MATH 521A: Abstract Algebra

Homework 9 Solutions

1. Calculate the multiplication table for $\mathbb{Z}_{5}[x] /\left(x^{2}+4 x+1\right)$.

The elements of this ring are $\left\{[a x+b]: a, b \in \mathbb{Z}_{5}\right\}$, and the key property is that $\left[x^{2}+4 x+1\right]=$ $[0]$, i.e. $\left[x^{2}\right]=[-4 x-1]$. Hence the multiplication table is given by:
$[a x+b]\left[a^{\prime} x+b^{\prime}\right]=\left[a a^{\prime} x^{2}+\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime}\right]=\left[\left(a b^{\prime}+b a^{\prime}-4 a a^{\prime}\right) x+\left(b b^{\prime}-a a^{\prime}\right)\right]$.
2. Calculate the multiplication table for $\mathbb{Z}_{5}[x] /\left(x^{2}+3 x+1\right)$.

The elements of this ring are $\left\{[a x+b]: a, b \in \mathbb{Z}_{5}\right\}$, and the key property is that $\left[x^{2}+3 x+1\right]=$ $[0]$, i.e. $\left[x^{2}\right]=[-3 x-1]$. Hence the multiplication table is given by:
$[a x+b]\left[a^{\prime} x+b^{\prime}\right]=\left[a a^{\prime} x^{2}+\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime}\right]=\left[\left(a b^{\prime}+b a^{\prime}-3 a a^{\prime}\right) x+\left(b b^{\prime}-a a^{\prime}\right)\right]$.
3. Calculate the multiplication table for $\mathbb{Z}_{5}[x] /\left(x^{2}\right)$.

The elements of this ring are $\left\{[a x+b]: a, b \in \mathbb{Z}_{5}\right\}$, and the key property is that $\left[x^{2}\right]=[0]$. Hence the multiplication table is given by:
$[a x+b]\left[a^{\prime} x+b^{\prime}\right]=\left[a a^{\prime} x^{2}+\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime}\right]=\left[\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime}\right]$.
4. Calculate the multiplication table for $\mathbb{Q}[x] /\left(x^{2}+2\right)$.

The elements of this ring are $\{[a x+b]: a, b \in \mathbb{Q}\}$, and the key property is that $\left[x^{2}+2\right]=[0]$, i.e. $\left[x^{2}\right]=[-2]$. Hence the multiplication table is given by:
$[a x+b]\left[a^{\prime} x+b^{\prime}\right]=\left[a a^{\prime} x^{2}+\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime}\right]=\left[\left(a b^{\prime}+b a^{\prime}\right) x+\left(b b^{\prime}-2 a a^{\prime}\right)\right]$.
5. Calculate the multiplication table for $\mathbb{Q}[x] /\left(x^{2}-2\right)$.

The elements of this ring are $\{[a x+b]: a, b \in \mathbb{Q}\}$, and the key property is that $\left[x^{2}-2\right]=[0]$, i.e. $\left[x^{2}\right]=[2]$. Hence the multiplication table is given by:
$[a x+b]\left[a^{\prime} x+b^{\prime}\right]=\left[a a^{\prime} x^{2}+\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime}\right]=\left[\left(a b^{\prime}+b a^{\prime}\right) x+\left(b b^{\prime}+2 a a^{\prime}\right)\right]$.
6. Calculate the multiplication table for $\mathbb{Q}[x] /\left(x^{2}-1\right)$.

The elements of this ring are $\{[a x+b]: a, b \in \mathbb{Q}\}$, and the key property is that $\left[x^{2}-1\right]=[0]$, i.e. $\left[x^{2}\right]=[1]$. Hence the multiplication table is given by:
$[a x+b]\left[a^{\prime} x+b^{\prime}\right]=\left[a a^{\prime} x^{2}+\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime}\right]=\left[\left(a b^{\prime}+b a^{\prime}\right) x+\left(b b^{\prime}+a a^{\prime}\right)\right]$.
7. * For each of the rings in problems 1-6, calculate the (multiplicative) inverse of $[x-1]$, or prove it does not exist.
$\mathbb{Z}_{5}[x] /\left(x^{2}+4 x+1\right):[0 x+1]=[a x+b][1 x-1]=[(-a+b-4 a) x+(-b-a)]$. Equating coefficients, we see that $b=0$ and $-a=1$. We verify that $[-x+0][x-1]=\left[-x^{2}+x\right]=[(4 x+1)+x]=[1]$, so the inverse we seek is $[-x]$.
$\mathbb{Z}_{5}[x] /\left(x^{2}+3 x+1\right):[0 x+1]=[a x+b][1 x-1]=[(-a+b-3 a) x+(-b-a)]$. Equating coefficients, we see that $b+a=0$ and $-b-a=1$. Adding, we have $0=1$; since this is impossible, there is no inverse to $[x-1]$ in this ring.
$\mathbb{Z}_{5}[x] /\left(x^{2}\right):[0 x+1]=[a x+b][1 x-1]=[(-a+b) x+(-b)]$. Equating coefficients, we see that $-a+b=0$ and $-b=1$. This gives $a=b=-1$. We verify that $[-x-1][x-1]=\left[-x^{2}+1\right]=[1]$, so the inverse we seek is $[-x-1]$.
$\mathbb{Q}[x] /\left(x^{2}+2\right):[0 x+1]=[a x+b][1 x-1]=[(-a+b) x+(-b-2 a)]$. Equating coefficients, we see that $-a+b=0$ and $-b-2 a=1$. This gives $a=b=-\frac{1}{3}$. We verify that
$\left[-\frac{1}{3} x-\frac{1}{3}\right][x-1]=\left[-\frac{1}{3} x^{2}+\frac{1}{3}\right]=[1]$, so the inverse we seek is $\left[-\frac{1}{3} x-\frac{1}{3}\right]$.
$\mathbb{Q}[x] /\left(x^{2}-2\right):[0 x+1]=[a x+b][1 x-1]=[(-a+b) x+(-b+2 a)]$. Equating coefficients, we see that $-a+b=0$ and $-b+2 a=1$. This gives $a=b=1$. We verify that $[x+1][x-1]=\left[x^{2}-1\right]=[1]$, so the inverse we seek is $[x+1]$.
$\mathbb{Q}[x] /\left(x^{2}-1\right):[0 x+1]=[a x+b][1 x-1]=[(-a+b) x+(-b+a)]$. Equating coefficients, we see that $-a+b=0$ and $-b+a=1$. Adding, we have $0=1$; since this is impossible, there is no inverse to $[x-1]$ in this ring.
8. Let $f(x), g(x), p(x) \in F[x]$, where all three polynomials are nonconstants. Suppose that $f(x) g(x)=p(x)$. Prove that $[f(x)]$ is a zero divisor in $F[x] /(p(x))$.
We have $[f(x)][g(x)]=[p(x)]=[0]$. Also, $\operatorname{deg} f(x)<\operatorname{deg} p(x)$, so $[f(x)]$ is already in standard form. Since $f(x)$ is not a constant, $[f(x)] \neq[0]$. Similarly, $[g(x)] \neq[0]$. Hence $[f(x)]$ is a zero divisor.
9. Let $f(x), p(x) \in F[x]$, where both polynomials are nonconstants. Set $g(x)=\operatorname{gcd}(f(x), p(x))$. Suppose that $[g(x)] \neq[0]$. Prove that $[f(x)]$ is a unit in $F[x] /(p(x))$, if and only if $g(x)$ is a constant polynomial.

Suppose first that $g(x) \in F$ is a constant polynomial. By the extended Euclidean algorithm we can find $a(x), b(x) \in F[x]$ with $g=a f+b p$. Reducing this modulo p, we get $[g]=[a f+b p]=[a f]+[b][p]=[a f]+[b][0]=[a f]=[a][f]$. Since $[g] \neq[0]$, there is some $\alpha \in F$ such that $[\alpha][g(x)]=[1]$, and we have $[1]=[\alpha][g(x)]=[\alpha][a(x)][f(x)]=[\alpha a(x)][f(x)]$. Hence $[f(x)]$ is a unit in $F[x] /(p(x))$.

If instead $[f(x)]$ is a unit, then there is some $[a(x)]$ where $[f a]=[f][a]=[1]$. Hence there is some $b(x) \in F[x]$ such that $p(x) b(x)=1-f(x) a(x)$. Rearranging, we see that $f(x) a(x)+$ $p(x) b(x)=1$. Hence $\operatorname{deg}(g)=\operatorname{deg}(\operatorname{gcd}(a, p)) \leq \operatorname{deg}(1)=0$, so $g(x)$ is constant.
10. Determine, with proof, which of the rings in problems 1-6 are integral domains, and which are fields.
$\mathbb{Z}_{5}[x] /\left(x^{2}+4 x+1\right)$: We verify that $x^{2}+4 x+1$ is irreducible (it has no roots in \mathbb{Z}_{5}). Let $f(x)$ be a nonzero polynomial, of degree at most 1 . Since $\operatorname{gcd}\left(f, x^{2}+4 x+1\right)=1,[f]$ is a unit by problem 9. Hence this ring is a field.
$\mathbb{Z}_{5}[x] /\left(x^{2}+3 x+1\right)$: We see that $x^{2}+3 x+1=(x-1)^{2}$. Hence, by problem $8,[x-1]$ is a zero divisor. Hence this ring is not an integral domain, much less a field.
$\mathbb{Z}_{5}[x] /\left(x^{2}\right)$: We see that $x^{2}=(x)^{2}$. Hence, by problem $8,[x]$ is a zero divisor. Hence this ring is not an integral domain, much less a field.
$\mathbb{Q}[x] /\left(x^{2}+2\right)$: We verify that $x^{2}+2$ is irreducible, by the rational root test. Let $f(x)$ be a nonzero polynomial, of degree at most 1 . Since $\operatorname{gcd}\left(f, x^{2}+2\right)=1,[f]$ is a unit by problem 9 . Hence this ring is a field.
$\mathbb{Q}[x] /\left(x^{2}-2\right)$: We verify that $x^{2}-2$ is irreducible, by the rational root test. Let $f(x)$ be a nonzero polynomial, of degree at most 1 . Since $\operatorname{gcd}\left(f, x^{2}-2\right)=1,[f]$ is a unit by problem 9 . Hence this ring is a field.
$\mathbb{Q}[x] /\left(x^{2}-1\right)$: We see that $x^{2}-1=(x+1)(x-1)$. Hence, by problem $8,[x+1]$ is a zero divisor. Hence this ring is not an integral domain, much less a field.

