that the relative 
velocities of the bodies before and after collision are the same; in Proposition VI, he refutes Descartes’ conser-

 

 

1This nomenclature comes from the fact that one of the goals in problems of this type is the calculation of the flow velocity in conduits, 
which allows the determination of the volume of flow per unit of time—the flow-rate—, or the discharge. 



S. R. Bistafa 
 

 
174 

vation of quantity of motion m v . In Proposition VIII, Huygens uses the 2mv  principle later known as living 
force relating the heights of fall to the velocities acquire, and by introducing the concept of a common center of 
gravity that cannot be raised, he shows that “…. When two bodies of which the velocities are inversely propor-
tional to their sizes meet from opposite sides, each will rebound with the same velocity with which it approached”. 
The principle of the living force of a body and its relation to that body’s distance of fall were used by Leibniz in 
the demonstrations which initiated the controversy. 

Huygens also used the conservation of the living forces in his derivation of the law of the compound-pendulum 
in the Horologium Oscillatorium (Huygens, 1673), where he showed in Proposition IV that “…. If a pendulum 
composed of several weights and released from rest were to traverse some part of its complete oscillation, and 
then its individual weights were imagined, under release from the common constraint, to convert their acquired 
speeds upward and to ascend as far as they can, when this has occurred, the center of gravity composed of all of 
them will have returned to the same height that it had before the oscillation began”. 

In Proposition V, Huygens states the law of the compound-pendulum: “….Given a pendulum composed of 
any number of weights, if the individual weights are multiplied by the squares of their distances from the axis of 
oscillation, and the sum of the products is divided by the product of the sum of the weights times the distance of 
the center of gravity of all of them from the same axis of oscillation, the result is the length of a simple pendulum 
isochronous with the composite pendulum, or the distance between the axis and the center of oscillation of the 
composite pendulum itself”. Darrigol (2005: pp. 4-15) saw a pervasiveness of the compound-pendulum analogy 
in the works of the Bernoullis and D’Alembert, and this would be pointed out in due course on the detailed dis-
cussions of the developments of these authors. 

2. First Theoretical Constructions 
All that was available as a principle for fluids in motion in vessels by the middle of the 18th century was Torri-
celli’s law, which can be considered the first and the simplest problem of discharge. This law, derived by Torri-
celli in 1644 (Torricelli, 1644), allows the determination of the jet velocity through an orifice, made at the wall 
of a vessel containing water at a known level. It was established from experimental observations by Torricelli, to 
which he applied Galileo’s universal law on free-falling bodies, and because of that, it can be considered as a 
theoretical construction. 

The more elaborated discharge problem with a pipe connected to a water reservoir was treated by D. Bernoul-
li in 1738 (Bernoulli, 1968a: pp. 291-296), which resulted in the relationship between velocity and pressure, 
known as the Bernoulli law. 

Later on, in 1743, J. Bernoulli (Bernoulli, 1968b: pp. 391-401) considered the more general problem of non- 
stationary flows through pipes of varying cross-sections2, a problem also considered by D’Alembert in 1744. As 
a matter of fact, the non-stationary flow formulation was proposed by D. Bernoulli as well, as we shall see later 
on in this paper. 

In 1754, Euler (1754) presented the complete theory of a one-cylinder pump to deliver water through a piping 
system to an elevated reservoir, with a revolutionary and simple formulation. He complements his contribution 
to the discharge problem with a publication3, read in 1751, in which he presents a first attempt at a theory of the 
friction of fluids in piping systems (Euler, 1761). 

These works can be considered the main core of the first theoretical constructions to the problem of discharge, 
and will be revisited by considering the principles upon which the formulations were derived, the applications 
envisaged by these authors, followed by a discussion of these developments from the knowledge that we have 
today on the subject. 

2.1. Torricelli’s Law 
In 1644, Evangelista Torricelli (1608-1647) published the book Opera Geometrica (Torricelli, 1644), divided 
essentially into three sections: the first De sphaera et solidis sphaeralibus; the second containing De motu gra-
vium naturaliter descendentium et projectorum (text dedicated to Galileo) and the third section on De dimen-
sione parabolae. In De motu projectorum, Torricelli dedicates a chapter to the motion of water (Torricelli, 1644: 

 

 

2There are controversies about dates raised by J. Bernoulli, who claims having developed his theory as earlier as 1732. In fact, Hydraulics by 
J. Bernoulli was actually published in 1743, but it was pre-dated to 1732. For an account on the disputes between Daniel Bernoulli and Jo-
hann Bernoulli, see the preface by Hunter Rouse on Hydrodynamics (Bernoulli, 1968a) & Hydraulics (Bernoulli, 1968b). 
3According to the records in ‘The Euler Archive’ http://eulerarchive.maa.org/, a treatise with the title Tentamen theoriae de frictione solido-
rum (!) was read to the Berlin Academy on December 2, 1751, and it was presented to the St. Petersburg Academy on June 17, 1754. 
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pp. 191-203). This chapter was considered so important that Ernst Mach proclaimed Torricelli the founder of 
hydrodynamics (Mach, 1919: p. 402). In this chapter, Torricelli’s goal was to determine the velocity of efflux of 
a jet of water, issuing from a small hole in a container. By experiment it was noted that when the jet is directed 
upward, it reaches a height less than the liquid level in the container (see Figure 1). However, he assumed that if 
there was no resistance to the movement, the jet would reach the same height. Starting from this hypothesis, 
equivalent to the principle of conservation of mechanical energy, he deduced what is known today as the Torri-
celli’s law: ‘The speed of a jet at a point is equal to efflux of a single drop of liquid would have if it could fall 
freely in the vacuum from the liquid level above the orifice’. Torricelli also showed that if the hole is made in 
the wall of a container, the fluid jet will have a parabolic shape. He then closes the paragraph with interesting 
observations of the flow breaking into droplets and the effects of air resistance. 

Torricelli expressed the square root of the height law using geometrical constructions and mathematically 
precise words, adhering to the standards of the day (it remained for others to re-express the law in algebraic 
terms). Referring to the water exiting from lateral orifices in a tank and based on Figure 2, he states that the re-
lation of the quantity of water coming out of equal apertures are under the square root of the ratio of the sublimi- 

ties4, or of their heights. That is: 
discharge from .
discharge from 

C CE AC
D DF AD
∝ =  This result can be translated to: 

 

 
Figure 1. Torricelli’s schematics of an upward jet issuing from an orifice in a 
horizontal pipe connected to the bottom of a container (a reproduction from 
Torricelli’s De Motv Aqvarvm).                                             

 

 
Figure 2. Torricelli’s geometric association of the parabola with the water 
exiting from lateral orifices in different heights in a tank (a reproduction from 
Torricelli’s De Motv Aqvarvm).                                             

 

 

4Sublimity (Lat. sublimitas, Ital. sublimità), is a parameter introduced by Galileo in the Dialogues, being the height from where a heavy body 
would have to fall (free falling or on an inclined plane) to reach at the end of its descent the said velocity. With this parameter, Galileo was 
able to complete geometrize the kinematics of free falling bodies. 
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v h∝ ,                                          (1) 

where v is the velocity of the water exiting the orifice and h is the water height above the orifice5. 
As was common in those days, mathematical expressions involving physical quantities were not written out 

explicitly, being the deductions, as we saw above, often based on Euclidean geometrical reasoning, in which 
proportions and equivalent lengths were related to physical parameters. Because of that, no concern would arise 
for the adoption of a system of units consistent with the physical quantities being addressed. This is the case of 
the law proposed by Torricelli, in which the quantity 2 g (where g is the gravity), once included under the square 
root sign, transforms this law into its present day form: 

2v gh= .                                          (2) 

According to Darrigol (2005: p. 5), the concept of dimensional quantities would emerge only at the turn of the 
nineteenth century, and found its first systematic formulation in Fourier’s theory of heat. 

2.2. Proofs, Disproofs and the Demonstrations of Torricelli’s Law by Reason 
As show by Calero (2008: Part II, Chapter 6) and Blay (2007), Torricelli’s law was a subject that occupied the 
minds of many figures before and after Torricelli. Before Torricelli, Blay shows that father Mersenne (1588- 
1648) had stated Torricelli’s law in the Harmonie universelle (Paris, 1636), and concludes that, no later than 
1643, not only father Mersenne but also Decartes (Blay, 2007: pp. 26-30), the first more a experimenter, the 
other more a theoretician, had obtained the same law proclaimed by Torricelli in 1644. 

Torricelli’s law implies two hypotheses: that the velocity is proportional to the square root of the height, and 
that this velocity is the same that a heavy body acquires by falling from a height equal to that from the 
free-surface of the water in the vessel to the orifice. Blay shows that father Mersenne could have demonstrated 
the first hypothesis of Torricelli’s law from experimental results (Blay, 2007: pp. 18-19). To this end, he repro-
duces in his book a table containing the experimental results of father Mersenne (see Figure 3), in which the 
first column lists the eight equal parts of a vessel, and the second column lists the time in seconds that it takes to 
empty each part by an orifice at the bottom of the vessel. Here, by assuming that each exit velocity iv  through 
the orifice is proportional to the respective height ih  of the water in the vessel, raised to the power n, that is 

n
i iv h∝ , it can be shown that the relation between the time iT∆  to empty the thi -part to its respective height  

ih  is given by 1n
i

i

h
T

∝
∆

; or 1 n
i ih T −∝ ∆ . Figure 3 shows also a curve fitting to Mersenne’s experimental  

data that gives 0.53n = ; that is, 0.53
i iv h∝ , which is a result that is in very good agreement with Torricelli´s 

law. 

 
Figure 3. A curve fitting (to the right) of Mersenne’s experimental data of 
1636 [table to the left (Blay, 2007: p. 18)] revealing that the time that it takes 
to empty each equal part of a vessel is inversely proportional to approximate-
ly the square-root of its respective height.                                  

 

 

5Torricelli states that his mentor Benedetto Castelli (1578-1643), knew that the quatities of water issuing from equal apertures are propor-
tional to the square root of their respective heights. However, according to Poleni (Raccolta D’Autori Italiani Che Trattano Del Moto 
Dell’Acque (Edizione Quarta), Tomo VI, 1823. POLENI, Giovanni; Del Moto Misto Dell’Aqua), Torricelli had said that he was taught by 
Castelli that the quantities of water are in direct proportion to their heights, and therefore found appropriate to correct this in his book on the 
motion of waters. 
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It should be noted that the results of father Mersenne only give support to the exit velocity being under the 
square-root of the height, and not that this velocity would be capable of rising the jet back to this height; that is, 
he is not stating Toricelli’s law in “full”. 

Although, as we saw above, it is rather easy to experimentally verify that the velocity is under the square-root 
of the height, the exit velocity being equal to the velocity acquired by a heavy body falling from this height is 
not, because it is strongly dependent on the particular experimental conditions. Therefore, as Calero proposes 
(Calero, 2008: p. 275), the jet velocity would be more adequately described by 2 ev gh= , where eh  is an 
equivalent height ( )eh h< , which is a height that depends on the particular apparatus being used and the 
adopted experimental procedures. As Torricelli himself had implied, eh h=  is a value to be expected only un-
der ‘ideal’ conditions, and hence, a theoretical value. 

By revisiting the experimental data of Mariotte (1686), Guglielmini (1690), and Poleni (1717, 1718), Calero 
(2008: pp. 275-283) confirmed from the experimental data of these authors, the proportionality between the ve-
locity and the square root of the height, but not that this velocity would be equal to the fall of a heavy body from 
this height. Further analysis of these experimental data, allowed Calero to conclude that the jet velocity was that 
corresponding to equivalents heights of: 0.5eh h= , from Mariotte’s experimental results; 0.26eh h= , from 
Guglielmini’s results; and from Poleni’s results: 0.73eh h=  (spouts), 0.33eh h=  (orifice), 0.81eh h=  (frus- 
tum-conical spout)—different apparatuses given different equivalent heights. 

Torricelli’s law is not easy to accept because since it is based in the law of free-falling bodies, which predicts 
that a heavy body accelerates as it falls down, why the water does not accelerate inside the vessel as it moves 
from the upper surface to the orifice in the bottom of the vessel? As Blay shows (Blay, 2007: p. 124), this was 
exactly the proposal Varignon in 1695 “…. to examine what happens inside a conduit while the waters flows; it 
appears to me that the water being contiguous inside all its length, such that above it descends as fast as below; 
and by what consequence it does not had none acceleration inside the conduit”. After an attempt by Varignon to 
justify Torricelli’s law by the weight of the water column above the orifice, by 1703, he considers that the proof 
of Torricelli’s law “by reason alone” would be jointly from the axiom to which “the causes are always propor-
tional to theirs effects”, from the principles of mechanics and from the general laws of motion. He thus attri-
buted to mechanics a demonstrative perfection identical to that attributed to the Euclidean geometry (Blay, 2007: 
p. 130). As we shall see later on, the deduction of Torricelli’s law “by reason alone” had to wait the works of D. 
Bernoulli in 1738 and J. Bernoulli in 1743. 

We cannot close this section without considering the works of Newton on the subject. As shown by Blay 
(2007: pp. 142-150), in the first edition of the Principia (1687), Newton had demonstrated that the outlet veloc-
ity of the fluid was equal to the fall of a heavy body from half the depth—a counterdemonstration of Torriceli’s 
law by reason. The half-depth rule had been experimentally confirmed by the experiments of Edmund Halley, 
between 1691 and 1692, at the Royal Society, by Roger Cotes, the editor of the 2nd edition of the Principia 
(1713), who in 1710, had also experimentally confirmed the conclusion of Mariotte in favor of the half-depth 
rule. However, by 1710/1711, Newton had reconciled with Torricelli’s law with the notion of vena-contracta, 
which arises from the composition of the vertical motion with the horizontal motion of the water as it flows 
through the orifice, in the famous cataract flow-model. The vena-contracta is a result of the convergence of the 
flow stream-lines after the orifice, accompany by a constriction of the flow area, which accelerates the flow 
from 1v  through the orifice to 2v  through the vena-contracta, in a ratio of about 1 to 2 , as experimentally 
found by Newton. However, he had not abondoned the half-depth rule; that is the velocity through the orifice  

continued to be given by 1 2
2
hv g=  to Newton. This velocity would be related to that at the vena-contract by 

2 12 2v v gh= ⋅ = ; that is, Torricelli’s law is recovered at the vena-contractra thanks to the catarat flow-mod- 
el—a rather artificial approach, mainly because the half-depth rule is a flaw. This new demonstration of Torri-
celli’s law appeared in the 2nd (1713) and 3rd (1726) editions of the Principia. 

2.3. Bernoulli’s Law 
In 1738, Daniel Bernoulli published the book Hydrodynamics (Bernoulli, 1968a), in thirteenth chapters. In the 
12th chapter, with the title: Which shows the Statics of Moving-Fluids, which I call Hydraulico-Statics, D. Ber-
noulli proposes: 

“§1. …. To go beyond the common rules of hydrostatics by considering the statics of fluids which are moved 
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within vessels such as of water flowing through conduits to leaping fountains…, those who have spoken about 
the pressure of water flowing through aqueducts and the strength required of the latter for sustain that pressure 
did not hand down any laws other than those for extended fluids with no motion…” 

“§2. It is singular in this hydraulico-statics that the pressure of water cannot be defined unless the motion has 
been known correctly…” 

Firstly, from these quotations, it is clear, as it was already mentioned before, that there is a preoccupation in 
giving a proper denomination for the new area of study which he is venturing at, and secondly, that he is essen-
tially seeking a relation between pressure and velocity for flows within conduits. As we will see, the relation 
thus derived is nothing more than Bernoulli’s law. 

The pervasiveness of the compound-pendulum analogy is clearly seen in the work of D. Bernoulli, who 
adapted Huygens’s Proposition IV of the Horologium Oscillatorium (Huygens, 1673) to the problem of dis-
charge in the following form: 

“… If any number of weights begin to be moved in some way by the force of their own gravity, the velocities of 
the individual weights everywhere will be such that the products gathered from the squares of these velocities 
multiplied by their appropriate masses are proportional to the vertical height through which the center of grav-
ity of the composite bodies descends multiplied by the masses of all of them…” 

The equality between potential ascent and actual descent, a nomenclature also used by Huygens in Part 4 of 
the Horologium Oscillatorium (Huygens, 1673), was defined by D. Bernoulli as follows: 

“… The potential ascent of a System, the individual portions of which are moved at any velocity whatever, in-
dicates the vertical height to which the center of gravity of that System reaches if the individual particles, their 
motion having been turned upward with the proper velocity, are understood to ascend as far as they can; and 
actual descent denotes the vertical height through which the center of gravity descends after the individual par-
ticles have come to rest…”; which is recognized as the modern equivalent to the principle of conservation of 
mechanical energy. 

This principle, together with the principle of conservation of the living forces were applied by D. Bernoulli in 
various developments contained in Hydrodynamics. For instance, in §8 of the Third Chapter, by applying the 
equality between potential ascent and actual descent, D. Bernoulli develops a general expression for the motion 
of a homogeneous fluid flowing out of a given vessel through a given orifice in the form  

dd d dnn nnz xN z zy x yx x
mm y

− + = − . He then points out that when the lower surface is an orifice of area nn   

which is very small, then z x= , showing that z, which is a height that produces the velocity of the water flow-
ing out through the orifice, is equal to the height x of the uppermost surface. This can be considered a genuine 
proof of Torricelli’s law by reason, which as we saw earlier, was a much sought development since the appear-
ance of this law in 1644. 

However, what is considered the most important development in Hydrodynamics appears in §5 of the Twelfth 
Chapter in the attempt to relate pressure and velocity, from where Bernoulli’s law supposedly had emerged. 

The basis for this development is Figure 4, where D. Bernoulli assumes that the pressure at the horizontal 
pipe wall is proportional to the acceleration that the water in the pipe would receive if the entire obstacle to mo-
tion would vanish, so that the water might be ejected instantly into the air; “… The pressure of the water against 
the walls of the pipe ED is sought…” 

Considering that the pipe ED is suddenly broken at cd. The “particle” ac, infinitely small and about to flow is 
indicated by dx . At the same instant, an equal volume element enters the pipe at E while the volume acbd is 
ejected. The mass of this volume element is indicated by dn x , which acquires the velocity v and the living 
force 2dnv x  (here, n is the pipe area in relation to the orifice o area which is assumed equal to 1). To this living 
force, D. Bernoulli adds the living force increment which the element Eb receives while the volume element ad 
flows out, namely, ( )22 d dncv v ncv =  , where c Ec= . This sum is due to the actual descent of the volume  

element dn x  through the height BE or a. It follows then that 2d 2 d dnv x ncv v na x+ = , or 
2d

d 2
v v a v

x c
−

= . 

Since to D. Bernoulli, pressure is proportional to acceleration, the increment in velocity dv  divided by the 

differential time dx
v

; that is, the acceleration d
d
v v

x
 experienced by the element ad, is proportional to the pres- 
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Figure 4. The discharge from a tank through a horizontal pipe, from which 
Bernoulli’s law was derived (a reproduction from Hydrodynamics).                       

 

sure at the pipe wall, hence the pressure is proportional to 
2

2
a v

c
−

. 

At the instant when the pipe is broken, v a n=  (to estimate the velocity in the pipe D. Bernoulli uses Tor 

ricelli’s law for the velocity in the orifice a ) or 2v a n= ; therefore the pressure is proportional to 
2

2

1
2
n a

cn
−

. 

From this expression it follows that for the closed orifice ( )n = ∞  the pressure would be proportional to 
2
a
c

. 

However, in this case, the pressure conforms to the total height a (which is equivalent to assume 2 1c = ); thus 

in general, for any value of n, the pressure is found proportional to 
2

2

1n a
n
−

. Hence, for the case when the ori 

fice is closed ( )n = ∞ , the pressure is proportional to a, and for the case when the wall FD is missing 
( )1n = , the pressure is zero. 

Since 
2

2

1n a
n
−

 can be written as 
2

aa
n

− , which is equal to 2a v− , in §9 D. Bernoulli concludes: 

“… It is not difficult to anticipate the laws of this hydraulico-statics if both the shape of the vessel and the ve-
locity of the water flowing through the conduits are assumed at will as anything whatever. Indeed, the pressure 
of the water will always be a b− , where by a is understood the height due to the velocity at which water will 
flow out of an abrupt conduit and vessel kept constant full after infinite time, and by b the height due to the ve-
locity at which the water actually flows through [the pipe]. It is clearly amazing that this very simple rule, which 
nature affects, could remain unknown up to this time…” 

The result: 

2pressure aa
n

= − ,                                   (3) 

became known as Bernoulli’s law. Surprisingly, Equation (3) does not resemble the usual form in which this 
equation is written. 

Two comments can be made related to D. Bernoulli’s approach to the problem of discharge. 
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1) When the conservation of mechanical energy is applied to D. Bernoulli’s flow model (with the kinetic 

energy written as 21
2

mv ) it furnishes 
2 2

d d d
2 2
v vn x nc gna xρ ρ ρ

 
+ = 

 
. This expression written in terms of 

physical parameters, the gravity g and the density ρ , is now dimensionally homogeneous. The factor 1/2 is 
associated with the kinetic energy, which does not appear when the energy of the moving masses is written in 

terms of the living force. This expression can be re-written as 
2d 2

d 2
v v ga v

x c
−

= . This last result shows that the 

application of the principle of conservation of mechanical energy to D. Bernoulli’s flow model leads to the same 
equation obtained by D. Bernoulli when 1 2g = . 

2) As Truesdell (1955: p. XXVIII) pointed out: “… all appearances to the contrary, 
2d 2

d 2
v v ga v

x c
−

=  is not a 

differential equation, and the temptation to integrate it must be resisted…” 
This is because v is a known constant and independent of x and, dx  and dv  are not differentials, but rather  

finite increments. Therefore, 
2d 2

d 2
v v ga v

x c
−

=  is an algebraic formula, in which, according to D. Bernoulli, 

pressure is proportional to d
d
v v

x
, or else 

22
2

ga vp
c
−

∝ . This proportionality is not dimensionally homogene-

ous,  
because the first term has units of pressure, whereas the second term has units of acceleration. However, this 
proportionality can be turned out dimensionally homogeneous by dividing the pressure p in the first term, by the 
mass of the water per unit of cross sectional area of the pipe cρ . Moreover, this inclusion is also physically 
plausible because the pressure force is the only force responsible for accelerating the water mass cρ  within the 
horizontal pipe after it is broken. This allows rewriting the proportionality as an equality, resulting in the fol-
lowing equation: 

21
2

p v gaρ ρ+ = ,                                   (4) 

which is a more familiar expression for Bernoulli’s law. It is seen that by a rather tortuous path and with some 
fixes, Bernoulli’s equation as it is known in the present-day, could be recovered from the Bernoulli’s rather pre-
carious flow model for the problem of discharge. 

A final note to D. Bernoulli’s is that he develops the relation between pressure and velocity in terms of the 
pressure against the wall of the pipe, which lead historians of fluid mechanics to believe that he did not have the 
concept of internal pressure of the fluid. This supposition must be seen with care because in §5 of the twelfth 
chapter of Hydrodynamics, D. Bernoulli considers that if the base FD were missing (see Figure 4): 

“… The water in the pipe tends to a great motion, but its pressure is impeded by the added base FD. By this 
pressure and repressure the water is compressed, which very compression is confined by the walls of the pipe, 
and hence these sustain a like pressure…” 

From these remarks, it seems that Bernoulli indeed conceive that the water itself was responsible for transmit-
ting the pressure to the pipe walls, and hence he might have realized that this transmission would occur inter-
nally, from one ‘drop’ of water to the other. Moreover, D. Bernoulli was known for using the piezometer (liquid 
column manometer) consisting in sticking glass tubes in small openings in pipes or in human arteries (D. Ber-
noulli was trained as a doctor) to measure the wall pressure. Since he was considered a great experimenter, one 
can imagine he sticking the tube on the core of the flow, on purpose driven by curiosity or even by accident, and 
realizing that the elevation of the liquid (water or blood) in the tube, no matter in the core or in the walls (of the 
pipe or the arteries), was the same. It seems that there are other reasons for not reasoning in terms of internal 
pressure in his developments. 

1) Perhaps he was more concerned with practical aspects related to the strength of the walls of aqueducts to 
sustain pressure (§1, chapter twelfth of Hydrodynamics): 

“… those who have spoken about the pressure of water flowing through aqueducts and the strength required 
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of the latter for sustaining that pressure did not hand down any laws other than those for extended fluids with no 
motion. …”. 

2) As we saw, the way that he equates his flow model of discharge, is different from the one used nowadays, 
in which the balance of forces is applied on an infinitesimal fluid element between any two cross-sections of the 
conduit, in which the internal pressure forces acting on these cross-sections would have to be taken into account. 
However, this approach had to wait Euler’s developments in 1754. So, it is here conjectured that he had no need 
to consider the internal pressure of the fluid in his developments, rather than not having its concept. 

The publication of Hydrodynamics was an immediate success, which have raised envious criticisms of two 
great geometers of that time: his own father Johann Bernoulli, and D’Alembert. The works of both contenders 
will now be revisited. 

2.4. Johann Bernoulli’s Approach 
In 1743, the book Hydraulics (Bernoulli, 1968b) authored by Johann Bernoulli appeared in print, pre-dated 1732. 
A lot of controversy was involved with this publication. For a more detailed account on the dispute on dates etc., 
see the preface by Hunter Rouse to the translated version of Hydrodynamics & Hydraulics, from which this ex-
cerpt was taken, regarding the claims on priority: 

“… There is no record that Johann had written anything whatever on the subject of hydraulics until some 
months after his son’s treatise was off the press, when he stated in a letter to Euler that he was preparing a ma-
nuscript on hydraulics which was already well along. Nevertheless, he indicated in the first part that it was 
written in 1732, a full year ahead of the Russian version of his son’s! The second part followed the first to St. 
Petersburg in 1740, and the two were eventually published, as Johann had requested, in the Memoirs of the Im-
perial Academy of Science for 1737 and 1738 (which were printed, respectively, in 1744 and 1747). They ac-
tually first appeared in his collected works, published in 1743…” 

In a letter from Euler to J. Bernoulli about the book, which was quoted in part in the foreword to the Swiss 
version of Hydraulics (with J. Bernoulli calling Euler ‘Most Sagacious Mathematician’), allows one to grasp, in 
Euler’s view, the contribution of J. Bernoulli over that of D. Bernoulli: 

“… Your very renowned Son, who, however, defined pressure in a rather indirect manner only so far as the 
entire motion has already acquired the steady state, nevertheless, after the genuine method had been brought to 
light, You at once determined most accurately the pressure in every state of water, because of which Your most 
praiseworthy discovery I congratulate You from my heart…” 

In 1743, D. Bernoulli wrote a letter to Euler, from which this quote is taken: 
“… Your Excellence says that I have determined the pressure of fluids flowing through a conduit in no other 

way than for the steady state, whereas I show immediately on page 259 toward the bottom that generally the  

pressure is 
2

2
a v

c
− ; and what, on the other hand, has my father done in this important new field?...” 

We shall now see what J. Bernoulli has done for the problem of discharge. 
In the Preface of Hydraulics, J. Bernoulli claimed that the science of hydraulics has not been subjected to the 

laws of Mechanics, being the developments so far based on experience and theories that were uncertain, and 
with insufficient foundation, particularly the conservation of living forces, which he recognized as certainly true, 
and proven by him himself, but that still were not accepted by all philosophers. For him, the true foundations of 
hydraulics ought to be the principles of mechanics, namely Newton’s principles. 

From Newton’s concept of an accelerative force impressed on a body, which is responsible for the velocity  

acquired by the body in the traveled space, J. Bernoulli wrote 21d
2

p x mv=∫ , saying that this is a ‘well-known  

result’. This result is recognized as the work done by a variable motive force p acting on a body of mass 𝑚𝑚 tra-
velling a distance x being equal to the variation of the body kinetic energy. This and translated gravitation are 
the most significant of the eleven lemmata introduced by J. Bernoulli in the Preface of Hydraulics. 

J. Bernoulli calls translated gravitation, the force from the lower regions that are translated to the uppermost 
surface of the water contained in a vessel, which constitute the total immaterial motive force by which all the 
water in the vessel is pressed downward. For the modern reader, this translation resembles Pascal’s principle, 
which says that the pressure applied to any point of a fluid at rest is transmitted to the entire fluid. In fact, ac-
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cording to J. Bernoulli, if a stratum of water from the lower regions of the vessel has an area m and a weight π ,  

the translated gravitation to the uppermost surface will be πh
m

, where h is the area of the uppermost surface.  

According to Calero (2008: p. 329), J. Bernoulli does not identify pressure as force per unit of area; hence, the 
necessity of this force translation rule. 

Darrigol sees here another pervasiveness of the compound-pendulum analogy (Darrigol, 2005: pp. 9-10), in 
which forces at any point of a system are replaced by equivalent forces at a particular point of the system. This 
can be traced to an earlier work by J. Bernoulli (Bernoulli, 1714: pp. 168-186) on the nature of the center of os-
cillation, in which he confirms Huygens’s Proposition V, Part 4 of the Horologium Oscillatorium (Huygens, 
1673), using the law of the levers, in which forces that have the same moment have the same effect. 

From the Preface on, Hydraulics is divided in two parts: the first part is concerned with the motion of water 
through vessels and cylindrical conduits, and the second part contains a ‘direct and universal method for solving 
all hydraulics problems’. In the first part, one finds J. Bernoulli derivation of Bernoulli’s law, and in the second 
part, the derivation of a general expression for not necessarily steady flow in pipes of any form, which forms the 
basis of the remaining work. 

In Section VIII, Part 1 of Hydraulics, J. Bernoulli considers the ‘crux of the whole matter’ for finding the law 
of acceleration according to which the liquid flows through a conduit; that is, the determination of the motive 
force which acts ‘in the throat necessary to change the lesser velocity to the greater’. J. Bernoulli defines the 
throat as the region right after the contraction enclosed by the curve IMF on the top and the length HG on the 
bottom (see Figure 5). The motive force p (per unit of density) is responsible for accelerating the water as it 
passes through the throat from the larger area h to the smaller area 𝑚𝑚 of the conduit. From these considerations, 
he deduces that: 

2 2
2

2
h mp v

h
−

= ,                                      (5) 

where v is the velocity in the conduit after the contraction. 
Since this result was obtained for a liquid with unit density, then for a liquid with a general density ρ , the  

former expression can be re-written as 
2

2
2

1 1
2

p mv
h h

ρ
 

= − 
 

. In the first member, the motive force p, divided by  

the upstream cross section area h is in fact the pressure that accelerates the water through the throat; it is actually 
the pressure differential 1 2p p−  across the throat. This allows the recovering of Bernoulli’s law for a horizon-
tal pipe as: 

2 2
2 1

1 2 2 2
v vp p− = − ,                                   (6) 

where the indices 1 and 2 refers to the conditions upstream and downstream of the throat, respectively. The con-
tinuity relation 1 2v h v m=  was here invoked to obtain this result. Although the historical evidences seems to 
reveal that J. Bernoulli knew beforehand this result from his son’s, nonetheless he has the great merit of propos-
ing in its derivation a model not only more physically consonant to reality, but simpler and straightforward than 
that adopted by D. Bernoulli. 

In Section X, Part 1 of Hydraulics, J. Bernoulli considers a vertical cylindrical vessel with area h, conti- 
 

 
Figure 5. Horizontal pipe with a contraction (throat) used by J. Bernoulli to 
derive Bernoulli’s law (a reproduction from Hydraulics).                       
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nuously full of water at a height a, and with an horizontal cylindrical conduit with area m connected at its base. 
For this case, and by substituting in Equation (5) p for 𝑔𝑔ℎ𝑎𝑎, where g is the gravity, and considering that  

21
2

v gz= , where z is the height for which the velocity v is due, then 

2

1

1

m
ha z

 −  
 = . For the case where the  

area m of the conduit is very small, z a= , or 2v ga= . This is Torricelli’s law deduced from J. Bernoulli’s 
dynamic principles—this is another demonstration of Torricelli’s law by reason. 

In Sections II–VIII, Part 2 of Hydraulics, J. Bernoulli develops a general expression for the non-stationary 
velocity of a liquid flowing out of a conduit of any shape, which may be inclined differently in its different parts 
(see Figure 6). The approach taken consists on finding the motive force responsible for maintaining a steady 
flow through the conduit of any shape, and the motive force responsible for the non-steady flow behavior. J. 
Bernoulli called the latter hydrostatic force and the former hydraulic force. These forces are responsible for 
what is known today as the convective acceleration and the local acceleration, respectively. 

In Section IV of Hydraulics, the hydrostatic force—the force responsible for the convective acceleration— 
was obtained by translating the effects of vertical motive force from an elementary intermediate layer, given by 
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 for the layer Fm with the area 𝑦𝑦, to the first area h at the top of the conduit, resulting in the equivalent

dhu u , where u is the velocity of the layer Fm in the direction of the conduit center line. By integrat 

ing from the last layer, with the area w and velocity v, to the top layer, with the velocity w v
h
β
α

, J. Bernoulli 

obtained 
2 2 2 2

2
22

h w v
h

α β
α
−

, where α  and β  are the direction cosines between the conduit center line and the  

vertical, at the bottom and at the top of the conduit, respectively. This is the hydrostatic force, and accounts the 
required motive force to accelerate the liquid as the area of the conduit changes from h at the top to w at the 
bottom. This force is responsible for what is known today as the convective acceleration. 

Since in this case the gravitation force is the only motive force available, by translating the elementary gravi-
tation forces (per unit of density) of the elementary layers to the first area h, and upon integration through the 
total height AB a=  of the conduit, results in gha , which allows to finally write: 

2 2 2

2 21
2
v wga

h
β
α

 
= − 

 
.                                   (7) 

 

 
Figure 6. Conduit used by J. Bernoulli to derive a general expression for the 
non-stationary velocity of a liquid flowing out (a reproduction from Hydrau-
lics).                                                                   
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If we contrast this result for 1α β= =  against Bernoulli’s law (Equation 3), we see that from this law  
2

2pressure 1 wa
h

 
= − 

 
, and from Equation (7) 

2

2

2

2
1

v a
g w

h

=
 
− 

 

, which shows that the behavior of the pressure  

head is the opposite of the velocity head as the relation between the flow areas at the top and at the bottom 
changes, which is the essence of Bernoulli’s law. 

In Section V of Hydraulics, the hydraulic force—the force responsible for the local acceleration—was 
equated by J. Bernoulli as follows. The displacement of the layer Fm when the elementary displacement at the  

exit is dx  is given by d d
d

w x s
y tα

, where dt  is the thickness of the layer Fm; that is, the vertical projection of the  

segment ds  that links the faces of the element along the conduit center line. As before, the effects of the ver- 

tical motive force of this layer, translated to the first area h gives the equivalent 
( ) 2d d

d d
hwv v s

y x tα
, which upon  

integration through the total length of the axis of the conduit, for any layer and for any acquired velocity v, noting  

that herein not only h and w but also d
d

v v
xα

 must be considered constant, gives 
( )2dd

d d
shwv v

x y tα ∫ . This is the hy- 

draulic force, and accounts the required motive force for the actual acceleration of the liquid flowing out. This 
force is responsible for what is known today as the local acceleration. 

When the gravitation force gha , is the only motive force available to compose the hydrostatic force and the 
hydraulic force, in Section VI, J. Bernoulli finally obtains: 

( )22 2 2 2
2

2

dd
d d2

sh w hwv vv gha
x y th

α β
αα

−
+ =∫ ,                         (8) 

for a liquid with unity density, claiming that this is the most general equation for the determination of the veloc 

ity with which the liquid flows out at any moment. It is understood that 
( )2d

d
s

y t∫  denotes the sum of all the

( )2d
d
s

y t
 contained between the two extremes of the conduit. Of course, this is a quantity that depends only on the  

geometry of the conduit under consideration. 
Based on this general equation, J. Bernoulli shows with a numerical example that the transit time from rest to 

the steady state efflux, from rather wide vessels through narrow orifices is imperceptible, and can safely be con-
sidered constant. This is an interesting conclusion regarding the importance of the hydraulic force in such prob-
lems. 

The remaining of Part II, is basically dedicated to other applications of the general equation in problems such 
as: the derivation of an expression for the pressure at the walls of the conduit (Sections XI & XII), the variation 
of the exit velocity during the emptying of vessels (Sections LI & LII)—to be seen in more details later on in the 
present work, the making of clepsydras (Sections LIV–LIX), the examination of Newton’s cataract (Section LX) 
etc. 

In Section VII, Part 2 of Hydraulics, J. Bernoulli’s writes6 2 2v gz= , where z is the height from which a giv-
en body, by falling under natural gravity g, would acquire the velocity v. This allowed J. Bernoulli’s re-writing 
his general non-steady equation as: 

( )2 2 2 2 2 2 2d d dh w z x Mh w z h a xα β α α− + = ,                        (9) 

 

 

6Here we find a rare instance of a precise quotation of Torricelli’s law as is known today: 2v gz= . 
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where 
( )2d

d
s

M
y t

= ∫ . 

Equation (9), for the case where 1α β= = ; that is, when the cross-sectional areas are normal to the axis of 
the vessel reduces to: 

( )2 2 2 2d d dh w z x Mh w z h a x− + = .                       (10) 

In Section X, Part 2, we also find for the first time the interpretation of internal pressure—called immaterial 
force by J. Bernoulli—: 

“… in portions of fluid acting mutually on each other, the immaterial force lying between must be considered 
just as elastic air, which extends itself not only to opposite directions, but also into all surrounding regions; 
from which now it is easily understood that from this immaterial force itself the pressure, which is the subject 
here, develops. This certainly is exerted on the walls of a conduit, by which in turn it must be confined while it 
acts freely forward and backward on the portions of the liquid wherein it exists…” 

J. Bernoulli approaches can be considered remarkable for the time for the following reasons. 
1) For reaching the same law proposed by his son D. Bernoulli for steady sate flow with a physical model 

more attached to reality, that is, from the pressure developed for accelerating the fluid in the contraction of a 
conduit. 

2) For writing expressions with dimensionally homogeneous quantities (such as Torricelli’s law), which were 
not the standard of the day. 

3) For giving for the first time the correct interpretation for the internal pressure in a fluid. 
For these reasons, his contributions to the problem of discharge can be considered far superior than that of D. 

Bernoulli, and he would naturally have deserved a place in the hall of the greatest contributors to fluid mechan-
ics, and particularly to the problem of discharge, without the need to compete with his son for pioneering the 
work in the area. Therefore, it is not appropriate to say that J. Bernoulli predated the work of D. Bernoulli; what 
in fact might had happen, is that after the publication of Hydrodynamics he saw that he had missed a great op-
portunity to be the pioneer in an area where he felt he had better approaches than those of his son’s, perhaps 
since an earlier time than that when Hydrodynamics appeared. As mentioned earlier, the superiority of J. Ber-
noulli approach to the problem of discharge over that of D. Bernoulli was even recognized by Euler. Unfortu-
nately for Johann, Bernoulli’s law was named after Daniel. 

2.5. D’Alembert’s Approach 
In the Preface of the Traité de l’ équilibre et du mouvement des fluides (D’Alembert, 1744), D’Alembert makes 
remarks to some results and approaches used by D. Bernoulli in Hydrodynamics. For example, he judged that 
the application of the principle of conservation of living forces, considering the fluid particles as elastic corpus-
cles was an induction without force, and that it was in need of a more clear and exact demonstration. He claims 
that despite the fact that this was already done by him in his Traité de Dynamique (D’Alembert, 1743), he would 
prove it again in a more extended and detailed form. 

In a letter to Euler of July 7, 1745, D. Bernoulli of d’Alembert’s work says (see Truesdell, 1955: p. XXXVII, 
footnote 2): 

“… I have seen with astonishment that apart from a few little things there is nothing to be seen in his hydro-
dynamics but an impertinent conceit. His criticisms are puerile indeed, and show that he is no remarkable man, 
but also that he never will be…” 

Therefore, if D’Alembert was to produce something new and meaningful, of course he could not follow D. 
Bernoulli’s footsteps, at least as far as mechanical principles are concerned. In the Traité de Dynamique 
(D’Alembert, 1743: pp. 50-51), a “general principle” comes in the form of a “general problem”, in which 
D’Alembert proposes to find the motion that each body should take in a system of bodies arranged mutually in 
any manner whatever; in which a particular motion is impressed on each of the bodies, that it cannot follow be-
cause of the action of the others. For finding the motion of the several bodies the following principle is given: 
“Decompose the motions a, b, c, etc. impressed on each body into two others, , ; , ; , ,a b cα β γ  etc. which are 
such that if the motions , , ,a b c  etc. were impressed alone on the bodies they would retain these motions with-
out interfering with each other; and that if the motions , , ,α β γ  etc. were impressed alone, the system would 
remain at rest; it is clear that , , ,a b c  etc. will be the motions that the bodies will take by virtue of their action”. 
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To show the power of his principle, D’Alembert solves several dynamic problems, one which is Huygens’s cen-
ter of oscillation for the compound-pendulum, without recoursing to the principle of the living forces. 

If one denotes ma an applied force on the mass point m of a connected system, and ϕ  the actual acceleration 
of this mass point, then ma m ma mϕ ϕ= + − , in which ma mϕ−  corresponds to the destroyed force, which is 
a fictitious force applied to the point mass 𝑚𝑚 that maintains the system in equilibrium. Therefore, for the equi- 
librium of a system of N point masses ( )1 0N

i i ii m a ϕ
=

− =∑ . For the cases in which there are no impressed 

forces on the system, 0i im a = ; and hence, 1 0N
i ii mϕ

=
=∑ . As we shall see in the following, for a continuous  

system of particles such as a fluid, the integral form of these summation expressions are used by D’Alembert in 
the Traité de l’ équilibre et du mouvement des fluides. 

A theorem presented by D’Alembert in §22 of the Traité de l’ équilibre et du mouvement des fluides 
(D’Alembert, 1744), which is a geometric interpretation of his dynamic principle, forms the basis of the various 
developments presented in this Traité. By dividing the vessel to the right of Figure 7 into horizontal layers 
(tranches), each one submitted to a particular accelerative force represented in the left side of this figure (not 
necessarily the gravitational force), he says that ‘the fluid in such state cannot be in equilibrium, unless the area 
𝑎𝑎𝑦𝑦𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 is not zero; that is, the sum of the positive areas equals the sum of the negatives.’ 

In §25 of the Traité de l’ équilibre et du mouvement des fluides (D’Alembert, 1744), by calling ϕ  the un-
determined accelerative force of each layer, d’Alembert deduces that the state of equilibrium would then require  

that d 0xϕ =∫  (x is the co-ordinate along the vessel), which would correspond to dd 0
d
vx
t
=∫ , where dx  and  

dv  are the infinitesimal thickness and velocity of the layer, and dt  is an infinitesimal time. This is recognized 
as the continuous form of d’Alembert’s dynamic principle for the case when there are no impressed forces on 
the system. By considering that the layer thickness dx  can be associated with the mass of this fluid element  

dm  and d
d
v
t

 the acceleration a of the element, then dd ~ d 0
d
vx a m
t

⋅ =∫ ∫ , which is recognized as Newton’s  

second law for the equilibrium. 
D’Alembert had rejected the concept of force and thought of mechanics as “the science of effects, rather than 

the science of causes”. “… All we see distinctly in the movement of a body is that it crosses a certain space and 
that it employs a certain time to cross it. It is from this idea alone that one should draw all the principles of me-
chanics…” (D’Alembert, 1743: p. XVI). D’Alembert was born ten years before Newton died in 1727 and New-
ton, in turn, was born in the year which Galileo died. According to Hankins (Hankins, 1970: pp. 152-153), when 
d’Alembert’s Traité de Dynamique was published in 1743, Newton’s general laws of motion were not yet re-
garded as the major synthesis of all those that had gone before, up to the point that Newton is mentioned only 
 

 
Figure 7. Vessel (to the right) and representation of the accelerative force (to 
the left) for the presentation of the fluid state of equilibrium (a reproduction 
of Figure 8 from the Traité de l’ équilibre et du mouvement des fluides).           
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three times in the Traité de Dynamique, and not associated with any important principles. The search for me-
chanical principles continued, particularly with d’Alembert, who rejected “obscure and metaphysical” entities— 
particularly “forces” and “motive causes”. This is way the expression d d 0v x⋅ =∫ , involving only kinematic 
quantities is basic and used throughout his Traité de l’ équilibre et du mouvement des fluides. 

In the remaining of Book I of the Traité de l’ équilibre et du mouvement des fluides, D’Alembert discuss var-
ious cases o fluid equilibrium such as: fluid equilibrium with solids in it, pressure distribution in the fluid layers 
with gravity in a constant direction, equilibrium of fluids of different densities, law between gravity and density 
in different layers of a fluid with constant gravity in a given direction, equilibrium of a fluid where the layers 
vary in any way in gravity and density, “adherence” of fluids, equilibrium of a fluid with a curved upper surface 
(figure of the earth), the equilibrium of elastic fluids (various cases). 

I will now focus on some paragraphs at the beginning of Book II of the Traité de l’ équilibre et du mouvement 
des fluides, entitled “On the Movement of Fluids Encircle in Vessels”. After have beginning Chapter I demon-
strating two theorems, in §86 D’Alembert remarks that “it is evident that the fluid will remain in equilibrium, if 
each layer is not animated by an infinitesimally small velocity d dt vϕ ∓ ”. These two terms can be interpreted as 
what is now referred to local and convective infinitesimal increments in the velocity of the layer. 

Before presenting the case “Movement of a portion of a fluid without weight inside an indefinite vessel”, 
d’Alembert presents as preparation, a vessel of any shape (to the left of Figure 8), and defines a corresponding 
curve (to the right of Figure 8), constructed in such way that, as for example, the intermediate YX, is given by 

2GH KZ , in which GH is a constant line in the upper part of the vessel. He then calls N the area FTVN ,  

which is given by the integral 
2dx GHN

y
⋅

= ∫ , where dx  is the height and y is the width of any indeterminate  

layer, for which the product dy x  is constant (he is invoking continuity here). The infinitesimal area dN  is 
then given by: 

2 2 2 2
2

2d GH Ff CD GH CD PLN NVUn FTtf Ff Ff GH
PL PL CD PL CD

 × −
= − = × − × = ⋅ ⋅ ⋅ 

.    (11a, b, c) 

In §90, D’Alembert poses Problem I as follows: “… Suppose that a given quantity of Fluid CDLP (Figure 32) 
homogeneous and without weight, is put into movement by any cause such as by the impulsion of a piston, which 
moves according to AB inside an undefined vessel; it is required to find the velocity of this Fluid in each  
 

 
Figure 8. Vessel (to the left) and representation of a curve given by 

2YX GH KZ=  (to the right) as preparation for the later developments (a re-
production of Figure 32 from the Traité de l’équilibre et du mouvement des 
fluides).                                                           
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instant…” Since the velocity of the layer CD is given by u GH
CD
⋅  then, from the velocity u of the layer GH,  

it’s possible to find all others. 
D’Alembert equilibrium condition requires that d d 0v x⋅ =∫ . From this expression, and by assuming that a 

moving layer has a velocity V in an instant, following that in which the velocity was v, it follows that  

d dy xVV y xvv=∫ ∫ . Since d constanty xvv =∫ , then 
2dd constanty x uu GHy xVV

yy
⋅ ⋅

= =∫ ∫ , or 

2d constantx GHuu uuN
y
⋅

= =∫ , and ( )d 0uuN = , where u is the velocity in the layer GH, which is fixed.  

Then, the velocity in any other layer such as CD, is the same as GH to CD. Since ( )d 2 d duuN Nu u uu N= + , 
and from Equation (11c) he finally gets: 

( )2 2 2 22 0PL CD Nudu uuFf GH CD PL⋅ ⋅ + ⋅ − = ,                        (12) 

In §100, D’Alembert gives a solution to the problem for the fluid subjected to a gravity p. In this case, his ba-
sic expression d d 0v x⋅ =∫ , transforms into ( )d d d 0.x p t v⋅ − =∫  This is recognized as the continuous form of 
d’Alembert’s dynamic principle for the case when the impressed force on the system is the gravitational force. 
When written in the form d d d dv x p t x⋅ = ⋅∫ ∫ , is equivalent to Newton’s second law of motion, where p is the 
external gravitational force acting on the fluid. For this case D’Alembert gets: 

( )d 2 ;uuN Ff CD p AB= ⋅ ⋅ ⋅                                     (13) 

which, according to d’Alembert, when combined with d Ff CDt
u GH
⋅

=
⋅

, will give the value of u in each instant. 

In §105, D’Alembert gives a solution for the velocity of the layer PL. This solution begins by rewriting Equa-
tion (13) as 2 d d 2Nu u uu N Ff CD p AB+ = ⋅ ⋅ ⋅ . Then, by substituting for dN  the expression given by Equa-
tion (11c), and by calling ; ; ; ; d , 2GH m PL K CD k AB q Ff q uu ps= = = = = − = , s is the subimity7; he finally 
gets: 

d d d dKKkN s kkmms q KKmms q KKkkq q− + = − .                     (14) 

In § 113, and based on Equation (14), D’Alembert gives the solution for a cylindrical vessel with an aperture 
made in its bottom (Figure 9), in which the water is subjected to the gravity p, as: 

( )2 22 d d d 2 dKKqu u uu k q K q kkpq q− − = − .                       (15)8 

When PL is a very small aperture 1KK kk � , and then 2u pq= ; that is, Torricelli’s law is recovered not 
only for cylindrical vessels, but for all vessel shapes, when PL is a very small aperture. 

D’Alembert claims that Equation (14) is the same found by D. Bernoulli, via the principle of living forces. 
Indeed, this is the same equation developed by D. Bernoulli in §8, Third Chapter of Hydrodynamics, in which it  

is written as d dd dmmvy x mmv xN v yx x
nn y

− + = − . This equation can be rewritten as 

dd d dnn nnv x nnN v vy x yx x
mm y mm

− + = − . In fact, apart from the differences in nomenclature and symbology, these  

equations are all equal to J. Bernoulli’s general non-steady flow equation [Equation (10)] as well. 

By calling mmz v
nn

= , which corresponds to the velocity of the water flowing out, then the above equation  

 

 

7As noted before with J. Bernoulli, here appears again a precise quotation of Torricelli’s law written as 2u ps= , where p  (the pesan-
teur) is the gravity g. This shows that by the middle of the 17th century the standard form of writing Torricelli´s law was already in use. 
8There is an error in the second-hand side of this equation, in which 2KKpqdq−  was used, instead of 2kkpqdq− . 
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Figure 9. Vessel with an aperture made in the bottom, for which Equation (15) 
was developed (a reproduction of Figure 40 from the Traité de l’ équilibre et 
du mouvement des fluides).                                                          

 

reduces to dd d xdnn nnz xN z zy x y x
mm y

− + = − . As we saw before, when the lower surface is an orifice of area 𝑎𝑎𝑎𝑎  

which is very small, then z x= ; that is, Torricelli’s law is recovered in this case. Also, as D. Bernoulli points 
out quite correctly: “…. when the orifice is not very small, by no means the shape of the vessel can be neg-
lected…” Of course, this conclusion is valid for the non-steady flow cases, since the exit velocity for 
steady-flows, depends only on the ratio of the lower to the upper cross-sectional areas. 

In most of the developments in Book I & II of the Traité de l’ équilibre et du mouvement des fluides, 
D’Alembert essentially replicates problems already dealt with by Daniel and Johann Bernoulli, but using his 
own principles and approaches instead. He criticizes D. Bernoulli for using the principle of the conservation of 
living forces when the change in velocities is not infinitesimal (D’Alembert, 1744: p. 109), where he might be 
wrong, particularly when D. Bernoulli breaks the pipe in the development of his law because, as we saw earlier, 
the conservation of living forces was derived by Huygens for elastic impacts, and the breaking of the pipe can be 
considered a sudden impact in the water initially at rest in the pipe. D’Alembert also saw the approaches of J. 
Bernoulli with some reserves. For example, he remarks that various points in the Theory of J. Bernoulli needed 
demonstrations, and criticizes him by using a “very complicated method’ for determining the pressure at the 
bottom of the vase (D’Alembert, 1744: pp. 159-160)”. 

In the Traité de l’ équilibre et du mouvement des fluides there are rare moments that d’Alembert talks about 
pressure, and worse, he did not seem to have realized and grasped the very important basic relation between 
pressure and velocity in fluid flows, as was done very explicitly by D. Bernoulli in Hydrodynamics. This is per-
haps a consequence of his aversion to forces, and particularly to pressure forces. We will only find for the first 
time a specific development of the relation between pressure and velocity much later in his Essai d’une nouvelle 
théorie de la résistance des fluides (D’Alembert, 1752: p. 24), in a result that apart from differences in nomen-
clature and symbology, resembles J. Bernoulli’s (Equation (5)); that is, Bernoulli’s law. 

2.6. A Non-Steady Flow Application Example 
The shape of the vessel is only important in non-steady flows and has a direct impact in the value of M (see Eq 

uation 10), which for vessels with cross-sectional areas normal to the vertical axis is given by dxM
y

= ∫ , where  

x is the vertical axis and y is the cross-sectional area of the vessel at the x co-ordinate. However, in Equation 
(10), we see now time dependence appearing explicitly in this equation. The following application by J. Ber-
noulli will show how the time dependence is recovered from this equation. 

The influence of the vessel shape, which appears equally in the Bernoullis and D’Alembert formulations, can 
be seen in the problem given by J. Bernoulli in Section XXVII, which concerns the calculation of the time that it 
takes for the exit velocity to reach the steady-state value from rest. 

Under these conditions and for 2 2w h� , Equation (10) yields 
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2

2 dd .
2

wv vx M
ga v

=
−

 

The time differential dd x
v

θ =  will be equal to 

2

2 d d d .
2 2 2 2

w v w v vM M
ga v ga v ga v ga

 
= +  − + − + 

 

For cylindrical or prismatic vessels of cross-sectional area h and height a, for which M a h= , the latter ex-
pression upon integration yields 

1 2
ln ,

2 1 2
v gaaw

h ga v ga
θ

 +
=   − 

 

which implies an infinite time for the steady-state velocity 2v ga=  to be achieved. The apparent anomaly 
suggested by the infinite time required to establish the steady-state flow arises from the assumption of fluid in-
compressibility. 

However, the steady-state velocity does attain 99 per cent of 2ga  in a finite time given by 

0.99 2

1.99ln 5.293 .
0.012 2ga

w w
h ga h ga

θ  = = 
 

 

As numerical examples, let’s consider: 4 fta = , 32.174 ft sg = , and three ratios of w h  of 0.1, 0.05, and  
0.01, for which the latter expression yields 0.99 2gaθ  equal to 0.033, 0.0165, and 0.0033 seconds, respectively. 

These results confirm a Corollary given by J. Bernoulli in Section XXVIII of Hydraulics “… The efflux from 
rather wide vessels through narrow orifices can safely be considered as constant the instant after beginning of 
motion.” 

Before closing this section, it should be pointed out that this problem forms the basis of the so-called Rigid 
Column Theory in hydraulic transients, in which the same expression given above for the time to reach the 
steady-state is simply obtained by applying Newton’s 2nd law to the water that is accelerated in a pipeline, due 
to the sudden opening of a valve at the end9. 

3. Euler’s Contributions 
Euler’s main contributions to the problem of discharge appeared almost simultaneously in two publications of 
1754, namely, Sur Le mouvement de l’eau par dês tuyaux de conduit (Euler, 1754), and Tentamen theoriae de 
frictione fluidorum (Euler, 1761)10. In the former publication, Euler presents the theory of a pump delivering 
water through a conduit to an elevated reservoir; in the latter publication, he presents the theory for water pipe 
friction. I shall now present the highlights of the first publication, to later on get into more details of the second 
publication. 

In both memoirs, Euler strategy consists in finding the accelerations necessary to perform the necessary work, 
and according to Newton’s second law, equates them to the forces available to perform it. In the pump memoir, 
since the flow is non-steady, the accelerations that come into play, in modern terms, are the local and the con-
vective accelerations; and the forces responsible for these accelerations are the gravitational and pressure forces. 
In the friction memoir, he only considers the steady-state case, in which only the convective acceleration comes 
into play, and of course, with the additional friction force. As far as mechanical principles are concerned, Euler 
does not make any elaborations, and simply applies Newton’s second law quite naturally in both memoirs. The 
pressure forces are equate quite naturally as well, stripped from any physical or metaphysical considerations. 

3.1. Euler’s Theory of Pump Delivering Water to an Elevated Reservoir 
In the introduction of Sur Le mouvement de l’eau par dês tuyaux de conduite (Euler, 1754), Euler mentions the 
works of the Bernoullis and D’Alembert on hydraulics, but considers their approaches “less than general” be-

 

 

9See http://www.codecogs.com/library/engineering/fluid_mechanics/pipes/surge/rigid-column-theory.php. 
10For a Portuguese translation by the author access http://eulerarchive.maa.org/. 

http://www.codecogs.com/library/engineering/fluid_mechanics/pipes/surge/rigid-column-theory.php
http://eulerarchive.maa.org/
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cause they did not resorted to the “Analysis of infinitesimals”. Moreover, since these authors have considered 
the motion of water in vessels of general shapes, one would try to find in vain the application of a specific case, 
and the Practitioners would find even less resources to conduct their projects. He then proposes to develop this 
subject, “only as far as to its application in practice is concerned, which would allow finding the clarifications 
that are necessary”. 

According to Eckert (2002), the origins of this paper may be traced to Euler´s involvement by the request of 
the King of Prussia, Frederick the Great, to calculate the hydraulics for a fountain in his Park at Sanssouci in 
Potsdam. Euler’s involvement began in 1749, when a new effort was made in the park to improve the water- 
raising machinery and the tubes for the pipeline to the elevated reservoir. 

Euler then presents the complete theory of a one-cylinder pump to deliver water through a piping system to an 
elevated reservoir (see Figure 10). Here, since the flow is non-steady, Euler first find expressions for the local 
and convective accelerations in a general conduit cross-section, which according to Newton’s second law, 
equate to accelerative forces, namely gravity and pressure. Consequently, by balancing these forces on two infi-
nitely near cross-sections of a fluid element in a circular conduit, the following differential equation is obtained: 

4
2

2 4

d d
d
v s ap C y a v
r z z

= − − −∫ ,                           (16) 

where p is pressure (in fact the pressure head), z and a are the diameters of the conduit and the cylinder bore, 
respectively, y is the height at ZY, r is the piston excursion to acquire the velocity v (in terms of sublimity), s is 
the co-ordinate along the conduit, and C is a constant. 

According to Truesdell (1955: p. XLV), Euler’s method is simpler and clearer, and for the first time he had 
interpreted the pressure force in its modern sense, as the product of pressure by the cross-sectional area. Euler’s 
method of balancing all forces against the accelerations is the method still in use today in any introductory 
course in fluid mechanics. 

The memoir on pump-pipe flow gives a good idea of Euler’s methods and approaches to physical problems, 
 

 
Figure 10. Euler’s sketch of a one-cylinder pump to deliver water through a 
piping system to an elevated reservoir [a reproduction from Sur Le mouve-
ment de l’eau par dês tuyaux de conduite (Euler, 1754: p.148)].                    
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and particular to fluid flow problems. However, this can be considered a specific and more complex problem 
than the ones that I have considered so far. Therefore, for a fair comparison with the approaches of the other au-
thors considered here, I shall analyze another one of Euler’s contribution, in which the flow from an elevated 
reservoir is driven only by gravity, but taking into account the loss of head along the conduits. This contribution 
appears in Tentamen theoriae de frictione fluidorum (Euler, 1761), in which he developed a theory to estimate 
the loss of head along water conduits. 

3.2. Euler’s Theory on Fluid Friction 
Tentamen theoriae de frictione fluidorum (Euler, 1761) was built under the wrong assumption that, as for the 
case of solid friction, the fluid frictional force that appears at the wall of the conduit is proportional to the pres-
sure. As turned out to be much later realized, Euler indeed did not recognized that the friction force is essentially 
a viscous effect, and hence independent of the applied pressure. 

Euler’s developments in this paper are only for steady flow cases (see Figure 11). Here, by adopting for the 
fluid friction the same law as for the solid friction, by which the friction force is supposed to be proportional to 
the applied normal force, Euler wrote the fluid frictional force as p zα , where α  is a non-dimensional fric-
tion coefficient (to be experimentally obtained), p is the pressure (in fact the absolute pressure head), and 2z  is 
the cross-section area of the conduit. By considering an infinitesimal fluid element between any two cross-sec- 
tions of any conduit, he wrote the two other forces that act in the element in the s direction along the conduit as 
– d dp s , for the pressure force, and d dx s , for the gravitational force, where x is the vertical co-ordinate 
oriented downwards. By using Newton’s second law, Euler then equates these three forces to the convective ac-
celeration of the fluid element and got: 

4

5

4  d d d ,
d dd

h v z x p p
s s zz s

∝
− = − −                             (17) 

where contrary to the accepted symbology in fluid mechanics, v is not the velocity, but instead the sublimity, 
which is the height from which a heavy body would have to fall, to acquire the same velocity as the water would 
have at the orifice at the end of the conduit, with an area of 2h . 

Equation (17), without the friction term in the second hand side, is recognized as what is now referred to the 
steady-state incompressible Euler’s equation for the ideal, non-viscous fluid, written in the intrinsic co-ordinate 
s along a streamline. As it is, Equation (17) is in non-dimensional form, with all its terms written in units of 
length; and, as for the kinematics with Galileo, Euler was successful in geometrizing a fluid dynamic problem as 
well. 

It should be noted that the integration of Equation (17) without the friction term, leads to Bernoulli’s equation 
in the form ( )4

z hp v h z a p v+ + = + , where a is the vessel height, and zp  and hp  are the pressures at the  
 

 
Figure 11. Vessel used by Euler in the formulation of his pipe 
wall friction theory [a reproduction of Figure 2 from Tenta-
men theoriae de frictione fluidorum (Euler, 1761)].                    
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cross-sections z and h, respectively. This is an expected result because the integration of the incompressible Eu-
ler’s equation for the ideal, non-viscous fluid along a streamline results in Bernoulli’s equation, which is consi-
dered the most appropriate formal form for the derivation of this equation. 

The solution for p requires repeated integration by parts of Equation (17), in which the exponential functions 
that appear in the process are written as power series. Following this procedure, in §34 of Tentamen theoriae de 
frictione fluidorum, Euler gives the solution for p and v for a vessel of any shape, which is modeled by a compo-
sition of piecewise straight tubes as shown in Figure 12. For this vessel the following symbology applies. 

AF a= , amplitude AA ff=  and vertical angle = 0; 
BC b= , amplitude BB gg=  and vertical angle = ζ ; 
CD c= , amplitude CC hh=  and vertical angle = η ; 
DE d= , amplitude DD ii=  and vertical angle = θ ; 
Orifice EE , amplitude kk . 
For the state of the compression the following symbology is given by Euler. 
In AA l= , head of atmospheric pressure in terms of a water column of 30 feet11; 
in BB P= ; 
in CC Q= ; 
in DD R= ; 
in EE l= . 
The pressure at these junctions are then obtained as follows. 

4
4 4

1 1e 1 e ,
a a

f ffP l k v
f g

α

α

− −∝   
= + − + −       

 

4
4 4

1 1e 1 e cos ,
b b

g ggQ P k v
g h

α

ζ
α

− −∝   
= + − + −       

 

4
4 4

1 1e 1 e cos ,
c c

h hhR Q k v
h i

α

η
α

− −∝   = + − + −       
 

4
4 4

1 1e 1 e cos .
d d

i iil R k v
i k

α

θ
α

− −∝   = + − + −       
 

 

 
Figure 12. Vessel made by a composition of piecewise 
straight tubes, which was used by Euler as a model of a vessel 
of any shape [a reproduction of Figure 4 from Tentamen theo-
riae de frictione fluidorum (Euler, 1761)].                    

 

 

11Note that Euler is working in terms of absolute pressures in these developments. 
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The exit velocity at the orifice in the end of the vessel is the given by: 

cos cos cos
2

cos cos cos
2 2 2

,
1

a b c d a b c da b c d a l
f g h i f g h i

b c d c d db c d
g h i h i i

v
b c d b c d
g h i g h i

ζ η θ

ζ η θ

   
+ + + − ∝ + + + − ∝ + + +   

   
     − ∝ + + − ∝ + − ∝     

    =
 

− + ∝ + + − ∝ − ∝ − ∝ 
 

f f g h i

             (18) 

where 
4 4 4 4

4 4 4 4, , andk k k k
f g h i

= = = =f g h i . 

In the case of no friction, 0∝ = , and then: 

cos cos cos ,
1

a b c dv ζ η θ+ + +
=

− f
                                (19) 

and for AI q=  results in: 
4

4 4 .fv q
f k

=
−

                                (20) 

This last result clear shows that for the case of no friction, the exit velocity for a given height q is independent 
of the shape of the vessel, and depends only on the first and the last flow areas. 

Based on Equation (18), Euler then gives solutions for v for the following cases; Case I-vertical straight tube 
of uniform section; Case II-vertical straight tube composed of two parts of unequal sections; Case III-horizontal 
straight tube of uniform section; Case IV-inclined tube of uniform section, including a table of the gradient re-
quired before a stream of a given depth will begin to flow; Case V-inclined tube, analyzed together with a ver-
tical tube followed by an horizontal tube with an orifice that projects water vertically. 

On passing, it is interesting to note that a situation arose from Case I, discussed in §50, 51 of Tentamen theo-
riae de frictione fluidorum, that would occur for the case where the length of the vertical tube exceeded twice 
the atmospheric pressure head (of 30 ft.), when the pressure at the tube-wall would become negative, and the 
flow would leave behind the vacuum (i.e., cavitation). In this case, Euler points out that the calculations are no 
longer valid. It should be noticed that earlier, in 1738, Daniel Bernoulli in his book Hydrodynamics, and in 1744, 
d’Alembert in his book Traité de L’Équilibre et du Mouvement des Fluides, had both anticipated the possibility 
of a theoretical negative wall pressure. 

An analysis of Euler’s Case III without friction, allows us to recover D. Bernoulli’s results (see Figure 13).  

For this case, Equation (18) for 0∝ =  gives ( ) 14 41v a k f
−

= − . The pressure p in any point of the horizontal 
 

 
Figure 13. Euler’s Case III-horizontal pipe with an orifice at the end, con-
nected to a reservoir [a reproduction of Figure 7 from Tentamen theoriae de 
frictione fluidorum (Euler, 1761)].                                       
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pipe would then be given by 
4 4

4 4

k kp v
f g

 
= − 

 
, where here 2f , 2g , and 2k  are the amplitudes of the  

reservoir, the pipe, and the orifice, respectively. Substituting the expression for v, we will have that in general,  

the pressure in the pipe would be given by 
4 4

4 44

41

a k kp
f gk

f

 
= − 
   − 
 

. For a reservoir of large amplitude com-

pared with the amplitude of the orifice ( )2 2f k� , we will have that the pressure in the pipe will be given by 

( )4 41p a k g= − , which is recognized as Bernoulli’s law. 

Before closing this section, I shall discuss the result ( ) 14 41v a k f
−

= − , when k is smaller, but of the same  
size of f, in which case v a> . This situation would be perceived as a paradox, and it was also discussed by Eu-
ler in §41 of Tentamen theoriae de frictione fluidorum. The explanation given there is that there is an implicit 
assumption in the developments that the vessel is assumed to be constantly full, and therefore the water poured 
into the vessel would initiate its movement through the vessel not from rest; and hence, there should be no sur-
prise if it escapes the orifice with a greater velocity than that given by the height a of the vessel. 

A physical model of such situation, was given by J. Bernoulli in Section XXXIII, Part II of Hydraulics, in 
which a large pan of very small height is attached to the top of the vessel (see Figure 14). In this case, the height 
of the pan does not add to the height a of the vessel, with the water flowing into the conduit with the required 
velocity to maintain it constantly full. 

When k f= , v = ∞ ; in this case, the water is continually accelerated as in the falling of heavy bodies, and 
the state of uniformity is never reached within the vessel. When k f> , even less state of uniformity would be 
reached, with the water separating from the walls of the vessel. 

4. Lagrange’s Theory of Fluid Motion 
To see how was Lagrange’s approach to the problem of discharge, I need to bring first to this discussion another 
one of Euler’s papers, that in which the famous Euler’s equations were derived. These appeared in the Principes 
generaux du mouvement des fluides (Euler, 1757). It is not the case to revisit this paper here, not only because  
 

 
Figure 14. A large pan attached to the top of the vessel, used as a physical 
model by J. Bernoulli to justify situations where v a>  [a reproduction from 
Hydraulics (Bernoulli, 1968b)].                                       

 

 

12See Calero (2008: pp. 426-435) and Truesdell (1955: pp. IX-CXXV). Euler’s work is also discussed in the perspective of eighteenth cen-
tury fluid dynamics research by Darrigol and Frisch (2008). https://www-n.oca.eu/etc7/EE250/texts/darrigol-frisch.pdf 

https://www-n.oca.eu/etc7/EE250/texts/darrigol-frisch.pdf
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this has already been done elsewhere12, but also because this publication does not deal directly with the problem 
of the discharge. 

Lagrange, in a memoir of 1781 (Lagrange, 1869), presented a theory of fluid motion, and develops a general 
method for the solution of discharge problems. In Part I of the memoir, Lagrange’s developments follow quite 
closely Euler’s steps in the above mentioned paper. However a substantial difference marks both approaches, 
since the Lagrangian specification of the flow field is that of looking at fluid motion where the observer follows 
an individual fluid parcel as it moves through space and time, whereas the Eulerian specification of the flow 
field focuses on specific locations in the space through which the fluid flows as time passes. The Lagrangian and 
Eulerian specifications of the flow field are sometimes loosely denoted as the Lagrangian and Eulerian frame of 
reference. 

However, in general both the Lagrangian and Eulerian specification of the flow field can be applied in any 
observer’s frame of reference, up to the point that one finds no differences in the resulting differential equations 
of motion. This is so true because Lagrange’s equation of motion, developed in Part I of the memoir, is equiva-
lent to that of multiplying Euler’s equation by an element of trajectory whose components are d ,d ,dx y z , ob-
taining: 

( ) ( ) ( )

( )2 2 2

d d d d d d d d d
,

ddd
Δ 2

p q rx y z q x p y r x p z r y q z
t t t

p q r
V

β γ

π

∂ ∂ ∂
+ + + ∝ − + − + −

∂ ∂ ∂
+ +

= − −

                (21) 

where t is the time, , ,p q r  are the components of the velocity vector, , ,α β γ  are the components of the curl 
of the velocity vector, V gx= −  (x is the vertical co-ordinate pointing upwards, and g is the gravity), π  is the 
pressure, and ∆  is the fluid density. 

Here, each fluid particle has its own velocity components , ,p q r , which are in general functions of , , ,x y z t . 
The position of each particle at a given time t is given by the integrals of d d ,d d ,d dx p t y q t z r t= = = , and by 
three arbitrary constants , ,a b c , which depend on the initial position of the particle. This is what distinguishes 
the Lagrangian from the Eulerian frame of reference, since in this latter frame of reference , ,x y z  are fixed 
points in space through which the fluid flow as the time t passes. 

Lagrange then introduces the velocity potential ϕ , which transforms Equation (21) for an incompressible 
fluid into: 

22 2d 1 d 1 d 1 d ,
Δ d 2 d 2 d 2 d

V
t x y x

π ϕ ϕ ϕ ϕ    = − − − −    
    

                        (22) 

which allows the determination of the pressure. This equation, together with the incompressibility equation: 
2 2 2

2 2 2 0 ,
x y z
ϕ ϕ ϕ∂ ∂ ∂
+ + =

∂ ∂ ∂
                                    (23) 

allows the determination of ϕ , from which d d d, , .
d d d

p q r
x y z
ϕ ϕ ϕ

= = =  

Before presenting Lagrange’s approach to the problem of discharge, it should be noticed that he missed the 
opportunity to obtain Bernoulli’s equation from Equation (21) (which unlike Euler in the Principes generaux du 
mouvement des fluides Lagrange did not obtained it in his memoir), by recognizing that along a streamline 

d d d d d d 0q x p y r x p z r y q z− = − = − =  (for rotational or irrotational motions), and that 0β γ∝ = = =  for irro-
tational motions. In both cases, the right-hand side of Equation (21) equals zero, which upon integration yields: 

2

,
Δ 2

vgx Cπ
+ + =                                       (24) 

which is recognized as the steady-state Bernoulli’s equation, where 2 2 2 2v p q r= + + . C is in general a different 
constant for each streamline for rotational motions, and is a unique constant for the whole flow field in irrota-
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tional motions. 
In Part II of the memoir, Lagrange gives a general solution for the fluid motion in vertical vessels of any 

shape, by expanding the velocity potential ϕ  in power series of z, on the assumption that this co-ordinate is 
very small in comparison with x and y. He then develops a particular method for the solution of plane motions 
( )0y =  of an incompressible fluid of unity density, subject to the gravity g, in narrow vessels whose walls are 
given by ,z zα β= = , in which α  and β  are both functions of x and “very small”, such that their higher 
orders expansions could be neglected. 

By just retaining the first term in the power series expansion for ϕ , Lagrange got for the vertical velocity 
component p and for the horizontal velocity component r the following expressions 

,p θ
λ

=  

( )d 1 d .
d d

r z
x x

θ µ λµ
λ λ
 = + −  

 

Again, by retaining just the first term of the power series expansion he got an expression for the pressure as 
2

2

d d d .
d d 2

xgx
t t
θ υ θπ

λ λ
= − − −∫  

In these expressions, λ α β= −  (the vessel width), 
2

α βµ +
= , and θ  and υ  are arbitrary functions of t,  

which would be determined according to particular cases. 
The equation that represents the condition in which the same fluid particles would remain at the exterior sur-

faces of the fluid is 
d 0.
dt
π θ

λ
+ =  

From these equations, which form the basis for the solution of discharge problems, Lagrange then develops 
specific methods for the solution of four cases of discharge; Case I-an infinite vessel in which a given quantity 
of fluid flows; Case II-a vessel of a given length in which the fluid flows through the bottom; Case III-an infinite 
vessel which is kept full at the same height by a new fluid poured in continuously; Case IV-a vessel of a given 
length which is kept full at the same height. 

It is not the case here to go deeper into the Lagrange’s procedures for the solution of these cases, not only be-
cause their lengthy and rather complicated, but also because they all end up in integral equations, which are to 
be solved according to particular vessel shapes in each case; in other words, the formulations are not for the 
practical use. But the idea is that once these integral equations are solved, it is possible to get the x position of 
the upper and lower surfaces x′  and x′′ , respectively, θ , and υ , from which the velocity components p and 
r, and the pressure π  can be found. In Case I, for instance, the final result would give the positions of the low-
er and upper surfaces, as well as the velocity components of the fluid particles at these surfaces, as a given quan-
tity of fluid descends in a vessel with undefined limits. These are the results that one would expected from the 
Lagrangian frame of reference, in which the observer follows individual fluid particles—in this case, the par-
ticles that belong to the free surfaces—as they move through the infinite vessel space. 

Lagrange begins his memoir by praising the work of d’Alembert, but omits the work of Euler, which, as we 
saw above, he follows closely in the first part of the memoir. Through the end of the memoir, after having dealt 
with the problem of discharge, Lagrange found that his solutions conform to those of the first Authors, namely 
D. Bernoulli in Hydrodynamics, J. Bernoulli in Hydraulics, and D’Alembert in the Traité des Fluides, which 
have based their works on the supposition that the fluid layers maintain their parallelism as they descend through 
the vessel. 

5. Summary and Conclusion 
In a time when the laws of mechanics were not yet certain, Bernoullis and D’Alembert faced the discharge 
problem using their own principles and approaches to reach essentially the same end. D. Bernoulli adopted the 
principle of conservation of the living forces, and the equality between the potential ascent and actual descent. J. 
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Bernoulli, although recognizing that the principle of living forces was true, but still not accepted by all philoso-
phers, adopted Newton’s concept of a motive force impressed on a body, which, in modern terms, equated to the 
variation of its kinetic energy. He then introduced a translation technique to develop his formulation of the dis-
charge problem, which consisted in translating the effects of motive forces from intermediate layers to the up-
permost surface of the water contained in a vessel. D’Alembert, on its turn, because of his rejection to the con-
cept of force, worked not on the problem of discharge in terms of the impressed force, but rather on its effect, in 
terms of the travelled space and velocity. 

It was shown that the formulations thus obtained by these authors, apart from differences in nomenclature and 
symbology, essentially led to the same results, and that they were applied to solve the same steady and non- 
steady flow problems. It was possible to conclude that after D. Bernoulli’s great success with Hydrodynamics in 
1738, the two other authors felt that they were at least as capable if not superior to D. Bernoulli in accomplish-
ing the proposed tasks, but that was too late for J. Bernoulli and D’Alembert, because Hydrodynamics was soon 
considered a landmark. These developments occurred at about the same time, in a kind of competition for prior-
ity in which Euler seemed to have tacitly accepted the role of presiding over the disputes, in a time when these 
ferocious discussions on priority were rather common. 

However, it was Euler who brought the fluid mechanics problem of discharge to a new and definitive level 
with two publications at about the same time: one about a one-cylinder pump to deliver water through a piping 
system to an elevated reservoir, and another considering the forces that arose on the walls of the conduit due to 
friction. For the first time, the pressure force and the friction force appeared explicitly in the formulations of 
fluid flow through conduits. In these publications, the pressure in its modern sense has made its appearance. 
And by using Newton’s second law, he equated the flow convective acceleration in a conduit of any shape to the 
applied forces, namely, gravity, pressure and friction. However, the friction force was built under the wrong as-
sumption that, as for the case of solid friction, the fluid friction force was proportional to the pressure. As turned 
out to be much later realized, Euler indeed did not recognized that the friction force was essentially a viscous 
effect, and hence independent of the applied pressure. 

Finally, Lagrange’s memoir on the theory of fluid motion of 1781 is presented as a sequel to these first theo-
retical constructions. Despite the fact that Lagrange did not approach the subject with the eyes of practical ap-
plications, he had contributed to the subject with new mathematical resources, like the introduction of the veloc-
ity potential, and the application of power series expansion in fluid mechanics. 
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