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1 Introduction

What is number theory? One might have thought that
it was simply the study of numbers, but that is too
broad a definition, since numbers are almost ubiqui-
tous in mathematics. To see what distinguishes num-
ber theory from the rest of mathematics, let us look at
the equation x2 + y2 = 15925, and consider whether
it has any solutions. One answer is that it certainly
does: indeed, the solution set forms a circle of radius√

15925 in the plane. However, a number theorist is
interested in integer solutions, and now it is much less
obvious whether any such solutions exist.

A useful first step in considering the above question
is to notice that 15925 is a multiple of 25: in fact,
it is 25 × 637. Furthermore, the number 637 can be
decomposed further: it is 49 × 13. That is, 15 925 =
52 × 72 × 13. This information helps us a lot, because
if we can find integers a and b such that a2 + b2 = 13,
then we can multiply them by 5 × 7 = 35 and we
will have a solution to the original equation. Now we
notice that a = 2 and b = 3 works, since 22 + 32 =
13. Multiplying these numbers by 35, we obtain the
solution 702 + 1052 = 15925 to the original equation.

As this simple example shows, it is often useful
to decompose positive integers multiplicatively into
components that cannot be broken down any further.
These components are called prime numbers, and the
fundamental theorem of arithmetic states that
every positive integer can be written as a product of
primes in exactly one way. That is, there is a one-
to-one correspondence between positive integers and
finite products of primes. In many situations we know
what we need to know about a positive integer once we
have decomposed it into its prime factors and under-
stood those, just as we can understand a lot about
molecules by studying the atoms of which they are
composed. For example, it is known that the equation
x2 +y2 = n has an integer solution if and only if every
prime of the form 4m + 3 occurs an even number of
times in the prime factorization of n. (This tells us,

for instance, that there are no integer solutions to the
equation x2 +y2 = 13475, since 13475 = 52 ×72 ×11,
and 11 appears an odd number of times in this prod-
uct.)

Once one begins the process of determining which
integers are primes and which are not, it is soon appar-
ent that there are many primes. However, as one goes
further and further, the primes seem to consist of a
smaller and smaller proportion of the positive inte-
gers. They also seem to come in a somewhat irregular
pattern, which raises the question of whether there is
any formula that describes all of them. Failing that,
can one perhaps describe a large class of them? We can
also ask whether there are infinitely many primes? If
there are, can we quickly determine how many there
are up to a given point? Or at least give a good esti-
mate for this number? Finally, when one has spent
long enough looking for primes, one cannot help but
ask whether there is a quick way of recognizing them.
This last question is discussed in computational

number theory; the rest motivate this article.
Now that we have discussed what marks number

theory out from the rest of mathematics, we are ready
to make a further distinction: between algebraic and
analytic number theory. The main difference is that
in algebraic number theory (which is the main topic
of algebraic numbers) one typically considers ques-
tions with answers that are given by exact formulas,
whereas in analytic number theory, the topic of this
article, one looks for good approximations. For the sort
of quantity that one estimates in analytic number the-
ory, one does not expect an exact formula to exist,
except perhaps one of a rather artificial and unillu-
minating kind. One of the best examples of such a
quantity is one we shall discuss in detail: the number
of primes less than or equal to x.

Since we are discussing approximations, we shall
need terminology that allows us to give some idea of
the quality of an approximation. Suppose, for exam-
ple, that we have a rather erratic function f(x) but are
able to show that, once x is large enough, f(x) is never
bigger than 25x2. This is useful because we under-
stand the function g(x) = x2 quite well. In general,
if we can find a constant c such that |f(x)| � cg(x)
for every x, then we write f(x) = O(g(x)). A typical
usage occurs in the sentence “the average number of
prime factors of an integer up to x is log log x+O(1)”;
in other words, there exists some constant c > 0 such
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that |the average − log log x| � c once x is sufficiently
large.

We write f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1; and
also f(x) ≈ g(x) when we are being a little less precise,
that is, when we want to say that f(x) and g(x) come
close when x is sufficiently large, but we cannot be, or
do not want to be, more specific about what we mean
by “come close.”

It is convenient for us to use the notation
∑

for
sums and

∏
for product. Typically we will indicate

beneath the symbol what terms the sum, or product,
is to be taken over. For example,

∑
m�2 will be a sum

over all integers m that are greater than or equal to 2,
whereas

∏
p prime will be a product over all primes p.

2 Bounds for the Number of Primes

Ancient Greek mathematicians knew that there are
infinitely many primes. Their beautiful proof by con-
tradiction goes as follows. Suppose that there are only
finitely many primes, say k of them, which we will
denote by p1, p2, . . . , pk. What are the prime factors of
p1p2 · · · pk + 1? Since this number is greater than 1 it
must have at least one prime factor, and this must be
pj for some j (since all primes are contained amongst
p1, p2, . . . , pk). But then pj divides both p1p2 · · · pk

and p1p2 · · · pk+1, and hence their difference, 1, which
is impossible.

Many people dislike this proof, since it does not
actually exhibit infinitely many primes: it merely
shows that there cannot be finitely many. It is more
or less possible to correct this deficiency by defin-
ing the sequence x1 = 2, x2 = 3 and then xk+1 =
x1x2 · · · xk +1 for each k � 2. Then each xk must con-
tain at least one prime factor, qk say, and these prime
factors must be distinct, since if k < �, then qk divides
xk which divides x� −1, while q� divides x�. This gives
us an infinite sequence of primes.

In the seventeenth century Euler gave a differ-
ent proof that there are infinitely many primes, one
that turned out to be highly influential in what was
to come later. Suppose again that the list of primes
is p1, p2, . . . , pk. As we have mentioned, the funda-
mental theorem of arithmetic implies that there is a
one-to-one correspondence between the set of all inte-
gers and the set of products of the primes, which, if
those are the only primes, is the set {pa1

1 pa2
2 · · · pak

k :

a1, a2, . . . , ak � 0}. But, as Euler observed, this
implies that a sum involving the elements of the first
set should equal the analogous sum involving the ele-
ments of the second set:∑

n�1
n a positive integer

1
ns

=
∑

a1,a2,...,ak�0

1
(pa1

1 pa2
2 · · · pak

k )s

=
( ∑

a1�0

1
(pa1

1 )s

)( ∑
a2�0

1
(pa2

2 )s

)
· · ·

( ∑
ak�0

1
(pak

k )s

)

=
k∏

j=1

(
1 − 1

pj
s

)−1

.

The last equality holds because each sum in the
second-last line is the sum of a geometric progres-
sion. Euler then noted that if we take s = 1, the
right-hand side equals some rational number (since
each pj > 1) whereas the left-hand side equals ∞.
This is a contradiction, so there cannot be finitely
many primes. (To see why the left-hand side is infi-
nite when s = 1, note that (1/n) �

∫ n+1
n

(1/t) dt

since the function 1/t is decreasing, and therefore∑N−1
n=1 (1/n) �

∫ N

1 (1/t) dt = log N which tends to ∞
as N → ∞.)

During the proof above, we gave a formula for∑
n−s under the false assumption that there are only

finitely many primes. To correct it, all we have to do is
rewrite it in the obvious way without that assumption:

∑
n�1

n a positive integer

1
ns

=
∏

p prime

(
1 − 1

ps

)−1

. (1)

Now, however, we need to be a little careful about
whether the two sides of the formula converge. It is
safe to write down such a formula when both sides are
absolutely convergent, and this is true when s > 1.
(An infinite sum or product is absolutely convergent if
the value does not change when we take the terms in
any order we want.)

Like Euler, we want to be able to interpret what
happens to (1) when s = 1. Since both sides converge
and are equal when s > 1, the natural thing to do
is consider their common limit as s tends to 1 from
above. To do this we note, as above, that the left-hand
side of (1) is well approximated by∫ ∞

1

dt

ts
=

1
s − 1

,
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so it diverges as s → 1+. We deduce that∏
p prime

(
1 − 1

p

)
= 0. (2)

Upon taking logarithms and discarding negligible
terms, this implies that∑

p prime

1
p

= ∞. (3)

So how numerous are the primes? One way to get
an idea is to determine the behaviour of the sum
analogous to (3) for other sequences of integers. For
instance,

∑
n�1 1/n2 converges, so the primes are, in

this sense, more numerous than the squares. This
argument works if we replace the power 2 by any
s > 1, since then, as we have just observed, the sum∑

n�1 1/ns is about 1/(s − 1) and in particular con-
verges. In fact, since

∑
n�1 1/n(log n)2 converges, we

see that the primes are in the same sense more numer-
ous than the numbers {n(log n)2 : n � 1}, and hence
there are infinitely many integers x for which the
number of primes less than or equal to x is at least
x/(log x)2.

Thus, there seem to be primes in abundance, but
we would also like to verify our observations, made
from calculations, that the primes constitute a smaller
and smaller proportion of the integers as the integers
become larger and larger. The easiest way to see this is
to try to count the primes using the “sieve of Eratos-
thenes.” In the sieve of Eratosthenes one starts with
all the positive integers up to some number x. From
these, one deletes the numbers 4, 6, 8 and so on—that
is, all multiples of 2 apart from 2 itself. One then takes
the first undeleted integer greater than 2, which is 3,
and deletes all its multiples—again, not including the
number 3 itself. Then one removes all multiples of 5
apart from 5, and so on. By the end of this process,
one is left with the primes up to x.

This suggests a way to guess at how many there
are. After deleting every second integer up to x other
than 2 (which we call “sieving by 2”) one is left with
roughly half the integers up to x; after sieving by 3,
one is left with roughly two-thirds of those that had
remained; continuing like this we expect to have about

x
∏
p�y

(
1 − 1

p

)
(4)

integers left by the time we have sieved with all the
primes up to y. Once y =

√
x the undeleted integers

are 1 and the primes up to x, since every composite
has a prime factor no bigger than its square root. So,
is (4) a good approximation for the number of primes
up to x when y =

√
x?

To answer this question, we need to be more pre-
cise about what the formula in (4) is estimating. It is
supposed to approximate the number of integers up
to x that have no prime factors less than or equal to
y, plus the number of primes up to y. The so-called
inclusion–exclusion principle can be used to show that
the approximation given in (4) is accurate to within
2k, where k is the number of primes less than or equal
to y. Unless k is very small, this error term of 2k is
far larger than the quantity we are trying to estimate,
and the approximation is useless. It is quite good if k

is less than a small constant times log x, but, as we
have seen, this is far less than the number of primes
we expect up to y if y ≈

√
x. Thus it is not clear

whether (4) can be used to obtain a good estimate
for the number of primes up to x. What we can do,
however, is use this argument to give an upper bound
for the number of primes up to x, since the number of
primes up to x is never more than the number of inte-
gers up to x that are free of prime factors less than or
equal to y, plus the number of primes up to y, which
is no more than 2k plus the expression in (4).

Now, by (2), we know that as y gets larger and
larger the product

∏
p�y(1 − 1/p) converges to zero.

Therefore, for any small positive number ε we can find
a y such that

∏
p�y(1 − 1/p) < ε/2. Since every term

in this product is at least 1/2, the product is at least
1/2k. Hence, for any x � 22k our error term, 2k, is
no bigger than the quantity in (4), and therefore the
number of primes up to x is no larger than twice (4),
which, by our choice of y, is less than εx. Since we
were free to make ε as small as we liked, the primes
are indeed a vanishing proportion of all the integers,
as we predicted.

Even though the error term in the inclusion–
exclusion principle is too large for us to use that
method to estimate (4) when y =

√
x, we can still

hope that (4) is a good approximation for the number
of primes up to x: perhaps a different argument would
give us a much smaller error term. And this turns
out to be the case: in fact, the error never gets much
bigger than (4). However, when y =

√
x the number of

primes up to x is actually about 8/9 times (4). So why
does (4) not give a good approximation? After sieving
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with prime p we supposed that roughly 1 in every p of
the remaining integers were deleted: a careful analy-
sis yields that this can be justified when p is small,
but that this becomes an increasingly poor approxi-
mation of what really happens for larger p; in fact (4)
does not give a correct approximation once y is bigger
than a fixed power of x. So what goes wrong? In the
hope that the proportion is roughly 1/p lies the unspo-
ken assumption that the consequences of sieving by p

are independent of what happened with the primes
smaller than p. But if the primes under consideration
are no longer small, then this assumption is false. This
is one of the main reasons that it is hard to estimate
the number of primes up to x, and indeed similar dif-
ficulties lie at the heart of many related problems.

One can refine the bounds given above but they
do not seem to yield an asymptotic estimate for the
primes (that is, an estimate which is correct to within
a factor that tends to 1 as x gets large). The first good
guesses for such an estimate emerged at the begin-
ning of the nineteenth century, none better than what
emerges from Gauss’s observation, made when study-
ing tables of primes up to three million, at 16 years of
age, that “the density of primes at around x is about
1/ log x.” Interpreting this, we guess that the number
of primes up to x is about

x∑
n=2

1
log n

≈
∫ x

2

dt

log t
.

Let us compare this prediction (rounded to the nearest
integer) with the latest data on numbers of primes, dis-
covered by a mixture of ingenuity and computational
power. Table 1 shows the actual numbers of primes
up to various powers of 10 together with the differ-
ence between these numbers and what Gauss’s formula
gives. The differences are far smaller than the numbers
themselves, so his prediction is amazingly accurate. It
does seem always to be an overcount, but since the
width of the last column is about half that of the cen-
tral one it appears that the difference is something
like

√
x.

In the 1930s, the great probability theorist, Cramér,
gave a probabilistic way of interpreting Gauss’s predic-
tion. We can represent the primes as a sequence of 0s
and 1s: Putting a “1” each time we encounter a prime,
and a “0” otherwise, we obtain, starting from 3, the
sequence 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, . . . . Cramér’s idea
is to suppose that this sequence, which represents

Table 1 Primes up to various x, and the
overcount in Gauss’s prediction.

Overcount:

x π(x) = #{primes � x}
∫ x

2

dt

log t
− π(x)

108 5 761 455 753
109 50 847 534 1 700
1010 455 052 511 3 103
1011 4 118 054 813 11 587
1012 37 607 912 018 38 262
1013 346 065 536 839 108 970
1014 3 204 941 750 802 314 889
1015 29 844 570 422 669 1 052 618
1016 279 238 341 033 925 3 214 631
1017 2 623 557 157 654 233 7 956 588
1018 24 739 954 287 740 860 21 949 554
1019 234 057 667 276 344 607 99 877 774
1020 2 220 819 602 560 918 840 222 744 643
1021 21 127 269 486 018 731 928 597 394 253
1022 201 467 286 689 315 906 290 1 932 355 207

the primes, has the same properties as a “typical”
sequence of 0s and 1s, and to use this principle to
make precise conjectures about the primes. More pre-
cisely, let X3, X4, . . . be an infinite sequence of ran-

dom variables taking the values 0 or 1, and let the
variable Xn equal 1 with probability 1/ log n (so that
it equals 0 with probability 1 − 1/ log n). Assume also
that the variables are independent, so for each m

knowledge about the variables other than Xm tells
us nothing about Xm itself. Cramér’s suggestion was
that any statement about the distribution of 1s in the
sequence that represents the primes will be true if and
only if it is true with probability 1 for his random
sequences. Some care is needed in interpreting this
statement: for example, with probability 1 a random
sequence will contain infinitely many even numbers.
However, it is possible to formulate a general princi-
ple that takes account of such examples.

Here is an example of a use of the Gauss–Cramér
model. With the help of the central limit theorem

one can prove that, with probability 1, there are∫ x

2

dt

log t
+ O(

√
x log x)

1s among the first x terms in our sequence. The model
tells us that the same should be true of the sequence
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representing primes, and so we predict that

#{primes up to x} =
∫ x

2

dt

log t
+ O(

√
x log x), (5)

just as the table suggests.
The Gauss–Cramér model provides a beautiful way

to think about distribution questions concerning the
prime numbers, but it does not give proofs, and it
does not seem likely that it can be made into such a
tool; so for proofs we must look elsewhere. In analytic
number theory one attempts to count objects that
appear naturally in arithmetic, yet which resist being
counted easily. So far, our discussion of the primes
has concentrated on upper and lower bounds that
follow from their basic definition and a few elemen-
tary properties—notably the fundamental theorem of
arithmetic. Some of these bounds are good and some
not so good. To improve on these bounds we shall do
something that seems unnatural at first, and reformu-
late our question as a question about complex func-
tions. This will allow us to draw on deep tools from
analysis.

3 The “Analysis” in Analytic Number
Theory

These analytic techniques were born in an 1859 mem-
oir of Riemann, in which he looked at the function
that appears in the formula (1) of Euler, but with one
crucial difference: now he considered complex values
of s. To be precise, he defined what we now call the
Riemann zeta function as follows:

ζ(s) :=
∑
n�1

1
ns

.

It can be shown quite easily that this sum converges
whenever the real part of s is greater than 1, as we
have already seen in the case of real s. However, one
of the great advantages of allowing complex values of
s is that the resulting function is holomorphic, and
we can use a process of analytic continuation (these
terms are discussed in Section ?? of some funda-

mental mathematical definitions) to make sense
of ζ(s) for every s apart from 1. (A similar but more
elementary example of this phenomenon is the infinite
series

∑
n�0 zn, which converges if and only if |z| < 1.

However, when it does converge, it equals 1/(1 − z),
and this formula defines a holomorphic function that

is defined everywhere except z = 1.) Riemann proved
the remarkable fact that confirming Gauss’s conjec-
ture for the number of primes up to x is equivalent to
gaining a good understanding of the zeros of the func-
tion ζ(s)—that is, of the values of s for which ζ(s) = 0.
Riemann’s deep work gave birth to our subject, so it
seems worthwhile to at least sketch the key steps in the
argument linking these seemingly unconnected topics.

Riemann’s starting point was Euler’s formula (1).
It is not hard to prove that this formula is valid when
s is complex, as long as its real part is greater than 1,
so we have

ζ(s) =
∏

p prime

(
1 − 1

ps

)−1

.

If we take the logarithm of both sides and then differ-
entiate, we obtain the equation

−ζ′(s)
ζ(s)

=
∑

p prime

log p

ps − 1
=

∑
p prime

∑
m�1

log p

pms
.

We need some way to distinguish between primes p �
x and primes p > x; that is, we want to count those
primes p for which x/p � 1, but not those with x/p <

1. This can be done using the step function that takes
the value 0 for y < 1 and the value 1 for y > 1 (so
that its graph looks like a step). At y = 1, the point of
discontinuity, it is convenient to give the function the
average value, 1

2 . Perron’s formula, one of the big tools
of analytic number theory. describes this step function
by an integral, as follows. For any c > 0,

1
2πi

∫
s:Re(s)=c

ys

s
ds =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 < y < 1,
1
2 if y = 1,

1 if y > 1.

The integral is a path integral along a vertical line
in the complex plane: the line consisting of all points
c + it with t ∈ R. We apply Perron’s formula with
y = x/pm, so that we count the term corresponding
to pm when pm < x, but not when pm > x. To avoid
the “ 1

2 ,” assume that x is not a prime power. In that
case we obtain∑

pm�x
p prime, m�1

log p

=
1

2πi

∑
p prime, m�1

log p

∫
s:Re(s)=c

(
x

pm

)s ds

s

= − 1
2πi

∫
s:Re(s)=c

ζ′(s)
ζ(s)

xs

s
ds. (6)
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We can justify swapping the order of the sum and
the integral if c is taken large enough, since every-
thing then converges absolutely. Now the left-hand
side of the above equation is not counting the number
of primes up to x but rather a “weighted” version: for
each prime p we add a weight of log p to the count.
It turns out, though, that Gauss’s prediction for the
number of primes up to x follows so long as we can
show that x is a good estimate for this weighted count
when x is large. Notice that the sum in (6) is exactly
the logarithm of the lowest common multiple of the
integers less than or equal to x, which perhaps explains
why this weighted counting function for the primes is
a natural function to consider. Another explanation is
that if the density of primes near p is indeed about
1/ log p, then multiplying by a weight of log p makes
the density everywhere about 1.

If you know some complex analysis, then you will
know that Cauchy’s residue theorem allows one to
evaluate the integral in (6) in terms of the “residues”
of the integrand (ζ′(s)/ζ(s))(xs/s), that is, the poles
of this function. Moreover, for any function f that is
analytic except perhaps at finitely many points, the
poles of f ′(s)/f(s) are the zeros and poles of f . Each
pole of f ′(s)/f(s) has order 1, and the residue is sim-
ply the order of the corresponding zero, or minus the
order of the corresponding pole, of f . Using these facts
we can obtain the explicit formula

∑
p prime, m�1

pm�x

log p = x −
∑

ρ:ζ(ρ)=0

xρ

ρ
− ζ′(0)

ζ(0)
. (7)

Here the zeros of ζ(s) are counted with multiplicity:
that is, if ρ is a zero of ζ(s) of order k, then there
are k terms for ρ in the sum. It is astonishing that
there can be such a formula, an exact expression for
the number of primes up to x in terms of the zeros
of a complicated function: you can see why Riemann’s
work stretched people’s imagination and had such an
impact.

Riemann made another surprising observation
which allows us to easily determine the values of ζ(s)
on the left-hand side of the complex plane (where the
function is not naturally defined). The idea is to multi-
ply ζ(s) by some simple function so that the resulting
product ξ(s) satisfies the functional equation

ξ(s) = ξ(1 − s) for all s. (8)

He determined that this can be done by taking
ξ(s) := 1

2s(s − 1)π−s/2Γ ( 1
2s)ζ(s). Here Γ (s) is the

famous gamma function, which equals the factorial
function at positive integers (that is, Γ (n) = (n−1)!),
and is well-defined and continuous for all other s.

A careful analysis of (1) reveals that there are no
zeros of ζ(s) with Re(s) > 1. Then, with the help of
(8), we can deduce that the only zeros of ζ(s) with
Re(s) < 0 lie at the negative even integers −2, −4, . . .

(the “trivial zeros”). So, to be able to use (7), we need
to determine the zeros inside the critical strip, the set
of all s such that 0 � Re(s) � 1. Here Riemann made
yet another extraordinary observation which, if true,
would allow us tremendous insight into virtually every
aspect of the distribution of primes.

The Riemann hypothesis. If 0 � Re(s) � 1 and
ζ(s) = 0, then Re(s) = 1

2 .

It is known that there are infinitely many zeros on
the line Re(s) = 1

2 , crowding closer and closer together
as we go up the line. The Riemann hypothesis has
been verified computationally for the ten billion zeros
of lowest height (that is, with |Im(s)| smallest), it can
be shown to hold for at least 40% of all zeros, and it fits
nicely with many different heuristic assertions about
the distribution of primes and other sequences. Yet, for
all that, it remains an unproved hypothesis, perhaps
the most famous and tantalizing in all of mathematics.

How did Riemann think of his “hypothesis”? Rie-
mann’s memoir gives no hint as to how he came up
with such an extraordinary conjecture, and for a long
time afterwards it was held up as an example of the
great heights to which humankind could ascend by
pure thought alone. However, in the 1920s Siegel and
Weil got hold of Riemann’s unpublished notes and
from these it is evident that Riemann had been able
to determine the lowest few zeros to several decimal
places through extensive hand calculations—so much
for “pure thought alone”! Nevertheless, the Riemann
hypothesis is a mammoth leap of imagination and to
have come up with an algorithm to calculate zeros
of ζ(s) is a remarkable achievement. (See computa-

tional number theory for a discussion of how zeros
of ζ(s) can be calculated.)

If the Riemann hypothesis is true, then it is not
hard to prove the bound∣∣∣∣xρ

ρ

∣∣∣∣ � x1/2

|Im(ρ)| .
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Inserting this into (7) one can deduce that∑
p prime

p�x

log p = x + O(
√

x log2 x); (9)

which, in turn, can be “translated” into (5). In fact
these estimates hold if and only if the Riemann
hypothesis is true.

The Riemann hypothesis is not an easy thing to
understand, nor to fully appreciate. The equivalent,
(5), is perhaps easier. Another version, which I prefer,
is that, for every N � 100,

|log(lcm[1, 2, . . . , N ]) − N | � 2
√

N log N.

To focus on the overcount in Gauss’s guesstimate
for the number of primes up to x, we use the following
approximation, which can be deduced from (7) if, and
only if, the Riemann hypothesis is true:∫ x

2
dt

log t
− #{primes � x}
√

x/ log x

≈ 1 + 2
∑

all real numbers γ>0
such that 1

2+iγ
is a zero of ζ(s)

sin(γ log x)
γ

. (10)

The right-hand side here is the overcount in Gauss’s
prediction for the number of primes up to x, divided
by something that grows like

√
x. When we looked at

the table of primes it seemed that this quantity should
be roughly constant. However, that is not quite true as
we see upon examining the right-hand side. The first
term on the right-hand side, the “1”, corresponds to
the contribution of the squares of the primes in (7).
The subsequent terms correspond to the terms involv-
ing the zeros of ζ(s) in (7); these terms have denomi-
nator γ so the most significant terms in this sum are
those with the smallest values of γ. Moreover, each
of these terms is a sine wave, which oscillates, half
the time positive and half the time negative. Having
the “log x” in there means that these oscillations hap-
pen slowly (which is why we hardly notice them in
the table above), but they do happen, and indeed the
quantity in (10) does eventually get negative. No one
has yet determined a value of x for which this is neg-
ative (that is, a value of x for which there are more
than

∫ x

2 (1/ log t) dt primes up to x), though our best
guess is that the first time this happens is for

x ≈ 1.398 × 10316.

How does one arrive at such a guess given that the
table of primes extends only up to 1022? One begins by
using the first thousand terms of the right-hand side
of (10) to approximate the left-hand side; wherever it
looks as though it could be negative, one approximates
with more terms, maybe a million, until one becomes
pretty certain that the value is indeed negative.

It is not uncommon to try to understand a given
function better by representing it as a sum of sines
and cosines like this; indeed this is how one studies the
harmonics in music and (10) becomes quite compelling
from this perspective. Some experts suggest that (10)
tells us that “the primes have music in them” and
thus makes the Riemann hypothesis believable, even
desirable.

To prove unconditionally that

#{primes � x} ∼
∫ x

2

dt

log t
,

the so-called “prime number theorem,” we can take
the same approach as above but, since we are not ask-
ing for such a strong approximation to the number of
primes up to x, we need to show only that the zeros
near to the line Re(s) = 1 do not contribute much
to the formula (7). By the end of the nineteenth cen-
tury this task had been reduced to showing that there
are no zeros actually on the line Re(s) = 1: this was
eventually established by de la Vallée Poussin and
Hadamard in 1896.

Subsequent research has provided wider and wider
subregions of the critical strip without zeros of ζ(s)
(and thus improved approximations to the number of
primes up to x), without coming anywhere near to
proving the Riemann hypothesis. This remains as an
outstanding open problem of mathematics.

A simple question like “How many primes are there
up to x?” deserves a simple answer, one that uses ele-
mentary methods rather than all of these methods of
complex analysis, which seem far from the question
at hand. However, (7) tells us that the prime number
theorem is true if and only if there are no zeros of ζ(s)
on the line Re(s) = 1, and so one might argue that it
is inevitable that complex analysis must be involved
in such a proof. In 1949 Selberg and Erdős surprised
the mathematical world by giving an elementary proof
of the prime number theorem. Here, the word “ele-
mentary” does not mean “easy” but merely that the
proof does not use advanced tools such as complex
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analysis—in fact, their argument is a complicated one.
Of course their proof must somehow show that there
is no zero on the line Re(s) = 1, and indeed their com-
binatorics cunningly masks a subtle complex analysis
proof beneath the surface (read Ingham’s discussion
(1949) for a careful examination of the argument).

4 Primes in Arithmetic Progressions

After giving good estimates for the number of primes
up to x, which from now on we shall denote by π(x),
we might ask for the number of such primes that
are congruent to a mod q. (Modular arithmetic

is discussed in Part III.) Let us write π(x; q, a) for
this quantity. To start with, note that there is only
one prime congruent to 2 mod 4, and indeed there
can be no more than one prime in any arithmetic
a, a + q, a + 2q, . . . if a and q have a common fac-
tor greater than 1. Let φ(q) denote the number of
integers a, 1 � a � q, such that (a, q) = 1. (The
notation (a, q) stands for the highest common factor
of a and q.) Then all but a small finite number of the
infinitely many primes belong to the φ(q) arithmetic
progressions a, a + q, a + 2q, . . . with 1 � a < q and
(a, q) = 1. Calculation reveals that the primes seem to
be pretty evenly split between these φ(q) arithmetic
progressions, so we might guess that in the limit the
proportion of primes in each of them is 1/φ(q). That
is, whenever (a, q) = 1, we might conjecture that, as
x → ∞,

π(x; q, a) ∼ π(x)
φ(q)

. (11)

It is far from obvious even that the number of primes
congruent to a mod q is infinite. This is a famous the-
orem of Dirichlet. To begin to consider such ques-
tions we need a systematic way to identify integers n

that are congruent to a mod q, and this Dirichlet pro-
vided by introducing a class of functions now known
as (Dirichlet) characters. Formally, a character mod q

is a function χ from Z to C with the following three
properties (in ascending order of interest):

(i) χ(n) = 0 whenever n and q have a common factor
greater than 1;

(ii) χ is periodic mod q—that is, χ(n + q) = χ(n) for
every integer n;

(iii) χ is multiplicative—that is, χ(mn) = χ(m)χ(n)
for any two integers m and n.

An easy but important example of a character mod q

is the principal character χq, which takes the value 1 if
(n, q) = 1 and 0 otherwise. If q is prime, then another
important example is the Legendre symbol (·/q): one
sets (n/q) to be 0 if n is a multiple of q, 1 if n is a
quadratic residue mod q, and −1 if n is a quadratic
nonresidue mod q. (An integer n is called a quadratic
residue mod q if n is congruent mod q to a perfect
square.) If q is composite, then a function known as
the Legendre–Jacobi symbol (·/q), which generalizes
the Legendre symbol, is also a character. This too is
an important example that helps us, in a slightly less
direct way, to recognize squares mod q.

These characters are all real-valued, which is the
exception rather than the rule. Here is an example
of a genuinely complex-valued character in the case
q = 5. Set χ(n) to be 0 if n ≡ 0 (mod 5), i if n ≡
2, −1 if n ≡ 4, −i if n ≡ 3, and 1 if n ≡ 1. To
see that this is a character, note that the powers of
2 mod 5 are 2, 4, 3, 1, 2, 4, 3, 1, . . . , while the powers of
i are i, −1, −i, 1, i, −1, −i, 1, . . . .

It can be shown that there are precisely φ(q) dis-
tinct characters mod q. Their usefulness to us comes
from the properties above, together with the following
formula, in which the sum is over all characters mod q

and χ̄(a) denotes the complex conjugate of χ(a):

1
φ(q)

∑
χ

χ̄(a)χ(n) =

{
1 if n ≡ a (mod q),

0 otherwise.

What is this formula doing for us? Well, understanding
the set of integers congruent to a mod q is equivalent
to understanding the function that takes the value 1 if
n ≡ a (mod q) and 0 otherwise. This function appears
on the right-hand side of the formula. However, it is
not a particularly nice function to deal with, so we
write it as a linear combination of characters, which
are much nicer functions because they are multiplica-
tive. The coefficient associated with the character χ

in this linear combination is the number χ̄(a)/φ(q).
From the formula, it follows that

∑
p prime, m�1

pm�x
pm≡a (mod q)

log p

=
1

φ(q)

∑
χ (mod q)

χ̄(a)
∑

p prime, m�1
pm�x

χ(pm) log p.
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The sum on the left-hand side is a natural adaptation
of the sum we considered earlier when we were count-
ing all primes. And we can estimate it if we can get
good estimates for each of the sums∑

p prime, m�1
pm�x

χ(pm) log p.

We approach these sums much as we did before,
obtaining an explicit formula, analogous to (7), (10),
now in terms of the zeros of the Dirichlet L-function:

L(s, χ) :=
∑
n�1

χ(n)
ns

.

This function turns out to have properties closely
analogous to the main properties of ζ(s). In particular,
it is here that the multiplicativity of χ is all-important,
since it gives us a formula similar to (1):

∑
n�1

χ(n)
ns

=
∏

p prime

(
1 − χ(p)

ps

)−1

. (12)

That is, L(s, χ) has an Euler product. We also believe
the “generalized Riemann hypothesis” that all zeros ρ

of L(ρ, χ) = 0 in the critical strip satisfy Re(ρ) = 1
2 .

This would imply that the number of primes up to x

that are congruent to a mod q can be estimated as

π(x; q, a) =
π(x)
φ(q)

+ O(
√

x log2(qx)). (13)

Therefore, the generalized Riemann hypothesis
implies the estimate we were hoping for (formula (11)),
provided that x is a little bigger than q2.

In what range can we prove (11) unconditionally—
that is, without the help of the generalized Riemann
hypothesis? Although we can more or less translate
the proof of the prime number theorem over into this
new setting, we find that it gives (11) only when x is
very large. In fact, x has to be bigger than an expo-
nential in a power of q—which is a lot bigger than the
“x is a little larger than q2” that we obtained from the
generalized Riemann hypothesis. We see a new type
of problem emerging here, in which we are asking for
a good starting point for the range of x for which we
obtain good estimates, as a function of the modulus
q; this does not have an analogy in our exploration of
the prime number theorem. By the way, even though
this bound “x is a little larger than q2” is far out of
reach of current methods, it still does not seem to be
the best answer; calculations reveal that (11) seems

to hold when x is just a little bigger than q. So even
the Riemann hypothesis and its generalizations are
not powerful enough to tell us the precise behaviour
of the distribution of primes.

Throughout the twentieth century much thought
was put in to bounding the number of zeros of Dirich-
let L-functions near to the 1-line. It turns out that
one can make enormous improvements in the range of
x for which (11) holds (to “halfway between polyno-
mial in q and exponential in q”) provided there are
no Siegel zeros. These putative zeros β of L(s, (·/q))
would be real numbers with β > 1 − c/

√
q; they can

be shown to be extremely rare if they exist at all.
That Siegel zeros are rare is a consequence of

the Deuring–Heilbronn phenomenon: that zeros of
L-functions repel each other, rather like similarly
charged particles. (This phenomenon is akin to
the fact that different algebraic numbers repel one
another, part of the basis of the subject of Diophantine
approximation.)

How big is the smallest prime congruent to a mod q

when (a, q) = 1? Despite the possibility of the exis-
tence of Siegel zeros, one can prove that there is always
such a prime less than q5.5 if q is sufficiently large.
Obtaining a result of this type is not difficult when
there are no Siegel zeros. If there are Siegel zeros, then
we go back to the explicit formula, which is similar to
(7) but now concerns zeros of L(s, χ). If β is a Siegel
zero, then it turns out that in the explicit formula
there are now two obviously large terms: x/φ(q) and
−(a/q)xβ/βφ(q). When (a/q) = 1 it appears that they
might almost cancel (since β is close to 1), but with
more care we obtain

x− (a/q)
xβ

β
= (x−xβ)+xβ

(
1− 1

β

)
∼ x(1−β) log x.

This is a smaller main term than before, but it is not
too hard to show that it is bigger than the contri-
butions of all of the other zeros combined, because
the Deuring–Heilbronn phenomenon implies that the
Siegel zero repels those zeros, forcing them to be far
to the left. When (a/q) = −1, the same two terms tell
us that if (1 − β) log x is small, then there are twice
as many primes as we would expect up to x that are
congruent to a mod q.

There is a close connection between Siegel zeros
and class numbers, which are defined and discussed in
Section ?? of algebraic numbers. Dirichlet’s class
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number formula states that L(1, (·/q)) = πh−q/
√

q

for q > 6, where h−q is the class number of the
field Q(

√−q) (for more on this topic, see Section 7
of Algebraic Numbers). A class number is always
a positive integer, so this result immediately implies
that L(1, (·/q)) � π/

√
q. Another consequence is that

h−q is small if and only if L(1, (·/q)) is small. The
reason this gives us information about Siegel zeros is
that one can show that the derivative L′(σ, (·/q)) is
positive (and not too small) for real numbers σ close
to 1. This implies that L(1, (·/q)) is small if and only
if L(s, (·/q)) has a real zero close to 1, that is, a Siegel
zero β. When h−q = 1, the link is more direct: it
can be shown that the Siegel zero β is approximately
1−6/(π

√
q). (There are also more complicated formu-

las for larger values of h−q.)
These connections show that getting good lower

bounds on h−q is equivalent to getting good bounds
on the possible range for Siegel zeros. Siegel showed
that for any ε > 0 there exists a constant cε > 0
such that L(1, (·/q)) � cεq

−ε. His proof was unsatis-
factory because by its very nature one cannot give
an explicit value for cε. Why not? Well, the proof
comes in two parts. The first assumes the generalized
Riemann hypothesis, in which case an explicit bound
follows easily. The second obtains a lower bound in
terms of the first counterexample to the generalized
Riemann hypothesis. So if the generalized Riemann
hypothesis is true but remains unproved, then Siegel’s
proof cannot be exploited to give explicit bounds.
This dichotomy, between what can be proved with an
explicit constant and what cannot be, is seen far and
wide in analytic number theory—and when it appears
it usually stems from an application of Siegel’s result,
and especially its consequences for the range in which
the estimate (11) is valid.

A polynomial with integer coefficients cannot
always take on prime values when we substitute in
an integer. To see this, note that if p divides f(m)
then p also divides f(m + p), f(m + 2p), . . . . How-
ever, there are some prime-rich polynomials, a famous
example being the polynomial x2 + x + 41, which is
prime for x = 0, 1, 2, . . . , 39. There are almost cer-
tainly quadratic polynomials that take on more con-
secutive prime values, though their coefficients would
have to be very large. If we ask the more restricted
question of when the polynomial x2 + x + p is prime
for x = 0, 1, 2, . . . , p − 2, then the answer, given by

Rabinowitch, is rather surprising: it happens if and
only if h−q = 1, where q = 4p−1. Gauss did extensive
calculations of class numbers and predicted that there
are just nine values of q with h−q = 1, the largest of
which is 163 = 4×41−1. Using the Deuring–Heilbronn
phenomenon researchers showed, in the 1930s, that
there is at most one q with h−q = 1 that is not
already on Gauss’s list; but as usual with such meth-
ods, one could not give a bound on the size of the
putative extra counterexample. It was not until the
1960s that Baker and Stark proved that there was no
tenth q, both proofs involving techniques far removed
from those here (in fact Heegner gave what we now
understand to have been a correct proof in the 1950s
but he was so far ahead of his time that it was difficult
for mathematicians to appreciate his arguments and
to believe that all of the details were correct). In the
1980s Goldfeld, Gross, and Zagier gave the best result
to date, showing that h−q � 1

7700 log q this time using
the Deuring–Heilbronn phenomenon with the zeros of
yet another type of L-function to repel the zeros of
L(s, (·/q)).

This idea that primes are well distributed in arith-
metic progressions except for a few rare moduli was
exploited by Bombieri and Vinogradov to prove that
(11) holds “almost always” when x is a little big-
ger than q2 (that is, in the same range that we get
“always” from the generalized Riemann hypothesis).
More precisely, for given large x we have that (11)
holds for “almost all” q less than

√
x/(log x)2 and for

all a such that (a, q) = 1. “Almost all” means that,
out of all q less than

√
x/(log x)2, the proportion for

which (11) does not hold for every a with (a, q) = 1
tends to 0 as x → ∞. Thus, the possibility is not ruled
out that there are infinitely many counterexamples.
However, since this would contradict the generalized
Riemann hypothesis, we do not believe that it is so.

The Barban–Davenport–Halberstam theorem gives a
weaker result, but it is valid for the whole feasible
range: for any given large x, the estimate (11) holds
for “almost all” pairs q and a such that q � x/(log x)2

and (a, q) = 1.

5 Primes in Short Intervals

The prediction of Gauss referred to the primes
“around” x, so it perhaps makes more sense to inter-
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pret his statement by considering the number of
primes in short intervals at around x. If we believe
Gauss, then we might expect the number of primes
between x and x + y to be about y/ log x. That is,
in terms of the prime-counting function π, we might
expect that

π(x + y) − π(x) ∼ y

log x
(14)

for |y| � x/2. However, we have to be a little care-
ful about the range for y. For example, if y = 1

2 log x,
then we certainly cannot expect to have half a prime in
each interval. Obviously we need y to be large enough
that the prediction can be interpreted in a way that
makes sense; indeed, the Gauss–Cramér model sug-
gests that (14) should hold when |y| is a little bigger
than (log x)2.

If we attempt to prove (14) using the same methods
we used in the proof of the prime number theorem, we
find ourselves bounding differences between ρth pow-
ers as follows:∣∣∣∣ (x + y)ρ − xρ

ρ

∣∣∣∣ =
∣∣∣∣
∫ x+y

x

tρ−1 dt

∣∣∣∣
�

∫ x+y

x

tRe(ρ)−1 dt � y(x + y)Re(ρ)−1.

With bounds on the density of zeros of ζ(s) well to
the right of 1

2 , it has been shown that (14) holds for y

a little bigger than x7/12; but there is little hope, even
assuming the Riemann hypothesis, that such methods
will lead to a proof of (14) for intervals of length

√
x

or less.
In 1949 Selberg showed that (14) is true for “almost

all” x when |y| is a little bigger than (log x)2, assum-
ing the Riemann hypothesis. Once again, “almost all”
means 100%, rather than “all,” and it is feasible that
there are infinitely many counterexamples, though at
that time it seemed highly unlikely. It therefore came
as a surprise when Maier showed, in 1984, that, for any
fixed A > 0, the estimate (14) fails for infinitely many
integers x, with y = (log x)A. His ingenious proof rests
on showing that the small primes do not always have
as many multiples in an interval as one might expect.

Let p1 = 2 < p2 = 3 < · · · be the sequence of
primes. We are now interested in the size of the gaps
pn+1 −pn between consecutive primes. Since there are
about x/ log x primes up to x, the average difference
is log x and we might ask how often the difference
between consecutive primes is about average, whether

Table 2 The largest known gaps between primes.

pn pn+1 − pn

pn+1 − pn

log2 pn

113 14 0.6264
1 327 34 0.6576

31 397 72 0.6715
370 261 112 0.6812

2 010 733 148 0.7026
20 831 323 210 0.7395

25 056 082 087 456 0.7953
2 614 941 710 599 652 0.7975

19 581 334 192 423 766 0.8178
218 209 405 436 543 906 0.8311

1 693 182 318 746 371 1132 0.9206

the differences can get really small, and whether the
differences can get really large. The Gauss–Cramér
model suggests that the proportion of n for which the
gap between consecutive primes is more than λ times
the average, that is pn+1 − pn > λ log pn, is approxi-
mately e−λ; and, similarly, the proportion of intervals
[x, x + λ log x] containing exactly k primes is approx-
imately e−λλk/k!, a suggestion which, as we shall
see, is supported by other considerations. By looking
at the tail of this distribution, Cramér conjectured
that lim supn→∞(pn+1 − pn)/(log pn)2 = 1, and the
evidence we have seems to support this (see Table 2).

The Gauss–Cramér model does have a big draw-
back: it does not “know any arithmetic.” In particu-
lar, as we noted earlier, it does not predict divisibility
by small primes. One manifestation of this failing is
that it predicts that there should be just about as
many gaps of length 1 between primes as there are
of length 2. However, there is only one gap of length
1, since if two primes differ by 1, then one of them
must be even, whereas there are many examples of
pairs of primes differing by 2—and there are believed
to be infinitely many. For the model to make correct
conjectures about prime pairs, we must consider divis-
ibility by small primes in the formulation of the model,
which makes it rather more complicated. Since there
are these glaring errors in the simpler model, Cramér’s
conjecture for the largest gaps between consecutive
primes must be treated with a degree of suspicion. And
in fact, if one corrects the model to account for divis-
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ibility by small primes, one is led to conjecture that
lim supn→∞(pn+1 − pn)/(log pn)2 is greater than 9

8 .
Finding large gaps between primes is equivalent to

finding long sequences of composite numbers. How
about trying to do this explicitly? For example, we
know that n! + j is composite for 2 � j � n, as it is
divisible by j. Therefore we have a gap of length at
least n between consecutive primes, the first of which
is the largest prime less than or equal to n! + 1. How-
ever, this observation is not especially helpful, since
the average gap between primes around n! is log(n!),
which is approximately equal to n log n, whereas we
are looking for gaps that are larger than the average.
However, it is possible to generalize this argument and
show that there are indeed long sequences of consec-
utive integers, each with a small prime factor. In the
1930s, Erdős reformulated the question as follows. Fix
a positive integer z, and for each prime p � z choose
an integer ap in such a way that, for as large an inte-
ger y as possible, every positive integer n � y satisfies
at least one of the congruences n ≡ ap (mod p). Now
let X be the product of all the primes up to z (which
means, by the prime number theorem, that log X is
about z), and let x be the integer between X and 2X

such that x ≡ −ap (mod p) for every p � z. (This
integer exists, by the Chinese remainder theorem.) If
m is an integer between x+1 and x+y, then m−x is a
positive integer less than y, so m−x ≡ ap (mod p) for
some prime p � z. Since x ≡ −ap (mod p), it follows
that m is divisible by p. Thus, all the integers from
x + 1 to x + y are composite. Using this basic idea, it
can be shown that there are infinitely many primes pn

for which pn+1−pn is about (log pn)(log log pn), which
is significantly larger than the average but nowhere
close to Cramér’s conjecture.

6 Gaps between Primes that are Smaller
than the Average

We have just seen how to show that there are
infinitely many pairs of consecutive primes whose
difference is much bigger than the average: that is
lim supn→∞(pn+1 − pn)/(log pn) = ∞. We would now
like to show that there are infinitely many pairs of con-
secutive primes whose difference is much smaller than
the average: that is lim infn→∞(pn+1 −pn)/(log pn) =
0. Of course, it is believed that there are infinitely

many pairs of primes that differ by 2, but this ques-
tion seems intractable for now.

Until recently researchers had very little success
with the question of small gaps; the best result
before 2000 was that there are infinitely many
gaps of size less than one-quarter of the aver-
age. However, a recent method of Goldston, Pintz,
and Yildirim, which counts primes in short inter-
vals with simple weighting functions, proves that
lim infn→∞(pn+1 − pn)/(log pn) = 0, and even that
there are infinitely many pairs of consecutive primes
with difference no larger than about

√
log pn. Their

proof, rather surprisingly, rests on estimates for primes
in arithmetic progressions; in particular, that (11)
holds for almost all q up to

√
x (as discussed earlier).

Moreover, they obtain a conditional result of the fol-
lowing kind: if in fact (11) holds for almost all q up to
a little larger than

√
x, then it follows that there exists

an integer B such that pn+1 − pn � B for infinitely
many primes pn.

7 Very Small Gaps between Primes

There appear to be many pairs of primes that differ
by two, like 3 and 5, 5 and 7, . . . , the so-called twin
primes, though no one has yet proved that there are
infinitely many. In fact, for every even integer 2k there
seem to be many pairs of primes that differ by 2k, but
again no one has yet proved that there are infinitely
many. This is one of the outstanding problems in the
subject.

In a similar vein is Goldbach conjecture’s from the
1760s: is it true that every even integer greater than
2 is the sum of two primes? This is still an open ques-
tion, and indeed a publisher recently offered a million
dollars for its solution. We know it is true for almost
all integers, and it has been computer tested for every
even integer up to 4 × 1014. The most famous result
on this question is due to Jing-Run Chen (1966) who
showed that every even integer can be written as the
sum of a prime and a second integer that has at most
two prime factors (that is, it could be a prime or an
“almost-prime”).

In fact, Goldbach never asked this question. He
asked Euler, in a letter in the 1760s, whether every
integer greater than 1 can be written as the sum of at
most three primes, which would imply what we now



Princeton Companion to Mathematics Proof 13

call the “Goldbach conjecture.” In the 1920s Vino-
gradov showed that every sufficiently large odd inte-
ger can be written as the sum of three primes (and
thus every sufficiently large even integer can be writ-
ten as the sum of four primes). We actually believe
that every odd integer greater than 5 is the sum of
three primes but the known proofs only work once the
numbers involved are large enough. In this case we can
be explicit about “sufficiently large”—at the moment
the proof needs them to be at least e5700, but it is
rumored that this may soon be substantially reduced,
perhaps even to 7.

To guess at the precise number of prime pairs
q, q + 2 with q � x we proceed as follows. If we do
not consider divisibility by the small primes, then the
Gauss–Cramér model suggests that a random integer
up to x is prime with probability roughly 1/ log x, so
we might expect x/(log x)2 prime pairs q, q + 2 up
to x. However, we do have to account for the small
primes, as the q, q + 1 example shows, so let us con-
sider 2-divisibility. The proportion of random pairs of
integers that are both odd is 1

4 , whereas the propor-
tion of random q such that q and q + 2 are both odd
is 1

2 . Thus we should adjust our guess x/(log x)2 by a
factor ( 1

2 )/( 1
4 ) = 2. Similarly, the proportion of ran-

dom pairs of integers that are both not divisible by
3 (or indeed by any given odd prime p) is ( 2

3 )2 (and
(1 − 1/p)2, respectively), whereas the proportion of
random q such that q and q + 2 are both not divisible
by 3 (or by prime p) is 1

3 (and (1−2/p), respectively).
Adjusting our formula for each prime p we end up with
the prediction

#{q � x : q and q + 2 both prime}

∼ 2
∏

p an odd prime

(1 − 2/p)
(1 − 1/p)2

x

(log x)2
.

This is known as the “asymptotic twin-prime conjec-
ture.” Despite its plausibility there do not seem to
be any practical ideas around for turning the heuris-
tic argument above into something rigorous. The one
good unconditional result known is that the number
of twin primes less than or equal to x is never more
than four times the quantity we have just predicted.
One can make a more precise prediction replacing
x/(log x)2 by

∫ x

2 (1/(log t)2) dt, and then we expect
that the difference between the two sides is no more
than c

√
x for some constant c > 0, a guesstimate that

is well supported by computational evidence.

A similar method allows us to make predictions for
the number of primes in any polynomial-type patterns.
Let f1(t), f2(t), . . . , fk(t) ∈ Z[t] be distinct irreducible
polynomials of degree greater than or equal to 1 with
positive leading coefficient, and define ω(p) to be the
number of integers n (mod p) for which p divides
f1(n)f2(n) · · · fk(n). (In the case of twin primes above
we have f1(t) = t, f2(t) = t + 2 with ω(2) = 1 and
ω(p) = 2 for all odd primes p.) If ω(p) = p then p

always divides at least one of the polynomial values,
so they can be simultaneously prime just finitely often
(an example of this is when f1(t) = t, f2(t) = t + 1,
in which case ω(2) = 2). Otherwise we have an admis-
sible set of polynomials for which we predict that
the number of integers n less than x for which all of
f1(n), f2(n), . . . , fk(n) are prime is about

∏
p prime

(1 − ωf (p)/p)
(1 − 1/p)k

× x

log |f1(x)| log |f2(x)| · · · log |fk(x)| (15)

once x is sufficiently large. One can use a similar
heuristic to make predictions in Goldbach’s conjec-
ture, that is, for the number of pairs of primes p, q for
which p + q = 2N . Again, these predictions are very
well matched by the computational evidence.

There are just a few cases of conjecture (15) that
have been proved. Modifications of the proof of the
prime number theorem give such a result for admis-
sible polynomials qt + a (in other words, for primes
in arithmetic progressions) and for admissible at2 +
btu + cu2 ∈ Z[t, u] (as well as some other polynomials
in two variables of degree two). It is also known for a
certain type of polynomial in n variables of degree n

(the admissible “norm-forms”).
There was little improvement on this situation dur-

ing the twentieth century until quite recently, when,
by very different methods, Friedlander and Iwaniec
broke through this stalemate showing such a result
for the polynomial t2 +u4, and then Heath-Brown did
so for any admissible homogenous polynomial in two
variables of degree three.

Another truly extraordinary breakthrough occurred
recently with a result of Green and Tao, proved in
2004, which states that for every k there are infinitely
many k-term arithmetic progressions of primes: that
is, pairs of integers a, d such that a, a+d, a+2d, . . . , a+
(k − 1)d are all prime. Green and Tao are currently
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hard at work attempting to show that the number of
four-term arithmetic progressions of primes is indeed
well approximated by (15). They are also extending
their results to other families of polynomials.

8 Gaps between Primes Revisited

In the 1970s Gallagher deduced from the conjectured
prediction (15) (with fj(t) = t + aj) that the propor-
tion of intervals [x, x + λ log x] which contain exactly
k primes is close to e−λλk/k! (as was also deduced,
in Section 5 above, from the Gauss–Cramér heuris-
tics). This has recently been extended to support
the prediction that, as we vary x from X to 2X,
the number of primes in the interval [x, x + y] is
normally distributed with mean

∫ x+y

x
(1/ log t) dt and

variance (1 − δ)y/ log x, where δ is some constant
strictly between 0 and 1 and we take y to be xδ.

When y >
√

x the Riemann zeta function supplies
information on the distribution of primes in intervals
[x, x+ y) via the explicit formula (7). Indeed when we
compute the “variance”

1
X

∫ 2X

X

( ∑
p prime, x<p�x+y

log p − y

)2

dx

using the explicit formula we obtain a sum of terms of
the form

∫ 2X

X
xi(γj−γk) dx. Here we are assuming the

Riemann hypothesis and writing the zeros of ζ(s) as
1/2 ± iγn with 0 < γ1 < γ2 < · · · . This sum is domi-
nated by the terms corresponding to those pairs γj , γk

for which |γj − γk| is small (in which case there is lit-
tle cancellation in the integral). Therefore, in order to
understand the variance for the distribution of primes
in short intervals we need to understand the distri-
bution of the zeros of ζ(s) in short intervals. In 1973
Montgomery investigated this and suggested that the
proportion of pairs of zeros of ζ(s) whose difference is
less than α times the average gap between consecutive
zeros is given by the integral∫ α

0

(
1 −

(
sin πθ

πθ

)2 )
dθ, (16)

and he proved an equivalent form of this in a limited
range. If the zeros were placed “randomly,” then (16)
would be replaced by α. In fact (16) is about 1

9α3

for small α, which is far smaller than α. This means
that there are far fewer pairs of zeros of ζ(s) that

are close together than one might expect, which we
express informally by saying that the zeros of ζ(s)
repel one another.

In a now-famous conversation that took place at
the Institute for Advanced Study in Princeton, Mont-
gomery mentioned his ideas to the physicist Freeman
Dyson. Dyson immediately recognized (16) as a func-
tion that comes up in modelling energy levels in quan-
tum chaos. Believing that this was unlikely to be a
coincidence, he suggested that the zeros of the Rie-
mann zeta function are distributed, in all aspects,
like energy levels, which are in turn modelled on the
distribution of eigenvalues of random Hermitian

matrices. There is now substantial computational
and theoretical evidence that Dyson’s suggestion is
correct and can be extended to Dirichlet L-functions,
as well as other types of L-functions, and even to other
statistics about L-functions.

One note of caution. Few of the conjectured con-
sequences of this new “random matrix theory” have
been unconditionally proved, or seem likely to be in
the foreseeable future. It simply provides a tool to
make predictions where that was too difficult to do
before. However, there is at least one key question
about which we still cannot make a well-substantiated
prediction: how big does ζ(s) get on the 1

2 -line? One
can show that log |ζ( 1

2 + it)| gets larger than
√

log T

for values of t close to T , and that it gets no larger
than log T . However, it is unclear, even if we do not
insist on a rigorous proof, whether the true maximal
order is nearer the upper or lower bound.

9 Sieve Methods

Almost all of our discussion so far has been about
developments of Riemann’s approach to counting
primes. This approach is very delicate and not as
adaptable as one might wish to many natural ques-
tions (such as counting k-tuples of primes n + a1, n +
a2, . . . , n + ak). However, one can go back to sieve
methods, which are modifications of the sieve of
Eratosthenes, and at least get upper bounds. For
example, suppose we want to find an upper bound for
the number of prime pairs n, n + 2 with N < n � 2N .
One possibility would be to fix a number y and deter-
mine for how many pairs n, n + 2 with N < n � 2N
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it is the case that neither n nor n + 2 has a prime fac-
tor less than y. If we took y to be (2N)1/2, then this
method would exactly count the twin primes, but it
seems to be far too difficult to implement. But it turns
out that if instead we take y to be a small power of
N , then the calculations become much easier and there
are ways of obtaining good bounds. (However, these
bounds become less accurate as the power gets closer
to 1

2 .)
In the 1920s Brun showed how to make the prin-

ciple of inclusion–exclusion into a useful tool in this
type of question. This principle is best exhibited when
counting the number of integers n in a set S that are
coprime to given integer m. We begin with the num-
ber of integers in S, which is obviously more than the
quantity we seek. Next, we subtract, for each prime
p dividing m, the number of integers in S that are
divisible by p. If n ∈ S is divisible by exactly r prime
factors of m, then we have counted 1 + r × (−1) for
the contribution of n so far, which is less than or equal
to 0, and less than 0 for r � 2; whereas we wanted to
count 0 when r � 2 (since n is not coprime to m).
Thus we obtain a number that is less than the quan-
tity we seek. To compensate for that, we add back in
the number of integers in S divisible by pq for each
pair of primes p < q which divide m. We have now
counted 1 + r × (−1) +

(
r
2

)
× 1 for the contribution

of n, which is greater than or equal to 0, and greater
than 0 for r � 3. Similarly, we subtract the number of
integers divisible by pqr, etc.

For each n ∈ S we end up counting (1 − 1)r for
n, where r is the number of distinct prime factors of
(m, n). Expanding this sum with the binomial theorem
we may reexpress this identity as follows. Let χm(n) =
1 if (n, m) = 1 and 0 otherwise. Then

χm(n) =
∑

d|(m,n)

µ(d),

where µ(m), the Möbius function, equals 0 if m is
divisible by the square of a prime and equals (−1)ω(m)

otherwise, where ω(m) is the number of distinct prime
factors of m.

The inclusion-exclusion inequalities just discussed
may be obtained from∑

d|(m,n)
ω(d)�2k+1

µ(d) � χm(n) �
∑

d|(m,n)
ω(d)�2k

µ(d),

which holds for any k � 0, by summing over all n ∈ S.

The reason for using these abbreviated sums rather
than the complete sum is that there are far fewer terms
and thus, when one sums over values of n, there will
be far fewer rounding errors (remember that it was
rounding errors that sank our attempt to estimate the
number of primes up to x using the sieve of Eratos-
thenes). On the other hand, they have the disadvan-
tage that they cannot possibly give the exact answer,
since they are missing many appropriate terms. How-
ever, with a judicious choice of k the missing terms do
not contribute much to the complete sum and we get
a good answer.

Minor variants work well for many questions. In the
“combinatorial sieve” one selects which d are part of
the upper and lower bound sums, not by counting the
total number of prime factors they contain but instead
using other criteria, such as the numbers of prime fac-
tors of d in each of several intervals. Using such a
method Brun showed that there cannot be too many
twin primes p, p + 2; indeed that the sum of 1/p, over
all primes p for which p + 2 is also prime, converges,
in contrast with (3).

In the “Selberg upper bound sieve” one comes up
with some numbers λd that are nonzero only when
d � D (where D is chosen to be not too large), with
the property that

χm(n) �
( ∑

d|n

λd

)2

for all n.

Summing over the appropriate n one then finds the
optimal solution by minimizing the resulting quadratic
form. Lower bounds can also be obtained out of Sel-
berg’s methods. It was using such methods that Chen
was able to prove there are infinitely many primes p

for which p+2 has at most two prime factors, and that
Goldston, Pintz, and Yildirim were able to establish
that there are sometimes short gaps between primes.
It is also an essential ingredient in the work of Green
and Tao. One can also get good upper bounds on the
number of primes in arithmetic progressions and short
intervals:

• there are never more than 2y/ log y primes in any
interval of length y;

• there are never more than 2x/φ(q) log(x/q)
primes up to x in an arithmetic progression mod q.

Notice that in each case the log in the denominator
is of the number of integers being considered (y and
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x/q, respectively), not log x as expected, though this
will only make a significant difference if the number
of integers being considered is small. Otherwise these
inequalities are bigger than the expected quantity by
a factor of 2. Can this “2” be improved? It will be dif-
ficult because we showed earlier that if there are Siegel
zeros then we get twice as many primes as expected in
certain arithmetic progressions. Therefore, if we can
improve the “2” in these two formulas, then we can
deduce that there are no Siegel zeros!

10 Smooth Numbers

An integer is y-smooth if all of its prime factors are
less than or equal to y. A proportion 1 − log 2 of the
integers up to x are

√
x-smooth, and indeed, for any

fixed u > 1 there exists some number ρ(u) > 0 such
that if x = yu, then a proportion ρ(u) of the integers
up to x are y-smooth. This proportion does not seem
to have any easy definition in general. For 1 � u � 2
we have ρ(u) = 1 − log u, but for larger u it is best
defined as

ρ(u) :=
1
u

∫ 1

0
ρ(u − t) dt,

an integral delay equation. Such an equation is typical
when we give precise estimates for questions that arise
in sieve theory.

Questions about the distribution of smooth num-
bers arise frequently in the analysis of algorithms, and
have consequently been the focus of a lot of recent
research. (See computational number theory for
an example of the use of smooth numbers.)

11 The Circle Method

Another method of analysis that plays a prominent
role in this subject is the so-called circle method, which
goes back to Hardy and Littlewood. This method
uses the fact that, for any integer n,

∫ 1

0
e2iπnt dt =

{
1 if n = 0,

0 otherwise.

For example, if we wish to count the number, r(n),
of solutions to the equation p + q = n with p and q

prime, we can express it as an integral as follows:

r(n) =
∑

p,q�n
both prime

∫ 1

0
e2iπ(p+q−n)t dt

=
∫ 1

0
e−2iπnt

( ∑
p prime, p�n

e2iπpt

)2

dt.

The first equality holds because the integrand is 0
when p + q �= n and 1 otherwise, and the second is
easy to check.

At first sight it looks more difficult to estimate the
integral than it is to estimate r(n) directly, but this
is not the case. For instance, the prime number theo-
rem for arithmetic progressions allows us to estimate
P (t) :=

∑
p�n e2iπpt when t is a rational �/m with m

small. For in this case,

P

(
�

m

)
=

∑
(a,m)=1

e2iπa�/m
∑
p�n,

p≡a (mod m)

1

≈
∑

(a,m)=1

e2iπa�/m π(n)
φ(m)

= µ(m)
π(n)
φ(m)

.

If t is sufficiently close to �/m, then P (t) ≈ P (�/m);
such values of t are called the major arcs and we
believe that the integral over the major arcs gives, in
total, a very good approximation to r(n); indeed we
get something very close to the quantity one predicts
from something like (15). Thus to prove the Goldbach
conjecture we need to show that the contribution to
the integral from the other values of t (that is, from
the minor arcs) is small. In many problems one can
successfully do this, but no one has yet succeeded in
doing so for the Goldbach problem. Also useful is the
“discrete analogue” of the above: using the identity

1
m

m−1∑
j=0

e2iπjn/m dt =

{
1 if n ≡ 0 (mod m),

0 otherwise

(which holds for any given integer m � 1), we have
that

r(n) =
∑

p,q�n
both prime

1
m

m−1∑
j=0

e2iπj(p+q−n)/m

=
m−1∑
j=0

e−2iπjn/mP (j/m)2

provided m > n. A similar analysis can be used here
but working mod m sometimes has advantages, as it
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allows us to use properties of the multiplicative group
mod m.

Sums like P (j/m) in the paragraph above, or more
simple sums like

∑
n�N e2iπnk/m are called “exponen-

tial sums.” They play a central role in many of the cal-
culations one does in analytic number theory. There
are several techniques for investigating them.

(1) It is easy to sum the geometric progression∑
n�N e2iπn/m. With higher-degree polynomials one

can often reduce to this case; for example, by writing
n1 − n2 = h we have∣∣∣∣ ∑

n�N

e2iπn2/m

∣∣∣∣
2

=
∑

n1,n2�N

e2iπ(n2
1−n2

2)/m

=
∑

|h|�N

e2iπh2/m
∑

max{0,−h}<n2
�min{N,N−h}

e4iπhn2/m,

and the inner sum is now a geometric progression.

(2) The work of Weil and Deligne, which gives very
accurate results on the number of solutions to equa-
tions mod p, is ideally suited to many applications
in analytic number theory. For example, the “Kloost-
erman sum”

∑
a1a2···ak≡b (mod p)e

2iπ(a1+a2+···+ak)/p,
where the ai run over the integers mod p and
(b, q) = 1, appears naturally in many questions;
Deligne showed that it has absolute value less than or
equal to kp(k−1)/2, an extraordinary amount of can-
cellation in this sum which has about pk−1 summands,
each of absolute value 1.

(3) We discussed earlier the fact that the values of ζ(s)
satisfy a symmetry about the line Re(s) = 1

2 , given by
the “functional equation.” There are other functions
(called “modular functions”) that also have symme-
tries in the complex plane; typically the value of the
function at s is related to the value of the function
at (αs + β)/(γs + δ), for some integers α, β, γ, δ sat-
isfying αδ − βγ = 1. Sometimes an exponential sum
can be related to the value of a modular function, and
subsequently to the value of that modular function at
another point, using the symmetry of the function.

12 More L-Functions

There are many types of L-functions beyond Dirichlet
L-functions, some of which are well understood, some

not. The type that have received the most attention
recently are a class of L-functions that can be asso-
ciated with elliptic curves (see p. ?? of Arithmetic

Geometry). An elliptic curve E is given by an equa-
tion of the form y2 = x3 + ax + b, where the discrimi-
nant 4a3 +27b2 is nonzero. The associated L-function
L(E, s) is most easily described in terms of its Euler
product:

L(E, s) =
∏
p

(
1 − ap

ps
+

p

p2s

)−1

. (17)

Here ap is an integer which, for primes p not dividing
4a3 + 27b2, is defined to be p minus the number of
solutions (x, y) (mod p) to the equation y2 ≡ x3+ax+
b (mod p). It can be shown that each |ap| is less than
2
√

p, so the Euler product above converges absolutely
when Re(s) > 3

2 . Therefore, (17) is a good definition
for these values of s. Can we now extend it to the
whole of the complex plane, as we did for ζ(s)? This
is a very deep problem—the answer is yes; in fact, it is
the celebrated theorem of Andrew Wiles that implied
Fermat’s last theorem.

Another interesting question is to understand the
distribution of values of ap/2

√
p as we range over

primes p. These all lie in the interval [−1, 1]. One
might expect them to be uniformly distributed in the
interval, but in fact this is never the case. As discussed
in algebraic numbers one can write ap = αp + ᾱp,
where |αp| =

√
p, and αp was called the Weil number.

If we write α =
√

pe±iθp , then ap = 2
√

p cos(θp) for
some angle θp ∈ [0, π]. We can then think of θp as
belonging to the upper half of a circle. The surprise is
that for almost all elliptic curves the θp are not uni-
formly distributed, which would mean the proportion
in a certain arc would be proportional to the length of
that arc. Rather, they are distributed in such a way
that the proportion of them in any given arc is pro-
portional to the area under that arc. This is a recent
result of Richard Taylor.

The correct analogue of the Riemann hypothesis for
L(E, s) turns out to be that all the nontrivial zeros
lie on the line Re(s) = 1. This is believed to be true.
Moreover, it is believed that they, like the zeros of ζ(s),
are distributed according to the rules that govern the
eigenvalues of randomly chosen matrices.

These L-functions often have zeros at s = 1 (which
is linked to the “Birch–Swinnerton-Dyer conjectures”)
and these zeros repel zeros of Dirichlet L-functions
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(which is what was used by Goldfeld, Gross, and
Zagier, as mentioned in Section 4, to get their lower
bound on h−q).

L-functions arise in many areas of arithmetic geom-
etry, and their coefficients typically describe the num-
ber of points satisfying certain equations mod p. The
Langlands program seeks to understand these connec-
tions at a deep level.

It seems that every “natural” L-function has many
of the same analytic properties as those discussed
in this article. Selberg has proposed that this phe-
nomenon should be even more general. Consider sums
A(s) =

∑
n�1 an/ns that

• are well-defined when Re(s) > 1,
• have an Euler product

∏
p(1 + bp/ps + bp2/p2s +

· · · ) in this (or an even smaller) region,
• have coefficients an that are smaller than any

given power of n, once n is sufficiently large,
• satisfy |bn| < κnθ for some constants θ < 1

2 and
κ > 0.

Selberg conjectures that we should be able to give a
good definition to A(s) on the whole complex plane,
and that A(s) should have a symmetry connecting
the value of A(s) with A(1 − s). Furthermore, he
conjectures that the Riemann hypothesis should hold
for A(s)!

The current wishful thinking is that Selberg’s family
of L-functions is precisely the same as those considered
by Langlands.

13 Conclusion

In this article we have described current thinking on
several key questions about the distribution of primes.
It is frustrating that after centuries of research so little
has been proved, the primes guarding their mysteries
so jealously. Each new breakthrough seems to require
brilliant ideas and extraordinary technical prowess. As
Euler wrote in 1770:

Mathematicians have tried in vain to discover some
order in the sequence of prime numbers but we have
every reason to believe that there are some mysteries
which the human mind will never penetrate.

Further Reading

Hardy and Wright’s classic book (1980) stands alone
amongst introductory number theory texts for the
quality of its discussion of analytic topics. The best
introduction to the heart of analytic number theory is
the masterful book by Davenport (2000). Everything
you have ever wanted to know about the Riemann
zeta-function is in Titchmarsh (1986). Finally, there
are two recently released books by modern masters of
the subject (Iwaniec and Kowalski 2004; Montgomery
and Vaughan 2006) that introduce the reader to the
key issues of the subject.
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