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INTRODUCTION

Why is the study of the biomechanics of green plants important? First, it
has been estimated that plant life comprises 99% of the Earth’s biomass
(Bidwell 1974). Second, green plants are virtually the only ultimate
source of food for animals through photosynthesis (the process of conver-
sion of solar energy to stored chemical energy).

A biofluid-mechanical overview of a typical green plant is shown in
Figure 1. See Nobel (1974) for an extensive self-contained quantitative
introduction and order-of-magnitude analysis; for a shorter quantitative
introduction, see Merva (1975). Meidner & Sheriff ( 1976) have written a
short introduction that uses engineering concepts with a minimum of
mathematics, and Canny (1977) has written a brief nonmathematical
introduction for fluid mechanicians.

The leaves are the site of photosynthesis. This process requires sunlight,
CO,, and water, and produces glucose (a simple sugar) and oxygen.
Sugars manufactured in the leaves are translocated to other parts of the
plant via the vascular phloem tissue. Water and minerals absorbed in
the roots are brought up to the leaves via the vascular xylem tissue. The
upward xylem flow (called the transpiration stream) is driven by evapora-
tion at the leaves, while the largely downward phloem flow is thought to
be driven by concentration differences created locally by active transport
(e.g. the Munch hypothesis; see Bidwell 1974).

Studies of each of these parts of the plant have involved special fluid
mechanics problems based on the particular physiological function and
geometry. This article introduces the reader to the concepts and problems
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Figure 1 A biofluid-mechanical overview of a typical green plant.

that are unique to the fluid mechanics of plants and reviews the mathe-
matical literature on this subject.

FLOW IN THE VASCULAR TISSUE

Let us compare the vascular system of plants with the more familiar
human vascular system. In contrast to the human circulatory system, the
vascular system of plants is open (Figure 1) and includes extensive
branching at both the leaves and roots. Unlike the blood vessels of
human physiology, the conduits of plants are formed of individual plant
cells placed adjacent to one another. During cell differentiation the
common walls of two adjacent cells develop holes (called pits or pores;
see Esau 1965), which permit fluid to pass between them. The xylem
contains tracheids and vessel elements (Figure 2) that die after reaching
maturity, while the phloem contains sieve elemen: - that remain metaboli-
cally active.
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Blood vessels are often modeled as elastic tubes since their deforma-
tion may be significant due to the pulsatile nature of the flow. In plants,
however, the flow is quasi-steady and the vascular cells (like all plant
cells) have stiff cell walls, making a rigid-tube model appropriate.
Reynolds numbers for flow in the human aorta and in the xylem of a
plant are respectively about 2000 and 0.02 (see Table 1). This means that
slow viscous (creeping) flow (Happel & Brenner 1965), in which the
inertia terms are neglected in the Navier-Stokes equations, is a reasonable
model for flow in the plant vascular system.

The plant physiologist needs to know the pressure drops involved in
flow through the vascular tissue. Such questions arise, for example, in the
evaluation of various conjectured mechanisms for driving the phloem
flow.

The fluid mechanics of phloem flow has been considered by Rand &
Cooke (1978) and Rand et al. (1980). As shown in Figure 2, this involves
flow through a series of cylindrical sieve tubes separated by perforated
sieve plates. Due to the mathematical complexities of slow viscous flow,
only the relatively unrealistic axisymmetric case of a single pore has been
considered (Figure 3). The results of the analysis were compared with

. sieve plate
perforation; ith pores

=—4000 ym —

sieve tube

Tracheid Vessel Sieve
element element

Figure 2 Fluid-conducting cells in the vascular tissue of plants (after Esau 1965). Tracheids
and vessel elements are found in the xylem, while sieve elements are found in the phloem.
Here and in the rest of this paper, the dimensions given are typical but do not represent
statistical averages.
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Table 1 Comparison of Reynolds numbers for flow in a xylem vessel and the human
aorta

Xylem vessel Human aorta
Velocity U (¢cm/sec) 0.1 40
Radius R (cm) 0.002 1.5
Kinematic viscosity v (¢cm?/sec) 0.01 0.03
Reynolds number UR /v 0.02 2000

Poiseuille’s law (which provides the standard approach currently used by
plant physiologists). Poiseuille’s law, when applied to the sieve tube and
the pore in series, was found to underestimate the exact pressure drop by
about a factor of two.

Let us now consider the flow in the xylem. Flow between two neigh-
boring xylem tracheid cells occurs through pits (Figure 2). A typical
bordered pit (Figure 4) consists of a circular border that arches over the
pit cavity and contains a closing membrane. The closing membrane is
composed of a thick central region, which is relatively impermeable to
the flow of fluid, and a thin perforated peripheral region through which
flow is possible. In nature the bordered pit is found in both open and
closed states. In the open state, flow is possible from one tracheid to
another, while in the closed state virtually no flow occurs through the pit.

This problem was studied by Chapman et al. (1977) by assuming an
ideal fluid and using conformal mapping. The thin peripheral region of
the closing membrane was modeled as linear springs, and equilibrium for
a given flow rate was obtained by balancing the net hydrodynamic force
on the central region of the closing membrane with the elastic restoring
force of the peripheral region. Figure 5 shows the results of this analysis.
It was found that for a given flow rate through the pit there are two
equilibrium displacements, one stable and the other unstable. As the flow
rate is increased to a value larger than the maximum permissible (see
Figure 5), the pit snaps shut. Thus the pit functions as a valve to limit the
flow in the xylem pathway.

_Vp=aVi ||

V.v=0
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Figure 3 Axisymmetric single-pore model of flow in a sieve element of the phloem tissue
(Rand & Cooke 1978). The field equations correspond to the steady creeping motion of an
incompressible fluid.
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Figure 4 Schematic diagram of a
bordered pit found in xylem tracheid cells.
(a) Top view. The closing membrane is
composed of a thick central region and a

thin peripheral region. (/) Side view. A
b, circular border arches over the pit cavity
and contains the closing membrane. Pit is

open. (¢) Pit is closed. (d) Two-dimen-
sional hydrodynamical model (Chapman
et al. 1977). The dashed and solid lines
represent initial and displaced positions
respectively.

d. |

A problem related to flow in the vascular system concerns observed
daily changes in stem diameter accompanying changes in the rate of
transpiration. The phenomenon is explained in terms of a decrease in the
water content of cells near the xylem tissue resulting from an increase in
the rate of transpiration. In order to understand this problem, we must
consider the concept of water potential.

Water in plants moves as a result of gradients in chemical concentra-
tion (cf. Fick’s law), hydrostatic pressure, and gravitational potential.
Plant physiologists have found it convenient to deal with these diverse
effects by using a single quantity, the water potential { (Nobel 1974):

y=p— RTc+pgz, (1)
where
p = hydrostatic pressure (bar),

R = gas constant = 83.141 cm’-bar /mole K,

Figure 5 Results of the analysis of the
model in Figure 44 (Chapman et al.
1977). Points A and C correspond to zero
and maximum displacement respectively.
As the flow rate is increased, the displace-
ment of the membrane is increased until
point B, after which the pit snaps shut
(arrows). The equilibrium states on curve

A" DISPLACEMENT € BC are unstable,

FLOW
RATE
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T = temperature (K),

¢ =concentration of all solutes in assumed dilute solution
(mole/cm’),

p = density of water (g/cm’),

g = acceleration of gravity = 980 cm /sec?,
z = height (cm).

Here { is in bars, a convenient unit commonly used in plant studies for
measuring pressure. One bar equals 10° dyne/cm® and is approximately
equal to one atmosphere.

An individual plant cell consists of a cell wall surrounding a cell
membrane (the plasmalemma), inside of which lies the cell protoplasm
(Figure 6). In order for the cell to be in equilibrium with its surrounding
medium, the water potential inside the cell must equal the water potential
outside the cell. However, since the plasmalemma is able to maintain a
concentration difference between the interior and the exterior of the cell,
the hydrostatic pressure inside the cell can be larger than that outside the
cell [from Equation (1)]. This situation (of which there is no parallel in
the case of animal cells) is resolved by the elastic extension of the plant
cell wall, creating a “turgor” pressure inside the cell.

Let us return now to the problem of the daily changes in stem diameter
due to dehydration during transpiration. In order for the transpiration
stream to flow, there must be a negative gradient in water potential from
the roots to the leaves. This gradient reduces the value of the water
potential at all points in the xylem (compared with values corresponding

cell wall
plasmalemma

protoplasm

Y= POUt < Pin

Figure 6 Schematic diagram of a typical plant cell. For equilibrium, the water potentials v
inside and outside the cell must be equal.
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to zero transpiration). This in turn causes a decrease in water potential
inside a typical cell near the xylem tissue throughout the stem, and
accordingly reduces the cell’s turgor pressure and the associated elastic
extension of the cell wall. As a result, the size of the cell and the diameter
of the stem are decreased.

Molz & Klepper (1972) studied this problem by assuming radial
diffusion of water potential, a concept first discussed by Philip (1958a,b,c).
They obtained good agreement with experimental observations and were
able to explain an observed hysteresis loop in the stem diameter-leaf
water potential relationship. Their work was extended by Parlange et al.
(1975), who considered a variable diffusion coefficient and a correspond-
ing nonlinear diffusion equation.

A related and important concept is the distinction between the sym-
plasm and the apoplasm. The symplasm consists of all the protoplasm
(inside the plasmalemma) of all the living cells of the plant, together with
the plasmodesmata (thin strands of cytoplasm that go from the interior
of a given cell, through the cell wall, and into the interior of a neighbor-
ing cell). In terms of point set topology, the symplasm is thought to be a
connected set. The apoplasm consists of those regions of the plant that
contain water and are not in the symplasm. In particular the apoplasm
includes the xylem (which consists of dead cells), as well as the fluid in
the cell walls of all the cells of the plant. Flow in the symplasm has been
estimated to involve a resistance about 50 times as large as that in the
apoplasm (Meidner & Sheriff 1976, p. 51).

The flow of water in the parallel symplasm and apoplasm pathways
has been described by a pair of coupled diffusion equations (Molz 1976;
see also Molz & Ikenberry 1974 and Molz & Hornberger 1973). The
coupling represents the flow between the symplasm and the apoplasm
and depends upon various resistances in the model. Molz (1976) has
applied these equations to a boundary-value problem representing the
immersion of a sheet of tissue initially in equilibrium into a bath of pure
water.

Aifantis (1977) has decomposed the flow in the apoplasm into two
components representing flow in the xylem vessels and flow in the cell
walls. His treatment, based on the modern theory of continuum
mechanics, neglects viscous effects and results in two coupled diffusion
equations. Unger & Aifantis (1979) have applied this theory to a
boundary-value problem representing flow in a cylindrical stem.

Flow in the plasmodesmata of the symplasm has been studied by Blake
(1978). An individual plasmodesma has an internal diameter of about
0.05 pm and a length of about 1 pm. This work represents the smallest
scale yet considered in the biofluid mechanics of plants.
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FLOW IN THE LEAF

The structure of the leaf can be explained in terms of its function. The
thinness of the leaf enables CO, to diffuse from the ambient atmosphere
into the leaf interior, where it is utilized in photosynthesis in the
chloroplasts of the mesophyll cells (Figure 7). The familiar branching
pattern of the vascular tissues in the leaf serves to irrigate the mesophyll
cells in order to replace water that has been lost through evaporation.
Water loss is generally thought to be undesirable, especially in times of
drought (although the cooling effect of evaporation may be of significant
value). The outer layer of leaf cells (the epidermis; see Figure 7) is
covered with a layer of waxy material called cutin that tends to prevent
water loss.

CO, and water vapor respectively enter and leave the leaf through
small holes in the epidermis called stomata (Meidner & Mansfield 1968).
An individual stomate is composed of two specialized guard cells (Figure
8) which, through their elastic deformation under hydrostatic loading,
can affect the width of the stomatal pore. Thus stomata can act like
valves to limit water loss when CO, is not needed for photosynthesis. For
example, stomata are generally closed at night when the absence of
sunlight prevents photosynthesis.

Cooke et al. (1976) have considered the elastostatics of a stomatal
guard cell by using a linear anisotropic thin-shell model and a finite-
element analysis. An increase in hydrostatic pressure in the guard cell
tended to open the stomatal pore, while an increase in neighboring
subsidiary cell pressure tended to close the pore. It was shown that the
elliptic shape of the stomate (Figure 84, b) is critical for opening and that
other features (such as wall thickening and radial stiffening) could help
the opening process, but were not essential. In particular, it was shown
analytically that a circular torus model would close rather than open

Figure 7 Schematic diagram of a trans-
verse section of a leaf (after Nobel 1974).
A representative value for leaf thickness is
300 pm. (m) mesophyll cell, (e) epidermal
cell, (g) guard cell, (s) subsidiary cell.
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upon inflation. This work was extended by Cooke et al. (1977) to include
nonlinear effects.

The flow of water along the transpiration stream in the leaf proceeds
through the branching xylem system to the xylem termini, and then
continues through the apoplastic mesophyll cell walls to those mesophyll
cells near the stomatal pore where evaporation occurs. Stroshine et al.
(1979) have studied flow in the leaf xylem. This involves consideration of
branching xylem vessels of various sizes as well as a diffusive flow
between the xylem and the leaf symplasm (the interior of the mesophyll
cells). It was concluded that the large vascular bundles offer relatively
little resistance to flow compared with intermediate and small bundles.

The site of evaporation is the menisci in the mesophyll cell walls. These
liquid-air interfaces are bounded by the strands of cellulose that con-
stitute the cell wall. A representative interfibrillar space has a “diameter”
of about 0.01 pm (Nobel 1974, p. 51). The pressure difference across a
spherical meniscus is given by

Ap=2a/r, (2)
where

o = surface tension coefficient
=73 dyne/cm for an air-water interface at 20°C,

r = radius of curvature of the meniscus (cm).

Figure 8 Schematic diagram of an elliptical stomate. («) View looking onto the leaf
surface. Pore open. (bh) Pore closed. (¢) Transverse view of finite-element model of two
guard cells (Cooke et al. 1976). Note the change of scale. Dashed and solid curves represent
initial and deformed configurations respectively.



38 RAND

Here A p is about 300 bars, and since one bar is equal to a gravitational
head of about ten meters, this effect accounts for the ascent of water to
the tops of the highest trees. Of course this requires that the continuous
fluid column reaching from the roots to the leaves be under considerable
tension. Although the theoretical tensile strength of a perfect column of
water greatly exceeds 300 bars (Hammel & Scholander 1976, p. 18;
Nobel 1974, p. 52), the presence of small air bubbles and other imperfec-
tions reduces the observed tensile strength in laboratory experiments.
Nevertheless, the plant is evidently able to grow a vascular system
relatively free from air bubble defects.

The dynamics of a spherical evaporating meniscus has been studied by
Rand (1978a). The analysis involved a nonlinear differential-integral
equation and predicted damped oscillatory motions for a certain range of
parameter values.

Gaseous Diffusion

The evaporating water proceeds by gaseous diffusion through the stomatal
pore (if it is open), through a still air layer adjacent to the leaf, and into
the ambient atmosphere. In a similar fashion, CO, diffuses into the leaf
interior where it is absorbed into the wet mesophyll cell walls. Gaseous
diffusion in the leaf has received a great deal of attention since it was
first studied from a mathematical point of view by Brown & Escombe
(1900). By modeling the leaf surface as a plane septum with a circular
hole and the pore as a circular cylinder, they were able to explain the
experimentally observed relatively large rates of transpiration from leaves
(comparable to evaporative fluxes from an equal-sized body of water). A
recent review of leaf diffusion models (Cooke & Rand 1980) contains
many references in addition to those that follow.

Bange (1953) used an approximate analysis in order to consider a
realistic geometry for the leaf interior as well as a still air layer outside
the leaf. He found that as the wind speed increased, i.e. as the thickness
of the still air boundary layer decreased, the stomata played an increas-
ingly important role in controlling gaseous fluxes. Although a wider pore
always results in a larger flux, this effect was shown to be negligible for
relatively thick boundary layers.

Cooke (1967) considered diffusion through an elliptical pore. Using a
relationship involving complete elliptic integrals, he showed that a slightly
open stomate can permit relatively large diffusion rates. For example, an
ellipse with a major to minor axis ratio of 20 has a discharge rate that is
39% of that of a circle of diameter equal to the major axis!

Cooke (1969) considered the interaction effects between neighboring
stomatal pores. Using separation of variables, he showed that the flux
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depends on both the spacing between stomata on the leaf surface and the
boundary-layer thickness. Substantial increases in flux due to interaction
effects could occur for closely spaced stomata with a relatively thin
boundary layer.

Holcomb & Cooke (1977) extended this work by using the analogy
between diffusion and the flow of electric current in an aqueous electro-
lyte solution. They built an electrolytic tank (copper sulphate in a copper
and plexiglass container) and used it to study the effects of pore
eccentricity, stomatal spacing, boundary-layer thickness, and pore depth.

Parlange & Waggoner (1970) used conformal mapping to study diffu-
sion through a two-dimensional slit. They compared their results with the
formula of Brown & Escombe (1900) and found the latter to be most
accurate for thin, deep slits.

Current treatments of gaseous diffusion in the leaf (see, for example,
Nobel 1974) utilize a one-dimensional model which, by analogy with
Ohm’s law, involves a series of resistances, each associated with a portion
of the pathway. Parkhurst (1977) compared a three-dimensional field-
equation approach with the commonly used one-dimensional resistance
model and found that the latter involved an error of 44%.

Webster (1981) has applied the concept of the effectiveness factor to
leaf diffusion in order to gauge the extent to which assimilation is
diffusion limited. This factor is defined as the ratio of the actual
assimilation rate to the assimilation rate that would occur in the absence
of any CO, concentration gradients. An effectiveness factor of unity
indicates that assimilation is kinetically limited, while a value consider-
ably smaller than unity indicates that losses due to diffusion are signifi-
cant.

Nearly all studies of leaf diffusion have assumed steady-state diffusion.
Gross (1981), however, included time-dependent terms in order to esti-
mate the time scale of the gaseous diffusion process. He found equi-
librium to be essentially attained in less than one second.

The gaseous diffusion of water vapor and CO, differ in one important
respect: although the CO, diffuses into the deep interior of the leaf to be
absorbed by the mesophyll cells, several independent experimental inves-
tigations have shown that water vapor evaporates only from those cell
walls near the stomatal pore (Tyree & Yianoulis 1980). This phenomenon
has been explained by considering the physical chemistry of equilibrium
between the liquid and gaseous phases at the cell wall (Rand 1977a,b).
Since the cell-wall liquid is a dilute solution in which CO, is the solute
and water the solvent, CO, satisfies Henry’s law while water vapor
satisfies Raoult’s law. When stated as boundary conditions for the
diffusion problem, these principles give substantially different predic-
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tions for CO, and water vapor, in qualitative agreement with the experi-
mental observations. In related work, the diffusion of CO, in sun versus
shade (i.e. thick versus thin) leaves was studied by Rand (1978b).

After diffusing as a gas to the mesophyll cell walls, CO, continues to
diffuse as a solute to the chloroplasts in the cell interior. Sinclair et al.
(1977) and Sinclair & Rand (1979) have modeled this process by assum-
ing spherical cell geometry and Michaelis-Menten reaction kinetics
(Thornley 1976). The resulting nonlinear ordinary differential equation
for CO, concentration as a function of radial position was solved
approximately by perturbation methods. Expressions for the rate of CO,
assimilation by a single cell were obtained in terms of cell size and
biochemical parameters.

This spherical cell model was incorporated into a more comprehensive
model for CO, assimilation by Rand & Cooke (1980). The model took
account of the gradual absorption of CO, into the mesophyll cell walls as
CO, diffuses inward (i.e. diffusion with a distributed sink), as well as the
effects of variation in cell-packing density. An approximate formula for
CO, flux into the leaf in terms of basic geometrical and biochemical
parameters was obtained by perturbations.

Stomatal Oscillations

A problem related to the gaseous fluxes in the leaf concerns the dynamic
behavior of the stomatal apparatus. Experimental observations have
revealed that the width of the stomatal pore often oscillates, typically
with a period ranging from 10 to 50 min. Delwiche & Cooke (1977)
modeled this phenomenon by balancing water fluxes between the guard
cell, the subsidiary cell, and the rest of the plant. The gaseous flux
through the stomatal pore acts like a feedback element and is responsible
for the oscillation, which may be described as follows: Water evaporating
from the wet mesophyll and subsidiary cell walls diffuses through the
stomatal pore to the leaf exterior. This water is replaced both by a flux
from the roots via the xylem, and by a flux from the guard cells to the
subsidiary cells. The resulting decrease in hydrostatic pressure in the
guard cells causes the stomatal pore width to decrease (Cooke et al.
1976). A smaller pore width slows the rate of evaporation, increasing the
water potential in the mesophyll and causing water to accumulate there.
In response to this accumulation, water diffuses back to the guard cells,
increasing their hydrostatic pressure and increasing the pore width. The
model takes the form of an autonomous system of two first-order
ordinary differential equations for p, and p; (the pressures in the guard
and subsidiary cells). The resulting flow in the p,-p plane exhibits a limit
cycle (Figure 9).
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Figure 9 Limit cycles representing stomatal oscillations in the Pyps plane. Here Py and p,
represent hydrostatic pressures in guard and subsidiary cells respectively, and w represents
pore width. The region above the straight line corresponds to a closed pore (w = 0). Arrow
shows direction of increasing pore width. (a) Stomatal oscillation due to hydraulic feedback
loop only (Delwiche & Cooke 1977). (b) Stomatal oscillation due to both hydraulic and
CO, feedback effects (Upadhyaya et al. 1980a,b).

This work was extended by Rand et al. (1981) by embedding the
original system of Delwiche & Cooke (1977) into a one-parameter family
of systems. It was found that as the parameter (which represents the
concentration of the osmotically active solutes in the guard cell) is varied,
the dynamical properties exhibited by the system change (Figure 10). The
system was shown to contain a Hopf bifurcation (Marsden & McCracken
1976) that involved the genesis of an unstable limit cycle. The oscillatory
behavior was seen as a kind of dynamical bridge between the open and
closed pore equilibrium states.

Upadhyaya et al. (1980a,b) extended the Delwiche & Cooke (1977)
model by including CO, feedback effects. This involved modeling the
guard cell biochemistry in order to include a CO, sensor in the system.

Figure 10 Changes in the amplitude of

the stomatal oscillation of Figure 9a due

AMPLITUDE to changes in a system parameter (Rand

et al. 1981). Zero amplitude corresponds

to equilibrium behavior. The dashed and

solid lines correspond to unstable, and

stable motions respectively. At point A an

unstable equilibrium point becomes stable

and throws off an unstable limit cycle (a

Hopf bifurcation). At point B a stable and

A PARAMETER an unstable limit cycle coalesce. Arrows
represent jump phenomena.
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The model displayed a limit cycle oscillation, which involved a 2 min
CO,-based oscillation superimposed on the 20-min water-based oscilla-
tion previously discussed (Figure 9), in agreement with the experimental
observations of other investigators.

In order to explore the effects of coupling between neighboring stomata,
Rand et al. (1982) studied a model of the dynamics of a system of N
coupled stomatal oscillators. This work was based on the possibility that
even on the same leaf, some stomata may be open while others are closed.
Although in principle one may envision waves of stomatal-opening
moving across the leaf surface, analysis of the model predicted that for a
wide range of parameter values a uniform leaf would exhibit a stable,
spatially uniform, synchronized behavior.

Why do stomata oscillate? That is, in terms of Darwinian evolution, of
what advantage to the plant are stomatal oscillations? Upadhyaya et al.
(1981) investigated this question by comparing gaseous fluxes through a
stomatal pore in an open equilibrium state with fluxes through an
oscillating pore. For typical values of the system parameters, they found
that stomatal oscillations tend to conserve water under relatively dry
atmospheric conditions. However, this savings in moisture content occurs
at the expense of a reduction in the CO, assimilation rate.

FLOW IN THE ROOT

Although we are concerned only with the role of the root as an organ for
absorbing water and minerals from the soil, note that the root also serves
to store carbohydrates and to anchor the plant in the soil.

Figure 11 shows a schematic diagram of a transverse section of a root.
Water is absorbed from the soil through the many root hairs (the
presence of which greatly increases the absorbing surface area of the
root) and flows radially inward across a region of storage tissue called
the cortex, toward the xylem in the centrally located vascular tissue.
Between the cortex and the vascular tissue, however, lies the endodermis,
a single layer of cells that are separated from one another by an
impermeable barrier called the casparian strip. Water must pass through
the symplasm of the endodermal cells in order to enter the vascular
tissue. Thus the endodermis and casparian strip locally divide the apo-
plasm into two disconnected regions. Although the role of the endoder-
mis is uncertain, it may function as a filter, selectively absorbing miner-
als, and it may be the site of observed changes in the plant’s resistance to
water flux, permitting absorption to occur more readily when the soil is
less moist. Once the absorbed water reaches the xylem it flows axially.
See Newman (1976) for a summary of flow in the root.
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Figure 11 Schematic diagram of a trans-
verse section of a root about one cm from
the root tip (after Nobel 1974). (R) root
hair, (C) cortex, (E) endodermis, (CS)
casparian strip, (V) vascular tissue.

Unlike the leaf, the root has received relatively little attention from
fluid mechanicians. The usual approach has been to use a lumped system
resistance-capacitance electric circuit analog (see, for example, Seaton &
Landsberg 1978). Although such models yield reasonable estimates for
overall plant water fluxes, they do not take account of the geometry of
the root. Of greater fluid mechanical interest are the following models,
which involve a field-theory approach.

Molz (1975) considered radial diffusive flow in a cylindrical root
surrounded by a cylindrical region of soil. Continuity of water potential
and of water flux were assumed at the soil-root interface. The study
indicated that water potential gradients in the soil are small compared
with those in the root, except under very dry soil conditions.

Landsberg & Fowkes (1978) considered both radial absorption and
axial diffusion of water along the length of a root. Their model predicted
the value of the plant water potential at the base of the plant necessary to
sustain a given flow rate through a root system with given characteristics.
An expression was obtained for the optimal root length such that the
overall root resistance to water is minimized. It is interesting to note that
the mathematical statement of this problem is identical to that used to
describe the assimilation of CO, in the intercellular air pathway of a leaf
(Rand 1977a,b).

CONCLUDING REMARKS

As in other branches of biomechanics, research work on plants involves
greater emphasis on modeling than does work in more traditional areas
of mechanics. The researcher is presented with the biological description
of the phenomenon to be studied and must invent an appropriate
boundary-value problem to represent it.

Moreover the work is by its nature interdisciplinary. The interaction
between mechanics and fields such as agricultural engineering or plant
physiology is essential, both to generate the relevant problems and to
evaluate the significance of the solutions.
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Finally, we note that a glance at the contents of a current biome-
chanics journal or conference reveals that almost all the research work
concerns animal systems, and most of that the human body. In view of
the importance of plants to our planet and to our society, we might ask
why the biomechanics of plants has received so little attention. Perhaps it
is a case of chauvinism by species; work by our species has proceeded
most rapidly on biological systems most similar to ourselves, and plants
are very different. In any case it is clear that the body of knowledge of
biomechanics, a relatively new field, is still developing new branches and
we expect to see more attention given to the study of plants in the future.
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