Mickleover Primary School
 Calculation Policy
 MULTIPLICATION

	Learning Objectives	Success criteria	Method
	Solve problems involving doubling.	Using concrete apparatus, children will be able to find a given number by placing objects in groups where each group is identical in number.	- In practical activities and through discussion they will begin to use the vocabulary involved in multiplication - groups, lots, double. - Through practical activities solve problems including doubling. 'You have 3 lollies and your friend gives you 3 more. How many do you have altogether? They will record pictorially then numerically 3+3=6 lollies Double 3 is 6

\begin{tabular}{|c|c|c|c|}
\hline \& Learning Objectives \& Success Criteria \& Method \\
\hline \[
\begin{aligned}
\& \text { H } \\
\& \text { 亿 } \\
\& 0 \\
\& 8
\end{aligned}
\] \& - Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations \& \begin{tabular}{l}
Children will be able to count in 2's, 5's and 10's. \\
Understands that doubling is adding the same number again.
\end{tabular} \& \begin{tabular}{l}
Can put objects and pictures into groups and can count repeated groups of the same size. \\
oo

\end{tabular}

\hline
\end{tabular}

	Learning Objectives	Success Criteria	Method
$\begin{aligned} & \text { N } \\ & \stackrel{N}{\pi} \\ & \underset{\sim}{\sim} \end{aligned}$	- Recall \& use multiplication facts for 2, 5 \& 10 tables, including recognising odd and even numbers - Calculate mathematical statements for multiplication within the multiplication tables; write them using multiplication \& equals (=) signs. - Show that multiplication of two numbers can be done in any order (commutative) - Solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.	Count forward and backward in $2 s, 5 s$ and 10s. Know multiplication facts for the 2,5 and 10 times table up to $\times 12$. Understand multiplications as 'lots' of the same thing. Understand multiplication as repeated addition. Make connections between the 10 times table and place value. Recognise and use arrays to represent multiplication. Understand that multiplication is commutative e.g. $4 \times 3=3 \times 4$	1) Using a 100 square to discuss patterns when counting. 2) Solve multiplication through repeated addition. MMSM, NM 5 5 +5 $+5=3 \times 5=3$ groups of $5=15$ And on a bead bar $5 \times 3=5+5+5$ 2×6 array 6×2 array $5 \times 3=5+5+5$ 5 3) Use arrays to represent a multiplication calculation.

	Learning Objectives	Success Criteria	Method
$\begin{aligned} & 1 \\ & \frac{1}{4} \\ & 4 \\ & \hline \end{aligned}$	- multiply and divide numbers mentally drawing upon known facts Multiply and divide whole numbers and those involving decimals by $10,100 \& 1000$. - Recognise and use square numbers \& cube numbers and notation for squared ${ }^{2}$, cubed ${ }^{3}$	Children will be able to multiply numbers mentally by drawing on known facts Children will be able to multiply whole numbers and decimals by $10,100,1000$ Children will understand the terms squared and cubed as repeated multiplication.	Ie. Calculate 66×5 by multiplying by 10 and halving 66×20 by doubling and multiplying by 10 66×15 by multiplying by 10 then adding half of this to the answer 285×4 by doubling and doubling 25×9 by multiOplying by 10 then subtracting 25 25×11 by multiplying by 10 and adding 25 Children will be taught that when \times by $10,100,1000$ the number moves one place to the left NEVER adding a zero, or two zeros etc. 3^{2} is equivalent to 3×3 3^{3} is equivalent to $3 \times 3 \times 3$

	Learning objective	Success Criteria	Method
$\begin{aligned} & \frac{1}{\alpha} \\ & \frac{1}{r} \end{aligned}$	- Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes - Solve problems involving $+-x$ \div and a combination of these, including understanding meaning of $=$ sign - Solve problems involving x and \div including scaling by simple fractions \& problems involving simple rates. - Multiply proper fractions \& mixed numbers by whole numbers,	Children will be able to identify the correct operation to use when solving problems Including money, measures, scaling and simple rates Children will be able to multiply fractions by whole numbers	$3 / 5 \times 5$ using visual images and objects. Ie 5 lots of $1 / 51 / 51 / 5=15 / 5=3$

Using Arrays to Show Multiplication Concepts: Overview

An arrangement of objects, pictures, or numbers in columns and rows is called an array. Arrays are useful representations of multiplication concepts.

Look at this example

When equal groups are arranged in equal rows, an array is formed

$$
\begin{aligned}
& \hat{\omega} \hat{w} \\
& \text { ज } \hat{\sim} \\
& \hat{\sim} \hat{\sim} \\
& \text { 令 }
\end{aligned}
$$

This array has 4 rows and 3 columns. It can be described as a 4 by 3 array.

This array has 5 rows and 4 columns. It is a 5 by 4 array
\(\underset{rows}{2} \times \underset{\substack{objects in

each row}}{5} \quad\)| total number |
| :---: |
| of objects |

When you show students the connection between equal groups and arrays, students can easily understand how to use arrays to multiply. They will use arrays again later to divide. Look at the multiplication sentence that describes the array above. The numbers in multiplication sentences have special names. The numbers that are multiplied are called factors. The answer is called the product. Now look at what happens to the factors and product in the multiplication sentence when the array is turned on its side. The order of the factors changed, but the product stayed the same. When the order of the factors in any multiplication sentence changes, the product does not change. This is called the Commutative Property of Multiplication. Students should be familiar with the Commutative

Models and images for understanding multiplication and division

