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Abstract: We present a novel and fast algorithm to compute penetration depth (PD) between two polyhedral
models. Given two overlapping polyhedra, it computes the minimal translation distance to separate them using a
combination of object-space and image-space techniques. The algorithm computes pairwise Minkowski sums of
decomposed convex pieces, performs closest-point query using rasterization hardware and refines the estimated PD
by object-space walking. It uses bounding volume hierarchies, model simplification, object-space and image-space
culling algorithms to further accelerate the computation and refines the estimated PD in a hierarchical manner. We
highlight its performance on complex models and demonstrate its application to dynamic simulation and tolerance
verification.
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modeling, robotics

1 Introduction

The need to perform fast proximity queries, including collision detection, tolerance checking, distance calculation
and penetration computation, arises in numerous areas. Some applications include virtual environments, physically-
based modeling, computer animation, robotics, haptics, and electronic prototyping. While several of these queries,
such as collision detection and distance computation, have been extensively studied in the field, there is relatively lit-
tle work on penetration computation that provides a measure of intersection or penetration between two overlapping
models.

Given two inter-penetrating rigid polyhedral models, the penetration measure between them can be defined using
different formulations. One of the widely used measures for quantifying the amount of intersection ispenetration
depth, commonly defined as the minimum translational distance required to separate two intersecting rigid mod-
els [DHKS93, CC86, Cam97]. Penetration depth (PD) is often used in contact resolution for dynamic simulation
[MZ90, Mir00, ST96], force computation in haptic rendering [MPT99, GME+00], tolerance verification for virtual
prototyping [Req93], motion planning of autonomous agents [HKL+98], etc. Most collision detection algorithms
and libraries do not handle inter-penetrations and current distance computation algorithms do not provide a contin-
uous distance measure when two objects collide. This can induce numerical problems, e.g. instability or invalid
results, in dynamic simulation. Furthermore, several commonly used techniques like penalty-based methods often
need to perform PD queries for imposing the non-penetration constraint for rigid body simulation. Various heuris-
tics, such as reducing the frequency of PD computation or estimating PD based on the last closest feature pairs, are
sometimes used. But, the results can be inconsistent and inaccurate. Fast and reliable PD computation is important
for robust and efficient simulation of dynamical systems.

The PD between two overlapping objects can be formulated based on theirMinkowski sum. Given two polyhedral
models, sayP andQ, the PD corresponds to the minimum distance from the origin of the Minkowski sum,P⊕(−Q),
to the surface of this sum. However, the computational complexity of computing the Minkowski sum can beO(n6),
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wheren is the number of features [DHKS93]. In addition to its high computational complexity, the resulting
algorithms are also susceptible to accuracy and robustness problems. Hence, no practical algorithms are yet known
for accurately computing the PD between general polyhedral models.

Main Results: We present a novel approach to estimate the PD between general polyhedral models using a com-
bination of object-space and image-space techniques. Given the global nature of the PD problem, we systematically
decompose the boundary of each polyhedron into convex pieces, compute the pairwise Minkowski sums of the
resulting convex polytopes and use the polygon interpolation based rasterization hardware to perform the closest
point query up to image-space resolution. To further speed up this computation and improve the estimate, we use
a hierarchical refinement technique that takes advantage of object-space culling, model simplification, image-space
acceleration, and local refinement with greedy walking. The overall approach combines image-space accelerated
queries with object-space culling and refinement at each level of the hierarchy.

This algorithm has been implemented and tested on different benchmarks. Depending on the combinatorial
complexity of polyhedra and their relative configuration, its performance varies from a fraction of second to a few
seconds on a1.6GHz PC with an NVIDIA GeForce 3 graphics card. To illustrate the effectiveness of our algorithm,
we demonstrate its applications to contact response computation and an improved time-stepping method for rigid-
body dynamic simulation, and tolerance verification for virtual prototyping. To the best of our knowledge, this is
the first practical algorithm for computing a reliable PD between general polyhedral models and it works well for
different scenarios.

Organization: The rest of the paper is organized in the following manner. We give a brief summary of the related
work in Section 2 and present some background material along with an overview of our approach in Section 3.
Section 4 describes the underlying algorithm that uses a combination of object space and image space computations.
We present a number of acceleration methods in Section 5 to improve the overall performance. Section 6 describes
its implementation and performance on different configurations. Section 7 highlights its applications to dynamics
simulation and tolerance verifications for virtual prototyping.

2 Previous Work

In this section, we briefly review previous work related to proximity queries, penetration depth computation and the
use of graphics rasterization hardware for geometric computations.

2.1 Collision and Distance Queries

The problems of collision detection and distance computations are well studied in computational geometry, robotics,
and simulated environments. Most of the prior work on polyhedra can be categorized based on the types of models,
such as convex polytopes and general polygonal models.

For convex polytopes, various techniques have been developed based on Minkowski difference [Cam97, GJK88]
and feature tracking using Voronoi regions [LC91, Mir98]. Some of these algorithms also utilize the spatial and tem-
poral coherence between successive frames and perform incremental computations [Bar92, Cam97, LC91, Mir98].

For general polygonal models, bounding volume hierarchies (BVHs) have been widely used for collision detec-
tion and separation (or Euclidean) distance queries. They localize the problem and use the “divide-and-conquer”
paradigm. BVHs often differ based on the underlying bounding volume or traversal schemes. These include the
OBB trees [GLM96], sphere trees [Hub95], k-dops [KHM+98], and convex hull-based trees [EL01]. Due to the
global nature of PD problem, none of them can be directly used for PD computation between non-convex models.
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2.2 Penetration Depth Computation

A few efficient algorithms to compute the penetration depth (PD) between convex polytopes have been proposed.
The simplest exact algorithm is based on computing their Minkowski sum [GS87, KR92] followed by computing
the closest point to its boundary from the origin. But its worst case complexity isO(mn), wherem andn are the
number of features in each polytope. Dobkin et al. computed the directional PD using Dobkin and Kirkpatrick poly-
hedral hierarchy [DHKS93]. For any directiond, it finds the directional PD inO(log n logm) time. A randomized
algorithm to compute the PD is given in [AGHP+00].

Given the worst-caseO(mn) complexity of PD computation between convex polytopes, a number of approx-
imation approaches have been proposed for interactive applications. All of them either compute a subset of the
boundary or a simpler approximation of the Minkowski sum and compute an upper or lower bound to the PD
[Cam97, Ber01, OG96, KOLM01]. They also take advantages of frame-to-frame coherence and perform incremen-
tal computations.

Other approximation approaches for general polygonal models are based on discretized distance fields. These
include algorithms based on fast marching level-sets for 3D models [FL01] and others based on graphics rasterization
hardware and multi-pass rendering for 2D objects [HZLM01].

2.3 Graphics Hardware for Geometric Applications

Interpolation-based polygon rasterization hardware is increasingly being used for geometric applications. These
include visibility and shadow computations, CSG rendering, proximity queries, morphing, object reconstruction etc.
A recent survey on different applications is given in [TPK01]. All these algorithms perform computations in a dis-
cretized space (i.e. the image-space) and their accuracy is governed by the underlying pixel resolution. The set of
proximity query algorithms include cross-sections and interferences [RMS92] and distance computations, including
separation and local penetration estimation [HCK+99, HZLM01]. An algorithm to compute a discretized approx-
imation to the convolution of general polyhedral models using the rasterization hardware is presented in [KR92].
Algorithms for direct rendering of CSG models based on graphics rasterization hardware have been presented in
[EJR89, GHF86, Wie96]. They render the CSG hierarchies using multiple passes of clipping (i.e. stencil tests) and
depth tests.

3 Background and Overview

In this section, we give a brief overview of the PD computation problem and our approach to solve it.

3.1 Penetration Depth

Let P andQ be two intersecting polyhedra. The PD ofP andQ, PD(P,Q), is the minimum translational distance
that one of the polyhedra must undergo to render them disjoint. Formally,PD(P,Q) is defined as:

min{‖ d ‖ | interior(P + d) ∩ Q = ∅} (1)

Here,d is a vector inR3. In practice, we represent the amount of PD, as a negative number in order to distinguish
it from the ordinary Euclidean or separation distance between non-overlapping objects.

The computation of the PD between two polyhedral models is a global problem and it is rather difficult to localize
it using some ‘divide-and-conquer’ approach. A local solution computed using intersecting features or boundaries
may not be correct, as shown in Fig. 1.

3.2 Minkowski Sums

The Minkowski sum,P ⊕Q, is defined as a set of pairwise sums of vectors fromP andQ. In other words,P ⊕Q =
{p+ q| p ∈ P, q ∈ Q}. Furthermore,P ⊕−Q is defined by negatingQ; i.e. P ⊕−Q = {p− q| p ∈ P, q ∈ Q}.
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Figure 1: Local vs Global PD Computation.(a) shows the situation before two polygons in 2D come into contact.
(b) showsO(nm) intersections after the polygons are intersected. However, a localized PD computation (denoted
by solid yellow arrows) based onO(nm) intersections may not provide a global PD which is denoted as a dotted
green arrow in this figure. (c) shows the Minkowski sum of the two polygons in (b). The minimum distance from the
origin to the surface of the Minkowski sum corresponds to the global PD.

A general framework to compute the PD is based on Minkowski sums. It is well known that one can reduce the
problem of computing the PD betweenP andQ to a minimum distance query on the surface of their Minkowski
sum,P⊕−Q [Cam97]. More specifically, if two polyhedraP andQ intersect, then the difference vector,OQ−OP ,
between the origins1 of P andQ is insideP ⊕−Q. Let us denoteOQ −OP byOQ−P . ThePD(P,Q) is defined
as a minimum distance fromOQ−P to the surface of∂(P 	Q). For example, Fig. 1-(c) shows the Minkowski sum
of the two polygons in Fig. 1-(b), and the minimum distance from the origin,O, to the surface of the Minkowski
sum is the global PD.

It is relatively easier to compute Minkowski sums of convex polytopes as compared to general polyhedral models.
However, for non-convex polyhedra in 3D, the Minkowski sum can haveO(n6) worst-case complexity [DHKS93].
There are two known approaches for computing the Minkowski sum of general polyhedral models. Both have the
same underlying complexity.

The first approach is based onconvolution computationdefined on polyhedral tracings [BGRR96]. It is well
known that the convolution is a superset of the surface of the Minkowski sum, and the convolution can be computed
in O(n2) time in the worst case. However, in order to compute the actual boundary of the Minkowski sum, a 3D
arrangement of the convolution needs to be computed and it can takeO(n6) total time.

The second approach for computing Minkowski sums for general polyhedra is based ondecomposition. It uses
the following property of Minkowski computation. IfP = P1 ∪ P2, thenP ⊕ Q = (P1 ⊕ Q) ∪ (P2 ⊕ Q). The
resulting algorithm combines this property with convex decomposition for general polyhedral models:

1. Compute a convex decomposition for each polyhedron

2. Compute the pairwise convex Minkowski sums between all possible pairs of convex pieces in each polyhedron

3. Compute the union of pairwise Minkowski sums.

After the second step, there can beO(n2) pairwise Minkowski sums and their union can haveO(n6) complexity
[AST97].

These approaches provide an algorithmic framework to compute the Minkowski sum. However, their practical
utility is unclear. Besides the combinatorial complexity, it is a major challenge to have a robust implementation of
algorithms for convolution, arrangements or union computations in 3D.

3.3 Our Approach

Our algorithm to compute the PD is based on the decomposition approach described in Section 3.2. In order to
overcome its combinatorial and computational complexity, we use asurface-basedconvex decomposition of the
boundary and utilize the graphics raterization hardware to estimate the PD. We do not explicitly compute the bound-
ary of the union or any approximation to it. Rather, we perform theclosest point queryusing a multipass algorithm

1The origin of a polyhedron refers to the origin of the local coordinate system of the polyhedron with respect to the global coordinate
system. Also, throughout the rest of the paper, the origin of the Minkowski sum will refer to the difference vector of the origins of two
polyhedra.
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that computes the closet point from the origin to the boundary of the union of pairwise Minkowski sums. The result-
ing maximum depth fragment at each pixel computes an approximation to the PD, up to the image-space resolution
used for this computation. Given this PD estimate, we further refine it using an object-space incremental algorithm
that performs a local walk on the Minkowski sum. Each step of our approach is relatively simple to implement.
However, its worst case complexity can be as high asO(n4) because of the number of pairwise Minkowski sums
and the computational complexity of the closest point query.

We improve the performance of the algorithm using a number of acceleration techniques. These include hi-
erarchical representation based on convex bounding volumes, use of model simplification algorithms, object-space
culling approaches, and image-space acceleration techniques applied to the multipass algorithm. These are explained
in detail in Section 5.

Precomputation

Decompose the boundary of each 
polyhedron into convex patches.

Convex Decomposition BVH Construction
Compute a convex hull 
hierarchy of the model

Model Simplification
Simplify the interior nodes of 

BVH

Run-time PD Query

Culling
Cull away the pairs 

of nodes that are 
more than dest

Pairwise Minkowski Sum
Compute Minkowski sums for 

the rest of node pairs

Closest Point Query
Using the rasterization hardware, 
perform the closest point query on 
the union of pairwise Minkowski 

sums

Refinement Walk
Walk on the surface of 

Minkowski sums to 
further reduce dest

Refine the current PD estimate, dest, and go to the next level of BVH

Figure 2: PD Computation Pipeline

The resulting algorithm includes a pre-computation phase as well as a runtime query. The pre-computation phase
consists of the following steps:

1. Decompose the boundary of each polyhedron into convex patches using a greedy approach (Sec. 4.1).

2. Compute a bounding volume hierarchical representation of the model. Each node in the tree corresponds to a
convex polytope and each leaf is a convex hull of a decomposed convex patch (Sec. 5.2).

3. Use model simplification algorithms to compute a lower polygon count approximation of the interior nodes
(Sec. 5.4).

Given two polyhedra and their bounding volume representations, the runtime phase of the algorithm proceeds in the
following manner:

1. Compute an upper estimate to the amount of PD. Let that estimate bedest. Initially we compute an estimate
based on the root nodes of each tree (Sec. 5.1).

2. At each level of the two hierarchies, repeat the following steps:

(a) Consider all pairwise combinations of nodes at the current level. Cull away all the pairs that are non-
overlapping and are more thandest apart (Sec. 5.3).

(b) Compute pairwise Minkowski sums of the rest of the node pairs that have not been culled away (Sec. 4.2).

(c) Perform the closest point query using the rasterization hardware to compute a PD estimate (Sec. 4.3).
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(d) Extract the penetration features in the object-space. Perform a local walk and refine the PD estimate
using incremental algorithms (Sec. 4.4).

In step 2(c), we use a coarse pixel resolution at the top levels of the tree and refine the resolution as we traverse
down the hierarchies. The entire pipeline of our PD algorithm is illustrated in Fig. 2.

3.4 Notation

We use bold-faced letters to distinguish a vector from a scalar value (e.g. the origin,O). In Table 1, we enumerate
the notations that we use throughout the paper.

Notation Meaning

∂P The boundary ofP
CPi A decomposed convex piece ofP

CP,li A decomposed convex piece ofP at levell
Mij Minkowski sum betweenCi andCj
dkest kth refinement of the PD estimation

Table 1: Notation Table

4 Penetration Depth Computation

In this section, we present our algorithm for global PD computation. It involves decomposing the boundary of the
model into convex patches, computing their pairwise Minkowski sums, and then performing closest point query
using rasterization hardware and object-space refinement.

Given two intersecting polyhedra, the PD query reports a PD scalar value and direction, along with the associated
PD features2. In this case, the origin is contained inside the Minkowski sum of the two polyhedra. Fig. 3 illustrates
what the PD query attempts to report.

Q-P
e

vo

P

Q
l

(a) (b) (c) (d)

s

Figure 3: Simple Penetration Depth Computation in 2D.(a) Two polygonsP andQ intersect. (b) The Minkowski
sumP 	Q is computed, and the minimum distance from the originOP	Q to ∂(P 	Q) is determined. (c) WhenP is
translated by the amount of PD, there exists a lines locally supporting both polygons. In this case, the edge/vertex
feature pair,(e, v), as shown in (d) makes up the PD features. The PD features are also identified in (b) as a
corresponding dark green linel.

2These are a pair of features that realize the reported PD. The PD value is the same as the inter-distance between planes which locally
support the PD features.
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Figure 4: Convex Surface Decomposition and Bounding Volume Hierarchy.(a) shows an original model for a
torus, and (h) shows its convex surface decomposition. From (b) to (h), the figure shows a BV hierarchy of the torus
from root level to leaf level. In the figure, the green color indicates an original face in the model, the red color
highlights a virtual face created by convex hull computation, and the yellow color indicates a virtual face created
while converting a convex patch to a convex piece.

4.1 Object Decomposition

We decompose the boundary of each polyhedronP into a collection of convex patchesci. Theseci’s are mutually
disjoint except for their shared edges, and the union of all theci’s covers the entire boundary ofP , ∂P .

We compute the convex patches,ci’s, by dualizing the polyhedral surface and performing a graph search on it in
a greedy manner. First, we construct a dual graphG of the polyhedral surface∂P by reversing the roles of faces
(F) and vertices (V) in∂P , while using the same edges (E) inG from ∂P [CDST97]. We traverse the dual graphG
by adding faces into a current convex patchci as long as it maintains its convexity. We repeat this process until we
cover the entire boundary of∂P . For example, Fig. 4-(h) is a convex surface decomposition for a wrinkled torus
model, Fig. 4-(a).

Furthermore, we compute a convex hull of each surface patch,ci, and denote the resulting polytope byCi. The
union of theseCi’s is completely contained in the original polyhedronP . Notice that our decomposition strategy
is merely a partition of∂P , not ofP . This surface decomposition is sufficient for PD computation, because we are
only concerned with the surface of Minkowski sums between polyhedra.

4.2 Pairwise Minkowski Sum Computation

Our PD computation algorithm is based on the decomposition approach described in Section 3.2. The first step
involves computing the pairwise Minkowski sums between all possible pairs of convex polytopes,CPi andCQj ,
belonging toP andQ, respectively. Let us denote the resulting Minkowski sum asMij . Various algorithms are
known for computing Minkowski sums of convex polytopes. The most efficient algorithm is based ontopological
sweepand its complexity isO(n log n+k), wheren is the number of features inCPi andCQj andk is the number of
features in the resulting Minkowski sum,Mij [GS87]. However, the constant factor can be high and it is non-trivial
to implement it robustly, especially when thegeneral positionassumption is not guaranteed. Instead, we use the
simpler algorithms described below.

Convex Hull Approach: We use this approach for smaller models, i.e. polyhedra with less than50 vertices. It is
based on the following property:

P ⊕Q = CH({vi + vj |vi ∈ VP ,vj ∈ VQ}) (2)

Here,CH denotes the convex hull operator, andVP , VQ represent the sets of vertices, respectively in polyhedraP
andQ. Based on this fact, we compute the Minkowski sum as follows:

1. Compute the vector sum between all possible pairs of vertices from each polytope.

2. Compute their convex hull.
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Incremental Surface Expansion: This algorithm was proposed as a part of a polyhedral morphing system based
on Minkowski sums [KR92]. We use it for larger convex polytopes, i.e. more than50 vertices. The algorithm starts
with any candidate face on the resulting Minkowski sum, and incrementally expands the surface by finding the next
candidate face. The incremental expansion is relatively straightforward, i.e. uses every possible face/vertex (FV),
vertex/face (VF), or edge/edge (EE) combination that the current candidate face can be extended to. The worst case
asymptotic time complexity of this algorithm isO(n2), but it works well in practice, with just a few degeneracies
such as co-planar faces that need special handling.

4.3 Closest Point Query Using Graphics Hardware

Given all the pairwise Minkowski sums,Mij , let

M =
⋃
ij

Mij . (3)

Our goal is to compute the closest point on the boundary ofM , i.e. ∂M , from the origin. We use z-buffer polygon
rasterization hardware to perform this query up to image-space resolution. The main idea is to visualize∂M from
the origin without computing a surface representation of∂M explicitly. After that we compute the closest point,
distance and direction.

4.3.1 Visualizing the Boundary of the Union

In order to visualize∂M from a pointo that is outsideM , we simply display all theMij ’s using the standard
z-buffer visibility algorithm. The nearest or minimum depth objects at each pixel will correctly construct the∂M
from the outside with only a single pass over eachMij . The resulting algorithm computes the closest point on∂M
from o up to image-space resolution. However, the same approach does not work ifo is insideM . We present a
new, incremental algorithm that can requirem2 passes, wherem is the number of convex polytopes,Mij .

Given the pointo insideM , the normal Z-buffer minimum or maximum depth test may not suffice, since the
visible internal boundaries may not even lie on∂M . The algorithm has to remove the boundaries corresponding
to the intersections betweenMij ’s that do not belong to∂M . If all theMij ’s contain the origin, then the Z-buffer
maximum depth test will construct∂M with a single pass over eachMij , and the desired result will be stored at
the minimum depth pixel in the rendered image. However, we only know that at least one of theMij ’s contains the
origin. So, we use an incremental algorithm that constructs∂M out from the origin.

Mi0
i2

V
(b) (c) (d)(a)

Mi1

M

Figure 5: Visualizing the Boundary of the Union From Inside.In (a), V is the current view-frustum. In (b),Mi0 is
rendered, and a new∂M is constructed (blue line). In (c), whenMi1 is rendered, it opens up a new window (dotted
line), and the update region (red line) on the current∂M is established. Thus a new∂M (blue line) is constructed.
In (d), we perform the same procedure forMi2.

Our algorithm for visualizing∂M from a point inside is essentially a ray-shooting procedure from the origin to
∂M by incrementally expanding the front of∂M . For example, in Fig. 5, we expand the current∂M (blue line) by
repeatedly renderingMi0,Mi1,Mi2. Each timeMi0,Mi1,Mi2 are rendered, as shown in Fig. 5(b)-(d), it opens up
a new window (shown as dotted line) of the update region (red line) on the current∂M .
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The algorithm maintains the current boundary ofM , ∂Mk, wherek is the current iteration, and incrementally
expands it withMij that intersects∂Mk. We attempt to addMij by rendering the front faces ofMij . The front
faces that “pierce” the current∂Mk open up a window through which the origin can see∂M . After that we render
the backfaces ofMij into the opened window using the maximum depth test. However, we should not render the
backfaces ofMij , that are created by non-original (virtual) faces ofP andQ. In other words, we should allow the
ray to hit only∂M .

In summary, the basic algorithm simply performs the following procedure:

1. Initialize∂M0 to infinity.

2. Repeat steps 3-5m times

3. Repeat steps 4-5 for eachMij

4. Render front faces ofMij , and using the standard stencil operation, open a window where the depth value of
the front faces is less than that of the current∂Mk.

5. Classify the backfaces ofMij into original and non-original. Render only the original back faces ofMij where
the depth value of the back faces is greater than that of the window. This updates the∂Mk in the window.

After mth iteration in step 2 highlighted above, the algorithm correctly finds the portion of∂M that is visible
from the origin in the following sense. After thekth iteration in step 2,∂Mk includes the subset of∂M that the
ray can reach with less than or equal tok − 1 hopsfrom the origin. Here, thehopon some pointp on ∂M means
how manyMij ’s the ray should pass through to reachp. For example,∂M1 includes the possible contribution to
the final∂M of all Mij ’s that contain the origin and have zero hops. Therefore, by induction onk, we correctly find
the portion of∂M that is visible from the origin aftermth iteration.

4.3.2 Computing the Closest Point

For a given view, we can compute the closest point on the boundary by simply finding the pixel with the minimum
distance value. The algorithm reads back the Z-buffer to obtain the depth values for each pixel. However, these depth
values have undergone the perspective depth transformation and do not contain the non-linearity that is present in the
distance values. The depth transformation is applied only at the vertices and has the following geometric properties:
it preserves lines and planes between the transformed vertices and preserves depth relationships with respect to an
orthographic view. This is not sufficient for finding the closest point. A pixel with the minimum depth value is not
necessarily the closest point in terms of distance from the origin.

The algorithm transforms the pixel depth values into distance values based on their(x, y) coordinate positions on
the viewing plane. Each pixel depth value is divided bycos θ, whereθ is the angle between the vector to the(x, y)
position on the viewing plane and the center viewing direction. This depth transformation is CPU-bound, and this
operation typically takes a few miliseconds.

The minimum distance and direction to the closest point are derived from the pixel position containing the
minimum transformed depth value. In order to examine views in all directions, we construct six views on the
faces of a cube around the origin and repeat the operation.

4.4 Object Space Refinement

The accuracy of the closest point query and PD estimate is limited by the image resolution of rasterization hardware.
We further refine it to improve the PD estimate by performing localwalkson the boundary of the Minkowski sum
of P andQ in the object-space.

We explain our walking algorithm with a simple 2D example. At any time, it maintains a notion ofcurrent-
Minkowski-sum. Fig. 6-(a) shows thatMi0 is the current-Minkowski-sum that contains the current PD features
realized by the linet0 (a triangle in 3D). By performing local incremental computations, the algorithm determines
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Figure 6: Local Refinement by Walking.We refine the PD by iteratively minimizing the distance between the origin
and a line (a triangle in 3D) on the Minkowski sumMi0. Thus, in (a), there is a transition fromt0 to t1, since the
distance from the origin tot1 is smaller than that tot0. In (b), the featuret3 can reduce the PD even further, the
transition of the Minkowski sum fromMi0 toMi1 is followed.

that it can reduce the PD by changing the penetration feature fromt0 to t1. After that the walking onMi0 stops,
as subsequent features ofMi0 are insideMi1 and not on the boundary ofM (whent1 intersects witht3), shown
in Fig. 6-(b). In this particular case, if the algorithm walks to the feature,t3, as opposed tot1, it can further
reduce the PD estimate. Therefore, we need to change the current-Minkowski-sum fromMi0 toMi1 and continue
walking. In order to make this transition, we need to keep track ofMi1 andMi2 during the walk on the features
of current-Minkowski-sumMi0, because their axis-aligned bounding boxes (AABBs) intersect with that ofMi0’s.
As we change the current PD features onMi0 from t0 to t1, the closest line onMi1 to the current PD features also
changes fromt2 to t3, but the closest line onMi2 to the current PD features remains the same.

Initially the object-space refinement algorithm starts with identifying the features ofP andQ that contribute to
the current PD estimate. For a 2D example, in Fig. 3-(b),l on∂(P 	Q) contains a point that is closest to the origin,
and sincel was generated bye	 v, the PD features aree, v as in Fig. 3-(d). In 3D, each triangle inMij is generated
by only three possible sets of feature combinations fromP andQ. These include VF, FV and EE combinations
[GS86], and we use that relationship to compute the actual PD features from each polyhedron that correspond to the
current PD estimate.

Once the PD features and the Minkowski sum (Mij), which contains them have been identified, the algorithm
refines the current PD estimate by locally walking on the surface ofMij , the current-Minkowski-sum. This walk
proceeds by iteratively minimizing the distance from the origin to the surface ofMij . We repeat this process until
the algorithm reaches a local or global minimum.

As shown in Fig. 6 the algorithm needs to avoid features that are inside the volume of other Minkowski sums.
Although it walks towards the interior of the volume, it sets the current-Minkowski-sum accordingly. Therefore,
each time the algorithm is walking, it keeps track of whichMij ’s might intersect with the current PD features. We
accomplish this by keeping track of a subset of Minkowski sums that can potentially intersect with the current PD
features and the current-Minkowski-sum.

Let us denote the current-Minkowski-sum asMij , and also denote the subset of Minkowski sums that potentially
intersect withMij asMij0 , Mij1 , ...,Mijl . Here, we conservatively determineMijl ’s by intersection checks based
on an AABB of the Minkowski sum. Moreover, for eachMijl , we also keep track of a closest triangletkl to the
current PD featuretk in Mij . The overall refinement algorithm proceeds as:

1. Let the triangletk in Mij corresponds to the PD features computed based on the closest point query. Find the
set of Minkowski sumsMij0 ,Mij1 , ...,Mijl that intersectMij based on checking their AABBs for overlap.
Also computetk0 , tkl , ..., tkl , which is a set of triangles respectively onMijl ’s that is closest totk onMij .

2. Identify the triangles incident totk onMij .
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3. Find a neighboring triangle, saytk+1, that results in maximum decrease in the PD estimate and does not
intersect withtkl ’s. Change the current PD features fromtk to tk+1. Also updatetkl on eachMijl to the
closest feature totk+1.

4. If step 4 fails, check whether there existstkl in Mijl such that it intersects with the triangles incident totk or
tk itself but reduces the PD. If it exists, repeat the walk from step 1 by settingtkl astk andMijl asMij .

5. Repeat the steps 2-4 until there is no more improvement in the PD.

Eventually the algorithm computes a local minimum on the boundary of the Minkowski sum,M .

5 Acceleration Techniques

The global PD computation algorithm described in Section 4 computes an upper bound on the amount of PD between
two polyhedral models. However, its running time can vary based on the underlying models as well as their relative
configuration. In the worst case, the convex decomposition algorithm can result inO(n) patches and this can lead to
O(n2) pairwise Minkowski sums,Mij . Furthermore, the cost of the closest point query using rasterization hardware
can be as high asO(m2), wherem is the number of convex polytopes. This results inO(n4) worst case complexity
for the PD estimation algorithm. In this section, we present a number of acceleration techniques to improve its
performance. These include hierarchical culling, model simplification and image-space acceleration techniques.

5.1 Object Space Culling

A significant fraction of the time of the PD estimation algorithm is spent in pairwise Minkowski sum computation.
The algorithm presented in Section 4.2 considers all pairs of convex polytopes,CPi andCQj , and computes their
Minkowski sum,Mij . If we are given an upper bound on the PD,dest, we can eliminate some pairs of convex
polytopes without computing their Minkowski sum. This is based on the following lemma:

LEMMA 5.1 Let dij be the separation or Euclidean distance betweenCPi andCQj . If dij >‖ dest ‖, then the
closest point from the origin to∂M lies on∂(M −Mij).

Proof: Given an upper bound on the PD,dest, it follows that the distance from the the closest point on∂M to the
origin is less than‖ dest ‖. If we discard any feature of∂M whose distance from the origin is more than‖ dest ‖, it
will not affect the outcome of closest point query toM . Since the separation distance betweenCPi andCQj is dij ,
the distance from the origin to the closest point onMij is alsodij . As a result, all points on∂Mij are farther than
dest from the origin and the closest point from the origin to∂M lies on∂(M −Mij). Q.E.D.

1Q

P dest
1
P

QC

(a) (b) (c)

C Q

C0
P C

0

Figure 7: Object Space Culling.(a) There are two intersecting polygonsP (decomposed intoCP0 , CP1 ) andQ
(decomposed intoCQ0 andCQ1 ). (b) Based on the convex hull ofP andQ, we first estimate the PD asdest. (c) Using
dest, we can cull away pairs (CP0 , CQ0 ), (CP0 , CQ1 ), (CP1 , CQ1 ), whose separation distances are more thandest.

For example, in Fig. 7, there are two intersecting polygonsP andQ. We estimatedest based on the convex hull
of P andQ (Fig. 7-(b)). Then, we can cull away the pairs whose separation distance is more thandest (Fig. 7-(c)).
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Based on the Lemma 5.1, we can cull away all pairs of convex polytopes,CPi andCQj , whose separation distances
are more thandest. Computing separation distance between convex polytopes is relatively cheap as compared to
Minkowski sum computation and a number of efficient algorithms are known [LC91, Cam97]. The efficiency of
this culling approach depends on the quality of the estimate,dest. Furthermore, checking all possible pairs for
separation distance can takeO(n2) time. We improve their performance using a bounding volume hierarchy to
perform hierarchical culling.

5.2 Bounding Volume Hierarchy

We compute a bounding volume (BV) hierarchy for each polyhedron using a convex polytope as the underlying BV.
Each convex polytope obtained using the decomposition algorithm explained in Section 4.1 becomes a leaf node in
the hierarchy. We recursively compute the internal nodes in a bottom-up manner, by merging the children nodes and
computing the convex hull of the union of their vertices. Let us define the nodes of polyhedronP at levell asCP,li .
The resulting hierarchy is a hierarchy of convex hulls. For example, Fig. 4-(b)∼ (h) shows a BV hierarchy for the
torus model, Fig. 4-(a).

This hierarchy is used in our runtime algorithm to speed up the intersection and separation distance queries for
the culling algorithm. Furthermore, each level of the hierarchy provides an approximation of the model, which is
used by the PD estimation algorithm.

5.3 Hierarchical Culling

We use the BV hierarchy to speed up the performance of the object-space culling algorithm. The goal is to start with
an initial estimate to the PD and refine it at every level of the tree. We denote the estimate computed using levelk
of each BV tree asdkest.

We initially start with the root nodes of each hierarchy,CP,00 andCQ,00 , which correspond to the convex hulls of
P andQ, respectively. We compute the PD between those convex polytopes [Cam97, Ber01, KOLM01] and use
that as the estimated PD at level0. The algorithm proceeds in a hierarchical manner through the levels in each tree:

1. Consider all the pairwise nodes at levelk in each tree,CP,ki andCQ,kj . For each(i, j) pair, compute the
separation distance between them. If the nodes overlap, the separation distance is zero.

2. Discard all the node pairs whose separation distances are more thandkest. Compute the Minkowski sum for
the rest of the pairs.

3. Perform the closest point query on the Minkowski sum pairs and compute the new PD estimate,dk+1
est using

rasterization hardware.

4. Refine the estimate,dk+1
est using the object space walking algorithm presented in Section 4.4.

During each iteration, we go down a level in each tree. If we reach the maximum level in one of the trees, we do not
traverse down in that tree any further. The algorithm computes an upper bound on the PD in an iterative manner and
refines the bound with every traversal as:‖d0

est‖ ≥ ‖d1
est‖ ≥ . . . ≥ ‖dhest‖, whereh is the maximum height. Finally,

the algorithm returnsdlest as the estimated PD betweenP andQ.
Fig. 8-(a) shows BV hierarchies for two different objectsP andQ, and Fig. 8-(b) shows a snapshot of how the

BV hierarchy traversal is performed. Without the culling scheme, one should consider all four pairs betweenCP,10 ,
CP,11 andCQ,10 , CQ,11 . However, during the traversal,CP,00 andCQ,10 were found out to be non-overlapping and they
are more thandest apart. In this case, no more traversal is needed between the children nodes ofCP,00 andCQ,10 .

5.4 Model Simplification

Some internal nodes of the hierarchy may have a high number of vertices and that affects the complexity of pairwise
Minkowski sum computation. We pre-compute a single convex simplification for each internal node in the BV tree.
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Figure 8: Hierarchical Culling.(a) shows two BV hierarchies for two different objects. (b) shows a snapshot of
the traversal on the BV hierarchies. During the traversal, it turns out that nodeCP,00 and nodeCQ,10 are non-
overlapping and their inter-distance is greater than a upper bound on the current PD estimation. Thus, no more
traversal is performed between the children nodes ofCP,00 andCQ,10 .

The simplifications at each level of the BV tree provide a low polygon count approximation to the original models.
We compute a simplification for each internal node in the following manner:

1. Simplify the node using any simplification error metric. We choose the quadric error metric proposed in
[GH97] because of its simplicity and performance.

2. Compute the convex hull of each simplified node.

3. Scale the resulting convex polytope to enclose the internal node or the underlying geometry as tightly as
possible.

5.4.1 Improved Computations using Simplified Nodes

We use the simplified BVs to improve the performance of the computations in step 2 (pairwise Minkowski sum
computation) and step 3 (closest point query) of the hierarchical culling algorithm presented in Section 5.3. The
simplified BVs can increase the estimated PD value,dest, as compared to the original nodes computed by the
BV hierarchy computation algorithm. As a result, the number of pairwise Minkowski sums that can be culled at
intermediate levels of the hierarchy based ondest may be reduced. However, the running time of the algorithm is
significantly reduced. Also, it does not change the accuracy of the final result, as the algorithm does not simplify the
leaf nodes in the BV tree.

5.5 Image Space Culling for Closest Point Query

The algorithm also spends a considerable fraction of its time in performing the closest point query using the rasteri-
zation hardware (as described in Section 4.3). Here we present a number of techniques to improve its performance.

First of all, we compute a subset of the pairs,Mij ’s, that contain the origin and render them only once in the
algorithm described in Section 4.3.1. All the pairwise Minkowski sums in this subset have a zerohop. We identify
this subset, sayl out of total ofm pairs ofMij ’s, by checking whether the corresponding convex polytopes,CPi
andCQj , overlap [LC91, Cam97, EL01]. Once we have computed thesel Mij ’s, we first render them using the
maximum depth test and then the remaining(m − l) pairwise Minkowski sums,Mij ’s, (m − l) times using the
incremental algorithm.

Secondly, when we repeat the closest point query six times, once for each face of the cube, we apply a culling
technique similar to the one discussed in Section 5.1. At each view, the algorithm maintains the current minimum
depth value,dest, and then as it proceeds to the next view, it culls away theMij ’s whose distance from the origin
is more thandest, as shown in Lemma 5.1. These distances are also computed in object space. Finally, for each
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view, when we render theMij ’s, we perform view-frustum culling by checking whether the axis aligned bounding
box of eachMij lies in the current view. This object-space view frustum culling significantly reduces the number of
primitives rendered during each iteration of the algorithm.

6 Implementation and Results

In this section, we describe the implementation of our PD computation algorithm and demonstrate its performance
on different benchmarks and applications.

6.1 Implementation Issues

Most parts of our algorithm are fairly straightforward to implement. However, it requires quick and robust im-
plementations of the separation distance query between convex polytopes, convex hull computation in 3D, and
simplification of polyhedral models. In fact, most of the degenerate cases in our PD computation arise from these
three sub-components.

We use the SWIFT++ implementation of theVoronoi marchingtechnique [EL01] to efficiently perform the sep-
aration distance query. It performs distance queries between non-convex polyhedra by using a hierarchy of convex
hulls. We use the public domain QHULL package [BDH93] for convex hull computation in 3D. QHULL is par-
ticularly efficient for dealing with a relatively small number of points, which is the case in our algorithm. We use
the QSlim implementation [GH97] of the quadric error metric simplification algorithm to ensure that the interme-
diate nodes of the bounding volume trees do not have more than50 vertices. As a result, we compute the pairwise
Minkowski sumsMij ’s, by using the convex hull based algorithm described in Section 4.2. Our initial test results
show that it outperforms the incremental surface expansion algorithm presented in [KR92] in our case.

The implementation of the object space walking algorithm uses three main subroutines. These include keeping
track of neighboring Minkowski sum pairs that overlap with the current-Minkowski-sum (using AABBs), finding
the features in these Minkowski sums that are closest to the current feature and performing local walk. The last step
checks all the features that are incident to the current feature and computes the distance to these features from the
origin. In our current benchmark we have found that the algorithm only needs to perform a few local walks before
it converges to a local minimum on the boundary of∂M .

Figure 9: PD Benchmark Models.From left to right: interlocked tori, touching tori, interlocked grates, and letters.

We implement the closest point query operation using OpenGL graphics library. The main code to draw∂M
without any acceleration techniques is as simple as Example 1. Also, we typically set the screen space resolution to
128×128 at the intermediate step of the hierarchical refinement, then at the finest level of the refinement, we set the
resolution to256 × 256. For our benchmarking models, these different resolution schemes provide us with results
of a reasonable accuracy, and they also balance the computation time between the object space and the image space.
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void DrawUnionOfConvex(PairwiseMinkowski *M_ij,
int Num_Of_M_ij)

{
glClearDepth(0);
glClearStencil(0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT

| GL_STENCIL_BUFFER_BIT);

glEnable(GL_DEPTH_TEST);
glEnable(GL_STENCIL_TEST);
for (int i=0; i<Num_Of_M_ij; i++)

for (int j=0; j<Num_Of_M_ij; j++)
{

glDepthMask(0);
glColorMask(0,0,0,0);
glDepthFunc(GL_LESS);
glStencilFunc(GL_ALWAYS,1,1);
glStencilOp(GL_KEEP,GL_REPLACE,GL_KEEP);
M_ij[j].DrawFrontFaces();

glDepthMask(1);
glColorMask(1,1,1,1);
glDepthFunc(GL_GREATER);
glStencilFunc(GL_EQUAL,0,1);
glStencilOp(GL_ZERO,GL_KEEP,GL_KEEP);
M_ij[j].DrawBackFaces();

}
}

EXAMPLE 1: OpenGL Code to Render∂M From Inside.

6.2 Benchmark Results

We benchmark our PD algorithm with four models: interlocked tori, touching tori, interlocked “grates” and a pair of
alphabet models, with their relative configuration shown in Fig. 9. We used the tori models because it is relatively
difficult to compute a good convex decomposition for them. The interlocked “grates” model was chosen because
the combinatorial complexity of its exact Minkowski sum isO(m3n3). In our benchmarks,m andn are1134 and
444, respectively. Therefore, it is a very challenging scenario for any PD computation algorithm. Earlier approaches
based on localized computations or convex volumetric decomposition are unable to compute the PD efficiently and
accurately on these benchmarks.

We measure the timings on a PC equipped with an Intel Pentium IV1.6 GHz processor,512 MB main memory
and GeForce3 graphics card. The complexity of the models varies from a few hundred faces to a few thousand faces.
The number of leaf nodes, computed using the convex surface decomposition algorithm, vary from67 pieces to409
pieces. The running times vary based on the model complexity and the relative configuration of two polyhedra. It
can vary from a fraction of a second, for the touching tori and a pair of alphabet models, to a few seconds for models
that have deep penetration (e.g. interlocked tori and interlocked “grates”). Most of the time is spent in pairwise
Minkowski sum computations and closest point queries using the graphics hardware. The local refinement based
on the walking algorithm is quite fast and takes only a few milliseconds. Detailed timings for some levels of the
hierarchy are given in Table 2. The acceleration techniques and hierarchical refinement result in several orders of
magnitude improvement in the overall running time. Furthermore, the algorithm is able to compute very accurate
PD estimates in these cases.
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Level Cull Ratio Min. Sum HW Query ‖dest‖
3 31.2 % 0.219 sec 0.220 sec 0.99
5 96.7 % 0.165 sec 0.146 sec 0.53
7 98.3 % 1.014 sec 1.992 sec 0.50

(a) Interlocked Tori (2000 faces, 67 convex pieces each)

Level Cull Ratio Min. Sum HW Query ‖dest‖
3 98.4 % 0.135 sec 0.014 sec 0.29
7 99.9 % 0.105 sec 0.032 sec 0.29

(b) Touching Tori (2000 faces, 67 convex pieces each)

Level Cull Ratio Min. Sum HW Query ‖dest‖
3 0 % 0.66 sec 0.29 sec 6.41
7 96.9 % 0.43 sec 0.39 sec 0.63
9 99.9 % 0.03 sec 0.07 sec 0.63

(c) Grates (444 & 1134 faces, 169 & 409 pcs)

Level Cull Ratio Min. Sum HW Query ‖dest‖
2 50.0 % 0.055 sec 0.021 sec 0.06
4 56.2 % 0.099 sec 0.062 sec 0.03
6 97.6 % 0.080 sec 0.161 sec 0.01

(d) Alphabets (144 & 152 faces, 42 & 43 pcs)

Table 2: Benchmark Results.We show the performance of our PD algorithm for various models. We also break
down the performance to the object space culling rate, the pairwise Minkowski computation time and the closest
point query time on some of the levels of the hierarchy.

6.3 Performance Speedup by Acceleration Techniques

In Table 3, we also compare our accelerated PD algorithm presented in Section 5 with the basic algorithm presented
in Section 4. As the table illustrates, the basic algorithm suffers fromO(n4) computational costs, and our accelerated
algorithm outperforms it by several orders of magnitude. The result is even more dramatic in a very complex scenario
such as the interlocking grates model.

6.4 Accuracy of PD Computation

Our algorithm always computes an upper estimate on the amount of PD. In other words, the algorithm may be
conservative and the computed answer may be more than the global minima defined in Equation 1. The tightness of
the upper bound varies based on the underlying precision of the object-space and image-space computations. The
algorithms for decomposition, Minkowski sum computations, simplifications and object-space culling is governed

Type Without Accel. With Accel.
Interlocked Tori 4 hr 3.7 sec
Touching Tori 4 hr 0.3 sec

Grates 177 hr 1.9 sec
Alphabets 7 min 0.4 sec

Table 3: Performance Speedup by Acceleration Techniques
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by the precision of floating-point CPU-based hardware, which typically has 53 bits of mantissa. However, the
dominant source of error are the rasterization errors as part of image-space computations.

The rasterization errors are generated from two main sources:

1. The discretization of ray directions to lie on a pixel grid for each view.

2. The fixed precision of the Z-buffer.

Increasing the resolution of the grid decreases the worst-case angular error that is proportional to the distance be-
tween adjacent pixels. Moreover, constructing tighter bounds on the minimum and maximum distances in each view
(near and far plane distances), decreases the Z-buffer precision error. However, the local refinement using greedy
walking in the last step of our algorithm improves the accuracy of the final solution and can substantially reduce the
numerical error introduced by the use of fixed resolution image-space computations.

We also observe that the performance of our algorithm depends heavily on the extent of object-space culling,
which is directly related to the amount of inter-penetration between the objects. Therefore, for applications that have
spatial and temporal coherence between successive instances, our algorithm performs quite well since penetration is
typically shallow during successive time steps. As a result, the algorithm is able to cull away a very high percentage
of Minkowski pairs (as shown in Table 2) and quite fast in practice. Examples of such applications include dynamic
simulation and tolerance verification.

7 Application

We have used our PD computation algorithm and implementation for two applications. These include efficient time
stepping in dynamic simulation of rigid bodies and tolerance verification for rapid prototyping of complex structures.

7.1 Rigid Body Simulation

                                    

                                    

Figure 10: Application to Rigid-Body Dynamic Simulation.Our algorithm is used to perform smarter time stepping
in a dynamic simulation. A sequence of snapshots (from left to right, top to bottom) are taken from a rigid-body
simulation of200 models of letters and numerical digits falling onto a structure consisting of multiple ramps and
funnels.

Penetration depth (PD) computation is often needed for dynamic simulation of rigid body systems. In the physical
world, objects do not occupy the same spatial extent. However, this is often unavoidable in numerical simulations.
For applications involving articulated joints, stacking objects and parts assembly, bodies are nearly in contact or
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actually touching each other all the time. Our PD computation algorithm provides a consistent and accurate measure
of PD. Furthermore, its performance is quite fast (e.g. a fraction of a second) for shallow penetrations. In this
section, we describe its application to dynamic simulation of rigid bodies, as shown in Fig. 10. This includes direct
contact response computation in penalty-based methods [MZ90, MW88], as well as better time stepping technique
for either impulse-based [MC95] or constraint-based simulation [Bar92, Bar94, WB97].

7.1.1 Penalty-based Methods

                        

Figure 11: Challenging scenario with interlocked digits.On the left,10 digits are falling onto a bowl. On the right,
a resting position of these digits is shown. Localized approaches to compute PD fail for some pairwise digits in this
interlocked configuration.

In penalty-based methods, the forces between rigid bodies are proportional to the amount of inter-penetration.
Let d be the translational PD,n the direction of penetration andk a stiffness constant. The force vectorF is given
as:

F = (k · d)n (4)

Local vs. Global PD Computation: Localized approaches for computing the PD may fail to give a correct response
for penalty-based methods. For example, in the configurations shown in Fig. 1, where we showed 2D geometric
models of letters ‘C’ and ‘I’, the forces based on localized values of PD may not prevent the rigid bodies from
inter-penetrating. However, our global PD computation algorithm provides a correct and robust response for such
configurations. In the scenario shown in Fig. 11 several digits are interlocked. In this simulation, local approxima-
tions to the PD fail to report consistent or correct outputs for many pairs of digits.

7.1.2 Time Stepping

Unlike penalty-based methods that allow the models to inter-penetrate, some other simulation approaches impose
strict non-penetration constraints. These include constraint-based simulation that distinguishes between resting
contacts and colliding contacts. The resting contacts are classified based on the fact that the relative velocity is
lower than a certain value. For colliding contacts, the impulsive forces are applied to prevent inter-penetration and
preserve momentum properties. These impulsive forces need to be computed at the time of contact between the
rigid bodies. In practice, the exact time of impact cannot be computed using analytic techniques. As a result, time
stepping techniques are often used to estimate the time of collision [ST96, Mir00].

Some of the commonly used high-level scheduling algorithms for impulse-based or constraint-based rigid body
simulation include retroactive detection and conservative advancement [Mir00]. Both of the techniques advance or
retract the simulation time based on the separation distance between the objects and use some form of root finding
algorithm to estimate the time of collision.
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• Bisection search.Performing a simple bisection search in time is one of the commonly used technique to
estimate the time of collision. This approach converges given a sufficient number of iterations. Moreover, it
does not suffer from the inaccuracy of penetration depth estimation or approximations to the motion. However,
it can take a long time to converge, if the time step used in the simulation is large.

• Extrapolation. If no information is gathered on the extent of penetration at the end of an interval, a common
approach to predict the time of collision is performing extrapolation. The separation distance and the velocity
of the closest features at the beginning of the interval are used for extrapolation. The main problem with this
approach arises when the two objects are penetrating at the estimated time of collision. In such cases, the
predicted time of collision cannot be corrected.

• Interpolation. If penetration information between the two objects is known, it is possible to perform interpo-
lation. Unlike extrapolation, we make use of penetration information at the end of the interval and an iterative
interpolatory scheme can be used for fast convergence to estimate the time of collision [WB97]. As shown in
Fig. 1, localized estimations can deviate largely from the actual penetration depth. That can result in inaccu-
rate estimation of the time of contact. A global and exact computation of penetration depth provides a faster
and more robust convergence of the root finding scheme. Depending on the position and velocity information,
the algorithm can select an appropriate order of interpolation. For example, [Mir98] performs linear interpo-
lation using the separation distance at the beginning of the interval and an estimate of the penetration depth at
the end of the interval. If we also know the velocity of the object, we can perform higher order interpolation.
If only the initial velocity and the scalar value of penetration distance are known, but not the penetration direc-
tion or penetrating features, we can use quadratic interpolation. In such cases, the interpolation is performed
based on the initial separation distance, and velocity, as well as the penetration depth at the end of the interval.
If the algorithm also knows the penetrating features, then we can compute the relative velocity and perform
cubic interpolation.

In our implementation of the time stepping scheme for dynamic simulation, we utilize the knowledge about PD
features and direction and use a cubic interpolation scheme to estimate the time of collision. In general, using higher
order interpolation allows us to take large steps in the simulation [WB97]. However, sometimes it is not possible to
take large time steps in the simulation because of the following reasons:

• The stability of numerical integration.

• The frequency of collision events. Even if the system is numerically stable, a high frequency of contacts
between the objects make the effective time step small. In such cases, the time stepping can not benefit from
higher order interpolation.

Given two inter-penetrating objects, our PD algorithm computes the penetration depthd, the directionn and the
penetrating features (as shown in Fig. 3). The motion in the last time step is approximated to a one-dimensional
motion by projecting it onto the penetration direction. We compute a cubic interpolation of the motion, using the
separation distances and the relative velocity of the closest features at the beginning of the intervalvs, along with
the penetration depth and the relative velocity of the penetration features at the end of the intervalvd. The cubic
function is expressed as:

x(t) = At3 +Bt2 + Ct+D.

We treatx(t) as the one dimensional distance function between the closest features or penetrating features of
the rigid bodies. The parametersA, B, C andD are generic constants of a cubic polynomial that are computed by
solving the following set of linear equations:
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x(0) = s = D,

x(T ) = d = AT 3 +BT 2 + CT +D,

ẋ(0) = vs · n = C,

ẋ(T ) = vd · n = 3AT 2 + 2BT + C,

whereT is the size of the time step andn is the direction of penetration. After computing the coefficients of the
cubic polynomial, we compute its first real root in the interval[0, T ].

Based on this approach, our algorithm is able to compute the time of collision using fewer iterations, as compared
to earlier methods. If there is any error, e.g. the cubic polynomial has no real root in the interval[0, T ], then we use
bisection search to estimate the time of collision.

In one of the example scenarios, as shown in the accompanying video and in Fig. 10, geometric models of200
letters and digits fall along a structure consisted of multiple funnels and ramps. The letters and digits have an average
complexity of250 triangles in their boundary surface, which is decomposed into roughly60 convex pieces. Each
frame (at 30fps) of the dynamic simulation for this complex scenario takes about two minutes to compute.

For the second scenario in the supplementary video and in Fig. 11, there are10 digit models dropped into a bowl.
The geometric model of each digit has an average complexity of250 triangles. The bowl consists of176 triangles
and its surface is decomposed into roughly65 convex pieces. Some of the digits come into an interlocking position
as they fall into the bottom of the bowl. These are challenging scenarios for contact computation and response. Each
frame of this simulation takes about18 seconds to compute.

7.2 Tolerance Verification

We have also tested our prototype implementation on a tolerance verification application, as seen in Fig. 7.2. A
hammer composed of1, 692 triangles follows a planned path through a complex virtual machine room. Its convex
decomposition has425 patches. The machine room has897 objects and their triangle count is195, 926. The
application checks for tolerances, including separation distance and penetration depth, along a given path. In our
sample path, the hammer comes into contact with17 objects that consist of3, 810 triangles.

Figure 12: Tolerance Verification Scenario:Our algorithm is used to check for positive and negative distances
between a tool (yellow hammer, about 400 units long) and the nearby structures along a planned maintenance path
in a virtual machine room. The amount of penetration is indicated as a negative number on the lower left corner of
the scene.

The path for routine maintenance is generated interactively with a human in the loop using a haptic device as a
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motion tracker. Force feedback in the proximity of objects helps the user to avoid deep penetration. However, there
still are situations where penetration between the hammer and other objects occur.

The path is played back for performing tolerance verification between the hammer and the machine room struc-
ture. At each step, the distance to the closest object is computed. When penetration occurs, the penetration distance
and direction are used to help modify the planned path for machine maintenance or to improve the design of the
structure layout for the room.

8 Summary and Future Work

We present a fast, global algorithm to estimate penetration depth between polyhedra using both image-space ac-
celeration techniques and object-space culling and refinement algorithms. The resulting algorithm has been tested
on difficult benchmarks and applied to time-stepping methods for dynamic simulation and tolerance verification for
virtual prototyping.

There are several areas for future work. The performance of our algorithm can be further improved by exploring
more optimizations. These include faster implementations of the closest point query using new features of the
high-end graphics cards, as well as better hierarchical decompositions. Currently our algorithm only computes
the minimum translational distance to separate two overlapping objects. It would be useful to extend it to handle
rotational penetration depth.
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