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Fundamentals of Fluid Mechanics

SCOPE OF FLUID MECHANICS

Knowledge and understanding of the basic principles and concepts ofrfagldanicsare
essential to analyze any system in which a fluid is the working medium. The design of almost
all means transportation requires application of flMiechanics. Air craft for subsonic and
supersonic flight, ground effect machines, hovercradttical takeoffand landing requiring
minimum runway length surfaceships, submarines and automobiles requires the knowledge
of fluid mechanics. Irrecent years automobile industries have given more importance to
aerodynamic design. The collapse of thedma Narrow®Bridgein 1940 is evidence of the

possible consequences of neglecting the basic principles fluid mechanics.

The design of all types of fluid machinery including pumgpans, blowers,
compressorand turbines clearly require knowledge of basic principles fingthanics.
Other applications include design of lubricating systems, heating and ventilating of private

homes, large office buildings, shopping malls and design of pipeline systems.

The listof applications of principles of fluid mechanics may include many more. The
main point is that the fluid mechanics subject is not studied for pure academic interest but

requires considerable academic interest.
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CHAPTER-1

Definition of afluid:-

Fluid mechanics dealisith the behaviour of fluids at rest andnmotion. It is logicalto begin

with a definition offluid. Fluid is a substance that deforms continuously under the application
of shear (tangential) stress no matter how small thessinagy be Alternatively, we may
define a fluid as a substance that cannot sustain a shear stress when at rest.

A solid deforms when a shear stress is appl:i
increase with time.

Fig 1.1(a) shows and 1.1(b) st®the deformation the deformation of solid and fluid under
the action of constant shearforiceh e def or mati on in case of s ol

time i.eg, =g,....... =q,, -

From solid mechanics we know that the deformation is directly proportional to applied shear
stressU = F/I'A ), provided the elastic |Iimit of

To repeat the experiment with a fluid betwdles plates , lets us use a dye matkesttline
a fluid el ement. When the shear force 60F06
the fluid element continues to increase as long as the force is applieg, .6, .

Fluid as a continuum :

Fluids are composed afolecules. Howevein most engineering applications we are

interested in average or macroscopic effect of many molecules. It is the macroscopic effect

that we ordinarily perceive amdeasureWe thus treat a fluid asfinitely divisible substance

, 1.e continuum and do not concern ourselves with the behaviour of individual molecules.
The concept of continuum is the basis of classical fluid mechanics .The continuum

assumption is valid under normal conditions .However it brdaks whenever the mean

free path of the molecules becomes the same order of magnitude as the smallest significant

characteristic dimension of the problem .In the problems such as rarefied gas flow (as
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encountered in flights into the upper reaches oath@wsphere ) , we must abandon the
concepif a continuum in favour of microscopic and statistical point of view.

As a consequence of the continuagsumptioneach fluid property is assumed to have a
definite value aevery pointin the space .Thus fluid properties such as density , temperature ,
velocity and so on are considered to be continuous functions of position and time .

Consider a region dfuid asshown in figl.5.We are interested in determining the density at
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the pointé cwhose coordinates ace, & andd . Thus the meadensity Vwould be given
by=—4.Ingeneralt hi s wi | | not be the value of the
density apointé cwe must selecta small volumety, surrounding point
the ratio— and allowing the volume to shrink continuously in size.

Assuming that volumedtois initially relatively larger (but still small compared with volume ,

V) a typical plot might appear as shown ig 1.5 (b) . Wherdo becomes so smathat it

contains only a small number of molecules , it becomes impossible to fix a definite value for

d , : .
— the value will vary erratically as molecules cross into and out of the volume. Thus there

is a lower limting value of at), designatedaty . The density at a point is thus defined as

e d
) 1=K g g
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Since point o6c¢cd6 was arbitrar ycouldbedteteeninedensi ty
in a like manner. Iflensity determinations were made simultaneously at an infinite number of

points in the fluid , we would obtain an expression for the density distribution as function of
thespace cor di n at(eysz), atthe given ipstant.

Clearly , the densitat a point may vary with time as a result of work done on or by the fluid

and/or heat transfer to or from the fluid. Thus , the complete represeiitaédield

representation)s givenbyy = J} (x, vy, z, t)

Velocity field:

In a manner similar to the density , the velocity field ; assuming fluid to be a continuum , can
be expresseds B= AX,y,z,t)

The velocity vector can be written in terms of its thsealar components , i.e

B=u v HQ

In general ; u = u(y,z,t) , v=v(x,y,z,t) and w=w(Xx,y,z,t)

If properties at any point in the flow field do not change with time , the flow is termed as

steady. Mathematically , the definition sfeady flowis—=0 ; where d represe
property.

Thus forsteady flowis—= 0 or ] = 1 (x,y, 2)

— =0 ord@= Ax,y,z)

Thus in steady flow ,any property may vary from point to point in the field , but all properties
, but all properties remain constant with time at every point.

One,two and three dimensional flows

A flow is classified as one two or tlerelimensional based on the number of space
coordinates required to specify the velocity figdthough mosflow fields areinherently
threedimensionalanalysisbhased on fewer dimensions are meaningful.

Consider for example the steady flow throudbray pipe of constant crosgction

(referFigl.6g. Far from the entrance of the pipe the velocity distribution for a laminar flow

can be described ass—= p - . Thevelocity field is a function of r onlyit is

independent of and g.Thus the flow is one dimensional.
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Figl.6a and Figl.6b

An example of a twalimensional flow is illustrated in Figl.6b.The velocity distribution is
depicted for a flow between two diverging straight walls that are infinitely large in z
direction. Since the channel is considered to be infinitely large in dirdetion, the velocity
will be identical in all planes perpendicular to z axis. Thus the velocity field will be only

function of x and y and the flow can be classified as two dimensional. Fig 1.7

For the purpose of analysis often itagnvenient

to introduce the notion of uniform flowt a given Ay & it

crosssection. Under this situation the two 1// :
dimensional flow of Fig B b is modelled as one #+ Dniferm Floo ot o gecke®)
dimensional flow as shown in Figl.7, i.e. velocity

field is a function of x only. However, ™
convenience alone does rjastify the assumption such as a uniform flow assumption at a
cross section, unless the results of acceptable accuracy are obtained.

StressField:

Surface and body forces are encountered in the study of continuum fluid mechanics. Surface
forces act on théoundaries of a medium through direct contact. Forces developed without
physical contact and distributed over the volume of the fluid, are termed as body forces .

Gravitational and electromagnetic forces are examples of body forces .

Consider an areaddl t hat passes t h
n .Consider a forcal'Oacting on an areddfthrough
Bt O F poi nt 6¢cd .,ThaedshearstresEl st r e:
éA o L
§F are then defined as, : =1 E;jI —
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T

iEﬂ_—;Subscript 6nd on the stress is incl

associated with the surfaddf, t hr ough 6c¢cd , h aéwirentignFarn out wa
any other surface through 6cdé the values of
Consider aectangulaco-ordinate system , where stresses act on planes whose normal are in

X,y and z directions.

6%, ey
o F, g g
0Fa Imz .
-

Fig 1.9

Fig 1.9 shows the forces components acting on thedarea

The stress components are defined as ;

., =] E7,|' S

A double subscript notation is used to label the stresses. The first subscript indicates the plane

on which the stress acts and the second subscript represents the direction in which the stress

acts, i.e, represents a stress that acts oplane {.e the normal to the plane is in x

direction ) and acts i n 0yo6 direction
Consideration of area elemeaitt would lead to the definition of the stresses,,, and
. .Use of an area elemedidh would similarly lead to the definition ,, and,

8]
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An infinite number of planes can be passed
of stresses associated with planes through that partunately , the state of stress at a point

can be completely described by specifying the stresses acting on three mutually perpendicular
planes through the point.

Thus , the stress at a point is specified by nine components and given by :

Fig 1.10

Viscosity:

In the absence of a shear stress , there will be no deformation. Fluids may be broadly
classified according to the relation between applied shear stress and rate of deformation.

Consider the behaviour of a fluid element between the two infinite platesshdig 1.11 .

The upper plate moves at constant veloctly , under the influence of a constaayplied
force d'O.

The shear stress, , applied to the fluid element is given by :

s s

N d _
. =Bl =

Where ,d0 is the area of contact of a fluid element with the plBtging the intervadit ,

the fluid element is deformed from position MNOP to the posilidh (0*. The rate of
deformation of the fluid element is given by:

9]
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Deformation rate= | Lfd[ d—:

I FOrce, 87

Velocity, du
Fluid element

) at time, ¢ Fluid element

attime, r + 81

To calculate the shear stregss, , it is desirable to express‘? in terms of readilymeasurable
guantity.dl = du dt

Also for small anglesdl = dy da

Equating these two expressions , we have

a d

da _d

Taking limit of both sides of the expression , we obtaif rF—

Thus the fluid element when subjected to shear stress,,experiences a deformation rate ,

given by— .

#Fluids in which shear stress is directly proportionalthe rate of deformation are
ANewtonian fl uids #

# The term Noni Newtonian is usedto classify in which shear stress is not directly
proportional to the rate of deformation .

Newtonian Fluids

Most common fluids i.e Air , water and gasoline are Newtorflaids under normal
conditions. Mathematically for Newtonian fluid we can write :

0 —

If one considers the deformation of two different Newtonian fluids , say Glyaadnwater

,one recognizes that they will deform at different rates under the action of same applied
stress. Glycerin exhibits much more resistance to deformation than water . Thus we say it is
more viscous. The constant of proportionalit

10|
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Thus, , =&€—

Non-Newtonian Fluids

Qo , A . .
" :k@b , 6nd is flow behaviour

.i ndex and

. Q.0

To ensure thgt has the same sign as that %Fw , We can express
_kgp Q6 _ %@

TN Qo Qo o

Wher e é—g%ﬁ is referred aspparent viscosity.
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# The fluids in which the apparent viscosity decreases with increasing deformation rate (n<1)
are calledpseudoplastic (shear thinintjuids . Most Noni Newtonian fluids fall into this

category . Examples include : polymer solutions , colloidal suspensions and paper pulp in
water.

# If the apparent viscosity increases with increasing deformation rate (n>1) the fluid is termed
as dilatant( shedhickening). Suspension of starch and sand are examples of dilatant fluids .

# A fluid that behaves as a solid until a minimum vyield stress is exceeded and subsequently
exhibits a linear relation between stress and deformation rate .

” = ” + -&

Examples are Clay suspension , drilling muds & tooth paste.

11
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Causes of Viscosity
The causes of viscosity in a fluid are possibly due to two factors (i) intermolecular force of

cohesion (ii) molecular momentum exchange.

#Due to strong cohesvforces between the molecules, any layer in a moving fluid tries to

drag the adjacent layer to move with an equal speed and thus produces the effect of viscosity.

#The individual molecules of a fluid are continuously in motion and this motion makes a
possble process of momentum exchange between layers. Such migration of molecules causes

forces of acceleration or deceleration to drag the layers and produces the effect of viscosity.

Although the process of molecular momentum exchange occurs in liquidstetmeolecular
cohesion is the dominant cause of viscosity in a liquid. Since cohesion decreases with

increase in temperature, the liquid viscosity decreases with increase in temperature.

In gases the intermolecular cohesive forces are very small andstusity is dictated by
molecular momentum exchange. As the random molecular motion increases wit a rise in

temperature, the viscosity also increases accordingly.

ExamplelAn infinite plate is moved over a second plate on a layer of liquid. For small gap
width ,d, a linear velocity distribution is assumed in the liquid . Determine :
() The shear stress on the upper and lower plate .

(i) The directions of each shear stresses calculated in (i).

7

"T:‘/“/;«*'/ 77,

Solnt =¢&

Since the velocity profile is liree ;we have

Hence;t s =1 s = —e= constant

12
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Example2
An oil film of viscosity € & thickness h<<R
showninfig E .1.2. Thediscisrotated eadi | y at an angul ar veloc

vel ocity and shear stress vary with radius 0
to rotate the disk.

Soln: I

5

3 o> S— ——

& C 7 x=d .

Assumption : linear velocity profile, laminar flow= ¢t r=e-= -g;dF=U dA

dF=—2UYr dr

T=, Q% 1Q0=—0 i dr=

v

Vapor Pressure

Vapa pressureof a liquid is the partial pressure of the vapour in contacts with the saturated
liquid at a given temperatur8Vhen the pressure in a liquid is reduced to less than vapour

pressure, the liquithay change phase suddenly and flash.
Surface Tension

Surface tension is the apparent interfacial ters$iless force per unit length of interface) that
acts whenever a liquid has a density interface, such astividiquid contacts a gasapour,
second liquid, or a solid. The liquid surface appears to act as stretched elastic mewbrane
seenby nearlyspherical shapes of small droplets and soap bsbWé@h some care it may be
possible to place a needle on the water surface and find it supported by surface tension.

A force balancen a segment of interface shows that there is a pressure jump across
the imagined elastic membrane whenever the interfacarved. For a water droplet in air,
the pressure ithe wateris higher tharambient;the same is true for a gas bubble in liquid.
Surface tension also leads to the phenomenon of capillary waves on a liquid surface and

capillary rise or depression alsown in the figure below.

13|
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Tube

' ' 907
(a) Capillary rise (6 < 90°) (b) Capillary depression (6>

Basic flow Analysis Techniques

There are three basic ways to attack a fluid flow problem. They are equally important for a
student learning the subject.

(1)Control volume orintegral analysis
(2)Infinitesimal system odifferential analysis
(3) Experimental or dimensional analysis.

In all cases the flow must satisfy three basic laws with a thermodynamic state relation and
associated boundary condition.

1. Conservation of mass @@tinuity)

2.Balance of momentuth Ne wt lavd)s 2

3. First law of thermodynamicLpnservation of energy)
4. A state relation likg = (P, T)

5. Appropriate boundary conditions at sadidrfacejnterfaces, inletand exits.

Flow patterns

Fluid mechanics is a highly visual subject. Tattern of flow can be visualized in a dozen of
different ways . Four basic type of patterns are :

1. Stream lineA streamline is a line drawn in the flow field so that it is tangent to the line
velocity field at a given instant.

2. Path line Actual pah traversed by a fluid particle.

14
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3. Streak lineStreak line is the locus of the patrticles that have earlier passed through a
prescribed point.

4. Time linei Time line is a set of fluid particles that form a line at a given instant .

For stream lines : di [xw=0
lQ TQ ‘i"Q

Qo QwQa=0
6 0 U

E Hwdyvdz)- Bvdxiudz)+@vdxiudy)=0
E 0 Qeévdz;wdx=udz& vdx=udy.

So;— — —
EX: A velocity field given byB= A x KUAy Hx, y are in meters . units of velocity in m/s.

A=0.3i

(a) obtain an equation for stream line in the x,y plane.

(b) Stream line plot through (2,8,0)

(c) Velocity of a particle at a poirf2,8,0)

(d) Position at t = 6s of particle located at (2,8,0)

(e) Velocity of particleat position found in (d)

() Equation of path line of particle located at (2,8,0) at t=0

Soln:
. 16
(a) For stream lines— —
E — — 12 :
E _ —=-. — =5
E 1 b=-1b+C £ 8D\ 7,50=06i-2.4]ms f
E 1l bhaC '
E xy =C 4
(b)Stream lime plot throughd§ o ,0)
0
E ow=C 0
EO po
E xy=16

® B=0.6 HD.6 HU

(dJu=Ax, —=Ax ,.. —=A Qo0
El19=At ,—=0
v=-Ay, —=-Ay , . —=A Q0

15
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El19=-At ,—=0Q
Att=6s;x=2Q8 =12.1m
'y=80Q & =1.32m
(e)B=0.3x12.1H0.3 x 1.32 H= 3.63 FU 0.396 HU

() To determine the equation of the path ljmee use the parametric equation :

X=w'Q and y=u Q and eliminate Ot 6
E xy=0w
Remarks :

(a)The equation of stream litierough (o ho ) and equation of the path line traced out by
particle passing throughu(w )are same as the flow is steady.

(b) In following a partite ( Lagrangian method of description ) , both the coordinates of the
particle (x,y) and the componenb (QU ) are functions of time.

Example-2:

A flow is described by velocity fieldp=ay Hubt Fibwherea=1 ,b=0.5mi .Att=2s,
what are the coordinates of the partitiattpassed through (1,2) at t=0 ? At t=3s, what are
the coordinates of the particle that passed through the point (1,2) at t= 2s .

Plot the path line and streak line through point (1,2) and comp#rehei stream lines
through the same point ( 1,2) atinstant ,t=0,1,2& 3 s.

Soln:

Path line and streak line are based on parametric equations for a particle .

v=— =Dbt, so, dy=btdt

&u=—=ay=a w+-(0 0 )]

Q. G o+-(0 6 )]t

E
E » w)zawt-0)+-(— o0t
E

W 0w+at-0)+—{(—— -0 (t-0)}
(@ Foro =0and @@ ,w)=(1,2), att=2s, we have
E y-2=-(4)
E y=3m

E x=1+2(20)+-2[-i 0]=5.67m

(b)Foro =2s and® ,w)=(1,2).Thusatt=3s

16|
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We have , y2=-(0 0 )=->(9-4)=1.25

E y=3.25m
& x=1+232) +2{(— -¢ (3-2)}
E x=1+2(32)+—={(— -41)}=3.58m
(c) The streak | ine at anyobégi.ven 06t o6 may

# part (a) : path line of particle located at (w) ato =0 s.

o(s) |t X(m) Y(m)
0 0 1 2

0 1 3.08 2.25
0 2 5.67 3.00
0 3 9.25 4.25

L‘Y\QR\Ot
o (s) [ 1(s) X Y s h
2 2 1 2 ko % !
2 3 3.58 | 3.25 *}
2 4 7.67 |5.0
|
.
#part (C) —=—
E dx= —)dy
E ydy=—dx
E w=()x+c
Thus,c=w T (—w
For@w,w) = (1,2) , for different value of

t=1;c=4(-)1=3

t=2;c=41 (-)1=2

17
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t=3;c=4i (-)1=1

t(s) |0 1 2 3
C= 4 3 2 1

X Y Y Y Y

1 2 2 2 2

2 2 224 |245 |2.65
3 2 245 |2.83 |3.16
4 2 265 |3.16 |3.61
5 2 253 |346 4.0
6 2 3.0 3.74 | 4.36
7 2 3.16 [4.00 |4.69

# Streak line of particles that passed through peint ) at t = 3s.

0 (s) | t(s) | X(m) Y(m)
0 3 19.25 4.25
1 3 6.67 4.00
2 3 |358 3.25
3 3 1.0 2.0

oy ear nd plot
t o8

18|
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CHAPTERT 2

FLUID STATICS

In the previous chapterwe defined as well as demonstrated that fluid at rest cannot sustain
shear stress , how small it may be. The sa
Therefore, fluids either at rest or in Aric
streses. Analysis of hydrostatic cases is thus appreciably simpler than that for fluids
undergoing angular deformation.

Mere simplicity doesnét justify our study of
important in many practical situations. Usitiige principles of hydrostatics we can compute

forces on submerged objects, developed instruments for measuring pressure, forces
developed by hydraulic systems in applications such as industrial press or automobile brakes.

In a static fluid or in a fluid utergoing rigidbody motion,a fluid particle retains its identity
for all time and fluid elements do ndeform.T hus we shal | apply Newt
motion to evaluate the forces acting on the particle.

The basic equations of fluid statics

For adifferential fluid element , the body force @O ="Q@dm = "¢ " d

(here , gravity is the only body force considereldgre,"@is t he | oc al gravity
the density & 8 is the volume of the fluid element. In Cartestamordinatesd" = dx dy dz

.In a static fluid no shear stress canpoesent.Thus the only surface force is the pressure

force. Pressure is a scal@ld, p = p(x,y,z) ; the pressure varies with position within the

fluid.

N

P’ Q‘?’& "L
L 99 3 Ay - ;izfaa

TN
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Pressure at the lefice :0 = (p-— —)
Pressure at the right facé : = (p +— —)
Pressure force at the left fac®= (p- — —)dx dz HU

Pressure force at the rightfac® : (p+— —)dxdz ¢ Ju
Similarly writing for all the surfaces , we have

dO= Hp-— —)dy dz + (p +— —)dy dz ¢} (p- — —)dx dz HU

+(p+— —)dxdz ¢\ (p+— —)dxdy (Q +(p +— —)dx dy ¢Q
Collecting ancconcealing terms , we obtain :

d®=- (M + H++0Q—)dxdydz

0 d®=-(n bdx dydz
Thus

Net force acting on the body:

i do=de+d®= (-1 b ;'@ dx dy dz
0 do=(-n b '@d"

or, in a per unit volume basis:

b

—=(-1D ;W - (2.1)

For a fluid particle , Newd®idm=6pc dnd
b w

Or —=wj - (2.2)

e
Comparing 2.1 & 2.2 , we have

-1 D I 0y

For a static fluid ¢0= 0 ; Thus we obtain ;-1 p ;" @=0

The component equations are ; MTE=-gQ

—+ 0=0 "Q=0=Q

| aw

c

20|
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—+ 0=0
—_+ "Q =0
Using the value ¢®© HO o"Owe have

— Tmh— m QO— " "Qsince P=P(2)

We canwrite —= " "Q
Restrictions: (i) Static fluid
(i) gravity is the only body force

(iii) z axis is vertical upward

CA

CA

P=0

#Pressure variation in a static fluid :

—=- g = constant

U Q0 =-1 ¢ Q®

=-4 g{@}
=-}@izZ) = y3gh

i

0
U 0

cacat

Ex:2.1A tube of small diameter is dipped into a liquid in an open container. Obtain an
expression for the change in the liquid level within the tube caused by the surface tension.

w
o

N
o

N
o

—
o

Level change (mm)
=)
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Soln:

a"n= icog -} B =0

Neglecting the volume of the liquid abolka , we obtain
D' =-0 Dh

Thus Dgos-fi —O Dh=0

U Dh= g

Multi Fluid Manometer

Ex22Fi nd the pressure at O6AOG.

Soln® +” gx0.15-” @gx0.15+" g x0.15-" gx0.3 =0

#Inclined Tube manometer

Ex2.3Given : Inclinedtube reservoir manometer .
Find ExpressibPn for 6LO6 in terms of
#General expression for manometer sensitivity

#parameter values that give maximum sensitivity

22
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Soln:

H}
/r@\r

Equilibrium
liquid level

Gage liquid, p,

Equating pressures aither side of Level2 , we havePP =" g (h+H)

Toel i minate 6HO6 , we recognise that the
volume displaced from the reservoir must be equal to the volume rise in the tube.

Thus ;=0 "O=-G 0

0 H=L-

0 DP=" g[Lsing+L — ]=" gL[sing+ — ] —>

Thus, L= b

q —

To obtain an expressidar sensitivity , expresBP in terms of an equivalent water column
height ,"O

2

DP=" g0
Combining equation 1 &2 , we have

"gL[sing+ - ] =" gO

Thus ,S —=

Where , SG —

A

vol ul

The expression 0S6 for sensi t igqand-shoulsibeo ws t h

made as small as possible.

23]
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Hydrostatic Force on the pl agbet®our f ace

horizontal free surface

We wish to determine the resultant hydrostatic force on the plane surface which is inclined at
angdoe t dorizomtat free surface.

Since there can be no shear stresses in a static fluid , the hydrostatic force on any element of
the surface must act normal to the surface .The pressure force acting on an edofi¢iné d

upper surface is given bY@k - p ¢ol.

The negative sign indicates that the pressure force acts against the surface i.e in the direction
opposite to the aredf0 =_° 7 Bl
If the free surface is ata pressud €0 ), then,p=fy + J gh
¢0s= °H G dA=R 8+, % QoR6
0 f0s=n o+ J g "wQb
But. "G’ Q 8 ¢dA
Thus ,$Os=f 0+ ®Asing=( + o gngA
WhereO is the vertical distance between free surface and centroid of the area .

# To evaluate theentre of pressure (c.p) or the point of application of the resultant force

The point of application of the resultant force must be such that the moment of the resultant
force about any axis is equal to the sum of the moments of the distributed fortéhabou
same axis.

If i"is the position vector of centre pressure from the arbitrary origin , then

IyxX0=_ixdO=-_ ixpcl
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Referring to fig 2.3 , we can express
/= W+ to
IEx +y Hiddl=- dA Qand"0 =00
Substituting into equation , we obtain
(G+ )x00=. ¢ UIxCo=°¢ U(lxpdAQ
Evaluating the cross product , we get

°  xp+ Kp)dA

U tw 0O+ 0=
Equating the components in each direction ,

wO= 8ol)r‘] Qand w "O=_ 8(br‘] 'Q #when the ambient (atmospheric) pressuy 2,,
acts on both sides of the surface , th~makes no contribution to the net hydrostatic force

on the surface and it may be dropped . If the $te€ace is at a different pressure from the

ambi e n tn sshouddastatedas — TR
gauge pressure , while calculating the
net force .
° ° q /
(bz =x =x
q .

But from parallel axis theoren’® =" + A

Where™ i s t he second moment of wdt mex i &ar ea Tehlhusu t

T
W=+

Or ¢ =(—)+ !
Similarly takingmo ment about O6y6 axi s ;
WwO=®onQo

.z " 8 vy e 8\ s n
U0 w) g qwiArr, w”TMo= } g wwQo
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From the parallel axis theorer™ =" + Aw®
Where™ is the area product of inertia w.r.t centroiccwaxis.
So,W =G +—

For surface that i «w =wyandrhenterusually reotaskadtto edajudte. a X i s

Example Problem

Ex 2.4: Rectangul ar gate , hi nge®,oathe waté&xd , w:
and the air on the gate . The inclined surf

Determine the resultant force’(® , of the water and air on tleclined surface.

Soln=
0=_%elE | "gysin30wdyQ

E 0=—T0— =-—2 [6416]Q
E "0 =-588.01 KN
Force actsbidi megtaitowv.e 0

To find the line of action :

Takingmomenabout x axis through point 6 O 6 on t

B ik o vy it
WwO="0n'Q6, ® A Qv Qw
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o 8
i GO=() [~ =—[¢ -]
U « x(588.01 3p 10 = 3658.73p 1i

0 &=6.22m

#Tofindew; we can take moment about y axis throu
¢ o= onQs=, | @ ORATR@®

0 ¢'0= Q¢ " QoG- " OhaEs Qo
i & 0=="0

0 Ww=—=25m

Alternative way: By directly using equations:

= JOoAMg = } g
2+2sin30) x4x5

G=M+—=6+ 7

=6.22m

W =0 +—

“ B\ o
N = awQo=

T Gain=0

Voo v

Thus , 00 =@ =2.5m

Concept of pressunaism

‘O =volume=-( 4 gh) hb
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