Intro to Mechanical Engineering

Mech. Eng. Top 10: ASME Survey

Automobile: High-power lightweight engines, efficient massmanufacturing

Apollo: Saturn V launch vehicle (7.5 million pound thrust), command and service module, lunar excursion module

Power generation: Conversion of stored energy into electricity, manipulation of chemical-, kinetic, potential-, and nuclearenergy, large-scale power production

Agriculture mechanization: Powered tractors, mechanized harvesting, high-capacity irrigation pumps, computerized crops management

Airplane: Propulsion (jet engines), lightweight materials, electromechanical control systems

Mech. Eng. Top 10: ASME Survey

Integrated circuit mass production: IC manufacturing machines, alignment systems, temperature- and vibration control, motors, bearings

Air-conditioning and refrigeration: Compressors, refrigerants, heat exchangers

Computer-aided engineering technology: Computer-aided design, analysis, manufacturing, virtual collaboratives

Bioengineering: Imaging, prosthetics, minimally invasive surgery, tissue engineering

Codes and standards: Interchangeability, interoperability, interoperability,

Mech. Eng.: Typical Program

Thermo-Fluids: Heat transfer, Energy Systems, HVAC, IC Engines

Mechanical Systems: Vibrations, Feedback control, Mechatronics, MEMS

Design: Composites, Machine Design, FEM

Core: Statics, Dynamics, Thermodynamics, Fluid mechanics, Solid mechanics

Types of Motion

- Linear motion
 - motion in a straight line (example: train on a track)
- Reciprocating motion
 - linear motion that goes back and forth (example: pushing a slider-crank back and forth, such as the piston in an internal combustion engine)
- Rotary motion
 - circular motion (example: the hands of a clock moving, or a wheel on an axle)
- Oscillating motion
 - circular or arc-motion back and forth (example: the swing of a pendulum or the turning and release of a doorknob)

Machine Components: Basic Elements

Inclined Plane

Wedge

Wood Plane

Worm Gear

Screw

Wheel and Axle

Waterwheel

Turbine

Windmill

Belt and Pulley

Chain Hoist

Crane

Elevator

Gears

Bevel Gear

Helical Gear

Spur Gear

Rack and Pinion

Cams

Springs

Leaf Spring

Washer Spring

Friction

Brake System

Bearing

Forces in Structures

Forces and Resultants

Rectangular Form: $F=F_xi+F_yj$ Polar Form: $F=IFI < \theta >$ $F_x=Fcos(\theta), F_y=Fsin(\theta)$ $IFI = \sqrt{(F_x^2+F_y^2)}, \theta = tan^{-1}(F_y/F_x)$

Moment of a Force—I

The moment of a force is a measure of its tendency to rotate an object about some point

A force applied to a pivoted beam causes the beam to rotate

Moment of force W about pivot point: W×d

Moment of a Force—II

A force applied to a pivoted beam causes the beam to rotate

Balancing Beams using moment of forces

Equilibrium of Forces & Moments

Object in equilibrium

$$\sum F_{x} = 0$$
$$\sum F_{y} = 0$$
$$\sum M_{o} = 0$$

Buoyancy

Force produced by fluid pressure

When an object is fully or partially immersed in a fluid, due to the pressure difference of the fluid between the top and bottom of the object, buoyant force acts on the object causing it to float

The net upward buoyancy force is equal to the magnitude of the weight of fluid displaced by the body

Buoyancy is important for boats, ships, balloons, and airships

Drag Force

Force that resists the motion of an object through a fluid

Drag force arises from the motion of an object through fluid

Drag force arises from the flow of fluid past an object

An object moving through a fluid experiences a force in direction opposite to its motion. Terminal velocity is achieved when the drag force is equal in magnitude but opposite in direction to the force propelling the object.

Lift

Lift forces arises as a fluid flows around a structure Lift force acts perpendicular to the direction of flow

Mechanical Energy

Gravitational Potential Energy: Energy stored by an object as it gains elevation within a gravitational field

 $\Delta U = mgh$, m: mass of object, g = sgravitational constant,

h: elevation of object

Elastic Potential Energy: Energy stored by an object when it is stretched or bent.

$$\Delta U = \frac{1}{2}kx^2$$
, k: spring constant, x = spring stretch/compression

Kinetic Energy: Energy associated with an object's motion.

$$\Delta U = \frac{1}{2}mv^2$$
, *m*: mass of object, *v* = speed of object

Work & Power

When a force F acting on an object displaces it by distance d, the force F is said to have done work W

$$W = f \times d$$

Power is the rate at which work is performed

$$P = \frac{\Delta W}{\Delta t}$$

Newton's Laws of Motion

1st Law: Every body continues in its state of rest or of uniform motion in a straight line unless it is compelled to change that state by an external force

2nd Law: The rate of change of momentum of an object is proportional to the force acting on the object and is in the same direction as that force

$$F = m \times a$$

3rd Law: To every action there is an equal and opposite reaction

Equations of Motion

Rotational motion

X, X