
vi



Preface

There has been an explosion of interest in, and books on object-oriented programming (OOP). Why have
yet another book on the subject? In the past a basic education was said to master the three r’s: reading,
’riting, and ’rithmetic. Today a sound education in engineering programming leads to producing code that
satisfy the four r’s: readability, reusability, reliability, and really-efficient. While some object-oriented
programming languages have some of these abilities Fortran 90/95 offers all of them for engineering
applications. Thus this book is intended to take a different tack by using the Fortran 90/95 language as its
main OOP tool. With more than one hundred pure and hybrid object-oriented languages available, one
must be selective in deciding which ones merit the effort of learning to utilize them. There are millions
of Fortran programmers, so it is logical to present the hybrid object-oriented features of Fortran 90/95 to
them to update and expand their programming skills. This work provides an introduction to Fortran 90
as well as to object-oriented programming concepts. Even with the current release (Fortran 95) we will
demonstrate that Fortran offers essentially all of the tools recommended for object-oriented programming
techniques. It is expected that Fortran 200X will offer additional object-oriented capabilities, such as
declaring ”extensible” (or virtual) functions. Thus, it is expected that the tools learned here will be of
value far into the future.

It is commonly agreed that the two decades old F77 standard for the language was missing several
useful and important concepts of computer science that evolved and were made popular after its release,
but it also had a large number of powerful and useful features. The following F90 standard included
a large number of improvements that have often been overlooked by many programmers. It is fully
compatible with all old F77 standard code, but it declared several features of that standard as obsolete.
That was done to encourage programmers to learn better methods, even though the standard still supports
those now obsolete language constructs. The F90 standards committee brought into the language most of
the best features of other more recent languages like Ada, C, C++, Eiffel, etc. Those additions included in
part: structures, dynamic memory management, recursion, pointers (references), and abstract data types
along with their supporting tools of encapsulation, inheritance, and the overloading of operators and
routines. Equally important for those involved in numerical analysis the F90 standard added several new
features for efficient array operations that are very similar to those of the popular MATLAB environment.
Most of those features include additional options to employ logical filters on arrays. All of the new array
features were intended for use on vector or parallel computers and allow programmers to avoid the bad
habit of writing numerous serial loops. The current standard, F95, went on to add more specific parallel
array tools, provided “pure” routines for general parallel operations, simplified the use of pointers, and
made a few user friendly refinements of some F90 features. Indeed, at this time one can view F90/95 as
the only cross-platform international standard language for parallel computing. Thus Fortran continues
to be an important programming language that richly rewards the effort of learning to take advantage of
its power, clarity, and user friendlyness.

We begin that learning process in Chapter 1 with an overview of general programming techniques.
Primarily the older “procedural” approach is discussed there, but the chapter is closed with an outline of
the newer “object” approach to programming. An experienced programmer may want to skip directly to
the last section of Chapter 1 where we outline some object-oriented methods. In Chapter 2, we introduce
the concept of the abstract data types and their extension to classes. Chapter 3 provides a fairly detailed
introduction to the concepts and terminology of object-oriented programming. A much larger supporting
glossary is provided as an appendix.

For the sake of completeness Chapter 4 introduces language specific details of the topics discussed in

c2002 J.E. Akin vii



the first chapter. The Fortran 90/95 syntax is used there, but in several cases cross-references are made to
similar constructs in the C++ language and the MATLAB environment. While some readers may want to
skip Chapter 4, it will help others learn the Fortran 90/95 syntax and/or to read related publications that
use C++ or MATLAB . All of the syntax of Fortran 90 is also given in an appendix.

Since many Fortran applications relate to manipulating arrays or doing numerical matrix analysis,
Chapter 5 presents a very detailed coverage of the powerful intrinsic features Fortran 90 has added to
provide for more efficient operations with arrays. It has been demonstrated in the literature that object-
oriented implementations of scientific projects requiring intensive operations with arrays execute much
faster in Fortran 90 than in C++. Since Fortran 90 was designed for operations on vector and parallel
machines that chapter encourages the programmer to avoid unneeded serial loops and to replace them
with more efficient intrinsic array functions. Readers not needing to use numerical matrix analysis may
skip Chapter 5.

Chapter 6 returns to object-oriented methods with a more detailed coverage of using object-oriented
analysis and object-oriented design to create classes and demonstrates how to implement them as an OOP
in Fortran 90. Additional Fortran 90 examples of inheritance and polymorphism are given in Chapter
7. Object-oriented programs often require the objects to be stored in some type of “container” or data
structure such as a stack or linked-list. Fortran 90 object-oriented examples of typical containers are
given in Chapter 8. Some specialized topics for more advanced users are given in Chapter 9, so beginning
programmers could skip it.

To summarize the two optional uses of this text; it is recommended that experienced Fortran program-
mers wishing to learn to use OOP cover Chapters 2, 3, 6, 7, 8, and 9, while persons studying Fortran for
the first time should cover Chapters 1, 2, 3, and. Anyone needing to use numerical matrix analysis should
also include Chapter 5.

A OO glossary is included in an appendix to aid in reading this text and the current literature on OOP.
Another appendix on Fortran 90 gives an alphabetical listing on its intrinsic routines, a subject based
list of them, a detailed syntax of all the F90 statements, and a set of example uses of every statement.
Selected solutions for most of the assignments are included in another appendix along with comments
on those solutions. The final appendix gives the C++ versions of several of the F90 examples in the
text. They are provided as an aid to understanding other OOP literature. Since F90 and MATLAB are so
similar the corresponding MATLAB versions often directly follow the F90 examples in the text.

Ed Akin, Rice University, 2002

c2002 J.E. Akin viii



Index

abstract data type, 15, 23, 27
abstraction, 19, 27
access, 36
access restriction, 19
accessibility, 19
accessor, 18
actual argument, 56
Ada, 33
addition, 56
ADT, seeabstract data type
ADVANCE specifier, 42, 103
agent, 18
algorithm, 51
ALLOCATABLE, 15
allocatable array, 160, 161
ALLOCATE, 15
allocate, 42
ALLOCATE statement, 75, 93
ALLOCATED, 15
allocation status, 75
AND operand, 42
area, 34
argument

inout, 71
input, 71
interface, 76
none, 71
number of, 76
optional, 76, 77
order, 76
output, 71
rank, 76
returned value, 76
type, 76

array, 26, 60, 67, 83
allocatable, 160
assumed shape, 77
automatic, 90, 160
Boolean, 168
constant, 160
dummy dimension, 160
flip, 170
mask, 168, 183
rank, 77, 159, 161, 170

rectangular, 170
reshape, 159
shape, 159
shift, 172
size, 159
unknown size, 77
variable rank, 160

array operations, 163
ASCII, 23
ASCII character set, 77, 78, 99, 163
assembly language, 15
assignment operator, 10, 39
ASSOCIATED, 15
ASSOCIATED function, 76, 89
ASSOCIATED intrinsic, 132, 134
associative, 176, 177
asterisk (*), 58
ATAN2, 13
attribute, 105, 106, 109, 121, 125

private, 27, 125
public, 27
terminator, 25

attribute terminator, 25
attributes, 19, 27
automatic array, 90, 160, 161
automatic deallocation, 29

BACKSPACE statement, 76
bad style, 162
base class, 121
behavior, 106, 109
binary file, 163
bit

clear, 75
extract, 75
set, 75
shift, 75
test, 75

bit manipulation, 75
blanks

all, 78
leading, 78
trailing, 78

Boolean, 53
Boolean value, 23

4



bottom-up, 4
bounds, 159
bubble sort, 93, 95

ordered, 96
bug, 9

C, 1, 33, 52
C++, 1, 10, 14, 24, 33, 52, 58, 60, 77, 82, 103,

123
CALL statement, 42
CASE DEFAULT statement, 64
CASE statement, 64
cases, 62
central processor unit, 73
character, 82

case change, 81
control, 77
from number, 81
functions, 78
non-print, 103
non-printable, 77
strings, 77
to number, 81

character set, 23
CHARACTER type, 23, 26, 53
chemical element, 25
circuits, 170
circular shift, 172
class, 15, 19, 33

base, 18
Date, 120, 123
derived, 18
Drill, 105
Employee, 125
Geometric, 120
Global Position, 114
Great Arc, 114
hierarchy, 33
instance, 33
Manager, 125, 135
Person, 120, 123
polymorphic, 133
Position Angle, 109, 114
Professor, 123
Student, 120, 123

class code
class Angle, 114
class Circle, 34
class Date, 37
class Fibonacci Number, 29
class Person, 37
class Rational, 42
class Rectangle, 34
class Student, 37

Drill, 106
Global Position, 114
Great Arc, 114
Position Angle, 114

clipping function, 14, 71
CLOSE statement, 75
Coad/Yourdon method, 18
colon operator, 56, 61, 62, 78, 160, 163, 167,

170
column major order, 181
column matrix, 174
column order, 162
comma, 99
comment, 1, 2, 7, 9, 12, 52
commutative, 101, 176, 177
compiler, 10, 15, 91
complex, 10, 82, 165
COMPLEX type, 23, 53
COMPLEX type , 24
composition, 34, 36
conditional, 7–9, 11, 51, 58
conformable, 176
connectivity, 170
constant array, 160
constructor, 18, 29, 34, 125, 134, 135

default, 18
intrinsic, 18, 26, 34, 39
manual, 36
public, 37
structure, 26

CONTAINS statement, 29, 33, 34, 73, 76, 86
continuation marker, 10
control key, 79
conversion factors, 29
count-controlled DO, 12, 13
CPU,seecentral processor unit
curve fit, 91
CYCLE statement, 66

data abstraction, 19
data hiding, 36
data types, 10

intrinsic, 23
user defined, 23

date, 101
DEALLOCATE, 15
deallocate, 18, 42
DEALLOCATE statement, 75
debugger, 17
debugging, 16
default case, 64
default value, 29
dereference, 58
derived class, 121

c2002 J.E. Akin 5



derived type, 15, 23
component, 83
nested, 83
print, 85
read, 85

destructor, 29, 34, 41, 48
determinant, 179
diagonal matrix, 174
dimension

constant, 161
extent, 159
lower bound, 159
upper bound, 159

distributive, 177
division, 56
DO statement, 29, 60, 62
DO WHILE statement, 67
DO-EXIT pair, 68, 69
documentation, 17
domain, 19
dot product, 12
double, 24
DOUBLE PRECISION type, 23, 24, 53
dummy argument, 56, 73
dummy dimension, 161
dummy dimension array, 160
dummy variable, 73
dynamic binding, 18
dynamic data structures, 38
dynamic dispatching, 132
dynamic memory, 75

allocation, 15
de-allocation, 15
management, 15

dynamic memory management, 89

e, 25
EBCDIC, 23
EBCDIC character set, 77
Eiffel, 18
electric drill, 105
ELSE statement, 42, 63, 67
encapsulate, 15
encapsulation, 27, 33
end off shift, 172
end-of-file, 76
end-of-record, 76
end-of-transmission, 78
EOF,seeend-of-file
EOR,seeend-of-record
EOT,seeend of transmission
equation

number, 173
error checking, 18

exception, 75
exception handler, 75
exception handling, 18
exercises, 48
EXIT statement, 66, 67
explicit loop, 11
exponent range, 24
exponentiation, 56
expression, 10, 51, 52, 89
external subprogram, 77

factorization, 178, 179
FALSE result, 63
Fibonacci number, 29
file, 75

column count, 100
internal, 81
line count, 100
read status, 100
unit number, 101

finite element, 43
flip, 167, 170
float, 53
floating point,seereal, 23, 24, 183
flow control, 11, 51, 58
FORMAT statement, 34
function, 7, 9, 51, 69, 70

argument, 13, 15
extensible, 132
recursive, 42, 102
result, 70
return, 13
variable, 15

function code
Add, 29
add Rational, 42
Angle , 114
circle area, 34
clip, 71
convert, 42
copy Rational, 42
Date , 37
Decimal min, 114
Decimal sec, 114
Default Angle, 114
Drill , 106
gcd, 42, 102
get Arc, 114
get Denominator, 42
get Latitude, 114
get Longitude, 114
get mr rate, 106
get next io unit, 103
Get Next Unit, 99

c2002 J.E. Akin 6



get Numerator, 42
get person, 37
get torque, 106
Great Arc , 114
inputCount, 93
Int deg, 114
Int deg min, 114
Int deg min sec, 114
is equal to, 42
make Person, 37
make Rational, 42
make Rectangle, 36
make Student, 37
mid value, 70
mult Fraction, 87
mult Rational, 42
new Fibonacci Number, 29
Person , 37
Rational , 42
rectangle area, 34
set Date, 37
set Lat and Long at, 114
Student , 37
toc, 73
to Decimal Degrees, 114
to lower, 81
to Radians, 114
to upper, 81, 101

FUNCTION statement, 29

Game of Life, 4
Gamma, 25
gather-scatte, 172
gcd,seegreatest common divisor
generic function, 33, 34
generic interface, 134
generic name, 34
generic object, 42
generic routine, 123
generic subprogram, 77
geometric shape, 34
global positioning satellite, 108
global variable, 14, 73
GO TO statement, 65, 66
GPS,seeglobal positioning satellite
Graham method, 18
graphical representation, 27, 120
greatest common divisor, 42, 102

Has-A, 109
header file, 131
hello world, 52, 101
hierarchie

kind of, 18

part of, 18
horizontal tab, 78
Hubbard, J.R., 36
hyperbolic tangent, 103

identity matrix, 182
if, 12
IF ELSE statement, 62
IF statement, 29, 37, 42, 62
if-else, 12
IF-ELSE pair, 63
IF-ELSEIF, 132
IMPLICIT COMPLEX, 53
IMPLICIT DOUBLE PRECISION, 53
IMPLICIT INTEGER, 52
implicit loop, 12
IMPLICIT NONE, 26, 29
IMPLICIT REAL, 52
implied loop, 61, 62, 160, 170
INCLUDE line, 37, 42, 90
INDEX intrinsic, 81
indexed loop, 11
infinite loop, 9, 68, 69
inheritance, 18, 33, 34, 73, 121
inherited, 37
inner loop, 62
INQUIRE intrinsic, 93, 98, 103
INQUIRE statement, 76
instance, 33, 124
integer, 10, 82, 165
INTEGER type, 23, 24, 53
intent

in, 29
inout, 29
statement, 29

INTENT statement, 29, 58, 71, 94
interface, 2, 6, 9, 13, 15, 27, 34, 76, 93, 106,

109, 123
general form, 77
human, 18
input/output, 18
prototype, 18

INTERFACE ASSIGNMENT (=) block, 87
interface block, 34, 77
interface body, 77
interface operator (*), 39
INTERFACE OPERATOR block, 86, 87
INTERFACE OPERATOR statement, 170
interface prototype, 105, 106, 125
INTERFACE statement, 34
internal file, 81
internal sub-programs, 73
interpreter, 10, 15
intrinsic, 170

c2002 J.E. Akin 7



intrinsic constructor, 86, 99, 108
intrinsic function, 12, 70
inverse, 182
IOSTAT = variable, 75, 76
Is-A, 108, 109
ISO VARIABLE LENGTH STRING, 23
Is A, 126

keyword, 123
KIND intrinsic, 24
Kind-Of, 109, 125

latitude, 108
least squares, 91
LEN intrinsic, 78, 81
length

line, 52
name, 52

LEN TRIM intrinsic, 78
lexical operator, 95
lexically

greater than, 78
less than, 78
less than or equal, 78

library function, 16
line continuation, 101
linear equations, 177, 178
linked list, 38, 88, 89
linker, 16, 90
list

doubly-linked, 89
singly-linked, 89

logarithm, 70, 92
logical, 82

AND, 63
equal to, 63
EQV, 63
greater than, 63
less than, 63
NEQV, 63
NOT, 63
operator, 63
OR, 63

logical expression, 11
logical mask, 62
logical operator, 63
LOGICAL type, 23, 42
long, 24
long double, 24
long int, 24
longitude, 108
loop, 5, 7–9, 11, 51, 58, 183

abort, 68
breakout, 66

counter, 60
cycle, 66
exit, 60, 66
explicit, 59
implied, 61
index, 101
infinite, 60, 68
nested, 62, 66
pseudocode, 59
skip, 66
until, 67, 68
variable, 60
while, 67

loop control, 61, 162
loop index, 101
loop variable, 11
lower triangle, 175, 178

manual constructor, 86, 106
manual page, 17
mask, 165, 168, 169, 183
masks, 62
Mathematica, 51
mathematical constants, 25
Matlab, 1, 10, 14, 52, 61, 70, 100, 103
MATMUL intrinsic, 177
matrix, 159, 174

addition, 176
algebra, 159
column, 174
compatible, 176
determinant, 179
diagonal, 174
factorization, 178
flip, 167
identity, 178
inverse, 90, 178
multiplication, 163, 176
non-singular, 178
null, 174
skew symmetric, 175
solve, 90
square, 174, 175
symmetric, 175
Toeplitz, 175
transpose, 163, 175
triangular, 175, 178

matrix addition, 181, 182
matrix algebra, 159, 176
matrix multiplication, 169, 177, 182
matrix operator, 38
matrix transpose, 169
maximum values, 71
MAXLOC intrinsic, 71

c2002 J.E. Akin 8



MAXVAL intrinsic, 71
mean, 70
member, 121
message, 27
methods, 3

private, 27
public, 27

military standards, 75
minimum values, 71
MINLOC intrinsic, 71
MINVAL intrinsic, 71
modular design, 6
module, 15, 25, 33, 69
module code

class Angle, 114
class Circle, 34
class Date, 37
class Fibonacci Number, 29
class Global Position, 114
class Great Arc, 114
class Person, 37
class Position Angle, 114
class Rational, 42
class Rectangle, 34
class Student, 37
exceptions, 76
Fractions, 87
Math Constants, 25
record Module, 97
tic toc, 73, 101

MODULE PROCEDURE statement, 34, 39, 86,
87, 170

MODULE statement, 29
module variable, 29
modulo function, 56
multiple inheritanc, 121
multiplication, 56
Myer, B., 18

NAG, seeNational Algorithms Group
named

CYCLE, 66, 67
DO, 67
DO loop, 60
EXIT, 66, 67
IF, 64
SELECT CASE, 64

National Algorithms Group, 91
nested

DO, 67
IF, 62

new line, 79, 103
Newton-Raphson method, 11
non-advancing I/O, 42

NULL function (f95), 89
NULLIFY, 15
nullify, 134
NULLIFY statement, 89
number

bit width, 24
common range, 24
label, 60
significant digits, 24
truncating, 166
type, 24

numeric types, 23
numerical computation, 38

object, 15, 19, 33
object oriented

analysis, 18, 43, 105, 109, 120
approach, 18
design, 18, 43, 105, 109, 120
language, 18
programming, 18, 105
representation, 18

Object Pascal, 18
OOA, seeobject oriented analysis
OOD,seeobject oriented design
OOP,seeobject oriented programming
OPEN statement, 75, 163
operator, 27

.op., 87, 169

.solve., 90, 91

.t., 170

.x., 170
assignment, 39
binary, 87
defined, 18, 87
extended, 87
overloaded, 18
overloading, 39, 86
symbol, 87
unary, 87
user defined, 77, 169

operator overloading, 10
operator precedence, 52
operator symbol, 169
optional argument, 29, 37, 76
OPTIONAL attribute, 29, 36, 106
OR operand, 37
ordering array, 96
outer loop, 62
overloaded member, 123
overloading, 39, 48, 86

testing, 87

package, 15

c2002 J.E. Akin 9



parallel computer, 43
PARAMETER attribute, 25
Part-Of, 109
partial derivative, 180
partitioned matrix, 175
pass by reference, 57, 77, 88
pass by value, 57, 58, 77
path name, 37
pi, 25
pointer, 10, 23, 76, 87

allocatable, 15
arithmetic, 88
assignment, 89
association, 88
declaration, 88
dereference, 58
detrimental effect, 88
in expression, 89
inquiry, 89
nullify, 89
status, 15, 88
target, 88

pointer object, 133
pointer variable, 87
polymorphic class, 133
polymorphic interface, 120
polymorphism, 18, 33, 34, 121, 126
portability, 15
pre-processor, 131
precedence rules, 11
precision, 183

double, 82
kind, 24
portable, 82
single, 82
specified, 82
underscore, 24
user defined, 24

precision kind, 24
PRESENT function, 76
PRESENT intrinsic, 29, 36
PRINT * statement, 29
private, 33, 106
PRIVATE attribute, 29, 36
private attributes, 37
PRIVATE statement, 27
procedural programming, 18
procedure, 69
program

documentation, 17
executable, 17
scope, 14

program code, 114

array indexing, 60
clip an array, 71
create a type, 26
declare interface, 77
Fibonacci, 29
geometry, 34
if else logic, 63
linear fit, 93
Logical operators, 63
main, 37, 42
operate on strings, 79
relational operators, 63
simple loop, 60
string to numbers, 81
structure components, 85
test bubble, 98
test Drill, 108
test Fractions, 87
test Great Arc, 114

program keyword, 56
PROGRAM statement, 26, 29
projectile, 102
prototype, 6, 76
pseudo-pointer, 96
pseudocode, 5, 14, 51, 71, 102
public, 33, 125
PUBLIC attribute, 29
public constructor, 37
public method, 27
PUBLIC statement, 27

quadratic equation, 3
queue, 89

rank, 161
rational number, 38, 39
read error, 103
READ statement, 29, 62, 76
real, 10, 82, 165
REAL type, 23, 24, 53
recursive algorithm, 88
RECURSIVE qualifier, 42, 102
reference, 10
relational operator, 52, 63, 78
remainder, 56
rename modifier, 121
reshape, 162
RESULT option, 29
result value, 70
return, 161
RETURN statement, 66
REWIND statement, 76

sample data, 99

c2002 J.E. Akin 10



scatter, 173
scope, 14
SELECT CASE statement1, 64
SELECTED INT KIND, 23, 24
SELECTED REAL KIND, 23, 24
selector symbol, 26, 29, 34
server, 18
short, 24
size, 12
SIZE intrinsic, 70, 90, 93, 159
Smalltalk, 18
sort, 87, 91, 93, 96, 127

bubble, 93
characters, 95
object, 97
objects, 95
strings, 95

sorting, 42
sparse vector, 49
sparse vector class, 183
specification, 4
SQRT intrinsic, 27
square root, 27, 56, 70
stack, 89
STAT = variable, 75
statement, 2, 9
statement block, 12, 58
statements, 1
status

FILE, 76
IOSTAT =, 76
MODE, 76
OPENED =, 76

status checking, 161
STOP statement, 37
storage

column wise, 159
row wise, 159

string, 23, 56
adjust, 78
case change, 81
character number, 78
collating sets, 78
colon operator, 78
concatenate, 78
copy, 78
dynamic length, 77
from number, 81
functions, 78
length, 78
logic, 78
repeat, 78
scan, 78

to number, 81
trim, 78
verify, 78

strings, 77
strong typing, 53
struct, 53
structure, 23, 25, 33, 85
structure constructor, 26
structured programming, 13
submatrix, 175
subprogram, 69

recursive, 102
subroutine, 69, 70
subroutine code, 114

assign, 87
Change, 77
delete Rational, 42
equal Fraction, 87
equal Integer, 42
exception status, 76
in, 106
Integer Sort, 96, 99
invert, 42
list, 42
List Angle, 114
List Great Arc, 114
List Position, 114
List Position Angle, 114
List Pt to Pt, 114
lsq fit, 93
mult Fraction, 87
No Change, 77
out, 106
Print, 29
print Date, 37
print DOB, 37
print DOD, 37
print DOM, 37
print GPA, 37
print Name, 37
print Sex, 37
readData, 93, 101
read Date, 37
Read Position Angle, 114
reduce, 42
set DOB, 37
set DOD, 37
set DOM, 37
set Latitude, 114
set Longitude, 114
simple arithmetic, 56
Sort Reals, 94
Sort String, 95

c2002 J.E. Akin 11



String Sort, 99
test matrix, 90
tic, 73

SUBROUTINE statement, 29
subroutines, 33
subscrip, 159
subscript, 26, 60

bounds, 159
range, 181
vector, 170

subtraction, 56
subtype, 133
subtyping, 126, 132
sum, 12
SUM intrinsic, 70, 93, 169
super class, 121
syntactic error, 17
SYSTEM CLOCK intrinsic, 73

tab, 79, 99, 103
TARGET, 15
target, 23, 76, 88, 89
template, 43, 126, 128
tensor, 159
testing, 15
time of day, 101
Toeplitz matrix, 175
top-down, 4
transformational functions, 169
transpose, 163, 175, 177
TRANSPOSE intrinsic, 170
tree structure, 38, 88, 89
triplet, seecolon operator
true, 12
TRUE result, 63
truss, 170
type

conversion, 81
default, 52
implicit, 52

TYPE declaration, 26, 29
TYPE statement, 27, 34

unexpected result, 169
upper triangle, 175, 178
USE association, 121, 125
USE statement, 29, 33, 34, 37, 86, 90
user defined operator, 169
user interface, 2

validation, 29
variable, 8, 10, 23, 51

global, 14
name, 10

type, 10
variable rank array, 160
vector, 159
vector class, 48, 183
vector subscript, 62, 170
volume, 48

WHERE construct, 169
WHERE statement, 62, 67, 169
while-true, 68
wildcard, 128
WRITE statement, 34, 62, 76

c2002 J.E. Akin 12


