
Estimation of the length of interactions
in arena game semantics

Pierre Clairambault
p.clairambault@bath.ac.uk

University of Bath

Abstract. We estimate the maximal length of interactions between
strategies in HO/N game semantics, in the spirit of the work by Schwicht-
enberg and Beckmann for the length of reduction in simply typed λ-
calculus. Because of the operational content of game semantics, the
bounds presented here also apply to head linear reduction on λ-terms
and to the execution of programs by abstract machines (PAM/KAM),
including in presence of computational effects such as non-determinism
or ground type references. The proof proceeds by extracting from the
games model a combinatorial rewriting rule on trees of natural num-
bers, which can then be analysed independently of game semantics or
λ-calculus.

1 Introduction

Among the numerous notions of execution that one can consider on higher-order
programming languages (in particular on the λ-calculus) head linear reduction
[9] plays a particular role. Although it is not as widespread and specifically
studied as, say, β-reduction, it is nonetheless implicit to various approaches of
higher-order computation, such as geometry of interaction, game semantics, op-
timal reduction and ordinary operational semantics. It is also implicit to several
abstract machines, including the Krivine Abstract Machine (KAM) [17] and the
Pointer Abstract Machine (PAM) [9], in the sense that it is the reduction they
perform [9,5] and as such is a valuable abstraction of how programs are executed
in the implementation of higher order languages.

Despite being closer to the implementation of programming languages, head
linear reduction never drew a lot of attention from the community. Part of the
reason for that is that it is not a usual notion of reduction: defining it properly
on λ-terms requires both to extend the notion of redex and to restrict to lin-
ear substitution, leading to rather subtle and tricky definitions which lack the
canonicity of β-reduction1. Moreover, its associated observational equivalence is
the same as for the usual head β-reduction, which makes it non relevant as long
as one is interested in the equational theory of λ-calculus. However, head linear

1 However, there are syntaxes on which head linear reductions appear more canonical
that β-reduction, for instance proof nets [21].

reduction should appear in the foreground as soon as one is interested in quan-
titative aspects of computation, such as complexity. On the contrary, although
very precise bounds are known for the possible length of β-reduction chains in
simply typed λ-calculus [24,3], to the author’s knowledge, the situation for head
linear reduction remains essentially unexplored. Even if it is generally expected
that the bounds remain hyper-exponential2 (and this indeed what we will prove),
it does not seem to follow easily from the bounds known for β-reduction.

Rather than reasoning directly on head linear reduction, we will instead look
at it through game semantics [16]. Indeed, there is a close relationship between
head linear reduction and interaction in games model of programming languages
[8]. More precisely, given two β-normal and η-long λ-terms S and T , there is a
step-by-step correspondence between head linear reduction chains of ST and
game-theoretic interactions between the strategies JSK and JT K. Of course, game
semantics are not central to our analysis: as is often the case, our methods
and results could be adapted to a purely syntactical framework. However, games
have this considerable advantage of accommodating in a single framework purely
functional programming languages such as the λ-calculus or PCF and a num-
ber of computational features such as non-determinism [15], control operators
[19] and references [1]. This will allow us to do our study with an increased
generality: our complexity results will hold for a variety of settings, from simply
typed λ-calculus to richer languages possibly featuring the computational effects
mentioned above, as long as there is no fixed point operator.

Outline. In Section 2 we will recall some of the basic definitions of Hyland-Ong
game semantics, define the central notion of size of a strategy, and introduce our
main question as the problem of finding the maximal length of an interaction
between two strategies of fixed size. Our approach will be then to progressively
simplify this problem in order to reach its underlying combinatorial nature. In
Section 3 we first introduce the notion of visible pointer structures, i.e. plays
where the identity of moves has been forgotten. This allows a more elementary
(strategy-free) equivalent statement of our problem. Then we show how each
position in a visible pointer structure can be characterised by a tree of natural
numbers called an agent. We then show that the problem can be once again
reformulated as the maximal length of a reduction on these agents. In Section 4
we study the length of this reduction, giving in particular an upper bound. We
also give a corresponding lower bound, and finally use our result to estimate the
maximal length of head linear reduction sequences on simply typed λ-terms.

Related works. Our results and part of our methods are similar to the works
of Schwichtenberg and Beckmann [24,3], but the reduction we study is in some
sense more challenging, because redexes are not destroyed as they are reduced.
Moreover, the game semantics setting allows for an extra generality. The present

2 Note however that in [10], De Bruijn gives an upper bound for his local β-reduction,
akin to head linear reduction. The bound is an iterate of the diagonal of an
Ackermann-like function!

work also has common points with work by Dal Lago and Laurent [18], in the
sense that it uses tools from game semantics to reason on the length of execution.
However the approach is very different : their estimate is very precise but uses an
information on terms difficult to compute (almost as hard as actually performing
execution). Here, we need little information on terms (gathering this information
is linear in the size of the term), but our bounds are, in most cases, very rough.

2 Arena game semantics

We recall briefly the now usual definitions of arena games, first introduced in [16].
More detailed accounts can be found in [22,13]. We are interested in games with
two participants: Opponent (O, the environment) and Player (P, the program).

2.1 Arenas and Plays

Valid plays are generated by directed graphs called arenas, which are semantic
versions of types. Formally, an arena is a structure A = (MA, λA, IA,`A) where:

– MA is a set of moves,
– λA : MA → {O,P} is a polarity function indicating whether a move is an

Opponent or Player move (O-move or P -move).
– IA ⊆ λ−1A ({O}) is a set of initial moves.
– `A⊂ MA ×MA is a relation called enabling, such that if m `A n, then
λA(m) 6= λA(n).

In other words, an arena is just a directed bipartite graph. We now define plays
as justified sequences over A: these are sequences s of moves of A, each non-
initial move m in s being equipped with a pointer to an earlier move n in s,
satisfying n `A m. In other words, a justified sequence s over A is such that
each reversed pointer chain si0 ← si1 ← . . . ← sin is a path on A (viewed as a
graph). The role of pointers is to allow reopenings or backtracking in plays. When
writing justified sequences, we will often omit the justification information if this
does not cause any ambiguity. The symbol v will denote the prefix ordering on
justified sequences, and s1 vP s2 will mean that s1 is a P -ending prefix of s2. If
s is a justified sequence on A, |s| will denote its length.

Given a justified sequence s on A, it has two subsequences of particular inter-
est: the P-view and O-view. The view for P (resp. O) may be understood as the
subsequence of the play where P (resp. O) only sees his own duplications. Practi-
cally, the P-view psq of s is computed by forgetting everything under Opponent’s
pointers, in the following recursive way:

– psmq = psqm if λA(m) = P ;
– psmq = m if m ∈ IA and m has no justification pointer;
– ps1ms2nq = psqmn if λA(n) = O and n points to m.

The O-view xsy of s is defined dually, without the special treatment of initial
moves3. The legal plays over A, denoted by LA, are the justified sequences s on A
satisfying the alternation condition, i.e. that if tmn v s, then λA(m) 6= λA(n).

3 In the terminology of [13], it is the long O-view.

2.2 Classes of strategies

In this subsection, we will present several classes of strategies on arena games
that are of interest to us in the present paper. A strategy σ on A is a set of
even-length legal plays on A, closed under even-length prefix. A strategy from
A to B is a strategy σ : A⇒ B, where A⇒ B is the usual arrow arena defined
by MA⇒B = MA + MB , λA⇒B = [λA, λB] (where λA means λA with polarity
O/P reversed), IA⇒B = IB and `A⇒B=`A + `B +IB × IA.

Composition. We define composition of strategies by the usual parallel inter-
action plus hiding mechanism. If A, B and C are arenas, we define the set of
interactions I(A,B,C) as the set of justified sequences u over A, B and C such
that u�A,B ∈ LA⇒B , u�B,C ∈ LB⇒C and u�A,C ∈ LA⇒C . Then, if σ : A ⇒ B
and τ : B ⇒ C, we define parallel interaction as σ || τ = {u ∈ I(A,B,C) |
u�A,B ∈ σ∧u�B,C ∈ τ}, composition is then defined as σ; τ = {u�A,C | u ∈ σ||τ}.
Composition is associative and admits copycat strategies as identities.

P -visible strategies. A strategy σ is P -visible if each of its moves points to the
current P -view. Formally, for all sab ∈ σ, b points inside psaq. P -visible strategies
are stable under composition, as is proved for instance in [13]. They correspond
loosely to functional programs with ground type references [1].

Innocent strategies. The class of innocent strategies is central in game semantics,
because of their correspondence with purely functional programs (or λ-terms)
and of their useful definability properties. A strategy σ is innocent if

sab ∈ σ ∧ t ∈ σ ∧ ta ∈ LA ∧ psaq = ptaq⇒ tab ∈ σ

Intuitively, an innocent strategy only takes its P -view into account to determine
its next move. Indeed, any innocent strategy is characterized by a set of P -
views. This observation is very important since P -views can be seen as abstract
representations of branches of η-expanded Böhm trees (a.k.a. Nakajima trees
[23]) : this is the key to the definability process on innocent strategies [16]. It is
quite technical to prove that innocent strategies are stable under composition,
proofs can be found for instance in [13,5]. Arenas and innocent strategies form a
cartesian closed category and are therefore a model of simply typed λ-calculus.

Bounded strategies. A strategy σ is bounded if it is P -visible and if the length
of its P -views is bounded: formally, there exists N ∈ N such that for all s ∈ σ,
|psq| ≤ N . Bounded strategies are stable under composition, as is proved in [6] for
the innocent case and in [5] for the general case. This result corresponds loosely
to the strong normalisation result on simply-typed λ-calculus. Syntactically,
bounded strategies include the interpretation of all terms of a functional pro-
gramming language without a fixed point operator but with Algol-like ground
type references (for details about how reference cells get interpreted as strategies
see for instance [1], it is obvious that this interpretation yields a bounded strat-
egy) and arbitrary non determinism. This remark is important since it implies
that our results will hold for any program written with these constructs, as long
as they do not use recursion or a fixed point operator.

2.3 Size of strategies and interactions

Since in this paper we will be interested in the length of interactions, it is sensible
to make it precise first what we mean by the size of strategies. Let σ be a bounded
strategy, its size is defined as

|σ| = maxs∈σ|psq|
2

All our analysis on the size of interactions will be based on this notion of size
of strategies. Our starting point is the following finiteness result, proved in [6].
We say that an interaction u ∈ I(A,B,C) is passive if the only move by the
external Opponent on A,C is the initial move on C, so that the interaction stops
as soon as we need additional input from the external Opponent.

Proposition 1. Let σ : A ⇒ B and τ : B ⇒ C be bounded strategies and let
u ∈ σ||τ be a passive interaction, then u is finite.

Using this, we can actually deduce the existence of an uniform bound on the
length of such u ∈ σ||τ , which only depends on the respective size of σ and τ :

Lemma 1. For all n, p ∈ N there is a lesser N(n, p) ∈ N such that for all arenas
A,B and C, for all σ : A ⇒ B and τ : B ⇒ C such that |σ| ≤ p and |τ | ≤ n,
for all passive u ∈ σ||τ we have |u| ≤ N(n, p).

Proof. For arenas A,B and C consider the set TA,B,C of all passive interactions
u ∈ I(A,B,C) such that for all s v u�B,C , |psq| ≤ 2n and for all s v uA,B ,
|psq| ≤ 2p. Then, consider the union T of all the TA,B,C , our goal here is to find
a bound on the length of all elements of T . Consider now the tree structure on
T given by the prefix ordering. To make this tree finitely branching, consider
the relation m ∼= n ⇔ depth(m) = depth(n) on moves, where depth(m) is the
number of pointers required to go from m to an initial move. The tree T/ ∼= is
now finitely branching, but is also well-founded by Proposition 1, therefore it is
finite by König’s lemma4. Let N(n, p) be its maximal depth, it is now obvious
that it satisfies the required properties.

We have proved the existence of the uniform bound N(n, p), but in a way
that provides no feasible means of estimating N(n, p). The goal of the rest of
this paper is to estimate this bound as precisely as possible. As a matter of
fact, we will be mainly interested in the “typed” variant Nd(n, p), defined as the
maximum length of all possible passive interactions between strategies σ : A⇒ B
and τ : B ⇒ C of respective size p and n, where B has a finite depth d− 1.

3 Pointer structures and rewriting

We have seen that to prove Lemma 1, we must consider plays up to an equivalence
relation ∼= which assimilates all moves at the same depth. Indeed, general arenas

4 Or, more adequately, the fan theorem.

and plays contain information which is useless for us. Following [6], we will here
reason on pointer structures, which result of considering moves in plays up to
∼=. Pointer structures are also similar to the parity pointer functions of Harmer,
Hyland and Melliès [14] and to the interaction sequences of Coquand [7]. We
will delve here into their combinatorics and extract from them a small rewriting
system, whose study is sufficient to characterize their length.

3.1 Nd(n, p) as a bound for pointer structures

Visible pointer structures. In [6], we introduced pointer structures by elementary
axioms, independent of the general notions of game semantics. Instead here, we
define pointer structures as usual alternating plays, but on the particular
“pure” arena Iω =

⊔
n∈N In, where I0 = ⊥ (⊥ is the singleton arena with just

one Opponent move) and In+1 = In ⇒ ⊥. As we are interested in the interaction
between P -visible strategies, we will only consider visible pointer structures,
where both players point in their corresponding view. Formally, s is visible if for
all s′p vP s, a points inside ps′q and if for all s′o vO s, o points inside xs

′
y. The

depth of a visible pointer structure s is the smallest d such that s is a play on
Id. Let us denote by V the set of all visible pointer structures.

Atomic agents. After forgetting information on plays, let us forget information
on strategies. Instead of considering bounded strategies with all their intentional
behaviour, we will just keep the data of their size. Pointer structures will then
be considered as interactions between the corresponding numbers which will be
called atomic agents. If n is such a natural number, we define its trace as
follows, along with the dual notion of co-trace:

Tr(n) = {s ∈ V | ∀s′ v s, |ps′q| ≤ 2n}
coTr(p) = {s ∈ V | ∀s′ v s, |xs′y| ≤ 2p+ 1}

An interaction at depth d between n and p is a visible pointer structure s of
depth at most d such that s ∈ Tr(n) ∩ coTr(p). We write s ∈ n ?d p. These
definitions allow to give the following strategy-free equivalent formulation of
Nd(n, p).

Lemma 2. Let n and p be natural numbers and d ≥ 2, then

Nd(n, p) = max{|s| | s ∈ n ?d p}

Proof. Consider the maximal bounded strategies of respective size n and p, de-
fined as n = {s ∈ Id | ∀s′ v s, |ps′q| ≤ 2n and p = {s ∈ Id−1 | ∀s′ v s, |ps′q| ≤
2p. Then pointer structures in n ?d p are the same as (passive) interactions in
p||n, thus max{|s| | s ∈ n ?d p} ≤ Nd(n, p). Reciprocally, if σ : A ⇒ B has
size p and τ : B ⇒ C has size n and if u ∈ σ||τ is passive, then if u′ denotes
u where moves are considered up to ∼= we have u′ ∈ p||n thus u′ ∈ n ?d p and
Nd(n, p) = max{|s| | s ∈ n ?d p}.

3.2 Agents

To bound the length of a pointer structure s, our idea is to label each of its moves
si by an object t, expressing the size that the strategies have left. Let us consider
here an analogy between pointer structures and the execution of λ-terms by the
KAM5. Consider the following three KAM computation steps:

(λx.xS) ? T · π0 3 T ? Sx 7→T · π0

The interaction between two closed terms (with empty environment) leads, after
three steps of computation, to the interaction between two open terms T and
S (where x is free in S), with an environment. By analogy, if s0 is labelled by
the pair (n, p) of interacting “strategies”, each move si should correspond to an
interaction between objects (a, b), where a and b have a tree-like structure which
is reminiscent of those of closures6.

We will call a pointed visible pointer structure (pvps) a pair (s, i) where
s is a visible pointer structure and i ≤ |s|−1 is an arbitrary “starting” move. We
adapt the notions of size and depth for pvps, and introduce a notion of context.

Definition 1. Let (s, i) be a pointed visible pointer structure. The residual size
of s at i, written rsize(s, i), is defined as follows:

– If si is an Opponent move, it is maxsi∈ps≤jq |ps≤jq| − |ps≤iq|+ 1

– If si is a Player move, it is maxsi∈xs≤jy |xs≤jy| − |xs≤iy|+ 1

where si ∈ ps≤jq means that the computation of ps≤jq reaches7 si. Dually, we
have the notion of residual co-size of s at i, written rcosize(s, i), defined as
follows:

– If si is an Opponent move, it is maxsi∈xs≤jy |xs≤jy| − |xs≤iy|+ 1

– Otherwise, maxsi∈ps≤jq |ps≤jq| − |ps≤iq|+ 1

The residual depth of s at i is the maximal length of a pointer chain in s starting
from si.

Definition 2. Let s be a visible pointer structure. We define the context of
(s, i) as:

– If si is an O-move, the set {sn1 , . . . , snp} of O-moves appearing in ps<iq,
– If si is a P-move, the set {sn1 , . . . , snp} of P-moves appearing in xs<iy.

In other words it is the set of moves to which si+1 can point whilst abiding to the
visibility condition, except si. We also need the dual notion of co-context, which
contains the moves the other player can point to. The co-context of (s, i) is:

5 The syntax used here seems natural enough, but is for instance described in [5].
6 As in the example above, closures are pairs Mσ where M is an open term and σ is

an environment, i.e. a mapping which to each free variable of M associates a closure.
7 So starting from sj and following Opponent’s pointers eventually reaches si.

– If si is an O-move, the set {sn1
, . . . , snp} of P-moves appearing in xs<iy,

– If si is a P-move, the set {sn1
, . . . , snp} of O-moves appearing in ps<iq.

Definition 3. A general agent (just called agent for short) is a finite tree,
whose nodes and edges are both labelled by natural numbers. If a1, . . . , ap are
agents and d1, . . . , dp are natural numbers, we write:

n[{d1}a1, . . . , {dp}ap] =

n
d1

{{{{{{{{
dp

CCCCCCCC

a1 . . . ap

Definition 4 (Trace, co-trace, interaction). Let us generalize the notion
of trace to general agents. The two notions Tr and coTr are defined by mutual
recursion, as follows: let a = n[{d1}a1, . . . , {dp}ap] be an agent. We say that (s, i)
is a trace (resp. a co-trace) of a, denoted (s, i) ∈ Tr(a) (resp. (s, i) ∈ coTr(a))
if the following conditions are satisfied:

– rsize(s, i) ≤ 2n (resp. rcosize(s, i) ≤ 2n+ 1),
– If {sn1

, . . . , snp} is the context of (s, i) (resp. co-context), then for each k ∈
{1, . . . , p} we have (s, nk) ∈ coTr(ak).

– If {sn1
, . . . , snp} is the context of (s, i) (resp. co-context), then for each k ∈

{1, . . . , p} the residual depth of s at nk is less than dk.

Then, we define an interaction of two agents a and b at depth d as a pair
(s, i) ∈ Tr(a) ∩ coTr(b) where the residual depth of s at i is less than d, which
we write (s, i) ∈ a ?d b.

Notice that we use the same notations Tr, coTr and ? both for natural numbers
and general agents. This should not generate any confusion, since the definitions
just above coincide with the previous ones in the special case of “atomic”, or
closed, agents: if n and p are natural numbers, then obviously s ∈ n ?d p if and
only if (s, 0) ∈ n[] ?d p[]. Note also that definitions are adapted here to this
particular setting where strategies are replaced by natural numbers, however
they could be generalized to the usual notion of strategies. An agent would be
then a tree of strategies, and a trace of this agent would be a possible interaction
between all these strategies. This would be a new approach to the problem of
revealed or uncovered game semantics [12,4], where strategies are not necessarily
cut-free.

3.3 Simulation of visible pointer structures

We introduce now the main tool of this paper, a reduction on agents which
“simulates” visible pointer structures: if n[{d1}a1, . . . , {dp}ap] and b are agents
(n > 0), we define the non-deterministic reduction relation on triples (a, d, b),
where d is a depth (a natural number) and a and b are agents, by the following
two cases:

(n[{d1}a1, . . . , {dp}ap], d, b) (ai, di − 1, (n− 1)[{d1}a1, . . . , {dp}ap, {d}b])
(n[{d1}a1, . . . , {dp}ap], d, b) (b, d− 1, (n− 1)[{d1}a1, . . . , {dp}ap, {d}b])

where i ∈ {1, . . . , p}, di > 0 in the first case and d > 0 in the second case. We
can now state the following central proposition.

Proposition 2 (Simulation). Let (s, i) ∈ a ?d b, then if si+1 is defined, there
exists (a, d, b) (a′, d′, b′) such that (s, i+ 1) ∈ a′ ?d′ b′.

Proof. The proof proceeds by a close analysis of where in its P -view (resp. O-
view) si+1 can point. If it points to si, then the active strategy asks for its
argument which corresponds to the second reduction case. If it points to some
element sni of its context, the active strategy calls the i-th element of its context:
this is the first reduction case, putting the subtree ai in head position. The rest of
the proof consists in technical verifications, to check that the new triple (a′, d′, b′)
is such that (s, i+ 1) ∈ a′ ?d′ b′.

The result above will be sufficient for our purpose. Let us mention in pass-
ing that the connection between visible pointer structures and agents is in fact
tighter: a reduction chain starting from a triple (n[], d, p[]) can also be canonically
mapped to a pointed visible pointer structure in n?d p, and the two translations
are inverse of one another. The interested reader is directed to [5].

Before going on to the study of the rewriting rules introduced above, let us
give a last simplification. If a = n[{d1}t1, . . . , {dp}tq] and b are agents, then a ·d b
will denote the agent obtained by appending b as a new son of the root of a with
label d, i.e. n[{d1}t1, . . . , {dp}tq, {d}b]. Consider the following non-deterministic
rewriting rule on agents:

n[{d1}a1, . . . , {dp}ap] ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap]

Both rewriting rules on triples (a, d, b) are actually instances of this reduction, by
the isomorphism (a, d, b) 7→ a ·d b. We let the obvious verification to the reader.
This is helpful, as all that remains to study is this reduction on agents illustrated
in Figure 1. To summarize, if N(a) denotes the length of the longest reduction
sequence starting from an agent a, we have the following property.

Proposition 3. Let n, p ≥ 0, d ≥ 2, then Nd(n, p) ≤ N(n[{d}p[]]) + 1.

Proof. Obvious from the simulation lemma, adding 1 for the initial move which
is not accounted for by the reduction on agents. In fact this is an equality, as
one can prove using the reverse simulation lemma mentioned above. See [5].

4 Length of interactions

The goal of this section is to study the reduction on agents introduced above,
and to estimate its maximal length. We will first provide an upper bound for this
length, adapting a method used by Beckmann [3] to estimate the maximal length
of reductions on simply typed λ-calculus. We will then discuss the question of
lower bounds, and finally describe an application to head linear reduction.

n

dp

00000000000000

d1

��������������
ai

��������

AAAAAAAAA
di−1

QQQQQQQQQQQQQQ

// n− 1
dp

EEEEEEEE
d1

yyyyyyyy

a1 aq a1 aq

Fig. 1. Rewriting rule on agents

4.1 Upper bound

We define on agents a predicate ρ
α

, which introduction rules are compatible both
with syntax and reduction.

Definition 5. The predicate ρ
α

(where ρ, α range over natural numbers) is de-
fined on agents in the following inductive way.

– Base. ρ
α

0[{d1}a1, . . . , {dp}ap]
– Red. Suppose a = n[{d1}a1, . . . , {dp}ap]. Then if for all a′ such that a a′

we have ρ
α
a′ and if we also have ρ

α
(n−1)[{d1}a1, . . . , {dp}ap], then ρ

α+1
a.

– Cut. If ρ
α
a, ρ

β
b and d ≤ ρ, then ρ

α+β
a ·d b.

By this inductive definition, each proposition ρ
α
a is witnessed by a tree

using Base, Red and Cut. Red-free trees look like syntax trees, are easy to
build but give few information on the reduction, whereas Cut-free trees look
like reduction trees, are difficult to build but give very accurate information on
the length of reduction. The idea of the proof is then to design an automatic way
to turn a Red-free tree to a Cut-free tree, via a cut elimination lemma. Let us
now give the statement and sketch the proof of the four important lemmas that
underlie our reasoning.

A context-agent a() is a finite tree whose edges are labelled by natural
numbers, and whose nodes are labelled either by natural numbers, or by the
variable x, with the constraint that all edges leading to x must be labelled by
the same number d; d is called the type of x in a(). If We denote by a(b) the
result of substituting of all occurrences of x in a() by b. We denote by a(∅) the
agent obtained by deleting in a all occurrences of x, along with the edges leading
to them.

Lemma 3 (Substitution lemma). If ρ
α
a(∅), ρ

β
b and d ≤ ρ+ 1 (where d is

the type of x in a), then ρ
α(β+1)

a(b)

Proof. We prove by induction on the tree witness for ρ
α
a(∅) that the above

property is true for all context-arena a′() such that a(∅) = a′(∅). The way to
handle each case is essentially forced by the induction hypothesis.

Lemma 4 (Cut elimination lemma). Suppose ρ+1
α

a. Then if α = 0, ρ
0
a.

Otherwise, ρ
2α−1

a.

Proof. By induction on the witness for ρ+1
α

a, using the substitution lemma
when the last rule is Cut with a type of ρ+ 1.

Lemma 5 (Recomposition lemma). Let a be an agent. Then
depth(a)

max(a)|a|
a,

where depth(a) is the maximal label of an edge in a, max(a) is the maximal label
of a node and |a| is the number of nodes.

Proof. By induction on a.

Lemma 6 (Bound lemma). Let a be an agent, then if 0
α
a, N(a) ≤ α.

Proof. The only used rules are Base, Red and Cut with ρ = 0. These Cut rules
do not add any possible reduction and are easy to eliminate, then the lemma is
easily proved by induction on a.

These lemmas are sufficient to give a first upper bound, by iterating the
cut elimination lemma starting from the witness tree for ρ

α
a generated by the

recomposition lemma. However when the type is small, some of the lemmas above

can be improved. For instance if 0
α
a(∅), 0

β
b and the type of x in a() is 1, then

0

α+β
a(b), since once the reduction reaches b it will never enter a() again. Using

this we get a “base” cut-elimination lemma, stating that for all a, whenever 1
α
a

then we have actually 0
α
a instead of 0

2α−1

a. Using this, we prove the following.

Theorem 1 (Upper bound). Let depth(a) denote the highest edge label in a,
max(a) means the highest node label and |a| means the number of nodes of a.
Then if depth(a) ≥ 1 and max(a) ≥ 1 we have:

N(a) ≤ 2
max(a)|a|−1
depth(a)−1

For the particular case when a = n[{d}p[]] and if d ≥ 2 we have:

Nd(n, p) ≤ 2
n(p+1)
d−2

Proof. Both proofs are rather direct. For the first part, by the recomposition

lemma we have
depth(a)

max(a)|a|
a. It suffices then to apply depth(a) − 1 times the

cut elimination lemma, then use the “base” cut-elimination lemma to eliminate
the remaining cuts. For the second part we reason likewise, but rely on the

substitution lemma instead of the recomposition lemma to get d−1
n(p+1)

n[{d}p[]],
which gives N(n[{d}p[]]) ≤ 2

n(p+1)−1
d−2 . But we have Nd(n, p) ≤ N(n[{d}p[]]) + 1

by Proposition 3, which concludes the proof.

Note that whereas the bounds in [3] are asymptotic and give poor quantita-
tive information if instantiated on small types, our bound does provide valuable
information on interactions with small depth. For instance, if σ : A ⇒ B and
τ : B ⇒ C such that rsize(σ) = p, rsize(τ) = n and the depth of B is at most 2,
then no interaction between σ and τ can be longer than N3(n, p) ≤ 2n(p+1). As
we will see below, this can not be significantly improved. In fact, we conjecture
that for all n ≥ 1 and p ≥ 2, we have N3(n, p) = 2p

n−1
p−1 + 1 : this was found and

machine-checked for all n + p ≤ 17 thanks to an implementation of agents and
their reduction, unfortunately we could not prove its correctness, nor generalize
it to higher depths.

4.2 Lower bound

As argued in the introduction, the upper bound above applies to several pro-
gramming languages executed by head linear reduction, possibly featuring non
determinism and/or ground type references, therefore the fact that we used
game semantics to prove it increases its generality. On the other hand, if we
try to give the closest possible lower bound for Nd(n, p) using the full power
of visible pointer structures, we would get a lower bound without meaning for
most languages concerned by the upper bound, since pointer structures have no
innocence or determinism requirements8. Therefore what makes more sense is
to describe a lower bound in the more restricted possible framework, i.e. simply
typed λ-calculus.

We won’t detail the construction much, as the method is standard and does
not bring a lot to our analysis. The idea is to define higher types for church
integers by A0 = ⊥ and An+1 = An → An. Then, denoting by np the church
integer for n of type Ap+2, we define Sn = 2n2n−1 . . . 20 : A2. We apply then
Sn to id⊥ to get a term whose head linear reduction chain has at least 21n+1

steps. In game semantics, J2nK has size n + 3 and all other components have
size smaller than n + 2, the depth of the ambient arena being n + 2. The func-
tion Nd(n, p) being monotonically increasing in all its parameters we have the
following inequalities for 3 ≤ d ≤ min(n − 1, p), both bounds making sense for
all programming languages containing the simply-typed λ-calculus and whose
terms can be interpreted as bounded strategies.

22d−2 ≤ Nd(n, p) ≤ 2
n(p+1)
d−2

Note that from this we can deduce bounds for N(n, p), when we have no infor-
mation on the depth of the ambient arena. Indeed, we always have d ≤ 2n and
d ≤ 2p + 1 because a pointer chain in a play is visible by both players. Thus,
N(n, p) = Nmin(2n,2p+1)(n, p).

8 Our experiments with pointer structures and agents confirmed indeed that the pos-
sibility to use non-innocent behaviour does allow significantly longer plays.

4.3 Application to head linear reduction

Earlier works on game semantics [8] suggest that in every games model of a pro-
gramming language lies a hidden notion of linear reduction, head linear reduction
when modelling call-by-name evaluation: this is the foundation for our claim that
our game-theoretic result is really about the length of execution in programming
languages whose terms can be described as bounded strategies. Of course it re-
quires some work to interface execution in these programming languages to our
game-theoretic results, and part of this work has to be redone in each case. To
illustrate this, we now describe how to extract from our results a theorem about
the length of head linear reduction sequences in simply-typed λ-calculus. For
the formal definition of head linear reduction, the reader is directed to [9]. If S
is a λ-term then the spinal height of S is the quantity sh(S) defined by in-
duction as sh(x) = 1, sh(λx.S) = sh(S) and sh(ST) = max(sh(S), sh(T) + 1);
when S is a βη-normal form, sh(S) is nothing but the height of its Böhm tree.
The height of S is the subtly different quantity9 h(S) defined by h(x) = 1,
h(λx.M) = h(M) and h(MN) = max(h(M), h(N)) + 1. Finally, the level of a
type lv(A) is defined by lv(⊥) = 0 and lv(A→ B) = max(lv(A) + 1, lv(B)) and
the degree g(S) of a term is the maximal level of the type of all subterms of S.

A game situation [5] is the data of λ-terms S : A1 → . . . → Ap → B and
T1 : A1, . . . Tp : Ap in η-long β-normal form, and we are interested in the term
ST1 . . . Tp. Our game-theoretic results apply immediately to game situations,
because of the connection between game-theoretic interaction and head linear
reduction [8]: if N(ST1 . . . Tp) denotes the length of the head linear reduction
chain of ST1 . . . Tp, then we have N(ST1 . . . Tp) ≤ Nd(n, p) where d is the depth
of the arena corresponding to A→ B, n is the size of JSK and p is the maximal
size of all of the JTiK. But since S and Ti are already in η-long β-normal form,
we have |JSK| = sh(S) and |JTiK| = sh(Ti). Thus, we conclude that in the case
of a game situation we have:

N(ST1 . . . Tp) ≤ 2
sh(S)(maxi(sh(Ti))+1)
maxilv(Ai)−1

Outside of game situations, it is less obvious to see how our results apply. The
more elegant approach would be probably to extend the connection between head
linear reduction and game semantics to revealed game semantics, which would
give the adequate theoretical foundations to associate an agent to any η-long λ-
term. Without these tools, we can nonetheless apply the following hack. Suppose
we have a λ-term S. The idea is to “delay” all redexes, replacing each redex
(λx.S)T of type A → B in S with yA,B(λx.S)T , where we add a new symbol
yA,B : (A→ B)→ A→ B for each pair (A,B). We iterate this operation until we
reach a β-normal λ-term St, which satisfies sh(St) ≤ h(S). We then expand St to
its η-long form η(St), which satisfies sh(η(St)) ≤ sh(St)+g(St) ≤ h(S)+g(S)+1.
We consider now the term (λy1 . . . yp.η(St))ev1 . . . evp, where each yi binds one

9 One can easily prove that on closed terms, it is always less than the more com-
mon notion of height defined as h(x) = 0, h(λx.S) = 1 + h(S) and h(ST) =
max(h(S), h(T)) + 1, for which our upper bound consequently also holds.

of the new symbols yA,B , and evi : (A → B) → A → B is the (η-long form of)
the corresponding evaluation λ-term. We recognise here a game situation, whose
head linear reduction chain is necessarily longer than for S (we have only added
steps due to the delaying of redexes and η-expansion). Using the inequality above
for game situations, we conclude:

N(S) ≤ 2
(h(S)+g(S)+1)(g(S)+1)
g(S)

5 Conclusion & future work

Applied to head linear reduction on simply typed λ-calculus, our results show
that the price of linearity is not as high as one might expect. Not only the bounds
remain in E4, but they are only slightly higher than those for usual β-reduction:
in particular, the height of the tower of exponentials is the same.

A strength of our method is that it is not restricted to λ-calculus; the re-
sults should indeed immediately apply as well to similar notions of reduction
on other total programming languages. Beyond ground type references and non
determinism, there are also games model of call-by-value languages [2] gener-
ating pointer structures as well, thus this work should also provide bounds for
the corresponding call-by-value linear reduction (tail linear reduction?). All the
tools used here also can be extended to non-alternating plays [20], which sug-
gests that this work could be used to give bounds to the length of reductions in
some restricted concurrent languages.

We also believe agents are worth studying further. Their combinatorial nature
and their connection to execution of programs may prove interesting for the study
of higher order systems with restricted complexity, such as light linear logics [11].
For instance, proofs typable in light systems may correspond to agents with some
restricted behaviours, which would make them a valuable tool for the study of
programming languages with implicit complexity.

Acknowledgements. This work was partially supported by the French ANR
project CHOCO. The author also would like to thank Fabien Renaud for in-
teresting discussions on related subjects.

References

1. Samson Abramsky and Guy McCusker. Linearity, Sharing and State: a Fully
Abstract Game Semantics for Idealized Algol with active expressions, 1997.

2. Samson Abramsky and Guy McCusker. Call-by-value games. In Mogens Nielsen
and Wolfgang Thomas, editors, 6th Annual Conference of the European Association
for Computer Science Logic, volume 1414 of Lecture Notes in Computer Science.
Springer, 1998.

3. A. Beckmann. Exact bounds for lengths of reductions in typed λ-calculus. Journal
of Symbolic Logic, 66(3):1277–1285, 2001.

4. W. Blum. Thesis fascicle: Local computation of β-reduction. PhD thesis, University
of Oxford, 2008.

5. Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité.
PhD thesis, Université Paris Diderot, 2010.

6. Pierre Clairambault and Russ Harmer. Totality in arena games. Annals of Pure
and Applied Logic, 2009.

7. Thierry Coquand. A semantics of evidence for classical arithmetic. Journal of
Symbolic Logic, 60(1):325–337, 1995.

8. Vincent Danos, Hugo Herbelin, and Laurent Regnier. Game semantics and abstract
machines. In 11th IEEE Symposium on Logic in Computer Science, pages 394–405,
1996.

9. Vincent Danos and Laurent Regnier. How abstract machines implement head linear
reduction. Unpublished, 2003.

10. N.G. de Bruijn. Generalizing Automath by means of a lambda-typed lambda
calculus. Mathematical Logic and Theoretical Computer Science, 106:71–92, 1987.

11. Jean-Yves Girard. Light linear logic. Inf. Comput., 143(2):175–204, 1998.
12. W. Greenland. Game semantics for region analysis. PhD thesis, University of

Oxford, 2004.
13. Russ Harmer. Innocent game semantics. Lecture notes, 2004–2007.
14. Russ Harmer, Martin Hyland, and Paul-André Melliès. Categorical combinatorics

for innocent strategies. In IEEE Symposium on Logic in Computer Science, pages
379–388, 2007.

15. Russ Harmer and Guy McCusker. A fully abstract game semantics for finite non-
determinism. In IEEE Symposium on Logic in Computer Science, pages 422–430,
1999.

16. Martin Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II and III.
Information and Computation, 163(2):285–408, December 2000.

17. Jean-Louis Krivine. Un interpréteur du λ-calcul. Unpublished, 1985.
18. Ugo Dal Lago and Olivier Laurent. Quantitative game semantics for linear logic.

In CSL, pages 230–245, 2008.
19. James Laird. Full abstraction for functional languages with control. In IEEE

Symposium on Logic in Computer Science, pages 58–67, 1997.
20. James Laird. A game semantics of the asynchronous π-calculus. In CONCUR,

pages 51–65, 2005.
21. Gianfranco Mascari and Marco Pedicini. Head linear reduction and pure proof net

extraction. Theoretical Computer Science, 135(1):111–137, 1994.
22. Guy McCusker. Games and Full Abstraction for FPC. Information and Compu-

tation, 160(1-2):1–61, 2000.
23. R. Nakajima. Infinite normal forms for the λ-calculus. λ-Calculus and Computer

Science Theory, pages 62–82, 1975.
24. H. Schwichtenberg. Complexity of normalization in the pure typed lambda-

calculus. Studies in Logic and the Foundations of Mathematics, 110:453–457, 1982.

A pointer structures and rewriting

Lemma 7. Let s be a pointed visible pointer structure and a = n[{d1}a1, . . . , {dp}ap]
an agent such that (s, i) ∈ coTr(a). Then if sj → si, (s, j) ∈ Tr(a).

Proof. Let us suppose without loss of generality that si is an Opponent move; the
other case can be obtained just by switching Player/Opponent and P -views/O-
views everywhere. Then sj being a Player move, we have to check first that
rsize(s, j) ≤ 2n, i.e.

max
sj∈xs≤ky

|xs≤ky| − |xs≤jy|+ 1 ≤ 2n

We use that rcosize(s, i) ≤ 2n+ 1, i.e.

max
si∈xs≤ky

|xs≤ky| − |xs≤iy|+ 1 ≤ 2n+ 1

But sj → si, hence |xs≤jy| = |xs≤iy| + 1 and the inequality is obvious. We need
now to examine the context of (s, j). Since sj is a Player move, it is defined as
the set {sn1 , . . . , snp} of Player moves appearing in xs<jy, which is also the set
of Player moves appearing in xs<iy and therefore the co-context of (s, i). But
(s, i) ∈ coTr(a), hence for all k ∈ {1, . . . , p} we have (s, nk) ∈ coTr(ak) which is
exactly what we needed.

Proposition 4 (Simulation). Let (s, i) ∈ a ?d b, then if si+1 is defined, there
exists (a, d, b) (a′, d′, b′) such that (s, i+ 1) ∈ a′ ?d′ b′.

Proof. Suppose a = n[{d1}a1, . . . , {dp}ap]. Let {sn1
, . . . , snp} be the context of

(s, i). By visibility, si+1 must either point to si or to an element of the context.
Let us distinguish cases.

– If si+1 → si, then we claim that (s, i+1) ∈ b?d−1(n−1)[{d1}a1, . . . , {dp}ap, {d}b],
i.e (s, i+ 1) ∈ Tr(b), (s, i+ 1) ∈ coTr((n− 1)[{d1}a1, . . . , {dp}ap, {d}b]) and
the depth of s relative to i + 1 is at most d − 1. For the first part, we use
that (s, i) ∈ a ?d b : in particular, (s, i) ∈ coTr(b) and since si+1 → si this
implies by Lemma 7 that (s, i + 1) ∈ Tr(b). For the second part, we must
first check that rcosize(s, i+ 1) ≤ 2(n− 1) + 1. Let us suppose without loss
of generality that si is an Opponent move, all the reasoning below can be
adapted by switching Player/Opponent and P -views/O-views everywhere.
We want to prove:

rcosize(s, i+ 1) = max
si+1∈ps≤jq

|ps≤jq| − |ps≤i+1q|+ 1 ≤ 2(n− 1) + 1

But since (s, i) ∈ Tr(a), we already know:

rsize(s, i) = max
si∈ps≤jq

|ps≤jq| − |ps≤iq|+ 1 ≤ 2n

Thus we only need to remark that |ps≤i+1q| = |ps≤iq|+1 since si+1 is a Player
move. Now, we must examine the co-context of (s, i + 1), but by definition
of P -view it is {sn1 , . . . , snp , si} where {sn1 , . . . , snp} is the context of (s, i).
Since (s, i) ∈ Tr(n[a1, . . . , ap]) we have as required (s, nk) ∈ coTr(ak) for
each k ∈ {1, . . . , p} and (s, i) ∈ coTr(b) because (s, i) ∈ a ?d b. For the third
part, we have to prove that the depth of s relative to i+ 1 is at most d− 1,
but it is obvious since the depth relative to i is at most d and si+1 → si.

– Otherwise, we have si+1 → snj for j ∈ {1, . . . , p}. Then, we claim that
(s, i+ 1) ∈ aj ?di−1 (n− 1)[{d1}a1, . . . , {dp}ap, {d}b]. We do have (s, i+ 1) ∈
Tr(aj) because (s, i) ∈ Tr(n[{d1}a1, . . . , {dp}ap]), thus (s, nj) ∈ coTr(aj)
and (s, i + 1) ∈ Tr(aj) by Lemma 7. It remains to show that (s, i + 1) ∈
coTr((n − 1)[{d1}a1, . . . , {dp}ap, {d}b]) and that the depth of s relative to
i+1 is at most d1−1, but the proofs are exactly the same as in the previous
case.

B Upper bound

Lemma 8 (Monotonicity). If ρ
α
a, then

ρ′
α′
a for all α ≤ α′ and ρ ≤ ρ′.

Proof. By induction on a.

Lemma 9 (Null substitution lemma). If ρ
α
a(∅) and the type of x in a is

0, then for all agent b we still have ρ
α
a(b). Moreover, the witness includes as

many Cut rules as for ρ
α
a(∅).

Proof. We prove by induction on the tree witness for ρ
α
a(∅) that the above

property is true for all context-arena a′ such that a(∅) = a′(∅).

– Base. The root of a is 0, hence the result is trivial.

– Red. Suppose a′ has the form n[{d1}a1, . . . , {dp}ap, {d}x], where a1, . . . , ap
possibly include occurrences of x (the case where x appears as a son of
the root encompasses the other). The premises of Red are then that for

1 ≤ i ≤ p such that di ≥ 1, ρ
α−1

ai(∅) ·di−1 (n− 1)[{d1}a1(∅), . . . {dp}ap(∅)]
and ρ

α−1
(n−1)[{d1}a1(∅), . . . {dp}ap(∅)]. The induction hypothesis on these

premises give witnesses for the two following properties:

ρ
α−1

(ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap, {d}x])(b) (1)

ρ
α−1

((n− 1)[{d1}a1, . . . {dp}ap, {d}x])(b) (2)

All the possible reductions are already covered since d = 0, thus by Red we

have ρ
(α−1)+1

a(b) as required.

– Cut. Let us suppose ρ
α+γ

a(∅) is obtained by Cut, hence a(∅) has the form
a1(∅) ·d1 a2(∅). Let us suppose that a′ has the form (a1 ·d′ a2) ·d x, since once
again the case where x is a child of the root of a′ encompasses the other.
The premises of Cut are then ρ

α
a1(∅) and ρ

γ
a2(∅), and d′ ≤ ρ. Note now

that we also have (a1 ·d x)(∅) = a1(∅), therefore the induction hypothesis on

ρ
α
a1(∅) along with ρ

β
b and d ≤ ρ + 1 implies that ρ

α
a1(b) ·d b. But by

induction hypothesis we also have ρ
γ
a2(b), hence by Cut:

ρ
α+γ

(a1(b) ·d b) ·d′ a2(b)

Which was what was required for (a1(b) ·d′ a2(b)) ·d b, thus it suffices since
trees are considered up to permutation.

Lemma 10 (Main substitution lemma). If ρ
α
a(∅), ρ

β
b and d ≤ ρ + 1

(where d is the type of x in a), then ρ
α(β+1)

a(b)

Proof. We prove by induction on the tree witness for ρ
α
a(∅) that the above

property is true for all context-arena a′ such that a(∅) = a′(∅).

– Base. The root of a is 0, hence the result is trivial.
– Red. Suppose a′ has the form n[{d1}a1, . . . , {dp}ap, {d}x], where a1, . . . , ap

possibly include occurrences of x (the case where x appears as a son of
the root encompasses the other). The premises of Red are then that for

1 ≤ i ≤ p such that di ≥ 1, ρ
α−1

ai(∅) ·di−1 (n− 1)[{d1}a1(∅), . . . {dp}ap(∅)]
and ρ

α−1
(n−1)[{d1}a1(∅), . . . {dp}ap(∅)]. The induction hypothesis on these

premises give witnesses for the two following properties:

ρ
(α−1)(β+1)

(ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap, {d}x])(b) (3)

ρ
(α−1)(β+1)

((n− 1)[{d1}a1, . . . {dp}ap, {d}x])(b) (4)

By hypothesis we have ρ
β
b, hence by Cut (since d− 1 ≤ ρ), we have:

ρ
(α−1)(β+1)+β

b ·d−1 (n− 1)[{d1}a1(b), . . . {dp}ap(b), {d}b] (5)

Using (3) for all i ∈ {1, . . . , p}, (4) (adjusted to ρ
(α−1)(β+1)+β

by Lemma 8)
and (5) we deduce by Red that

ρ
(α−1)(β+1)+β+1

n[{d1}a1(b), . . . , {dp}ap(b), {d}b]

Which is what was required.

– Cut. Let us suppose ρ
α+γ

a(∅) is obtained by Cut, hence a(∅) has the form
a1(∅) ·d1 a2(∅). Let us suppose that a′ has the form (a1 ·d′ a2) ·d x, since once
again the case where x is a child of the root of a′ encompasses the other.

The premises of Cut are then ρ
α
a1(∅) and ρ

γ
a2(∅), and d′ ≤ ρ. Note now

that we also have (a1 ·d x)(∅) = a1(∅), therefore the induction hypothesis on

ρ
α
a1(∅) along with ρ

β
b and d ≤ ρ+ 1 implies that ρ

α(β+1)
a1(b) ·d b. But by

induction hypothesis we also have ρ
γ(β+1)

a2(b), hence by Cut:

ρ
α(β+1)+γ(β+1)

(a1(b) ·d b) ·d′ a2(b)

Which was what was required for (a1(b) ·d′ a2(b)) ·d b, thus it suffices since
trees are considered up to permutation.

Lemma 11 (Cut elimination lemma). Suppose ρ+1
α

a. Then if α = 0, ρ
0
a.

Otherwise, ρ
2α−1

a.

Proof. By induction on the tree witness for ρ+1
α

a.

– Base. Trivial.
– Red. Suppose a = n[{d1}a1, . . . , {dp}ap], the premises of Red are ρ+1

α−1

ai ·di−1 (n − 1)[{d1}a1, . . . , {dp}ap] for all i ∈ {1, . . . , p} and ρ+1

α−1
(n −

1)[{d1}a1, . . . , {dp}ap]. If α ≥ 2, then it follows by induction hypothesis that

ρ
2α−2

ai·di−1(n−1)[{d1}a1, . . . , {dp}ap] and ρ
2α−2

(n−1)[{d1}a1, . . . , {dp}ap],
which implies by Red and Lemma 8 that ρ

2α−1

a. If α = 1, then the premises

of Red are ρ+1
0

ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap] for all i ∈ {1, . . . , p} and

ρ+1
0

(n − 1)[{d1}a1, . . . , {dp}ap]. By induction hypothesis this is still true

with ρ instead of ρ+ 1, thus by Red we have ρ
1

[{d1}a1, . . . , {dp}ap] which
is what we needed to prove.

– Cut. Suppose a = a1 ·d a2, the premises of Cut are ρ+1
α

a1, ρ+1

β
a2 and

d ≤ ρ + 1. If α, β ≥ 1 then by induction hypothesis it follows that ρ
2α−1

a1

and ρ
2β−1

a2, in particular if we define a context-agent a′1 = a1 ·d x we have

ρ
2α−1

a′1(∅), hence by the substitution lemma (since d ≤ ρ + 1) we have

ρ
2α−1(2β−1+1)

a′1(a2) = a1 ·d a2 = a, thus ρ
2α+β−1

a thanks to Lemma 8 (since
it is always true than 2α+β−1 ≥ 2α−1(2β−1 + 1)). If α = 0 then by induction

hypothesis we have ρ
0
a1 and ρ

β′

a2. We use then the substitution lemma

(since d ≤ ρ+1) to get ρ
0

(a1 ·da2), which is stronger that what was required
whatever was the value of β. The last remaining case is when α = 1 and
β = 0, then by induction hypothesis ρ

1
a1 and ρ

0
a1, thus by the substitution

lemma we have as required ρ
1

(a1 ·d a2).

Lemma 12 (Recomposition lemma). Let a be an agent. Then:

depth(a)

max(a)|a|
a

Where depth(a) is the maximal label of an edge in a, max(a) is the maximal
label of a node and |a| is the number of nodes.

Proof. First, let us show that the following rule Base’ is admissible, for any α
and ρ.

ρ
α+n

n[]

If n = 0 this is exactly Base. Otherwise we apply Red. There is no possible

reduction, so the only thing we have to prove is ρ
α+n−1

(n−1)[], which is provided
by the induction hypothesis. Then we prove the lemma by immediate induction
on a, using only Base’, Cut and Lemma 8.

From now on, let N(a) denote the longest reduction sequence of a. We also
use the notations 2n0 = n and 2nd+1 = 22

n
d for iterated exponentials.

Lemma 13 (Bound lemma). Let a be an agent, then if 0
α
a, N(a) ≤ α.

Proof. First of all we prove that if there is a witness for 0
α
a, then it can be

supposed Cut-free: this is proved by induction on 0
α
a, eliminating each use of

Cut by Lemma 9. Then, by induction on the Cut-free witness tree for 0
α
a:

– Base. Then, the root of a is 0, thus N(a) = 0; there is nothing to prove.

– Red. The premises of 0
α
a include in particular that for all a′ such that

a a′, we have 0

α−1
a′. By induction hypothesis, this means that for all

such a′ we have N(a′) ≤ α− 1, hence N(a) ≤ α.

From all this, it is possible to give a first upper bound by using the recom-
position lemma, then iterating the cut elimination lemma. However, we will first
prove here a refined version of the cut elimination lemma when ρ = 1, which will
allow to decrease by one the height of the tower of exponentials. First, we need
the following adaptation of the substitution lemma:

Lemma 14 (Base substitution lemma). If 0
α
a(∅), 0

β
b and the type of x

in a is 1, then 0

α+β
a(b).

Proof. We prove by induction on the tree witness for 0
α
a(∅) that the above

property is true for all context-arena a′ such that a(∅) = a′(∅).

– Base. The root of a is 0, hence the result is trivial.
– Red. Suppose a′ has the form n[{d1}a1, . . . , {dp}ap, {d}x], where a1, . . . , ap

possibly include occurrences of x (the case where x appears as a son of
the root encompasses the other). The premises of Red are then that for

1 ≤ i ≤ p such that di ≥ 1, 0

α−1
ai(∅) ·di−1 (n− 1)[{d1}a1(∅), . . . {dp}ap(∅)]

and 0

α−1
(n−1)[{d1}a1(∅), . . . {dp}ap(∅)]. The induction hypothesis on these

premises give witnesses for the two following properties:

0

α−1+β
(ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap, {d}x])(b) (6)

0

α−1+β
((n− 1)[{d1}a1, . . . {dp}ap, {d}x])(b) (7)

By hypothesis we have 0

β
b, hence by Lemma 9 (since d = 1) we have

0

β
b ·d−1 (n− 1)[{d1}a1(b), . . . {dp}ap(b), {d}b]

Hence, using (6) for all i ∈ {1, . . . , p}, (7) and (B) (adjusted to 0

α−1+β
b by

Lemma 8) we deduce by Red that

0

α+β
n[{d1}a1(b), . . . , {dp}ap(b), {d}b]

Which is what was required.

– Cut. Let us suppose 0

α+γ
a(∅) is obtained by Cut, hence a(∅) has the

form a1(∅) ·0 a2(∅). Let us suppose that a′ has the form (a1 ·0 a2) ·d x. The

premises of Cut are then 0
α
a1(∅) and 0

γ
a2(∅). Note now that we also have

(a1 ·d x)(∅) = a1(∅), therefore the induction hypothesis on ρ
α
a1(∅) along

with 0

β
b implies that 0

α+β
a1(b) ·1 b and all that remains is to substitute

a2(b) in (a1(b) ·1 b) ·0 x. But since the type of x is 0, Lemma 9 proves that

0

α+β
(a1(b) ·d b) ·d′ a2(b), which concludes since trees are considered up to

permutation.

Lemma 15 (Base cut elimination lemma). If 1
α
a, then 0

α
a.

Proof. By induction on the witness tree for 1
α
a.

– Base. Trivial.
– Red. Suppose a has the form n[{d1}a1, . . . , {dp}ap]. The premises of Red

are that for all i ∈ {1, . . . , p} we have 1

α−1
a1 ·di−1 (n−1){d1}a1, . . . , {dp}ap]

and 1

α−1
(n− 1){d1}a1, . . . , {dp}ap]. The result is then trivial by induction

hypothesis and Red.
– Cut. Suppose a = a1 ·d a2 with d ≤ 1, the premises of Cut are that 1

α
a1

and 1

β
a2. If d = 0, then the result is trivial by the induction hypothesis and

Cut. If d = 1, we just apply Lemma 14 instead of Cut.

Theorem 2 (Upper bound). Let depth(a) denote the highest edge label in a,
max(a) means the highest node label and |a| means the number of nodes of a.
Then if depth(a) ≥ 1 and max(a) ≥ 1 we have:

N(a) ≤ 2
max(a)|a|−1
depth(a)−1

For the particular case when a = n[{d}p[]] and if d ≥ 2 we have:

Nd(n, p) ≤ 2
n(p+1)
d−2

Proof. Let us first prove the first part. By the recomposition lemma, we have

depth(a)

max(a)|a|
a. By depth(a) − 1 iterations of the cut elimination lemma, we have

1

2
max(a)|a|−1

depth(a)−1

a. But then by the remark above we also have 0

2
max(a)|a|−1

depth(a)−1

a. By

Lemma 13, this implies as required that N(a) ≤ 2
max(a)|a|−1
depth(a)−1 . We turn now to

the second part. Obviously, we have d−1
n

n[] and d−1
p

p[]. By the substitution

lemma, this implies that d−1
n(p+1)

n[{d}p[]]. By d − 2 applications of the cut
elimination lemma, and one application of the remark above, this means that

0

2
n(p+1)−1
d−1

[{d}p[]] hence Nd(n, p) ≤ 2
n(p+1)−1
d−2 .

