ENVIRONMENTAL FLUID MECHANICS

Lecture 1 – Introduction

Why do we need to worry about motion of air and water?

Benoit Cushman-Roisin Thayer School of Engineering Dartmouth College

			oompunson		ooipiirioo
	Environmental		Geophysical		
	Fluid	Fluid	Fluid		
	Mechanics	Mechanics	Dynamics	Hydraulics	Hydrology
Air example	Sea breeze	Airfoil	Storm		
Water example	Danube River	Pump	Gulf Stream	Dam	Watershed
Turbulence	Beneficial	Detrimental	Secondary	Secondary	Unimportant
	(dilution)	(drag)	importance	importance	
Human control	Limited	Dominant	Nil	Dominant	Limited
Purpose	Prediction &	Design &	Prediction &	Design &	Prediction &
	Decision	Operation	Warnings	Operation	Decision

Processes & Systems

In EFM, it is useful to distinguish between processes and systems.

Processes allow us to consider one type of physics at a time, and the objective is understanding.

Systems consist of multiple processes occurring in one place, and the objective is modeling, prediction and/or decision making.

Example of processes	Examples of systems		
Turbulence	River		
Convection	Lake		
Waves	Estuary		
Instability	Urban airshed		
Sea breeze	Atmospheric boundary layer		
Baroclinic instability	Troposphere (weather)		

	Horizontal	Vertical	Velocity	Time	
	length scale	length scale	scale	scale	
Processes					
Micro-turbulence	1-10 cm	1-10 cm	1-10 cm/s	few seconds	
Shear turbulence	0.1-10 m	0.1-10 m	0.1-1 m/s	few minutes	
Water gravity waves	1-100 m	1-100 m	1-10 m/s	seconds to minutes	
Convection	1-1000 m	1-1000 m	0.1-1 m/s	hours, days or seasons	
Atmospheric systems					
Urban airshed	1-10 km	100-1000 m	1-10 m/s	hours	
Sea breeze	1-10 km	100-1000 m	1-10 m/s	hours	
Thunderstorms	1-10 km	100-5000 m	1-10 m/s	hours	
Mountain waves	10-100 km	10-1000 m	1-10 m/s	days	
Tornado	10-100 m	100-1000 m	100 m/s	minutes to hours	
Hurricane / Typhoon	100-1000 km	10 km	100 m/s	days to weeks	
Weather patterns	100-5000 km	10 km	1-10 m/s	days to weeks	
Climatic variations	global	50 km	1-10 m/s	decades and beyond	
Water systems					
Wetlands	10-1000 m	10 m	0 to 1 cm/s	days to seasons	
Small stream	1-10 m	0.1-1 m	1-100 cm/s	seconds to minutes	
Major river	10-1000 m	1-10 m	1-10 cm/s	minutes to hours	
Lakes	1-100 km	10-1000 m	1-10 m/s	hours (winds) to seasons (heat)	
Ocean tides	basin scale	basin depth	0.1-10 m/s	hours	
Estuaries	1-10 km	1-10 m	0.1-1 m/s	hours to days	
Coastal Ocean	1-100 km	10-1000 m	0.1-1 m/s	few days	
Deep ocean	basin scale	basin depth	0.01-1 m/s	weeks to decades	

Urban airshed:

How high does the daily atmospheric boundary layer reach? How much emission can be allowed? At what point do we get smog?

where ρ = fluid density, C_p = heat capacity (at constant pressure), α = thermal expansion coefficient, g = gravitational acceleration, h = height, and Q = heat flux per horizontal area (in W/m²).

Stratification

Two cases: Either the stratification is unstable (heavier fluid on top) or it is stable (heavier fluid at bottom).

In the case of unstable stratification, turbulence is enhanced. The question becomes which type dominates. Is it the u_* from mechanical shear or w_* from thermal convection? This reduces to comparing

$$u_* = \sqrt{\frac{\tau}{\rho}} \quad \stackrel{?}{\longleftrightarrow} \quad w_* = \left(\frac{\alpha \, g \, h \, Q}{\rho \, C_p}\right)^{1/3}$$

In the atmospheric boundary layer (first 500 to 1000 m of atmosphere above ground), mechanical turbulence dominates at high winds and during cloudy days (wind-induced shear turbulence generated at ground level helps mix the atmosphere vertically), while convective turbulence dominates at low winds and on sunny days (rising thermals create more turbulence than the wind scrubbing against the ground surface).

Note that in the previous developments, the following combinations of variables occurred:

$$\frac{\alpha \, g \, Q}{\rho \, C_p} = \alpha \, g < w'T' > \text{ which includes a factor } \alpha \, g \, \Delta T$$

This factor is related to the density difference by virtue of the equation of state, which expresses thermal expansion (decrease of density with increased temperature):

$$\rho = \rho_o [1 - \alpha (T - T_o)] \rightarrow \Delta \rho = -\rho_o \alpha \Delta T$$

Thus, the temperature differences are important because they generate density differences.

The factor g in front tells that, in turn, these density differences are important insofar as they create buoyancy forces.

This leads us to defining the buoyancy: $b = \alpha \ g \ T_{anomaly} = \alpha \ g \ \Delta T = - \frac{g \ \Delta \rho}{\rho_o}$

Equation of state for thermal stratification

$$\rho = \rho_o [1 - \alpha (T - T_o)] \rightarrow \Delta \rho = -\rho_o \alpha \Delta T$$

with

AIR at standard temperature (15°C) and pressure (1 atm = 101.33 kPa):

 ho_{o} = 1.225 kg/m³ $m \alpha$ = 3.47 x 10⁻³ °C⁻¹

FRESHWATER at standard temperature (15°C) and atmospheric pressure:

 $\rho_{\rm o} = 999 \text{ kg/m}^3$ $\alpha = 2.57 \times 10^{-4} \text{ °C}^{-1}$

SEAWATER at standard temperature (10°C) and salinity of 35 ppt:

 $ho_{\rm o}$ = 1027 kg/m³ m lpha = 1.7 x 10⁻⁴ °C⁻¹

