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We consider a class of free boundary problems governed by the incom-
pressible Navier-Stokes equations. Our objective is to develop robust nu-
merical algorithms that capture the shape of the free boundary. In our
approach, we combine a recent algorithm of Liu, Liu, and Pego for solving
the Navier-Stokes equations with a prediction-correction technique for locat-
ing the free boundary. The Liu, Liu, and Pego algorithm calls for the rather
uncommon C1-compatible finite elements. A major part of our work is to
develop software that implements their algorithm, then adapt it to handle
free boundaries.

1. Numerical method for Navier-Stokes equations

Fluid flow is governed by the Navier-Stokes equations. For incompressible
viscous fluid flow in a domain Ω ⊂ RN (N ≥ 2), they take the following form:

ut + (∇u)u +∇p = ν∆u + f in Ω× (0, T ],(1)

div u = 0 in Ω× (0, T ],(2)

where u is the fluid velocity, p is the pressure, ν is the kinematic viscosity,
and f is an external force per unit mass. The system (1)–(2) is completed
with an initial condition for velocity and appropriate boundary conditions.

Some of the most popular numerical methods for the incompressible Navier-
Stokes equations are splitting schemes that decouple the computation of the
velocity and the pressure. In [4], Liu, Liu, and Pego have proposed such a
scheme, based on a time-discretization explicit in pressure and convection
terms. At each time step it is only required to solve a Poisson equation for
the pressure and an elliptic boundary-value problem for the velocity. The
corresponding fully discrete finite element method with C1 elements for ve-
locity and C0 elements for pressure is unconditionally stable and does not
require any compatibility conditions between the finite element spaces for
velocity and pressure.
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(a) Error in x-velocity
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(b) Error in pressure

Figure 1. Absolute error in velocity and pressure.

We have developed a finite element code that implements the algorithm
in [4] in C. The algorithm requires the rather uncommon C1-compatible fi-
nite elements; therefore, a major part of our work thus far has gone into
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implementing such elements. We use the triangular Argyris quintic polyno-
mials for our elements. We have tested our finite element solver on several
benchmark problems for Navier-Stokes solvers. We present here results for
the problem (1)–(2) in Ω = (−1, 1)× (−1, 1), with the source term f chosen
such that the exact solution is

u(x, y, t) =
(

cos t cos2(πx/2) cos(πy/2) sin(πy/2)
− cos t cos(πx/2) sin(πx/2) cos2(πy/2)

)
,

p(x, y, t) = cos t cos(πx/2) sin(πy/2).

Figure 1 (page 234) shows the graphs of (a) absolute error in velocity and
(b) absolute error in pressure at t = 1, using 256 elements and ∆t = 0.01.

2. Numerical method for computing the free boundary

We are interested in computing flows with free boundaries. Our objec-
tive is to combine the algorithm in [4] with an interface tracking technique
for computing the location of the free boundary. We present here the nor-
mal stress iterative method for solving a stationary free boundary problem
governed by the Navier-Stokes equations, as described in [1] and [2]. The
method works as follows. An initial guess for the shape of the free boundary
is assigned and the flow within the domain bounded by that shape is com-
puted after disregarding the continuity of normal component of the stress
at the free boundary. Next, a new shape of the free boundary is computed
that satisfies as closely as possible the relaxed boundary condition. The
procedure is repeated until convergence is attained.

To illustrate, consider the steady-state motion of fluid in the domain

Ωϕ = {(x, y) ∈ R2 : 0 ≤ x ≤ L, 0 ≤ y ≤ ϕ(x)},
where the curve S : y = ϕ(x) is the free boundary to be determined. The
fluid velocity on the part Γ = ∂Ω \ S of the boundary and the total volume
of fluid V are prescribed. Thus, we have the following equations:

(3)

ρ(∇u)u = µ∆u−∇p− ρg

(
0
1

)
in Ωϕ,

div u = 0 in Ωϕ,

u = uΓ on Γ,

u · n = 0 on S,

Tn = 0 on S,∫ L

0
ϕ(x) dx = V,

where n is the unit outward normal on the boundary S, and T is the Cauchy
stress tensor

T = −pI + 2µD, where D =
1
2
µ
[
∇u + (∇u)T

]
.
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(a) Iteration 0. (b) Iteration 1.

(c) Iteration 2. (d) Iteration 3.

Figure 2. Computed free boundary.

Following [1], we introduce the following auxiliary problem: Given ϕ such
that

∫ L
0 ϕ(x) dx = V , solve

(4)

ρ(∇u)u = µ∆u−∇p0 in Ωϕ,

div u = 0 in Ωϕ,

u = uΓ on Γ,

u · n = 0 on S,

Tn ‖ n on S,

where T = −p0I + 2µD. This is a standard boundary value problem for the
Navier-Stokes equations. It can be shown that

ϕ(x)− ϕ∗ = − 1
ρg

{[
2µ

∂u
∂n

· n− p0

]
S

− 1
L

∫ L

0

[
2µ

∂u
∂n

· n− p0

]
S

dx

}
,(5)
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where ϕ∗ = 1
L is the height of the fluid when the fluid is static. Equation (5)

forms the basis of an iterative search for the shape of the free boundary. As
an initial guess, we pick ϕ0 = ϕ∗. Then we generate a sequence of iterates
ϕn as follows: Given ϕn, solve the auxiliary problem (4). Then evaluate
the right hand side of (5) and compute ϕn+1 from ϕn+1 = ϕ∗ + rhs. The
iteration is guaranteed to converge if the motion is close enough to static.

We formulated and solved this problem using Femlab, with the itera-
tive algorithm for computing the free boundary implemented in Matlab.
Numerical experiments show that for small Reynolds numbers, the method
converges very quickly. However, even for moderate Reynolds numbers, con-
vergence is not attained. Figure 2 (page 236) shows the computed free
boundary for Reynolds number Re = 1. We expect that our solver will be
able to handle a wider range of Reynolds numbers.

3. Future work

The major objective of our future work is to adapt the Navier-Stokes
solver algorithm outlined in section 1 to handle free boundaries. We are
also considering an alternative algorithm for the computation of the free
boundary, based on the relaxation of the kinematic boundary condition on
the free boundary [3]. Our ultimate goal is to analyze the symmetry-breaking
in a stationary circular hydraulic jump.
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