
Scaling-up Support Vector Machines Using Boosting Algorithm

Dmitry Pavlov
Dept. of Info. and Comp. Science

Univ. of California at Irvine
Irvine, CA 92697, USA

pavlovd@ics.uci.edu

Jianchang Mao
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120, USA
mao@almaden.ibm.com

Byron Dom
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120, USA
dom@almaden.ibm.com

Abstract

In the recent years support vector machines (SVMs) have
been successfully applied to solve a large number of clas-
sification problems. Training an SVM, usually posed as
a quadratic programming (QP) problem, often becomes a
challenging task for the large data sets due to the high
memory requirements and slow convergence. We propose to
apply boosting to Platt’s Sequential Minimal Optimization
(SMO) algorithm and to use resulting Boost-SMO method
for speeding and scaling up the SVM training. Experi-
ments on three commonly used benchmark data sets show
that Boost-SMO achieves classification accuracy compara-
ble to conventional SMO but is a factor of 3 to 10 faster. The
speed-up could easily be orders of magnitude on the larger
data sets.

Keywords: Support vector machines, boosting algorithm,
machine learning.
Track: Pattern Recognition and Analysis.
Correspondence to: Dr. Jianchang Mao.

1. Introduction

SVMs have received a considerable attention in the re-
cent years and many successful applications of SVMs have
been described in the literature [10, 9, 4]. The objec-
tive of SVMs is to maximize the margin of separation be-
tween the classes. Larger margin ensures smaller Vapnik-
Chervonenkis (VC) dimension, which yields a good gener-
alization performance.

In spite of many desirable properties of SVMs, such

as independence on the feature dimensionality, notion of
support vectors, and high generalization performance, their
training on large data sets is a challenging problem. Vari-
ous training algorithms have been proposed to speed up the
training, including chunking [9], Osuna’s decomposition
method [5], and Platt’s Sequential Minimal Optimization
(SMO) [6]. Although these algorithms have been proven to
accelerate the training, they do not scale well with the size
of the training data.

We propose to use boosting to solve the scaling prob-
lem. Boosting is a general technique for improving perfor-
mance of any given classifier [3, 7]. Boosting can effec-
tively convert a weak classifier (which does a little better
than random guessing) into a strong classifier (which can
achieve an arbitrarily low error rate given sufficient train-
ing data). Schapire et al. [3, 7] explain the effectiveness of
the boosting algorithm in improving generalization perfor-
mance based on the notion of a “margin” that can be inter-
preted as a measure of confidence in the prediction. They
proved that larger margins translate into a superior upper
bound on the generalization error and that boosting is par-
ticularly aggressive at reducing the margin [7].

It is generally believed that boosting is more effective
on unstable classifiers such as decision trees and neural
networks than on stable classifiers (such as linear classi-
fiers) [2]. Linear SVMs with a dot-product kernel belong to
the class of stable classifiers. Therefore, we do not expect
boosting to help improve the classification accuracy. In this
paper, we attempt to solve the scaling problem of SVMs,
while preserving their classification accuracy.

2. Boost-SMO Algorithm

We apply boosting to Sequential Minimal Optimization
(SMO) algorithm which is the most efficient state-of-the-art
technique for training SVMs. Shortly, SMO decomposes
the quadratic programming (QP) problem arising in SVM
training into a sequence of minimal QP problems involving
only two variables, and each of these problems is solved an-
alytically. SMO heuristically selects a pair of variables for
each problem and optimizes them. This procedure repeats
until all the patterns satisfy the optimality conditions [6].

The main idea of boosting is to train a sequence of
classifiers so that each subsequent classifier concentrates
mostly on the errors made by the previous ones [7]. This
is achieved by assigning a probability label to each training
pattern and maintaining it over the whole training phase.
The update rules for probability labels are fully specified by
the boosting algorithm. The worse the performance of the
previously built classifiers on a particular example is, the
higher the probability it will get.

The basic boosting algorithm is described as follows.

1. Initialize
��� �

, and labels � ���	�
 � ��������������������������
.

2. Train a weak classifier using distribution � ���	� �� � �����
�� ����������������� �!#"
.

3. Get the weak hypothesis $ ���	�&%('*) ��+ �,�!-.�/"
by

minimizing the error 0 ���	� �21
�3 465 798 ��:,;<�>=?A@ ; � �CB �	D
4. Choose E ���	� �GFHJI9KML F!NAO 5P7<8O 5P798&QSR
5. Update � ���	�

:� ���	T F �
 � � ���	�
VUCWYX B + E ���	�	Z
 $ ���	� B\[
 D�D] ���	� �
where

] ���	�
is a normalization factor.

6. Repeat steps 2-5 ^ times.

The final hypothesis is given by a boosted classifier
which is a linear combination of individual locally optimal
SVMs _ B\[D`�

sign acbd � ? F E ���	� $ ���	� Be[D>f R
Note that the final decision function obtained by boosting
remains linear when linear SVMs are used as individual
classifiers.

A direct way to use the probability distribution � ���	�
over

examples in training SVMs is to create subsamples of data
or the so-called boosting sets. The boosting set that will
be used for training the classifier on the

� � 4
iteration can

be created by sampling examples from the original data set
according to � ���	�

. In our experiments the size of boosting
sets was roughly equal to 2-4% of the original set size which
allows for a very fast training of individual SVMs.

Each individual SVM is trained using regular SMO,
hence it achieves maximum margin separability on the cor-
responding boosting set. But because of the limited amount
of data used to train individual SVMs, their decision bound-
aries may be far from the global optimal solution. However,
the ensemble effect of a sequence of SVMs (normally an or-
der of 10-15) allows for a boosted classifier to have a high
generalization performance. Since the boosting algorithm
also has the effect of improving the margin [8], Boost-SMO
is able to find a global solution which is comparable in terms
of accuracy to that obtained by the standard SVM training
algorithms.

3. Experiments

We compared performance of linear classifiers trained
with the Boost-SMO and the Full-SMO (conventional SMO
algorithm) on the following three data sets: the Reuters
Data, the Microsoft Web Data and the UCI Adult Data.

For the Reuters Data we looked at the classes “acq” and
“earn” that have the greatest number of positive examples.

The Microsoft Web Data is publicly available at the UCI
KDD repository1. This data set reflects the Web pages of
www.microsoft.com that each user visited during one week
of February 1998. The classification task, as we pose it, is
to predict whether a user will visit the most popular site g
based on his/her visiting pattern of all other sites.

The Adult data set is available at UCI machine learning
repository [1]. The task is to predict if the income of a per-
son is greater than 50K based on several census parameters,
such as age, education, marital status and so forth. The pa-
rameters of the data sets are summarized in the Table 1.

In both algorithms we used dot-product caching with the
maximum cache size of 6 million to avoid the usual bottle-
neck of SMO training - repeated kernel evaluations. After
classifiers were trained we compared their performance on
the provided test data. All experiments were run on the NT
machine with Pentium II 450 MHz processor and 196 Mb
of RAM.

Table 2 compares the Boost-SMO and the Full-SMO al-
gorithms on the four data sets with respect to the preci-
sion/recall rates obtained by the algorithms and the training
time. The analysis of the figures shows that Boost-SMO is
able to reach the same rate of accuracy as the conventional,
optimal Full-SMO algorithm. On the other hand, the train-
ing time with the Boost-SMO algorithm is 3 to 10 times less
than in the Full-SMO.

1http://kdd.ics.uci.edu/databases/msweb/msweb.html

Table 1. Characteristics of the Data Sets
Parameter Reuters Data, Reuters Data Web Adult

Name class “acq” class “earn” Data Data
Number of Attributes 11230 11230 294 14

Binary Attributes no no yes no
Training set 1650(+) 2877(+) 10057(+) 7508(+)

7953(-) 6726(-) 21875(-) 22654(-)
Test set 719(+) 1087(+) 1561(+) 3700(+)

2580(-) 2212(-) 3325(-) 11360(-)

Figure 1 shows how precision and recall rates of the Full-
SMO and Boost-SMO change in the course of training on
the Adult data set. The upper curves on the figure corre-
spond to precision and the lower to recall. It is easy to see
that Boost-SMO is much faster, yet is as accurate as the
Full-SMO algorithm.

0 50 100 150 200 250 300 350 400 450
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

CPU Time, sec

P
re

ci
si

on
 a

nd
 R

ec
al

l o
n

th
e

T
ra

in
in

g
D

at
a

Performance Comparison on Adult Data

Boost−SMO
Full−SMO

Figure 1. Precision and Recall Rates of the Full-
SMO and Boost-SMO Versus CPU Time on UCI
Adult Data

The box-plot of cache usage for Boost-SMO and Full-
SMO during training shown in Figure 2 indicates that
Boost-SMO uses much less memory than the Full-SMO. As
the number of patterns in the training data increases, the dif-
ference in speed and memory requirements might be even
more significant.

There are several important issues in the design of the
boosted classifier. The first one is the choice of the boosting
set size for training individual SVMs. This parameter de-
pends on the size of physical memory of the computer used

1

4.45

4.5

4.55

4.6

x 10
6 Memory Usage for Full−SMO

C
ac

he
 S

iz
e

1

0.5

1

1.5

2

x 10
5 Memory Usage for Boost−SMO

C
ac

he
 S

iz
e

Figure 2. Box-plot of Cache Usage of the Full-SMO
and Boost-SMO on UCI Adult Data

for training Boost-SMO. Typically, the larger the subset size
is, the fewer number of boosting steps is needed. However,
the large boosting set size may make the training of indi-
vidual SVMs very slow especially if the cache size is fre-
quently exceeded. We have done experiments with different
boosting set sizes and found that accuracy performance of
the Boost-SMO is not sensitive to the boosting set size for a
large range from 5% to 90% of data. Table 3 shows the total
number of errors (false-positives + false-negatives) versus
the percentage of data used for training individual SVMs in
Boost-SMO on the “acq” class of the Reuters data. It is easy
to see that within a small random fluctuation the number of
errors on the test data remains constant as the boosting set
size increases. Compare the figures in the table with the
number of error returned by the Full-SMO - 69. We see that
in order to get an almost optimal performance in terms of
accuracy it is sufficient to use only 2-4% of the data at each

Table 2. Performance Comparison of the Full-SMO and Boost-SMO
Full-SMO Boost-SMO

Data set Precision Recall CPU Time Precision Recall CPU Time
Web 60.1 67.1 1546 sec. 60.2 66.9 576 sec.
Adult 73.2 57.9 443 sec. 72.9 59.1 44 sec.

Reuters, “acq” 92.6 97.7 119 sec. 96.7 93.2 27 sec.
Reuters, “earn” 98.6 98.1 94 sec. 99.0 97.7 26 sec.

Table 3. Number of Errors Versus the Percentage of Data Used to Train Individual SVMs in Boost-SMO
Percentage 1 2 5 10 20 30 40 50 60 70 80 90

errors 231 72 73 75 74 73 75 73 70 71 74 76

step of Boost-SMO.
Another design issue is how to determine the number

of boosting steps. In our experiments, boosting terminates
when either of the following two conditions is met: (i) the
prespecified maximum number of boosting steps is reached,
or (ii) the error of the current SVM is 0 -close to 0.5. Al-
though this choice of the number of boosting steps leads to
a reasonable performance, we have noticed that in certain
cases smaller number of steps yields better generalization
performance.

4. Conclusions

We have presented a method (Boost-SMO) for speeding
and scaling up the SVM training using the boosting algo-
rithm. Experiments on three well-known benchmark data
sets show that not only Boost-SMO preserves the classifi-
cation accuracy of the Full-SMO, but it is also significantly
faster than the conventional algorithm. The memory re-
quirements of Boost-SMO are almost independent of the
original data set size, therefore it can be easily scaled up to
large training data sets.

We also believe that the described method can be applied
to non-linear SVMs and plan to test this in the nearest fu-
ture.

An interesting open theoretical issue is finding condi-
tions that could guarantee the optimality of the proposed
algorithm.
Acknowledgment: We would like to thank Salil Prabhakar
for many useful discussions.

References

[1] C. Blake and C. Merz. Uci repository of machine learn-
ing databases. Technical report, Department of Information
and Computer Science, University of California, Irvine, CA.
http://www.ics.uci.edu/ mlearn/MLRepository.html, 1998.

[2] L. Breiman. Bias, variance, and arcing classifiers. Tech-
nical report, Statistics Department,University of California,
Berkeley. April, 1996, Technical Report 460.

[3] Y. Freund and R. Schapire. Experiments with a new boost-
ing algorithm. In Proc. of the 13th Intl. Conf. on Machine
Learning, 1996.

[4] M. A. Hearst. Support vector machines. IEEE Intelligent
Systems, pages 18–28, July/August 1998.

[5] E. Osuna, R. Freund, and F. Girosi. An improved training al-
gorithm for support vector machines. In J. Principe, L. Gile,
N. Morgan, and E. Wilson, editors, Proc. of IEEE Workshop
on Neural Networks for Signal Processing, pages 276–285.
IEEE Press, New York, 1997.

[6] J. Platt. Fast training of support vector machines using se-
quential minimal optimization. In B. Scholkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods – Sup-
port Vector Learning, pages 185–208. MIT Press, Cam-
bridge, MA, 1999.

[7] R. E. Schapire. An introduction to boosting algorithm. In
Proc. of the sixteenth Intl. Joint Conf. on Artificial Intelli-
gence, 1999.

[8] R. E. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boost-
ing the margin: A new explanation for the effectiveness of
voting methods. Annals of Statistics, 1999.

[9] B. Scholkopf, C. Burges, and A. Smola (eds). Advances
in Kernel Methods – Support Vector Learning. MIT Press,
Cambridge, MA, 1999.

[10] V. N. Vapnik. Statistical Learning Theory. John Wiley &
Sons, New York, 1998.

