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Abstract

We consider the question of the approximation of non-negative functions by
non-negative splines of order k (degree < k) compared with approximation

by that subclass of non-negative splines of order k consisting of all those
whose B-spline coefficients are non-negative; while approximation by the
formmer gives errors of order hk, the latter may yield cnly hz. These results

are related to certain facts about quasi-interpolants,
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1., Introduction

In approximating or representing certain data by a spline function s
subject to continuous inequality constraints such as a(x) = g(x) on [0,1] for
a given function g, the continuous constraints are often difficult to treat
numerically, To avold this problem, one might replace g by an accurate spline
approximation Sg and then enforce s = Sg by enforcing the still stronger
condition ﬂj{ﬂﬁ = ﬂj(sg], where for any spline s we denote by ﬁj{s} the jth
coefficient in the representation of s as a linear combination of B-splines;
since each B-spline 1s non-negative, this condition iz at least as strong as the
condition s =2 Sg' One is immediately forced to ask whether or not the approxi-

mation properties of the class of splines satisfving ﬂj{ﬂj = A {Sg} are as good

3
as those for the class satizfying = = sg. In this short note we take the simple
case of ﬁg = g =0 and demonstrate that much approximation power is lost by

this computational simplification. As wsual, the results can be extended to higher

dimension via tensor products.

2. A Constrained Approximation Problem

We shall consider the problem of approximating a given non-negative function

f on a closed and bounded interval [a,b] by splines of positive integer order k
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{degree < k), unbounded and open intervals can be treated similarly. Let

H
e {xi}D be a k-extended partition of [a,b], so that a - %o < Xy SX, § ... S
Xy-1 < Xy = b with no more than k consecutive xj’s colnciding, i.e., xj < lek'
. k . . .
Let & denote the linear space of polynomial splines of order k om T, so that
each s io S? is a polynomial of degree less than k in each interval {xi,xi$1}
and s(r} is continuous at X for all r < k-—di, where di is the frequency
with which the number x = x; appears among the xj's. Then the sequence of nor-
malized B-splines {Nj k{j = =k+l, -k+2, ..., N-1} is a basis for S#, where we have

E]

avgmented T by additional points Koppp = -+ =% =48 and b - Kbl & oo T X g

As usual [Curry-Schoenberg (1966), de Boor (1968)], Ni k denotes the normalized
E)

B-spline defined by divided differences: Ni,k(x)=_ (xi+k-xi}gk(xi""’xiik;x}
. . k-1 , 3
with gk(t,x} = (t-x) . These B-splines are so normalized that & N, |, {x} = 1.
+ § i,k
Since these B-splines are also non-negative, it follows that

(2.1) [ % AiNi,k(x}t < max iaii .

We wish to approximate the non-negative function f on [a,b] by an element s

in ﬁﬁ with the constraint that ﬁj(s) z 0 for all j, where s = 7 ﬁj{S}Hj i
T j

E

This, of course, implies that s(x) 2 0 on [a,b] since every N ok is non-
k)

negative; in fact, since for k >»2 the B-splines do not give all the extreme points

in the cone of non-negative asplines [Burchard (1973)] the condition A (s) =0

|
for all j is appreciably stromger than s z 0. We shall see just how much

stromger it is,



For any f in the Sobolev space H:[a,b], we Tecall the definitieon

[de Boor-Fix (1973)] of the quasi-interpolant wa € Si of f,

(2.2) Ff = % AN

where

(2.3) A = X (-L}k'l‘rwik'l'r}njJf“’"(-rj}
r<k

and

(2.4) V) = G mx) Gy o) (e 1)

If 7, has been chosen to satisfy x; s Tj £ x3+k as well as Tj € [a,b], then

j
one has [de Boor-Fix (1973)]

k k
(2.5) le-gell, = kol Il Il - max x|

for some constant Kﬂ independent of f and w7, and

{2.6) hj(B} = A (s), implying FFE = 8 for s in Si.

X

From Equation 2.3 for k = 2, we have

e

k-1
F(t.) + {_l}k-iw(k-EJ(T }f(lJ{T_] + T l:_1:.Tst-l-t'ﬂlr{llt-l-“r:){T }f(r}(T_}
j ] i A 3 i

k-z¢§k-2}

'lj(f]
2.7y«

£(r) + (D) (Tij(I}[T )y +o(lr?)

i

LY

-2}

Since ¥ wvanishes at we know that ¢(k vanishes at the point

a1 e
B, = (%, , + vuu + xj+k_l}f(k-1} in {xj+l’xj+k-l}; choose Ty gj. Then from

] J+1
)+ G(iﬁfz} if f(zj () are all bounded,

jata,f

Equation 2,7 we have hj(f} = f{Tj



. ; . . 2
Since f 418 non-nepative, a shift in the B-spline coefficients by G(IW| } pro-
duces a new approximation to f with non-negative B-spline coefficients and,
by Equation 2.1, only G{".'.r'|2] away from the original high-order approximation,

This proves the following,

(2.8) Proposition. Let f € Wi[a,h] be non-negative, k = 2. Then there exizts
a apline s¥ in Si with non-negative B-spline coefficients and such that
Hsp—me = G{LW|2}. Equivalently, there exists a quasi-interpolant s whose
B-spline coefficients Aj converge to values of f in [xj,xj_k] at least as
fast as 0(|W|2}.

We now proceed to show that the result in Proposition 2.8 1z essentially
best possible; since this is clear for k = 2, we consider k » 2, Consider the
2 . .
function E£({x) = x on the interval [-1,1], and consider uniform partitions

Ty of width |Tn| = h = % for integers n, If k 1is even we consider partitions
(L for which =n is also even; for k odd we consider only n odd.

We mow provide details for the case in which & = 24+2 is even and
n = 2m; the argument in the remaining case is similar, Let j -m-£-1 and

consider nj('f) with Ty = 0. Since £(1,) - f{”(-rij - f{r}{-rj) =0 forr > 2

and f(z}{Tjj = 2, we conclude from Equatiom 2.5 that hj{f} = (ul)k_3-2'¢§k-3}(ﬂ}.
2 !
. . , s Ak=3) _ h o o.e A+l 2
By simple induction, one finds that yj {0} = EEEEE:IE itli =13 h, so that
oy Lo 24l 2
{2'9} }Ilm_.ﬁw'l(f} - 5 h L]

It is known [de Boor (1968)] that there exists a constant Dk < = and independent

of 7T such that |hi{s}| = Dk”S!w for all i and for all s in SE. Note that



f(x} = x2 igin SE for k > 2. Let sf be any spline in EE with non-negative

B-spline coefficlents, i.e., satisfying }‘-.i{_SP:I =0 for all 1, Then

. N ey . o p, _ P oy o n P
0 < -A 318 = N g g OB SN L G+ A () = A, (=) = by [[s7-£] .

Therefore ﬁsp—fﬁm = —E;lﬁnmgnl(fj; using Equation 2.9, we now see that Proposition 2.8

is essentially best possible.

(2.10) Proposition. For £(x) = xz on L‘l,l], T the uniform partition of
width %, and k = 24+2, every spline sp in Si with pesitive B-spline coefficients

2 £+l

_15T| '
6

o 7 Equivalently, the E-spline coefficients converge

satisfies HsP+EHm = D

to a value of f mno faster than GE|W|2}.

Since it is easy to approximate non-negative functions with non-negative
splines to D{|‘J‘,I'Ek} gimply by translating the quasi-interpolant by G{j’."."|k),
we see that approximation by splines with non-negative B-spline coefficients may
lose much of the approximation power of splines. By argulng essentlally as we
did for f£{x) = xz, it is easy to show that for general non-negative £ the
precise order of best approximation by elements of SE with non-negative BE-spline
coefficients 18 G[§ﬂ1k} plus the order of the most negative B-spline coefficient

2
in a quasi-interpelant of f; as we saw for f(x) - ¥, this total error can be

2 4
ag large as 0(|w| ), but it is no larger.
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